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A B S T R A C T

The present paper introduces a methodology for formulating two-dimensional structural theories
featuring arbitrary kinematic fields. In the proposed approach, each displacement variable
can be examined through an independent expansion function, enabling the integration of
both classical and higher-order theories within a unified framework. The Carrera Unified
Formulation is used to derive the governing equations in a unified form, independent of the
expansion adopted for each displacement component. In this paper, plate structural theories are
constructed by using polynomial expansions. The finite element method is used to discretize
the structure in the reference plane of the plate, utilizing Lagrange-based elements. The Mixed
Interpolation of Tensorial Components is adopted to alleviate the shear locking issues. In this
study, isotropic plate structures are investigated under various loadings, boundary conditions,
and different length-to-thickness ratios. Whenever possible, the present results are compared
with analytical and literature solutions. The accuracy of the presented models is evaluated for
both displacements and stress components. The findings indicate that the selection of the most
appropriate model is strongly dependent on the specific parameters of the individual problem,
however, choosing the right model can significantly enhance the efficiency of the numerical
analysis.

. Introduction

Modern advanced engineering fields, ranging from industrial applications to bio-mechanics, eventually requires complicated
nd computationally expensive structural analyses. Appropriate two-dimensional (2D) models can be adopted to analyse the
hree-dimensional (3D) continuum for some geometries and to reduce the required computer power. Despite advancements in
omputational mechanics and computing power, plate models remain popular due to their relative simplicity. In fact, 2D models
an capture essential aspects of structural behaviour. These models find extensive applications in engineering, e.g., aircraft panels
nd helicopter rotor blades in aerospace engineering.

In recent years, researchers have made significant progress in accurately predicting specific structural behaviours while striving
o balance accuracy and computational efficiency using various plate models. One of the most critical issue is that the researchers
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Fig. 1. Localized deformations on different thickness-lines of a plate structure.

Fig. 2. Classical two-dimensional finite elements.

have to redefine a new theory and recalculate the governing equations every time. This paper introduces a general method that
addresses this issue for the plate formulation by creating a framework that enables the generation of any structural theory. The aim
of this work is to provide a consistent formulation that allows users to select the desired theory and accuracy level.

The thickness-wise deformation of plates. Structures generally undergo deformation due to various conditions, such as types
of loads, materials, boundary conditions, geometrical properties, and many others that can arise in specific cases [1]. Deformation
pattern depends on the specific problem under consideration and on the considered position of the structure. Fig. 1 depicts a plate
loaded by a localized pressure with two simply-supported edges. The initial and deformed configurations are shown. In particular,
three thickness-lines are taken into account. The load significantly affects Thickness-lines A and B, causing noticeable deformations
and pinching near Thickness-line A, while Thickness-line C, close to a clamped edge, is slightly affected. That is, assigning the same
degree of freedom to all three thickness-lines would be inefficient. This aspect is particularly evident in the laminated structures, where
complicated phenomena arise. See [2] for more information.

Classical and Refined plate approaches. Several plate models have been proposed, with Thin Plate Theory (TPT) standing out as
a classical model. TPT relies on Kirchhoff’s hypotheses [3], which exclude transverse shear and through-the-thickness deformation.
The inclusion of transverse shear deformation in TPT leads to the Reissner–Mindlin theory [4,5], commonly referred to as the
First-Order Shear Deformation Theory (FSDT). While classical theories are suitable primarily for isotropic and thin cases, they were
predominant in the early Finite Element Method (FEM) plate formulations, as exemplified in Argyris [6]. Many plate elements are
grounded in Lagrange polynomials. For instance, Pryor and Barker [7] introduced a four-node element to investigate transverse
shear effects. Leonetti and Aristodemo [8] implemented a mixed finite element model to study linear and plastic collapse plane
problems. Ribaric and Jelenic [9] used a higher-order FE based on the FSDT to study thick plates. Classical models continue to be
employed in contemporary commercial codes. To this end, Fig. 2 illustrates a plate structure discretized with classical four-node 2D
elements. Three displacements and two rotations are the unknowns for each FE node, i.e., only five Degrees Of Freedom (DOF) per
each node. A detailed explanation of various classical elements can be found in Bathe [10].

Classical plate elements face limitations in accurately capturing local effects and nonlinear deformations, particularly in the
analysis of thicker plates. A more effective approach involves the use of 3D elements (as discussed by Argyris [11]). In particular,
2 
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Fig. 3. Use of three-dimensional finite elements to discretize a plate-like structure.

Fig. 4. Use of a global–local method to discretize a structure, reported from Zappino and Carrera [1].

each FE node is described by only three displacements , as shown in Fig. 3 for a plate-like structure. Combining 3D and 2D FE
elements is also a viable approach, as demonstrated by Surana [12,13]. Dávila [14] proposed two methods to combine solid and plate
models — one based on the FSDT assumptions, and another on a higher-order theory. Blanco et al. [15] coupled incompatible 3D and
2D models under the Naghdi hypothesis. Zappino and Carrera [1] introduced an approach to unify 1D, 2D, and 3D models within
a single formulation reducing computational costs and enhancing efficiency. Several global/local methods have been employed, as
discussed by Noor [16]. Fig. 4 pictorially describes the possibility to integrate the three formulations.

However, also several refined plate models have been proposed. First, the so-called axiomatic theories are briefly reviewed, where
scientists made assumptions for the behaviour of structures. Advanced 2D models have been developed to overcome the limitations
of classical plate theories. For instance, see Reddy’s influential book [17]. Comprehensive reviews of advanced plate models can be
found in the works of Reddy and Robbins [18] and Carrera [19]. Additional insights into higher-order plate theories were provided
by Washizu [20]. The general theory can be written in the following expansion:

𝑢𝑥 = 𝑢𝑥1 + 𝑧𝑢𝑥2 + 𝑧
2𝑢𝑥3 +⋯ + 𝑧𝑁−1𝑢𝑥𝑁

𝑢𝑦 = 𝑢𝑦1 + 𝑧𝑢𝑦2 + 𝑧
2𝑢𝑦3 +⋯ + 𝑧𝑁−1𝑢𝑦𝑁 (1)

𝑢𝑧 = 𝑢𝑧1 + 𝑥𝑢𝑧2 + 𝑧
2𝑢𝑧3 +⋯ + 𝑧𝑁−1𝑢𝑧𝑁

In these theories, higher-order expansions of the displacement variables are assumed along the thickness of the structure and were
presented by Kant et al. [21] and Kant and Kommineni [22]. Reddy [23] employed refined models for plates structures. Swaminathan
and Patil [24] presented an analytical solution with twelve degrees of degrees for dynamic analysis. Kant and Swaminathan [25]
compared five classical and refined theories from literature: (a) Kant and Majunatha [26], (b) Pandya and Kant [27], (c) Reddy [28],
(d) Senthilnathan et al. [29], and (e) Whitney and Pagano [30].

The Carrera Unified Formulation vs axiomatic and asymptotic approaches. At last, Carrera and Demasi [2] proposed the
Carrera Unified Formulation (CUF) for plate theories. CUF has been applied also to the beam formulation, see Carrera et al. [31].
Thanks to this method, it is possible to choose the structural theory and the shape functions over the mid-plane freely. CUF has been
used in several applications. CUF was also used for thermal applications (see for example Robaldo et al. [32]), and multilayered
plates embedding piezo-layers were studied by Ballhause et al. [33]. Many other papers study multilayered plates and shells by
using CUF. The interested reader can refer to Carrera [34] for more details and references. Concerning the shape functions, several
elements have been proposed in the CUF literature, ranging from the classical four-node to the higher-order nine- and sixteen-node
Lagrange-based elements. Also, hierarchical FE have been assessed, see [35].

In addition to axiomatic theories, it is possible to define the asymptotic methods. These approaches [36,37] begin with the
3D equations, identifying a perturbation parameter 𝛿 (often the length-to-thickness ratio), and derive theories associated with the
3 
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Table 1
Complete fourth-order Taylor theory, Number of Terms = 15. All
the terms are indicated by the black bullets.
Variable 1 𝑧 𝑧2 𝑧3 𝑧4

𝑢𝑥 ∙ ∙ ∙ ∙ ∙
𝑢𝑦 ∙ ∙ ∙ ∙ ∙
𝑢𝑧 ∙ ∙ ∙ ∙ ∙

Table 2
Reduced fourth-order Taylor theory, Number of Terms = 10.
The black bullets indicate the considered terms, while the empty
circles stand for the disregarded terms.
Variable 1 𝑧 𝑧2 𝑧3 𝑧4

𝑢𝑥 ∙ ◦ ∙ ◦ ∙
𝑢𝑦 ◦ ◦ ∙ ∙ ∙
𝑢𝑧 ∙ ∙ ◦ ∙ ∙

Fig. 5. Use of different reduced models for the study of tree thickness-lines from Fig. 1.

same order in 𝛿. This approach offers a direct estimation of solution accuracy compared to the exact 3D solution. However, many
parameters should be used to deal with thick structures and intricate phenomena. For example, Aghalovyan and Aghalovyan [38]
investigated thermoelastic and dynamic problems in thin structures, while Berdichevsky [39] proposed an asymptotic method for
studying sandwich plates. Aim of the present paper. The primary objective of this work is to develop a method for assessing the
meaning of individual terms within an expansion. In structural analysis, computational efficiency is crucial. Thus, the aim is to
achieve reliable results with minimal computational cost, which is of significant interest. The ultimate goal is to construct the most
advantageous models, specifically reduced models, while ensuring the desired level of accuracy.

The generation of reduced theories may be effectively illustrated, as in Tables 1 and 2, where each displacement variable is
represented by polynomial terms. The black bullets reveal the presence of the terms, while the empty circles denote their absence.
Table 1 presents a complete fourth-order Taylor theory with fifteen terms. However, it is essential to examine the impact of individual
terms. Table 2 provides an illustration of a fourth-order model with only ten terms included, balancing accuracy with reduced
complexity. Reminding the example of Fig. 1, Fig. 5 illustrates the three thickness-lines of the plate, allowing specific models for
a detailed deformation analysis. For instance, for the analysis of Thickness-line B, the most refined model with nine terms could
be efficiently employed. Thickness-line A highlights the importance of higher-order terms in transverse displacement for accurate
deformed representation.

From the previous considerations, the Asymptotic-Axiomatic Method (AAM) has been presented. See, for instance, [40]. As the
name suggests, it is possible to unify the capabilities of the two philosophies. In particular, the AAM starts from the definition of a
complete axiomatic theory (e.g., TE4 as in Table 1) and then the role of each term can be studied considering several parameters such
as loading and boundary conditions, materials or length-to-thickness ratios. This method consists of various steps: (a) the problem
data – e.g., BCs, materials and other characteristics of the structure – must be identified; (b) the output variable are calculated,
such as displacements, stresses, or frequencies; (c) a starting complete theory is selected and often regarded as the reference model
4 
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Fig. 6. Example of a 2D plot Error-Number of Terms (a) and a Best Theory Diagram (b).

because it aims to provide a solution that closely resembles the behaviour of the actual 3D system; (d) then it is possible to choose a
educed theory, that is, the terms considered for the displacement variables are established; (e) the derived governing equations are
sing the CUF, even though other formulations could be employed; (f) the accuracy of the theory is typically assessed by comparing
ts results with those obtained from a reference solution.

From this process it is possible to build a two-dimensional graph, see Fig. 6(a). On the horizontal axis lays the error calculated
respect to a reference theory. The number of considered terms is indicated on the 𝑦-axis. This graph is useful to immediately
understand the capabilities of a theory for a given problem. The final result of the process of analysing all the theories up to a
determined order is the Best Theory Diagram (BTD), see Fig. 6(b). This curve (i.e., a Pareto front) is composed by all the models
with the least error for a given number of terms. In this example, the complete fourth-order model (TE4) serves as the reference
solution. This is not a strict rule, because also 3D and analytical solutions, if available, can be chosen. Additionally, uniform theories
can be represented where all three displacement variables adopt the same complete expansion. The literature models can be inserted
n the graph as well. In Fig. 6(b) the following models are used as examples: FSDT [4,5], Reissner [41], Pandya and Kant [27]. It
s important to note that the diagram depends on the analysed problem and the desired output.

The development of a unified method for automatically generating reduced plate models, similar to those illustrated in Table 2,
remains an area of ongoing research in the literature. A preliminary work has been presented by Carrera et al. [42] for the beam
formulation within the CUF framework. Such a unified method is essential for achieving the most efficient computational model,
as it allows for the reduction of the number of degrees of freedom while maintaining a predefined level of accuracy. In recent
ears, several studies within the context of CUF have focused on understanding the significance of different terms in displacement
ariables Carrera and co-authors [43–45] examined the efficacy of terms in Taylor-based expansions within the plate formulation for

the displacement and stresses. Also, frequencies in dynamic responses have been considered as the control parameters. Higher-order
nine-node Lagrange finite elements were used over the mid-plane of the structure. In particular, a penalization technique for the
tiffness matrix is used to simulate the elimination of the terms. However, the stiffness matrix has always the dimension of the most
5 
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Table 3
Acronyms used in the present paper.
Acronym Meaning

CUF Carrera Unified Formulation
TE Taylor Expansion
TPT Thin Plate Theory
FSDT First-order Shear Deformation Theory
HOT Higher-Order Theories
DOF Degrees of Freedom
MITC Mixed Interpolation of Tensorial Components
Q9 Square nine-noded Lagrange element
FE Finite Element
FEM Finite Element Method
FN Fundamental Nucleus
AAM Asymptotic-Axiomatic Method
BTD Best Theory Diagram
NDK Node Dependent Kinematics

Fig. 7. Reference system for a generic plate-like structure.

accurate theory. For example, considering the Table 1 once more, all the analyses actually have 15 terms for each FE node, from
a computational point of view. In contrast, Demasi [46] introduced the Generalized Unified Formulation (GUF) for analising plate
structures for closed-form solution. Then, the GUF was extended by the same author [47] to a two-dimensional FE framework. In
this approach, the 3 × 3 Fundamental Nucleus (FN) of the stiffness matrix is replaced by a scalar FN. This reformulation allows for
the reordering of the global stiffness matrix, facilitating the independent definition of displacements.

This works introduces a method to employ models similar to that described in Eq. (1), within the framework of CUF. The method
is designed to be adaptable to various theories, and its utility is demonstrated in Table 2. The goal of this work is to redefine
the Unified formulation to simplify the development of specialized plate theories within the FE method. Essentially, the previous
version of the unified formulation used a 3 × 3 FN 𝐊 (3 stands for the number of displacement components). Since there is a single
submatrix, it is not possible to decide the expansion for each component. The only way to delete some terms was to adopt some
ad-hoc penalization techniques, as in [43]. These limitations have led to a change in the paradigm of the unified formulation. In
particular, the concept of the submatrix 3 × 3 has been substituted by the scalar FN 𝐾. This allows complete freedom in choosing
the theories and the number of terms. In the new method, it is also possible to delete the contribution of one or more displacement
components as in the cylindrical bending conditions. Now, the dimensions of the structural matrices are more tailored with respect to
the ‘classical’ CUF. By employing the new approach, the stiffness matrix can maintain consistent dimensions, ensuring compatibility
with different kinematic models. For the sake of clarity, the details of the new assembly process is given in Section 4.3.

The paper primarily focuses on analysing isotropic structures. Overall, the work aims to enhance the development of specialized
plate theories within FE analysis and lays the groundwork for future exploration of the AAM methodology.

FE analysis may encounter notable stiffening issues, particularly with thin structures. Shear locking impacts plate elements,
where FEs struggle to accurately calculate bending deformation, mistakenly channelling strain energy into shear modes. One of the
most effective approaches is the Mixed Interpolation of Tensorial Components (MITC) method [48,49]. Cinefra and Carrera [50]
first included this integration scheme in the CUF framework.

This paper is organized as follows: (a) In Section 2, various plate theories from the literature are presented, along with illustrations
of Taylor-based expansions and an explanation of the concept of reduced theories. (b) Section 3 outlines the principles of the Unified
formulation approximation and its integration with the finite element method. (c) Section 4 derives the governing equations by
6 
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adopting the principle of virtual displacements. (d) Section 5 show an example for the assembly of the stiffness matrix and load
vector. (e) Results for displacements and stresses are presented in Section 6. (f) Finally, the main conclusions are summarized in
Section 7.

For the list ofsee Table 3

2. Review of the plate theories

Fig. 7 depicts a generic isotropic and a Cartesian reference system. The Thickness-line 𝐴 is placed along the thickness direction
. Instead, the mid-plane 𝛺 is located in the 𝑥–𝑦 plane of the structure. The three-dimensional displacement field is the following:

𝐮(𝑥, 𝑦, 𝑧) = {

𝑢𝑥(𝑥, 𝑦, 𝑧), 𝑢𝑦(𝑥, 𝑦, 𝑧), 𝑢𝑧(𝑥, 𝑦, 𝑧)
}𝑇 (2)

The brief review in Section 1 shows how scientists have proposed many models. In particular, each component of the displacement
variable, i.e., 𝑢𝑥, 𝑢𝑦, and 𝑢𝑧 can be studied with different expansions.

To this end, the present section explicitly presents several theories, ranging from the classical to more advanced higher-order
models. Some have been briefly presented in the Introduction.

2.1. Classical plate theories

First, one of the simplest models is the Membrane Theory (see Carrera et al. [51]) where only the three constant terms are
onsidered:

𝑢𝑥(𝑥, 𝑦, 𝑧) = 𝑢𝑥1 (𝑥, 𝑦)
𝑢𝑦(𝑥, 𝑦, 𝑧) = 𝑢𝑦1 (𝑥, 𝑦)
𝑢𝑧(𝑥, 𝑦, 𝑧) = 𝑢𝑧1 (𝑥, 𝑦)

(3)

Second, the displacement field of the Thin Plate Theory (TPT) is slightly more complex, see [3]. The three variables are described
as follows:

𝑢𝑥(𝑥, 𝑦, 𝑧) = 𝑢𝑥1 (𝑥, 𝑦) −
𝜕 𝑢𝑧1 (𝑥,𝑦)

𝜕 𝑥 𝑧

𝑢𝑦(𝑥, 𝑦, 𝑧) = 𝑢𝑦1 (𝑥, 𝑦) −
𝜕 𝑢𝑧1 (𝑥,𝑦)

𝜕 𝑦 𝑧
𝑢𝑧(𝑥, 𝑦, 𝑧) = 𝑢𝑧1 (𝑥, 𝑦)

(4)

Third, the First-order Shear Deformation Theory (FSDT) uses five term, see [4,5] for more details. The displacement field is written
n the following:

𝑢𝑥(𝑥, 𝑦, 𝑧) = 𝑢𝑥1 (𝑥, 𝑦) + 𝜙𝑦(𝑥, 𝑦)𝑧
𝑢𝑦(𝑥, 𝑦, 𝑧) = 𝑢𝑦1 (𝑥, 𝑦) + 𝜙𝑥(𝑥, 𝑦)𝑧
𝑢𝑧(𝑥, 𝑦, 𝑧) = 𝑢𝑧1 (𝑥, 𝑦)

(5)

In these models, 𝑢𝑥1 , 𝑢𝑦1 , and 𝑢𝑧1 denote the displacements of the plate’s reference mid-surface in the 𝑥, 𝑦, and 𝑧 directions,
espectively. The terms 𝜙𝑦 and 𝜙𝑥 represent the rotations about 𝑦 and 𝑥 axes. Conversely, the factors −

𝜕 𝑢𝑧1 (𝑥,𝑦)
𝜕 𝑥 and −

𝜕 𝑢𝑧1 (𝑥,𝑦)
𝜕 𝑦 describe

rotations about 𝑦 and 𝑥 axes, if the shear deformation is not considered. Fig. 8 visually depicts these classical theories in the 𝑦 − 𝑧
nd 𝑥 − 𝑧 planes for the sake of clarity.

2.2. Use of ad-hoc higher-order theories

After having explored the mathematical formulation of three widely used classical theories, the attention is here focussed on
some Higher-Order Theories (HOTs) presented in literature.

As first example, Lo et al. [52] proposed the following model:
𝑢𝑥(𝑥, 𝑦, 𝑧) = 𝑢𝑥0 (𝑥, 𝑦) + 𝑧𝜓𝑥(𝑥, 𝑦) + 𝑧2𝜁𝑥(𝑥, 𝑦) + 𝑧3𝜙𝑥(𝑥, 𝑦)
𝑢𝑦(𝑥, 𝑦, 𝑧) = 𝑢𝑦0 (𝑥, 𝑦) + 𝑧𝜓𝑦(𝑥, 𝑦) + 𝑧2𝜁𝑦(𝑥, 𝑦) + 𝑧3𝜙𝑦(𝑥, 𝑦)
𝑢𝑧(𝑥, 𝑦, 𝑧) = 𝑢𝑧0 (𝑥, 𝑦) + 𝑧𝜓𝑧(𝑥, 𝑦) + 𝑧2𝜁𝑧(𝑥, 𝑦)

(6)

On the other hand, Reissner [41] presented an interesting theory where some terms of the previous equations are disregarded.
𝑢𝑥(𝑥, 𝑦, 𝑧) = 𝑧𝜓𝑥(𝑥, 𝑦) + 𝑧3𝜙𝑥(𝑥, 𝑦)
𝑢𝑦(𝑥, 𝑦, 𝑧) = 𝑧𝜓𝑦(𝑥, 𝑦) + 𝑧3𝜙𝑦(𝑥, 𝑦)
𝑢𝑧(𝑥, 𝑦, 𝑧) = 𝑢𝑧0 (𝑥, 𝑦) + 𝑧2𝜁𝑧(𝑥, 𝑦)

(7)

When focusing on specific loading cases, such as cylindrical bending, it is possible to use simplifying hypotheses. To this end, the
influence of the 𝑦 direction is entirely disregarded. Consequently, also the variable 𝑢𝑦 is omitted. For instance, Manjunatha and
Kant [53] introduced a simplified theory which is given in the following:

𝑢𝑥(𝑥, 𝑧) = 𝑧𝜓𝑥(𝑥) + 𝑧3𝜙𝑥(𝑥)
2 (8)
𝑢𝑧(𝑥, 𝑧) = 𝑢𝑧0 (𝑥) + 𝑧 𝜁𝑧(𝑥)

7 
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Fig. 8. Differences between classical plate theories: Membrane Theory (a), Thin Plate Theory (b), and First-order Shear Deformation Theory (c).
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The preceding examples have demonstrated how scientists endeavoured to formulate customized plate models efficiently for the
nalysis of various problems. These concepts will be further explored in the subsequent Section 2.3, where Taylor-based models will
e discussed.

2.3. Taylor-based higher-order theories

Taylor polynomials of the form 𝑧𝑏, where 𝑏 is a positive integer, are utilized to develop Higher-Order Theories (HOTs) for
analysing plate behaviour. These polynomials are adopted to modelling the responses plate of the thickness-lines in detail. Within
he CUF framework, Carrera [19] explored the capabilities of such polynomials for plates, extending from first to fourth orders,

thereby enabling the incorporation of higher-order effects more comprehensively.

Uniform theories In the literature on the CUF applied to plate formulations, it is common to assume the same expansion across all
three displacement variables. This approach gives rise to what are known as uniform theories. For example, a theory of the third
order within this context might be described in the following manner:

𝑢𝑥 = 𝑢𝑥1 + 𝑧𝑢𝑥2 + 𝑧
2𝑢𝑥3 + 𝑧

3𝑢𝑥4
𝑢𝑦 = 𝑢𝑦1 + 𝑧𝑢𝑦2 + 𝑧

2𝑢𝑦3 + 𝑧
3𝑢𝑦4 (9)

𝑢𝑧 = 𝑢𝑧1 + 𝑧𝑢𝑧2 + 𝑧
2𝑢𝑧3 + 𝑧

3𝑢𝑧4

Different theories Previous uniform theories applied the same level of expansion to all displacement variables. Nonetheless, this
paper introduces results where 𝑢𝑥, and 𝑢𝑦, and 𝑢𝑧 are approximated with varying polynomial orders. For example, the structural
theory discussed here utilizes a second-order expansion for 𝑢𝑥 and 𝑢𝑧, and a third-order expansion for 𝑢𝑦, demonstrating a tailored
approach to modelling the displacement components:

𝑢𝑥 = 𝑢𝑥1 + 𝑧𝑢𝑥2 + 𝑧
2𝑢𝑥3

𝑢𝑦 = 𝑢𝑦1 + 𝑧𝑢𝑦2 + 𝑧
2𝑢𝑦3 + 𝑧

3𝑢𝑦4 (10)
𝑢𝑧 = 𝑢𝑧1 + 𝑧𝑢𝑧2 + 𝑧

2𝑢𝑧3

This theory consists of ten terms, differing from the uniform third-order theory (Eq. (9)), which incorporates twelve expansion
functions.

Reduced theories In both uniform and different theories, comprehensive Taylor expansions are showcased, signifying the inclusion of
all terms within each displacement variable. Yet, based on physical insights, it becomes evident that certain terms may be omitted.
Consequently, this facilitates the construction of what are termed reduced theories, modelled as follows:

𝑢𝑥 = 𝑢𝑥1 + 𝑧𝑢𝑥2
𝑢𝑦 = 𝑢𝑦1 + 𝑧

2𝑢𝑦2 + 𝑧
3𝑢𝑦3 (11)

𝑢𝑧 = 𝑢𝑧1

Attention is drawn to the differences in the 𝑢𝑦 component between Eq. (9) (or Eq. (10)) and Eq. (11). In the initial equations, all four
terms are preserved, whereas the latter equation opts to incorporate only three of these terms. Taking into account the variables 𝑢𝑥
and 𝑢𝑧 as well, the reduced model in Eq. (11) now encompasses a total of six terms, signifying a notable reduction in degrees of
freedom compared to the uniform theory. Please note that the subscripts are updated.

In the CUF literature, the elimination of a term is facilitated through a penalization technique, starting from a comprehensive
uniform theory. Consequently, the effective number of terms remains constant. For a more detailed explanation, please refer to [51].

3. Unified formulation for plate and generalization to the higher-order theories

In the preceding sections, various models found in the literature have been presented, and it is also feasible to devise new ad
oc models. The CUF possesses a unique ability to succinctly describe these models, all stemming from a common mathematical
oundation. Within this context, a general variable (such as displacement, stress, or strain component) denoted as 𝑓 is represented

in relation to one or more 𝑀 additional unknowns 𝑓𝜏 (𝜏 = 1,… , 𝑀). They are defined at a specified point on the plate thickness-line,
generally corresponding to the mid-plane of the plate. The expansion is formulated by introducing base functions 𝐹𝜏 (𝑧) along the
plate thickness-line, and this relationship is captured by the following formula:

𝑓 (𝑥, 𝑦, 𝑧) =
𝑀
∑

𝜏=1
𝐹𝜏 (𝑧)𝑓𝜏 (𝑥, 𝑦) = 𝐹𝜏 (𝑧)𝑓𝜏 (𝑥, 𝑦), 𝜏 = 1, 2,… , 𝑀 (12)

In this paper the Einstein’s convention will be used for the sake of brevity.
In the present formulation, the components of the 3D displacement field are approximated by arbitrary functions, defined along

the thickness-line:
9 
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𝑢𝑥 = 𝐹𝑢𝑥𝜏 (𝑧)𝑢𝑥𝜏 (𝑥, 𝑦) with 𝜏 = 1,… , 𝑀𝑢𝑥

𝑢𝑦 = 𝐹𝑢𝑦𝜏 (𝑧)𝑢𝑦𝜏 (𝑥, 𝑦) with 𝜏 = 1,… , 𝑀𝑢𝑦

𝑢𝑧 = 𝐹𝑢𝑧𝜏 (𝑧)𝑢𝑧𝜏 (𝑥, 𝑦) with 𝜏 = 1,… , 𝑀𝑢𝑧

(13)

𝐹𝑢𝑥𝜏 , 𝐹𝑢𝑦𝜏 , and 𝐹𝑢𝑧𝜏 are the expansion functions for the generalized displacements 𝑢𝑥𝜏 , 𝑢𝑦𝜏 , and 𝑢𝑧𝜏 , respectively. In this work, each
isplacement variable can be discretized by different functions, while in previous CUF-based works [2] the expansions were identical

for all three components. The symbol 𝜏 denotes summation, while 𝑀𝑢𝑥 , 𝑀𝑢𝑦 , and 𝑀𝑢𝑧 signify the number of expansions for each
displacement variable. It is crucial to emphasize that the value of 𝜏 varies depending on the specific component under consideration.

It is also possible to write the three virtual displacement variables as follows:
𝛿 𝑢𝑥 = 𝐹𝑢𝑥𝑠(𝑧)𝛿 𝑢𝑥𝑠 (𝑥, 𝑦) with 𝑠 = 1,… , 𝑀𝑢𝑥

𝛿 𝑢𝑦 = 𝐹𝑢𝑦𝑠(𝑧)𝛿 𝑢𝑦𝑠 (𝑥, 𝑦) with 𝑠 = 1,… , 𝑀𝑢𝑦

𝛿 𝑢𝑧 = 𝐹𝑢𝑧𝑠(𝑧)𝛿 𝑢𝑧𝑠 (𝑥, 𝑦) with 𝑠 = 1,… , 𝑀𝑢𝑧

(14)

Here, 𝐹𝑢𝑥𝑠, 𝐹𝑢𝑦𝑠, and 𝐹𝑢𝑧𝑠 represent the expansion functions in the virtual system. Notably, the subscript 𝜏 is substituted with 𝑠.
The CUF approximation and the Finite Element Method (FEM) can be successfully integrated to yield numerical results. FEM is

utilized to discretize displacements across the mid-plane. Thence, the displacements are written as in the followings:
𝑢𝑥 = 𝑁𝑖(𝑥, 𝑦)𝐹𝑢𝑥𝜏 (𝑧)𝑞𝑥𝜏 𝑖 with 𝜏 = 1,… , 𝑀𝑢𝑥 and 𝑖 = 1,… , 𝑁𝑛

𝑢𝑦 = 𝑁𝑖(𝑥, 𝑦)𝐹𝑢𝑦𝜏 (𝑧)𝑞𝑦𝜏 𝑖 with 𝜏 = 1,… , 𝑀𝑢𝑦 and 𝑖 = 1,… , 𝑁𝑛

𝑢𝑧 = 𝑁𝑖(𝑥, 𝑦)𝐹𝑢𝑧𝜏 (𝑧)𝑞𝑧𝜏 𝑖 with 𝜏 = 1,… , 𝑀𝑢𝑧 and 𝑖 = 1,… , 𝑁𝑛

(15)

while their virtual variations read as:
𝛿 𝑢𝑥 = 𝑁𝑗 (𝑥, 𝑦)𝐹𝑢𝑥𝑠(𝑧)𝛿 𝑞𝑥𝑠𝑗 with 𝑠 = 1,… , 𝑀𝑢𝑥 and 𝑗 = 1,… , 𝑁𝑛

𝛿 𝑢𝑦 = 𝑁𝑗 (𝑥, 𝑦)𝐹𝑢𝑦𝑠(𝑧)𝛿 𝑞𝑦𝑠𝑗 with 𝑠 = 1,… , 𝑀𝑢𝑦 and 𝑗 = 1,… , 𝑁𝑛

𝛿 𝑢𝑧 = 𝑁𝑗 (𝑥, 𝑦)𝐹𝑢𝑧𝑠(𝑧)𝛿 𝑞𝑧𝑠𝑗 with 𝑠 = 1,… , 𝑀𝑢𝑧 and 𝑗 = 1,… , 𝑁𝑛

(16)

Here, 𝑁𝑖 and 𝑁𝑗 represent the shape functions, with the repeated subscripts 𝑖 and 𝑗 signifying summation. 𝑁𝑛 denotes the number
of shape functions per element. In this study, the classical nine-node Lagrange (denoted as Q9) element is employed for numerical
assessments. For further details, refer to Bathe [10].

It is convenient to introduce a concise notation for both real and virtual systems, as illustrated below:

𝑢𝑙 = 𝑁𝑖𝐹𝑢𝑙𝜏𝑞𝑙𝜏 𝑖 =
𝑁𝑛
∑

𝑖=1

𝑀𝑢𝑙
∑

𝜏=1
𝑁𝑖𝐹𝑢𝑙𝜏𝑞𝑙𝜏 𝑖 (17)

𝛿 𝑢𝑚 = 𝑁𝑗𝐹𝑢𝑚𝑠𝛿 𝑞𝑚𝑠𝑗 =
𝑁𝑛
∑

𝑗=1

𝑀𝑢𝑚
∑

𝑠=1
𝑁𝑗𝐹𝑢𝑚𝑠𝛿 𝑞𝑚𝑠𝑗 (18)

Here, 𝑙 and 𝑚 can assume the values of 𝑥, 𝑦, and 𝑧. In particular, there is no summation over 𝑙 (or 𝑚). This formulation proves
dvantageous for the assembly of the matrices of the linear structural system, as elaborated in the subsequent Section 4.

4. Governing equations and finite element matrices

The first step in determining the governing equations and the FE matrices is to give the expressions for stress, 𝝈, and strain, 𝝐,
ensors. In classical elasticity, their vectorial form can be written as follows:

𝝈 =
{

𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜎𝑦𝑧 𝜎𝑥𝑧 𝜎𝑥𝑦
}𝑇 𝝐 =

{

𝜖𝑥𝑥 𝜖𝑦𝑦 𝜖𝑧𝑧 𝜖𝑦𝑧 𝜖𝑥𝑧 𝜖𝑥𝑦
}𝑇 (19)

The geometrical relations strains-displacements read as:

𝝐 = 𝐃𝐮 (20)

where 𝐃 represents the matrix of differential operators for small displacements and angles of rotation can be found in [51]. This
ork assumes linear elastic isotropic materials, leading to the following constitutive relation:

𝝈 = 𝐂𝝐 (21)

where the matrix of material coefficients, 𝐂 is described in [10].
10 
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Fig. 9. Tying points for the MITC Q9 plate elements used for different strain components.

4.1. MITC Q9

In this work, however, the Mixed Interpolation of Tensorial Components (MITC) method is adopted to counteract the shear
locking issue present in Finite Element (FE) formulations. For more information, see Bathe et al. [54]. The MITC method has been
extensively employed in CUF literature [50]. Since Lagrangian nine-node elements are used, the element is usually named MITC Q9.
Considering the natural coordinate system (𝜉, 𝜂), the MITC elements are formulated by employing an interpolation approach. Rather
than directly computing the strain components from the displacements, an interpolation of these components is conducted within
each element. This involves employing a specific interpolation strategy tailored to each component. Fig. 9 shows the positions of the
tying points and their coordinates in the 𝜉 − 𝜂 plane, see [49]. The transverse normal strain, 𝜖𝑧𝑧, is not involved in this procedure,
and it is directly calculated from the displacements.

Lagrangian functions are chosen as the interpolating functions and are arranged in the following arrays:

𝑁𝑚1 =
[

𝑁𝐴1 𝑁𝐵1 𝑁𝐶1 𝑁𝐷1 𝑁𝐸1 𝑁𝐹1
]

𝑁𝑚2 =
[

𝑁𝐴2 𝑁𝐵2 𝑁𝐶2 𝑁𝐷2 𝑁𝐸2 𝑁𝐹2
]

(22)
𝑁𝑚3 =

[

𝑁𝑃 𝑁𝑄 𝑁𝑅 𝑁𝑆
]

Hereinafter, the subscripts 𝑚1, 𝑚2, and 𝑚3 designate quantities computed at the points (𝐴1, 𝐵1, 𝐶1, 𝐷1, 𝐸1, 𝐹1), (𝐴2, 𝐵2, 𝐶2, 𝐷2, 𝐸2,
𝐹2), and (𝑃 , 𝑄, 𝑅, 𝑆), respectively. Consequently, the interpolation of strain components is as follows:

𝜖𝑥𝑥 =
6
∑

𝑚1=1
𝑁𝑚1𝜖𝑥𝑥𝑚1 = 𝑁𝑚1𝜖𝑥𝑥𝑚1

𝜖𝑦𝑦 =
6
∑

𝑚2=1
𝑁𝑚2𝜖𝑦𝑦𝑚2 = 𝑁𝑚2𝜖𝑦𝑦𝑚2

𝜖𝑧𝑧 = 𝜖𝑧𝑧

𝜖𝑦𝑧 =
6
∑

𝑚2=1
𝑁𝑚2𝜖𝑦𝑧𝑚2 = 𝑁𝑚2𝜖𝑦𝑧𝑚2

𝜖𝑥𝑧 =
6
∑

𝑚1=1
𝑁𝑚1𝜖𝑥𝑧𝑚1 = 𝑁𝑚1𝜖𝑥𝑧𝑚1

𝜖𝑥𝑦 =
4
∑

𝑚3=1
𝑁𝑚3𝜖𝑥𝑦𝑚3 = 𝑁𝑚3𝜖𝑥𝑦𝑚3

(23)

where the strains 𝜖𝑥𝑥𝑚1 , 𝜖𝑦𝑦𝑚2 , 𝜖𝑥𝑦𝑚3 , 𝜖𝑥𝑧𝑚1 , and 𝜖𝑦𝑧𝑚2 are determined through Eq. (20), in which the shape functions 𝑁𝑖 are evaluated
at the tying points.

Thus, the strains components (Eq. (23)) can be extensively written with the CUF (Eq. (13)) and the FEM (Eq. (15)) approxima-
tions, adopting the MITC method, as follows:

𝜖𝑥𝑥 = 𝜕
𝜕 𝑥

(

𝑁𝑚1𝑁
𝑚1
𝑖 𝐹𝑢𝑥𝜏𝑞𝑥𝜏 𝑖

)

= 𝑁𝑚1𝑁
𝑚1
𝑖,𝑥 𝐹𝑢𝑥𝜏𝑞𝑥𝜏 𝑖

𝜖𝑦𝑦 =
𝜕
𝜕 𝑦

(

𝑁𝑚2𝑁
𝑚2
𝑖 𝐹𝑢𝑦𝜏𝑞𝑦𝜏 𝑖

)

= 𝑁𝑚2𝑁
𝑚2
𝑖,𝑦 𝐹𝑢𝑦𝜏𝑞𝑦𝜏 𝑖

𝜕 ( )
𝜖𝑧𝑧 = 𝜕 𝑧 𝑁𝑖𝐹𝑢𝑧𝜏𝑞𝑧𝜏 𝑖 = 𝑁𝑖𝐹𝑢𝑧𝜏 ,𝑧𝑞𝑧𝜏 𝑖
11 
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𝜖𝑦𝑧 =
𝜕
𝜕 𝑧

(

𝑁𝑚2𝑁
𝑚2
𝑖 𝐹𝑢𝑦𝜏𝑞𝑦𝜏 𝑖

)

+ 𝜕
𝜕 𝑦

(

𝑁𝑚2𝑁
𝑚2
𝑖 𝐹𝑢𝑧𝜏𝑞𝑧𝜏 𝑖

)

= 𝑁𝑚2𝑁
𝑚2
𝑖 𝐹𝑢𝑦𝜏 ,𝑧𝑞𝑦𝜏 𝑖 +𝑁𝑚2𝑁

𝑚2
𝑖,𝑦 𝐹𝑢𝑧𝜏𝑞𝑧𝜏 𝑖

𝜖𝑥𝑧 =
𝜕
𝜕 𝑧

(

𝑁𝑚1𝑁
𝑚1
𝑖 𝐹𝑢𝑥𝜏𝑞𝑥𝑠𝑖

)

+ 𝜕
𝜕 𝑥

(

𝑁𝑚1𝑁
𝑚1
𝑖 𝐹𝑢𝑧𝜏𝑞𝑧𝜏 𝑖

)

= 𝑁𝑚1𝑁
𝑚1
𝑖 𝐹𝑢𝑥𝜏 ,𝑧𝑞𝑥𝜏 𝑖 +𝑁𝑚1𝑁

𝑚1
𝑖,𝑥 𝐹𝑢𝑧𝜏𝑞𝑧𝜏 𝑖

𝜖𝑥𝑦 =
𝜕
𝜕 𝑦

(

𝑁𝑚3𝑁
𝑚3
𝑖 𝐹𝑢𝑥𝜏𝑞𝑥𝜏 𝑖

)

+ 𝜕
𝜕 𝑥

(

𝑁𝑚3𝑁
𝑚3
𝑖 𝐹𝑢𝑦𝜏𝑞𝑦𝜏 𝑖

)

= 𝑁𝑚3𝑁
𝑚3
𝑖,𝑦 𝐹𝑢𝑥𝜏𝑞𝑥𝜏 𝑖 +𝑁𝑚3𝑁

𝑚3
𝑖,𝑥 𝐹𝑢𝑦𝜏𝑞𝑦𝜏 𝑖

(24)

The virtual variations of the strains can be easily written with the proposed notation by using Eqs. (14) and (16). In this case the
subscripts 𝑚1, 𝑚2, and 𝑚3 are replaced by 𝑛1, 𝑛2, and 𝑛3. The explicit expressions are given in the following:

𝛿 𝜖𝑥𝑥 = 𝜕
𝜕 𝑥

(

𝑁𝑛1𝑁
𝑛1
𝑗 𝐹𝑢𝑥𝑠𝛿 𝑞𝑥𝑠𝑗

)

= 𝑁𝑛1𝑁
𝑛1
𝑗 ,𝑥𝐹𝑢𝑥𝑠𝛿 𝑞𝑥𝑠𝑗

𝛿 𝜖𝑦𝑦 = 𝜕
𝜕 𝑦

(

𝑁𝑛2𝑁
𝑛2
𝑗 𝐹𝑢𝑦𝑠𝛿 𝑞𝑦𝑠𝑗

)

= 𝑁𝑛2𝑁
𝑛2
𝑗 ,𝑦𝐹𝑢𝑦𝑠𝛿 𝑞𝑦𝑠𝑢𝑖

𝛿 𝜖𝑧𝑧 = 𝜕
𝜕 𝑧

(

𝑁𝑗𝐹𝑢𝑧𝑠𝛿 𝑞𝑧𝑠𝑗
)

= 𝑁𝑗𝐹𝑢𝑧𝑠,𝑧𝛿 𝑞𝑧𝑠𝑗
𝛿 𝜖𝑦𝑧 = 𝜕

𝜕 𝑧
(

𝑁𝑛2𝑁
𝑛2
𝑗 𝐹𝑢𝑦𝑠𝛿 𝑞𝑦𝑠𝑗

)

+ 𝜕
𝜕 𝑦

(

𝑁𝑛2𝑁
𝑛2
𝑗 𝐹𝑢𝑧𝑠𝛿 𝑞𝑧𝑠𝑗

)

= 𝑁𝑛2𝑁
𝑛2
𝑗 𝐹𝑢𝑦𝑠,𝑧𝛿 𝑞𝑦𝑠𝑗 +𝑁𝑛2𝑁

𝑛2
𝑗 ,𝑦𝐹𝑢𝑧𝑠𝛿 𝑞𝑧𝑠𝑗

𝛿 𝜖𝑥𝑧 = 𝜕
𝜕 𝑧

(

𝑁𝑛1𝑁
𝑛1
𝑗 𝐹𝑢𝑥𝑠𝛿 𝑞𝑥𝑠𝑗

)

+ 𝜕
𝜕 𝑥

(

𝑁𝑛1𝑁
𝑛1
𝑗 𝐹𝑢𝑧𝑠𝛿 𝑞𝑧𝑠𝑗

)

= 𝑁𝑛1𝑁
𝑛1
𝑖 𝐹𝑢𝑥𝑠,𝑧𝛿 𝑞𝑥𝑠𝑗 +𝑁𝑛1𝑁

𝑛1
𝑗 ,𝑥𝐹𝑢𝑧𝑠𝛿 𝑞𝑧𝑠𝑗

𝛿 𝜖𝑥𝑦 = 𝜕
𝜕 𝑦

(

𝑁𝑛3𝑁
𝑛3
𝑗 𝐹𝑢𝑥𝑠𝛿 𝑞𝑥𝑠𝑗

)

+ 𝜕
𝜕 𝑥

(

𝑁𝑛3𝑁
𝑛3
𝑗 𝐹𝑢𝑦𝑠𝛿 𝑞𝑦𝑠𝑗

)

= 𝑁𝑛3𝑁
𝑛3
𝑗 ,𝑦𝐹𝑢𝑥𝑠𝛿 𝑞𝑥𝑠𝑗 +𝑁𝑛3𝑁

𝑛3
𝑗 ,𝑥𝐹𝑢𝑦𝑠𝛿 𝑞𝑦𝑠𝑗

(25)

4.2. Governing equations

The principle of virtual displacement (see the classical work of Washizu [20] for more details) is used to derive the governing
quations, which reads:

𝛿 𝐿𝑖𝑛𝑡 = 𝛿 𝐿𝑒𝑥𝑡 (26)

First, the virtual internal work is considered and its expression is given by:

𝛿 𝐿𝑖𝑛𝑡 = ∫𝑉
𝛿𝝐𝑇 𝝈d𝑉 = ∫𝑉

(

𝛿 𝜖𝑥𝑥𝜎𝑥𝑥 + 𝛿 𝜖𝑦𝑦𝜎𝑦𝑦 + 𝛿 𝜖𝑧𝑧𝜎𝑧𝑧 + 𝛿 𝜖𝑦𝑧𝜎𝑦𝑧 + 𝛿 𝜖𝑥𝑧𝜎𝑥𝑧 + 𝛿 𝜖𝑥𝑦𝜎𝑥𝑦
)

d𝑉 (27)

where d𝑉 = d𝑥d𝑦d𝑧. Using the MITC method (Eqs. (24) and (25)), the CUF and the FEM approximations (Eqs. (15) and (16)), and
he constitutive equations (Eq. (21)), the expression for the internal work reads:

𝛿 𝐿𝑖𝑛𝑡 =
+𝛿 𝑞𝑥𝑠𝑗𝐶11𝑁

𝑛1
𝑗 ,𝑥𝑁𝑚1

𝑖,𝑥 ∫𝛺
𝑁𝑛1𝑁𝑚1d𝑥d𝑦∫𝐴

𝐹𝑢𝑥𝑠𝐹𝑢𝑥𝜏d𝑧 𝑞𝑥𝜏 𝑖 + 𝛿 𝑞𝑥𝑠𝑗𝐶12𝑁
𝑛2
𝑗 ,𝑦𝑁𝑚1

𝑖,𝑥 ∫𝛺
𝑁𝑛2𝑁𝑚1d𝑥d𝑦∫𝐴

𝐹𝑢𝑥𝑠𝐹𝑢𝑦𝜏d𝑧 𝑞𝑦𝜏 𝑖

+𝛿 𝑞𝑥𝑠𝑗𝐶13𝑁
𝑚1
𝑖,𝑥 ∫𝛺

𝑁𝑗𝑁𝑚1d𝑥d𝑦∫𝐴
𝐹𝑢𝑥𝑠,𝑧𝐹𝑢𝑧𝜏d𝑧 𝑞𝑧𝜏 𝑖 + 𝛿 𝑞𝑦𝑠𝑗𝐶12𝑁

𝑛1
𝑗 ,𝑥𝑁𝑚2

𝑖,𝑦 ∫𝛺
𝑁𝑛1𝑁𝑚2d𝑥d𝑦∫𝐴

𝐹𝑢𝑦𝑠𝐹𝑢𝑥𝜏d𝑧 𝑞𝑥𝜏 𝑖

+𝛿 𝑞𝑦𝑠𝑗𝐶22𝑁
𝑛2
𝑗 ,𝑦𝑁𝑚2

𝑖,𝑦 ∫𝛺
𝑁𝑛2𝑁𝑚2d𝑥d𝑦∫𝐴

𝐹𝑢𝑦𝑠𝐹𝑢𝑦𝜏d𝑧 𝑞𝑦𝜏 𝑖 + 𝛿 𝑞𝑦𝑠𝑗𝐶23𝑁
𝑚2
𝑖,𝑦 ∫𝛺

𝑁𝑗𝑁𝑚2d𝑥d𝑦∫𝐴
𝐹𝑢𝑦𝑠,𝑧𝐹𝑢𝑧𝜏d𝑧 𝑞𝑧𝜏 𝑖

+𝛿 𝑞𝑥𝑠𝑗𝐶66𝑁
𝑛3
𝑗 ,𝑦𝑁𝑚3

𝑖,𝑦 ∫𝛺
𝑁𝑛3𝑁𝑚3d𝑥d𝑦∫𝐴

𝐹𝑢𝑥𝑠𝐹𝑢𝑥𝜏d𝑧 𝑞𝑥𝜏 𝑖 + 𝛿 𝑞𝑦𝑠𝑗𝐶66𝑁
𝑛3
𝑗 ,𝑦𝑁𝑚3

𝑖,𝑥 ∫𝛺
𝑁𝑛3𝑁𝑚3d𝑥d𝑦∫𝐴

𝐹𝑢𝑦𝑠𝐹𝑢𝑥𝜏d𝑧 𝑞𝑥𝜏 𝑖

+𝛿 𝑞𝑥𝑠𝑗𝐶66𝑁
𝑛3
𝑗 ,𝑥𝑁𝑚3

𝑖,𝑦 ∫𝛺
𝑁𝑛3𝑁𝑚3d𝑥d𝑦∫𝐴

𝐹𝑢𝑥𝑠𝐹𝑢𝑦𝜏d𝑧 𝑞𝑦𝜏 𝑖 + 𝛿 𝑞𝑦𝑠𝑗𝐶66𝑁
𝑛3
𝑗 ,𝑥𝑁𝑚3

𝑖,𝑥 ∫𝛺
𝑁𝑛3𝑁𝑚3d𝑥d𝑦∫𝐴

𝐹𝑢𝑦𝑠𝐹𝑢𝑦𝜏d𝑧 𝑞𝑦𝜏 𝑖

+𝛿 𝑞𝑧𝑠𝑗𝐶44𝑁
𝑛2
𝑗 ,𝑦𝑁𝑚2

𝑖,𝑦 ∫𝛺
𝑁𝑛2𝑁𝑚2d𝑥d𝑦∫𝐴

𝐹𝑢𝑧𝑠𝐹𝑢𝑧𝜏d𝑧 𝑞𝑧𝜏 𝑖 + 𝛿 𝑞𝑦𝑠𝑗𝐶44𝑁
𝑛2
𝑗 ,𝑦𝑁𝑚2

𝑖 ∫𝛺
𝑁𝑛2𝑁𝑚2d𝑥d𝑦∫𝐴

𝐹𝑢𝑦𝑠𝐹𝑢𝑧𝜏 ,𝑧d𝑧 𝑞𝑧𝜏 𝑖

+𝛿 𝑞𝑧𝑠𝑗𝐶44𝑁
𝑛2
𝑗 𝑁

𝑚2
𝑖,𝑦 ∫𝛺

𝑁𝑛2𝑁𝑚2d𝑥d𝑦∫𝐴
𝐹𝑢𝑧𝑠,𝑧𝐹𝑢𝑦𝜏d𝑧 𝑞𝑦𝜏 𝑖 + 𝛿 𝑞𝑦𝑠𝑗𝐶44𝑁

𝑛2
𝑗 𝑁

𝑚2
𝑖 ∫𝛺

𝑁𝑛2𝑁𝑚2d𝑥d𝑦∫𝐴
𝐹𝑢𝑦𝑠,𝑧𝐹𝑢𝑦𝜏 ,𝑧d𝑧 𝑞𝑦𝜏 𝑖

+𝛿 𝑞𝑧𝑠𝑗 + 𝐶55𝑁
𝑛1
𝑗 ,𝑥𝑁𝑚1

𝑖,𝑥 ∫𝛺
𝑁𝑛1𝑁𝑚1d𝑥d𝑦∫𝐴

𝐹𝑢𝑧𝑠𝐹𝑢𝑧𝜏d𝑧 𝑞𝑧𝜏 𝑖 + 𝛿 𝑞𝑥𝑠𝑗𝐶55𝑁
𝑛1
𝑗 ,𝑥𝑁𝑚1

𝑖 ∫𝛺
𝑁𝑛1𝑁𝑚1d𝑥d𝑦∫𝐴

𝐹𝑢𝑥𝑠,𝑥𝐹𝑢𝑧𝜏 ,𝑧d𝑧 𝑞𝑧𝜏 𝑖

+𝛿 𝑞𝑧 𝐶55𝑁
𝑛1𝑁𝑚1 𝑁𝑛1𝑁𝑚1d𝑥d𝑦 𝐹𝑢 𝑠,𝑧𝐹𝑢 𝜏d𝑧 𝑞𝑥 + 𝛿 𝑞𝑥 𝐶55𝑁

𝑛1𝑁𝑚1 𝑁𝑛1𝑁𝑚1d𝑥d𝑦 𝐹𝑢 𝑠,𝑧𝐹𝑢 𝜏 ,𝑧d𝑧 𝑞𝑥
𝑠𝑗 𝑗 𝑖,𝑥 ∫𝛺 ∫𝐴 𝑧 𝑥 𝜏 𝑖 𝑠𝑗 𝑗 𝑖 ∫𝛺 ∫𝐴 𝑥 𝑥 𝜏 𝑖
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Fig. 10. Assembly of the stiffness matrix for the novel approach (a) and classical CUF (b), starting from the fundamental nuclei.

+𝛿 𝑞𝑧𝑠𝑗𝐶13𝑁
𝑛1
𝑗 ,𝑥 ∫𝛺

𝑁𝑛1𝑁𝑖d𝑥d𝑦∫𝐴
𝐹𝑢𝑧𝑠𝐹𝑢𝑥𝜏 ,𝑧d𝑧 𝑞𝑥𝜏 𝑖 + 𝛿 𝑞𝑧𝑠𝑗𝐶23𝑁

𝑛2
𝑗 ,𝑦 ∫𝛺

𝑁𝑛2𝑁𝑖d𝑥d𝑦∫𝐴
𝐹𝑢𝑧𝑠𝐹𝑢𝑦𝜏 ,𝑧d𝑧 𝑞𝑦𝜏 𝑖

+𝛿 𝑞𝑧𝑠𝑗𝐶33 ∫𝛺
𝑁𝑗𝑁𝑖d𝑥d𝑦∫𝐴

𝐹𝑢𝑧𝑠,𝑧𝐹𝑢𝑧𝜏 ,𝑧d𝑧 𝑞𝑧𝜏 𝑖 (28)

Second, considering the virtual external work from point loads:

𝛿 𝐿𝑒𝑥𝑡 = 𝛿𝐮𝑇𝐏 =
(

𝛿 𝑢𝑥𝑃𝑢𝑥 + 𝛿 𝑢𝑦𝑃𝑢𝑦 + 𝛿 𝑢𝑧𝑃𝑢𝑧
)

(29)

Inserting the CUF and FEM (Eq. (16)) approximations the external work is given by:

𝛿 𝐿𝑒𝑥𝑡 =𝛿 𝑞𝑥𝑠𝑗𝑁𝑗𝐹𝑢𝑥𝑠𝑃𝑢𝑥 + 𝛿 𝑞𝑦𝑠𝑗𝑁𝑗𝐹𝑢𝑦𝑠𝑃𝑢𝑦 + 𝛿 𝑞𝑧𝑠𝑗𝑁𝑗𝐹𝑢𝑧𝑠𝑃𝑢𝑧
=𝛿 𝑞𝑥𝑠𝑗𝑃𝑢𝑥𝑠𝑗 + 𝛿 𝑞𝑦𝑠𝑗𝑃𝑢𝑦𝑠𝑗 + 𝛿 𝑞𝑧𝑠𝑗𝑃𝑢𝑧𝑠𝑗 (30)

where 𝑃𝑢𝑥𝑠𝑗 = 𝑁𝑗𝐹𝑢𝑥𝑠𝑃𝑢𝑥 , 𝑃𝑢𝑦𝑠𝑗 = 𝑁𝑗𝐹𝑢𝑦𝑠𝑃𝑢𝑦 , and 𝑃𝑢𝑧𝑠𝑗 = 𝑁𝑗𝐹𝑢𝑧𝑠𝑃𝑢𝑧 .
Thus, three distinct governing equations can be derived:

𝛿 𝑞𝑥𝑠𝑗 ∶𝐾𝑢𝑥𝑢𝑥𝑠𝜏 𝑗 𝑖𝑞𝑥𝜏 𝑖 +𝐾𝑢𝑥𝑢𝑦𝑠𝜏 𝑗 𝑖𝑞𝑦𝜏 𝑖 +𝐾𝑢𝑥𝑢𝑧𝑠𝜏 𝑗 𝑖𝑞𝑧𝜏 𝑖 = 𝑃𝑢𝑥𝑠𝑗
𝛿 𝑞𝑦𝑠𝑗 ∶𝐾𝑢𝑦𝑢𝑥𝑠𝜏 𝑗 𝑖𝑞𝑥𝜏 𝑖 +𝐾𝑢𝑦𝑢𝑦𝑠𝜏 𝑗 𝑖𝑞𝑦𝜏 𝑖 +𝐾𝑢𝑦𝑢𝑧𝑠𝜏 𝑗 𝑖𝑞𝑧𝜏 𝑖 = 𝑃𝑢𝑦𝑠𝑗
𝛿 𝑞𝑧𝑠𝑗 ∶𝐾𝑢𝑧𝑢𝑥𝑠𝜏 𝑗 𝑖𝑞𝑥𝜏 𝑖 +𝐾𝑢𝑧𝑢𝑦𝑠𝜏 𝑗 𝑖𝑞𝑦𝜏 𝑖 +𝐾𝑢𝑧𝑢𝑧𝑠𝜏 𝑗 𝑖𝑞𝑧𝜏 𝑖 = 𝑃𝑢𝑧𝑠𝑗

For the sake of completeness, the nine fundamental nuclei of the stiffness matrix are written explicitly in Appendix.

4.3. Stiffness matrix

In this work, the scalar 𝐾𝑢𝑚𝑢𝑙𝑠𝜏 𝑗 𝑖 is the Fundamental Nucleus (FN) of the stiffness matrix. Consequently, the theory consists of
nine independent scalar algebraic equations. In contrast, previous CUF-based papers [2] used a 3 × 3 submatrix as the kernel. This
modification allows for the individual treatment of each displacement variable, enhancing the flexibility and adaptability of the
model.

Fig. 10 illustrates the differences between the two methods during the assembly of the stiffness matrix. In the current approach,
see Fig. 10 a, the invariant kernel is expanded with respect to 𝑠 and 𝜏. Subsequently, the resulting submatrix undergoes expansion

ith respect to 𝑢𝑚 and 𝑢𝑙, followed by another expansion with respect to 𝑗 and 𝑖 to form the final structural matrix. In contrast, the
classical procedure’, depicted in Fig. 10 b, incorporates the loops on the displacement variables within the 3 × 3 FN, where 𝐾𝑢𝑚𝑢𝑙 is
a component of the matrix 𝐊𝑠𝜏 𝑗 𝑖. In this method, the nucleus is initially expanded with respect to 𝑠 and 𝜏, followed by an expansion
of the resulting submatrix with respect to 𝑗 and 𝑖 to form the final structural matrix.
13 
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Fig. 11. Example of a plate element. 𝑢𝑥 and 𝑢𝑦 are studied by using a fourth-order model (TE4), whereas a linear model (TE1) approximates the displacement
variable 𝑢𝑧.

Fig. 12. Assembly of the general stiffness matrix and the general load vector. See details of 𝐊11 and 𝐏1 in Fig. 13.

5. Assembly

This section presents an example to show the assembly of the matrices in the present context of the Unified formulation. To
understand the process, an example is taken into account. Fig. 11 illustrates a nine-node element (Q9). The structural theories is
lso shown in the figure, where 𝑢𝑥 and 𝑢𝑦 are studied by using a fourth-order model, while the model TE1 approximates the variable
𝑧. In this way, 𝑀𝑢𝑥 = 𝑀𝑢𝑦 = 5 and 𝑀𝑢𝑧 = 2. Thence, 12 Degrees of Freedom (DOF) are used for each FE node. The total DOF
re 108. Fig. 12 shows the stiffness matrix, with dimensions 108 × 108, and the load vector, with dimensions 108, of the entire

structure. Each submatrix 𝐊𝑗 𝑖 is subdivided into nine submatrices, while each subvector 𝐏𝑗 is composed by three smaller subvectors.
As example, Fig. 13 clearly illustrates the nine components of 𝐊11 and the three components 𝐏1. The dimension and the shape of the
matrices 𝐊𝑢𝑚𝑢𝑙11 depend on the number of terms in the models adopted for each displacement variable. 𝐊𝑢𝑥𝑢𝑥11, 𝐊𝑢𝑦𝑢𝑥11, 𝐊𝑢𝑥𝑢𝑦11 and
𝐊𝑢𝑦𝑢𝑦11 are square 5 × 5 matrices, since 𝑀𝑢𝑥 and 𝑀𝑢𝑦 are equal to 5. 𝐊𝑢𝑧𝑢𝑧11 is squared with dimensions 2 × 2, because 𝑀𝑢𝑧 = 2. The
use of different 𝑀 for the variables leads to rectangular 𝐊𝑢𝑚𝑢𝑙11 with different dimensions, as in the case of matrices 𝐊𝑢𝑥𝑢𝑧11, 𝐊𝑢𝑦𝑢𝑧11,
𝐊𝑢𝑧𝑢𝑥11 and 𝐊𝑢𝑧𝑢𝑦11. Each 1 × 1 fundamental nucleus corresponds to the real components of the matrices. A similar procedure can
be followed for the load vector.

6. Numerical results

This section explores four benchmarks that focus on the study of displacements and stresses. The first benchmark involves a
imply-supported square plate, followed by a plate with unitary width subjected to cylindrical bending. End-effects in a clamped
late are considered in the third case. Lastly, a plate subjected to a localized pressure is analysed. In this manner, various loadings and
14 
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Fig. 13. Assembly of the stiffness matrix (submatrix 𝐊11) and the load vector (subvector 𝐏1).

Fig. 14. Geometrical properties of Benchmark 1. Simply-supported metallic square plate under distributed bi-sinusoidal pressure.

boundary conditions are considered. Additionally, a range of length-to-thickness ratios, from very thick to very thin, is considered.
To address the shear locking problem, the MITC integration scheme is employed.

Since the present method is able to build many theories, a consistent acronym system is proposed. When the uniform and the
reduced models are referred to, the following notation is adopted: TE𝑛𝑢𝑥 -TE𝑛𝑢𝑦 -TE𝑛𝑢𝑧 , where 𝑛𝑢𝑙 indicates the polynomial for each
displacement component. For example, TE2-TE5-TE3 stands for:

• TE2: second-order Taylor expansion for 𝑢𝑥;
• TE5: fifth-order Taylor expansion for 𝑢𝑦;
• TE3: third-order Taylor expansion for 𝑢𝑧.

Furthermore, TE0 indicates that only the constant term is employed in the expansion.
When the reduced models are utilized, they are defined during the expositions of the benchmarks. In fact, these models are

explicitly written for the sake of clarity.
15 
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Fig. 15. Simply-supported metallic square plate under distributed bi-sinusoidal pressure. Case 𝑎∕ℎ = 1000. Convergence analysis.

6.1. Bending of a square plate

The first example involves a square metallic plate with equal sides, denoted by 𝑎 = 𝑏. Illustrated in Fig. 14, various length-to-
hickness ratios, specifically 𝑎∕ℎ = 2, 4, 10, 100, 1000, are examined. The material is isotropic with the following properties: 𝐸 = 73

[GPa] and 𝜈 = 0.34. The plate, simply supported on all four edges, is subjected to a bi-sinusoidal pressure 𝑝 = 𝑝𝑧 sin
(

𝜋 𝑥
𝑎

)

sin
(

𝜋 𝑦
𝑏

)

,
with a mechanical load amplitude of 𝑝𝑧 = 1 [Pa] at the top position. The study evaluates non-dimensional transverse displacements,
𝑢𝑧, along with in-plane stress, 𝜎𝑥𝑥, and shear stress, 𝜎𝑥𝑧. 𝑢𝑧 and 𝜎𝑥𝑥 are calculated in [𝑎∕2, 𝑏∕2, 𝑧], while 𝜎𝑥𝑧 are evaluated in [𝑎∕2, 𝑏, 𝑧].
Displacements and stresses are given in the following non-dimensional form:

𝑢𝑧 =
100 𝐸 𝑢𝑧
𝑝𝑧

(

𝑎
ℎ

)4
ℎ

𝜎𝑥𝑥 =
𝜎𝑥𝑥

𝑝𝑧
(

𝑎
ℎ

)2
𝜎𝑥𝑧 =

𝜎𝑥𝑧

𝑝𝑧
(

𝑎
ℎ

) (31)

Results are compared with a closed-form Navier-type solution termed ‘Exact,’ built using the strong-form governing equations in the
CUF framework. The analytical Navier solution is possible given the absence of mechanical couplings in simply supported structures.
A fourth-order Taylor theory is employed throughout the thickness, and additional details can be found in [19].

Exploiting geometric and loading symmetries, a quarter of the plate is studied, allowing for a reduction in computational costs.
A convergence mesh analysis is conducted for the 𝑎∕ℎ = 1000 case, employing TE4-TE4-TE4 as the structural theory. For the sake

of brevity, it is termed as TE4. Fig. 15 presents the results in terms of both Degrees of Freedom (DOF) and the number of elements
No Elements). The ‘Exact’ model serves as the reference result, with transverse displacements and shear stresses taken as control
arameters. The results are normalized as follows:

𝑢∗𝑧 =
𝑢𝑧

𝑢𝑧(Exact)
𝜎∗𝑥𝑧 =

𝜎𝑥𝑧
𝜎𝑥𝑧(Exact)

(32)

Comparisons are made between two integration techniques, namely the Full scheme (without any shear locking correction technique)
nd MITC. 20 × 20 MITC (25215 DOF for the specific case of the uniform TE4 model) is chosen as the FE mesh discretization which

will be consistently employed for each length-to-thickness ratio to ensure fair comparison.
Fig. 16 illustrates the relationship between the length-to-thickness ratio, 𝑎∕ℎ, and the transverse displacement, 𝑢𝑧, using uniform

and different theories. Since the plate is square, the material is isotropic, and the boundary conditions are symmetric, the in-
lane displacement variables (𝑢𝑥 and 𝑢𝑦) always have identical expansions. These analyses provide an opportunity to highlight
he role of Poisson Locking. This phenomenon occurs when TE0 or TE1 expansions are used for the 𝑢𝑧 displacement variable, even
f higher-order terms are used for 𝑢𝑥 and 𝑢𝑦. This crucial problem can be addressed using two different strategies:

1. The elastic coefficients are modified. In this analyses, two superscripts are used: ‘no Corr’ indicates a model where the Poisson
Locking is not corrected, while ‘Corr’ corresponds to models where the correction is applied. See the book [51] for more
information.
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Fig. 16. Simply-supported metallic square plate under distributed bi-sinusoidal pressure. Relationship between length-to-thickness ratio, 𝑎∕ℎ, and the transverse
displacement, 𝑢𝑧 (evaluated in [𝑎∕2, 𝑏∕2, 0]).

2. Adding a parabolic term to the 𝑢𝑧 variable (TE2) is sufficient, albeit with an increase in computational costs;

The figures highlight that both corrections improve the results. It is interesting to note that the Poisson Locking issue becomes more
significant as the plate becomes thinner. Hereafter, only the ‘corrected’ models are used when the linear (or constant) expansion is
considered for the transverse variable. The superscripts ‘Corr’ will not be written for the sake of conciseness.

Finally, attention is focused on two length-to-thickness ratios, 𝑎∕ℎ = 4 and 𝑎∕ℎ = 100. Tables 4 and 5 illustrate the results for
the thick and thin plate, respectively. The first three columns show the models used, and the fourth column displays the number
of terms for each variable. Subsequently, the results for displacements and stresses are presented. Transverse displacements, 𝑢𝑧, are
evaluated at [𝑎∕2, 𝑏∕2, 0]. In-plane stresses, 𝜎 , and shear stresses, 𝜎 , are calculated at [𝑎∕2, 𝑏∕2, ℎ∕2] and [𝑎∕2, 𝑏, 0], respectively.
𝑥𝑥 𝑥𝑧
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Table 4
Simply-supported metallic square plate under distributed bi-sinusoidal pressure. Case 𝑎∕ℎ = 4.

Model 𝑢𝑥 Model 𝑢𝑦 Model 𝑢𝑧 𝑀𝑢𝑥∕𝑀𝑢𝑦∕𝑀𝑢𝑧 𝑢𝑧a 𝜎𝑥𝑥b 𝜎𝑥𝑧c DOF

Exact
TE4 TE4 TE4 —d 3.5958 0.2252 0.2369 —e

Uniform Models
TE1 TE1 TE1 2/2/2 3.5723 0.2117 0.1592 10086
TE2 TE2 TE2 3/3/3 3.4815 0.2176 0.1700 15129
TE3 TE3 TE3 4/4/4 3.5976 0.2339 0.2364 20172
TE4 TE4 TE4 5/5/5 3.5959 0.2253 0.2370 25125

Different Models
TE1 TE1 TE0 2/2/1 3.5723 0.2037 0.1592 8405
TE2 TE2 TE0 3/3/1 3.5723 0.2037 0.1592 11767
TE2 TE2 TE1 3/3/2 3.5723 0.2144 0.1592 13448
TE3 TE3 TE0 4/4/1 3.7376 0.2161 0.2368 15129
TE3 TE3 TE1 4/4/2 3.7376 0.2267 0.2368 16810
TE3 TE3 TE2 4/4/3 3.5976 0.2349 0.2364 18491
TE4 TE4 TE0 5/5/1 3.7376 0.2161 0.2368 18491
TE4 TE4 TE1 5/5/2 3.7376 0.2267 0.2368 20172
TE4 TE4 TE2 5/5/3 3.5976 0.2349 0.2364 21853
TE4 TE4 TE3 5/5/4 3.5976 0.2339 0.2364 23534
TE2 TE2 TE4 3/3/5 3.4813 0.2162 0.1700 18491

Reduced Models
Model 1 3/3/4 3.5959 0.2230 0.2370 16810
Model 2 4/4/4 3.5959 0.2262 0.2370 20172

a Computed at [𝑎∕2, 𝑏∕2, 0].
b Computed at [𝑎∕2, 𝑏∕2, ℎ∕2].
c Computed at [𝑎∕2, 𝑏, 0].
d 𝑀 ’s are not reported for the exact theory.

e Closed-form solution.

Table 5
Simply-supported metallic square plate under distributed bi-sinusoidal pressure. Case 𝑎∕ℎ = 100.

Model 𝑢𝑥 Model 𝑢𝑦 Model 𝑢𝑧 𝑀𝑢𝑥∕𝑀𝑢𝑦∕𝑀𝑢𝑧 𝑢𝑧a 𝜎𝑥𝑥b 𝜎𝑥𝑧c DOF

Exact
LM4 LM4 LM4 —d 2.7252 0.2038 0.2389 —e

Uniform Models
TE1 TE1 TE1 2/2/2 2.7251 0.2038 0.1593 10086
TE2 TE2 TE2 3/3/3 2.7250 0.2037 0.1728 15129
TE3 TE3 TE3 4/4/4 2.7252 0.2038 0.2389 20172
TE4 TE4 TE4 5/5/5 2.7252 0.2038 0.2389 25125

Different Models
TE1 TE1 TE0 2/2/1 2.7251 0.2037 0.1593 8405
TE2 TE2 TE0 3/3/1 2.7251 0.2037 0.1593 11767
TE2 TE2 TE1 3/3/2 2.7251 0.2037 0.1593 13448
TE3 TE3 TE0 4/4/1 2.7254 0.2038 0.2389 15129
TE3 TE3 TE1 4/4/2 2.7254 0.2038 0.2389 16810
TE3 TE3 TE2 4/4/3 2.7252 0.2038 0.2389 18491
TE4 TE4 TE0 5/5/1 2.7254 0.2038 0.2389 18491
TE4 TE4 TE1 5/5/2 2.7254 0.2038 0.2389 20172
TE4 TE4 TE2 5/5/3 2.7252 0.2038 0.2389 21853
TE4 TE4 TE3 5/5/4 2.7252 0.2038 0.2389 23534
TE2 TE2 TE4 3/3/5 2.7252 0.2037 0.1728 18491

a Computed at [𝑎∕2, 𝑏∕2, 0].
b Computed at [𝑎∕2, 𝑏∕2, ℎ∕2].
c Computed at [𝑎∕2, 𝑏, 0].
d M’s are not reported for the exact theory.

e Closed-form solution.

Then, the DOFs are presented for comparison purposes. The ‘Exact’ reference solutions, and different, uniform, and reduced models are
compared. The number of terms and DOFs are not indicated for the closed-form solution. For different models, as shown in Fig. 16,
the in-plane displacement variables are considered equal. Specifically, TE2-TE2-TE4 is proposed to demonstrate the importance of
higher-order terms for the in-plane displacements in achieving excellent results. In addition to the different and complete models,
wo reduced theories are presented, which can achieve results similar to the reference solution with fewer expansion terms:
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Fig. 17. Simply-supported metallic square plate under distributed bi-sinusoidal pressure. Case 𝑎∕ℎ = 4. Shear stresses, 𝜎𝑥𝑧, evaluated in [𝑎∕2, 𝑏, 𝑧].

Fig. 18. Simply-supported metallic square plate under distributed bi-sinusoidal pressure. Case 𝑎∕ℎ = 100. Shear stresses, 𝜎𝑥𝑧, evaluated in [𝑎∕2, 𝑏, 𝑧].
𝑢𝑥 = 𝑢𝑥1 + 𝑧𝑢𝑥2 + 𝑧

3𝑢𝑥3
Model 1: 𝑢𝑦 = 𝑢𝑦1 + 𝑧𝑢𝑦2 + 𝑧

3𝑢𝑦3
𝑢𝑧 = 𝑢𝑧1 + 𝑧𝑢𝑧2 + 𝑧

2𝑢𝑧3 + 𝑧
4𝑢𝑧4

(33)
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Fig. 19. Geometrical properties of Benchmark 2. Simply-supported metallic plate under distributed constant pressure.

𝑢𝑥 = 𝑢𝑥1 + 𝑧𝑢𝑥2 + 𝑧
2𝑢𝑥3 + 𝑧

3𝑢𝑥4
Model 2: 𝑢𝑦 = 𝑢𝑦1 + 𝑧𝑢𝑦2 + 𝑧

2𝑢𝑦3 + 𝑧
3𝑢𝑦4

𝑢𝑧 = 𝑢𝑧1 + 𝑧𝑢𝑧2 + 𝑧
2𝑢𝑧3 + 𝑧

4𝑢𝑧4

(34)

Figs. 17 and 18 illustrate the trends of the shear stresses, 𝜎𝑥𝑧, for the thick and the thin plate, respectively. For the sake of brevity,
only some interesting models are shown. When TE4 is adopted for the 𝑢𝑥 and 𝑢𝑦 variables, the results are in agreement with the
reference solutions. Optimal outcomes can be obtained if third-order expansions are used for the in-plane displacements, as seen for
Models 1 and 2.

Several important observations can be made based on the results:

• The analysis highlights the necessity for refined models to achieve results that closely match the reference solution;
• Thanks to the reduced models, it is possible to obtain good results, but with less DOF;
• The terms of the in-plane displacement variables are the most significant in the solution. On the contrary, the problem exhibits

less sensitivity to the model for 𝑢𝑧;
• The behaviour of the outputs 𝑢𝑧 and 𝜎𝑥𝑥 is strongly influenced by the ratio 𝑎∕ℎ. In fact, several terms are needed to obtain

excellent results if the plate is thick, while few DOF are sufficient for the thin plate. Conversely, the shear stresses, 𝜎𝑥𝑧, exhibit
almost the same trends for the two length-to-thickness ratios.

6.2. Cylindrical bending of a plate

A metallic plate is analysed as the second example. The benchmark is presented in this work for the first time. The geometric
and loading conditions are described in Fig. 19. Several length-to-thickness ratios are studied, 𝑎∕ℎ = 2, 4, 10, 100, 1000. The width 𝑏
is unitary. The material is the same of the previous example. The plate is simply-supported on the edges along the 𝑦-direction and it
is loaded with a constant pressure, with 𝑝𝑧 = 1 [Pa]. The study evaluates non-dimensional transverse displacements, 𝑢𝑧, along with
in-plane stress, 𝜎𝑥𝑥, and shear stress, 𝜎𝑥𝑧. In particular, 𝑢𝑧 and 𝜎𝑥𝑧 are calculated in [𝑎∕2, 𝑏∕2, 𝑧], while 𝜎𝑥𝑧 is evaluated in [𝑎, 𝑏∕2, 𝑧].
For comparison purposes, displacements and stresses are given in non-dimensional form as follows:

𝑢𝑧 =
10 𝐸 𝑢𝑧

𝑝𝑧
(

𝑎
ℎ

)4
ℎ

𝜎𝑥𝑥 =
𝜎𝑥𝑥

𝑝𝑧
(

𝑎
ℎ

)2
𝜎𝑥𝑧 =

𝜎𝑥𝑧

𝑝𝑧
(

𝑎
ℎ

) (35)

When the maximum term for the 𝑢𝑧 displacement variable is linear, the Poisson Locking correction is activated, as in the previous
benchmark.

A convergence analysis is performed for the case 𝑎∕ℎ = 1000 by using TE4-TE4-TE4 as structural theory to set the reference
solution and the number of FE. One element is chosen along the 𝑦 axis, while elements are added along the 𝑥 direction. Fig. 20
shows the outcomes. Transverse displacements and in-plane stresses, are taken as the parameters. The results are normalized as
follows:

𝑢∗𝑧 =
𝑢𝑧

𝑢𝑧(60 × 1 MITC)
𝜎∗𝑥𝑥 =

𝜎𝑥𝑥
𝜎𝑥𝑥(60 × 1 MITC)

(36)

Both the Full scheme and MITC integration techniques are compared. 30 × 1 MITC (or 2745 DOF) is chosen as the FE mesh
discretization. In the following analyses, this mesh configuration will be used for all the length-to-thickness ratios.

After choosing the FE discretization, two length-to-thickness ratios, 𝑎∕ℎ = 4 and 𝑎∕ℎ = 100, are considered. Tables 6 and 7 present
the results for the thick and thin plate, respectively. As in the previous benchmark, the first three columns show the models used,
and the fourth column displays the number of terms. Then, the results for the displacements and stresses are presented. Transverse
displacements, 𝑢𝑧, are evaluated at [𝑎∕2, 𝑏∕2, 0]. In-plane stresses, 𝜎𝑥𝑥, and shear stresses, 𝜎𝑥𝑧, are calculated at [𝑎∕2, 𝑏∕2, ℎ∕2]
and [𝑎, 𝑏∕2, 0], respectively. Finally, DOFs are provided for comparison purposes. The uniform model TE4-TE4-TE4 is taken as the
reference solution.
20 



E. Carrera et al. Finite Elements in Analysis & Design 244 (2025) 104296 
Fig. 20. Simply-supported metallic plate under distributed constant pressure. Case 𝑎∕ℎ = 1000. Convergence analysis.

Table 6
Simply-supported metallic plate under distributed constant pressure. Case 𝑎∕ℎ = 4.

Model 𝑢𝑥 Model 𝑢𝑦 Model 𝑢𝑧 𝑀𝑢𝑥∕𝑀𝑢𝑦∕𝑀𝑢𝑧 𝑢𝑧a 𝜎𝑥𝑥b 𝜎𝑥𝑧c DOF

Uniform Models
TE1 TE1 TE1 2/2/2 1.5912 0.7506 0.5000 1098
TE2 TE2 TE2 3/3/3 1.5709 0.7507 0.5015 1647
TE3 TE3 TE3 4/4/4 1.5596 0.7721 0.7042 2196
TE4 TE4 TE4 5/5/5 1.5995 0.7632 0.7122 2745

Different models (Influence on 𝑢𝑦)
TE4 TE0 TE4 5/1/5 1.5995 0.7632 0.7122 2013
Different models (Influence on 𝑢𝑧)
TE4 TE0 TE0 5/1/1 1.6327 0.7695 0.7293 1281
TE4 TE0 TE1 5/1/2 1.6327 0.7695 0.7324 1464
TE4 TE0 TE2 5/1/3 1.5596 0.7722 0.7042 1647
TE4 TE0 TE3 5/1/4 1.5596 0.7722 0.7042 1830
Different models (Influence on 𝑢𝑥)
TE0 TE0 TE4 1/1/5 0.2083 0.0161 0.4766 1281
TE1 TE0 TE4 2/1/5 1.5708 0.7501 0.5113 1464
TE2 TE0 TE4 3/1/5 1.5708 0.7501 0.5113 1647
TE3 TE0 TE4 4/1/5 1.5995 0.7632 0.7122 1830

Reduced Models
Model 1 2/1/3 1.5995 0.7632 0.7122 1098
Model 2 2/1/2 1.5596 0.7721 0.7042 915

a Computed at [𝑎∕2, 𝑏∕2, 0].
b Computed at [𝑎∕2, 𝑏∕2, ℎ∕2].

c Computed at [𝑎, 𝑏∕2, 0].

In the first rows of the tables, uniform models are presented. In the central rows, different models are studied. First, the influence
on 𝑢𝑦 is considered, and it is evident that the constant term is sufficient for both 𝑎∕ℎ. Therefore, TE0 is used hereinafter. Second, the
study on the influence on 𝑢𝑧 is taken into account. Third, the investigation into the influence on 𝑢𝑥 shows that higher-order terms
are needed. Finally, two reduced theories are also proposed to demonstrate how some terms are not necessary. Their explicit forms
are given in the followings:

𝑢𝑥 = 𝑧𝑢𝑥1 + 𝑧
3𝑢𝑥2

Model 1: 𝑢𝑦 = 𝑢𝑦1
2 4

(37)

𝑢𝑧 = 𝑢𝑧1 + 𝑧 𝑢𝑧2 + 𝑧 𝑢𝑧3
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Table 7
Simply-supported metallic plate under distributed constant pressure. Case 𝑎∕ℎ = 100.

Model 𝑢𝑥 Model 𝑢𝑦 Model 𝑢𝑧 𝑀𝑢𝑥∕𝑀𝑢𝑦∕𝑀𝑢𝑧 𝑢𝑧a 𝜎𝑥𝑥b 𝜎𝑥𝑧c DOF

Uniform Models
TE1 TE1 TE1 2/2/2 1.3822 0.7505 0.5000 1098
TE2 TE2 TE2 3/3/3 1.3822 0.7505 0.5418 1647
TE3 TE3 TE3 4/4/4 1.3822 0.7505 0.7496 2196
TE4 TE4 TE4 5/5/5 1.3822 0.7505 0.7496 2745

Different models (Influence on 𝑢𝑦)
TE3 TE0 TE3 4/1/4 1.3822 0.7505 0.7496 1647
Different models (Influence on 𝑢𝑧)
TE3 TE0 TE0 4/1/1 1.3823 0.7505 0.7498 1098
TE3 TE0 TE1 4/1/2 1.3823 0.7505 0.7498 1281
TE3 TE0 TE2 4/1/3 1.3822 0.7505 0.7496 1464
Different models (Influence on 𝑢𝑥)
TE0 TE0 TE3 1/1/4 0.0003 0.0000 0.4999 1098
TE1 TE0 TE3 2/1/4 1.3822 0.7505 0.5418 1281
TE2 TE0 TE3 3/1/4 1.3822 0.7505 0.5418 1464

Reduced Models
Model 1 2/1/3 1.3822 0.7505 0.7496 1098
Model 2 2/1/2 1.3822 0.7505 0.7496 915

a Computed at [𝑎∕2, 𝑏∕2, 0].
b Computed at [𝑎∕2, 𝑏∕2, ℎ∕2].

c Computed at [𝑎, 𝑏∕2, 0].

Fig. 21. Simply-supported metallic plate under distributed constant pressure. Thick (a) and thin (b) cases. Shear stresses, 𝜎𝑥𝑧, evaluated in [𝑎, 𝑏∕2, 𝑧].

𝑢𝑥 = 𝑧𝑢𝑥2 + 𝑧
3𝑢𝑥3

Model 2: 𝑢𝑦 = 𝑢𝑦1
𝑢𝑧 = 𝑢𝑧1 + 𝑧

2𝑢𝑧3

(38)

Figs. 21(a) and 21(b) graphically depict the trends of the shear stresses, 𝜎𝑥𝑧, in the thick and thin cases, respectively, for some
selected theories. Finally, Fig. 22 shows the relationship between length-to-thickness ratio, 𝑎∕ℎ, and the transverse displacement,
𝑢 , evaluated in [𝑎∕2, 𝑏∕2, 0]. The reduced Model 1 is more precise than the TE2 model, even if the first has less DOF.
𝑧
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Fig. 22. Simply-supported metallic plate under distributed constant pressure. Relationship between length-to-thickness ratio, 𝑎∕ℎ, and the transverse displacement,
𝑢𝑧 (evaluated in [𝑎∕2, 𝑏∕2, 0]).

Fig. 23. Geometrical properties of Benchmark 3. Cantilever plate subjected to a point load. The study case is taken from [55,56].

The results leads to the following observations:

• The analysis remarks that higher-order terms are very important to reach results near to the complete model. However, only
some terms are relevant for the determination of the outcomes. In particular, reduced Models 1 and 2 demonstrate how tailored
theories may be very effective;

• The terms of the in-plane displacement variable 𝑢𝑥 are the most significant in the solution. Conversely, the variable 𝑢𝑧 is less
critical;

• The length-to-thickness ratio significantly influences the behaviour of the outputs. Several terms are needed to obtain excellent
results if the plate is thick, while few DOF are sufficient for the thin plate.

6.3. End-effects on a clamped plate

The third benchmark considered is a cantilevered plate. Ghazouani and El Fatmi [55] initially proposed this analysis, and it was
further investigated by Carrera et al. [56]. Fig. 23 illustrates the geometrical properties of the structure. The height, ℎ, is equal
to 1 [m], and the ratio 𝑏∕ℎ is 0.5. The aspect ratio, 𝐿∕ℎ, is equal to six, where 𝐿 is the length of the structure. The orthotropic
material has the following properties: E11 = 206.80 [GPa], E22 = E33 = 5.17 [GPa], G12 = G13 = 3.10 [GPa], G23 = 2.55 [GPa],
𝜈12 = 𝜈23 = 𝜈23 = 0.25. The plate is clamped at 𝑦 = 0. A concentrated load is applied in the positive 𝑧-direction at Point A =
[0, 𝐿, 0], with a force of 1 [N]. The analysis focuses on the end effects caused by the boundary conditions. For the 𝐿∕ℎ = 6 case, the
results are compared with a higher-order beam theory [55], a 3D FEM solution [55], and a 1D CUF-based solution [56]. The last
solution adopts a fifth-order beam theory. Axial stresses, 𝜎 , are evaluated along [0, 𝑦, ℎ∕2], as illustrated in Fig. 23. For brevity,
𝑦𝑦
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Fig. 24. End effects on a clamped plate for the reference solutions. The axial stresses are evaluated in [0, 𝑦, ℎ∕2].

Table 8
End effects on a cantilevered plate. The axial stresses are evaluated in [0, 0, ℎ∕2].

Model 𝑢𝑥 Model 𝑢𝑦 Model 𝑢𝑧 𝑀𝑢𝑥∕𝑀𝑢𝑦∕𝑀𝑢𝑧 −𝜎𝑦𝑦 [Pa] err [%] DOF

Uniform Models
TE1 TE1 TE1 2/2/2 72.239 30.106 2730
TE2 TE2 TE2 3/3/3 72.256 30.088 4095
TE3 TE3 TE3 4/4/4 93.976 9.0734 5460
TE4 TE4 TE4 5/5/5 93.848 9.1979 6825
TE5 TE5 TE5 6/6/6 103.35 —a 8190

Different Models (Influence on 𝑢𝑥)
TE0 TE5 TE5 1/6/6 103.15 0.1983 5915
TE1 TE5 TE5 2/6/6 103.32 0.0350 6370
TE2 TE5 TE5 3/6/6 103.32 0.0350 6825
Different Models (Influence on 𝑢𝑧)
TE1 TE5 TE1 2/6/2 102.75 0.5885 4550
TE1 TE5 TE2 2/6/3 103.43 0.0750 5005
TE1 TE5 TE3 2/6/4 103.43 0.0750 5460
TE1 TE5 TE4 2/6/5 103.32 0.0350 5915
Different Models (Influence on 𝑢𝑦)
TE1 TE1 TE2 2/2/3 72.256 30.088 3185
TE1 TE2 TE2 2/3/3 72.256 30.088 3640
TE1 TE3 TE2 2/4/3 93.902 9.1451 4095
TE1 TE4 TE2 2/5/3 93.902 9.1451 4550

Reduced Models
Model 1 1/4/2 103.23 0.1181 3185
Model 2 1/4/1 102.41 0.9177 2730
Model 3 1/3/2 93.661 9.3777 2730
Model 4 1/3/2 103.23 0.1181 2730

a Taken as the reference solution.

the convergence analysis is not explicitly reported, and ninety MITC9 elements are used for all the analyses. Fig. 24 compares the
literature solutions with the present uniform TE5 model. Since the results from TE5-TE5-TE5 are in good agreement, it is taken as
he reference solution hereinafter.

The Poisson Locking correction is used if the maximum term of the 𝑢𝑧 variable is linear.
Table 8 proposes several models. In-plane stresses are evaluated in [0, 0, ℎ∕2]. The error is presented in the sixth column. The

following formula provides the relative error:

err =
‖

‖

‖

‖

‖

𝜎𝑦𝑦 (TE5-TE5-TE5) − 𝜎𝑦𝑦
𝜎𝑦𝑦 (TE5-TE5-TE5)

‖

‖

‖

‖

‖

× 100 (39)

In the first rows, the uniform models are analysed. Different models are studied in a systematic way. First, the influence on 𝑢𝑥 is
considered. Second, the expansions TE1 and TE5 are fixed for the variables 𝑢𝑥 and 𝑢𝑦, respectively, studying the importance of the
variable 𝑢𝑧 Third, the influence on 𝑢𝑦 is studied. In the last rows, four reduced theories are taken into account. Their mathematical
models are written below:
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Fig. 25. End effects on a cantilevered plate for the present models. The axial stresses, 𝜎𝑦𝑦, are evaluated in [0, 𝑦, ℎ∕2].

𝑢𝑥 = 𝑢𝑥1
Model 1: 𝑢𝑦 = 𝑢𝑦1 + 𝑧𝑢𝑦2 + 𝑧

3𝑢𝑦3 + 𝑧
5𝑢𝑦4

𝑢𝑧 = 𝑢𝑧1 + 𝑧
2𝑢𝑧2

(40)

𝑢𝑥 = 𝑢𝑥1
Model 2: 𝑢𝑦 = 𝑢𝑦1 + 𝑧𝑢𝑦2 + 𝑧

3𝑢𝑦3 + 𝑧
5𝑢𝑦4

𝑢𝑧 = 𝑢𝑧1

(41)

𝑢𝑥 = 𝑢𝑥1
Model 3: 𝑢𝑦 = 𝑢𝑦1 + 𝑧𝑢𝑦2 + 𝑧

3𝑢𝑦3
𝑢𝑧 = 𝑢𝑧1

(42)

𝑢𝑥 = 𝑢𝑥1
Model 4: 𝑢𝑦 = 𝑧𝑢𝑦1 + 𝑧

3𝑢𝑦2 + 𝑧
5𝑢𝑦3

𝑢𝑧 = 𝑢𝑧1 + 𝑧
2𝑢𝑧2

(43)

Fig. 25 graphically presents the trends of the stresses along the line [0, 𝑦, ℎ∕2]. In particular, Figs. 25(a) and 25(b) deal with the
uniform and different models. Figs. 25(c) focuses on the reduced theories.

Some important observations can be made based on the results:

• It is worthy noting that the end effects are relevant in a restricted areas. To this end, the necessity of higher-order terms is
pivotal to underline the trend of the stresses, 𝜎 , near the clamped area;
𝑦𝑦
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Fig. 26. Geometrical properties of the Benchmark 4. Simply-supported isotropic plate loaded by a localized constant pressure.

• The problem exhibits less sensitivity to the model for 𝑢𝑥, where only the constant term is needed. On the other hand, to attain
accurate results, it is essential to retain more terms in models for 𝑢𝑦 and 𝑢𝑧. These considerations are well illustrated when the
reduced models are adopted.

6.4. Isotropic plate loaded by localized distribution of pressure

A metallic plate is analysed as the final example, presented as a benchmark for the first time in this work. The geometric and
loading conditions are described in Fig. 26. The plate is subjected to a constant pressure of 1 [MPa], applied within a rectangular
zone located at the plate centre with dimensions of 5 × 20 [mm2]. The plate’s geometric parameters are 𝑎 = 100 [mm], 𝑏 = 200 [mm],
and ℎ = 12 [mm]. The material properties are defined as follows: E = 70 [GPa], G = 26 [GPa], 𝜈 = 0.3. The plate is simply supported
along all four edges. Thanks to the symmetry of structure and loading conditions, a quarter of the plate is taken into account. The
study evaluates transverse displacements, 𝑢𝑧, and in-plane stresses, 𝜎𝑥𝑥. For comparison purposes, they are non-dimensionalized
form as follows:

𝑢𝑧 =
100 𝐸 𝑢𝑧
𝑝
(

𝑏
ℎ

)2
ℎ

𝜎𝑥𝑥 =
100 𝜎𝑥𝑥

𝑝
(

𝑏
ℎ

)2
(44)

A non-uniform mesh grid of 38 × 54 elements is employed for all analyses. Due to space constraints, the convergence analysis is
omitted.

Table 9 shows the transverse displacements, 𝑢𝑧, and the in-plane stresses, 𝜎𝑥𝑥, calculated in [𝑎∕2, 𝑏∕2, ℎ∕2]. The complete theory
TE4-TE4-TE4 is taken as the reference solution. For a complete comparison, TE1-TE1-TE1 is studied by corrected and non-corrected
strategy. In this case uniform and reduced models are taken into account. The explicit mathematical expressions of the reduced
theories are given below:

𝑢𝑥 = 𝑢𝑥1 + 𝑧𝑢𝑥2
Model 1: 𝑢𝑦 = 𝑢𝑦1 + 𝑧𝑢𝑦2

𝑢𝑧 = 𝑢𝑧1 + 𝑧𝑢𝑧2 + 𝑧
2𝑢𝑧3

(45)

𝑢𝑥 = 𝑢𝑥1 + 𝑧𝑢𝑥2 + 𝑧
2𝑢𝑥3 + 𝑧

4𝑢𝑥4
Model 2: 𝑢𝑦 = 𝑢𝑦1 + 𝑧𝑢𝑦2

𝑢𝑧 = 𝑢𝑧1 + 𝑧𝑢𝑧2 + 𝑧
2𝑢𝑧3

(46)

𝑢𝑥 = 𝑢𝑥1 + 𝑧𝑢𝑥2 + 𝑧
2𝑢𝑥3 + 𝑧

4𝑢𝑥4
Model 3: 𝑢𝑦 = 𝑢𝑦1 + 𝑧𝑢𝑦2 + 𝑧

2𝑢𝑦3 + 𝑧
3𝑢𝑦4

𝑢𝑧 = 𝑢𝑧1 + 𝑧𝑢𝑧2 + 𝑧
2𝑢𝑧3

(47)

Finally, Fig. 27 graphically presents the trends of the transverse displacements along the line [𝑥, 𝑏∕2, ℎ∕2]. In particular, Figs. 27(a)
and 27(b) show the results for the uniform and the reduced models, respectively. Magnifiers are illustrated near the loading part.
On the other hand, Fig. 28 illustrates the in-plane stresses along the same line.

The main conclusions may be drawn as follows:
26 



E. Carrera et al. Finite Elements in Analysis & Design 244 (2025) 104296 
Table 9
Isotropic plate loaded by localized distribution of pressure. Transverse displacements are evaluated in [𝑎∕2, 𝑏∕2, ℎ∕2].

Model 𝑢𝑥 Model 𝑢𝑦 Model 𝑢𝑧 𝑀𝑢𝑥∕𝑀𝑢𝑦∕𝑀𝑢𝑧 -𝑢𝑧 -𝜎𝑥𝑥 DOF

Uniform Models
TE1 TE1 TE1no Corr 2/2/2 2.856 0.517 50358
TE1 TE1 TE1Corr 2/2/2 3.428 0.491 50358
TE2 TE2 TE2 3/3/3 3.376 0.592 75537
TE3 TE3 TE3 4/4/4 3.424 0.708 100716
TE4 TE4 TE4 5/5/5 3.427 0.725 125895a

Reduced Models
Model 1 2/2/3 3.368 0.497 58571
Model 2 4/2/3 3.407 0.713 75537
Model 3 4/4/3 3.424 0.727 92323

a Taken as the reference solution.

Fig. 27. Isotropic plate loaded by localized distribution of pressure. Transverse displacements are evaluated along [𝑥, 𝑏∕2, ℎ∕2].

Fig. 28. Isotropic plate loaded by localized distribution of pressure. In-plane stresses, 𝜎𝑥𝑥, are evaluated along [𝑥, 𝑏∕2, ℎ∕2].

• Higher-order terms are needed to study the behaviour in the vicinity of the loaded area. This is particularly true when the
in-plane stresses are considered;

• The corrected TE1-TE1-TE1 model is able to approach the best solution when the displacements are analysed;
• When studying the stresses, the in-plane displacement variable, 𝑢𝑥, greatly influences the results;
• The example shows the possibility to use only relevant terms to arrive to interesting results.
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7. Conclusions

This paper introduces a novel approach to constructing plate theories within the framework of the Carrera Unified Formulation
CUF). This approach allows for the development of dedicated structural theories for each displacement variable. In this way,
ailored two-dimensional finite elements can be created. Additionally, the Mixed Interpolation of Tensorial Components method
s incorporated into the framework. Four benchmarks are studied to assess the method, considering literature and CUF-based
losed-form solutions as references in some cases. The analysis includes structures with varying thickness and loading conditions,
onsidering both clamped and simply-supported plates.

To summarize the results, Table 10 presents noteworthy outcomes for the three benchmarks. Graphical trends, along with
he degrees of freedom, are illustrated for comparison purposes. Shear stresses, 𝜎𝑥𝑧, are displayed for the first two benchmarks,
onsidering thick cases. In-plane stresses, 𝜎𝑦𝑦, are analysed in the clamped plate case. Based on the results obtained throughout the
aper, the following conclusions can be drawn:

• Significant reduction in computational costs is achievable by selectively utilizing only the most relevant terms within the
structural theories;

• The choice of the appropriate kinematics model depends on the plate geometry, specific loads, and boundary conditions;
• The use of the MITC method is indeed of paramount importance if thin structures are considered;
• The number of effective variables is highly dependent on the nature of the problem under consideration.

Proposal for determining the best computational model . This paper marks the first stage in devising a method to systematically
identify the most appropriate theories for plate formulation. Future companion papers will detail additional steps in this process.
These steps can be summarized as follows:

(I) The current paper lays out the theoretical groundwork for developing simplified models. At present, identical models are
being employed for all the FE of the plates;

(II) A technique is utilized to analyse the plate thickness-wise, where each thickness-line is approximated by a distinct structural
theory. For instance, the Node Dependent Kinematics (NDK) approach can be applied utilizing CUF capabilities [57]. As
implied by its name, NDK enables the selection of the expansion theory for each FE node. Consequently, the reduced models
and NDK will complement each other in a synergic way;

(III) Analysing and categorizing the proposed theories can be achieved through the AAM. Initially, the AAM is constructed solely
for models that are uniform across the plate. Subsequently, the AAM is integrated with the NDK. Previous efforts in the CUF
literature have explored this direction [58] The aim is to compare all combinations and visually represent them in a diagram;

(IV) To systematically analyse this information and reduce analysis time, innovative techniques such as data mining and machine
learning can be employed. As the number of theory combinations can be substantial, dealing with complex structures might
become unfeasible. For instance, genetic algorithms and neural networks have been utilized in CUF literature [43,58] for
determining the best theories;

(V) The final objective is to establish a database for training a neural network. This tool would subsequently assist in determining
the optimal model based on specified accuracy requirements, considering factors such as boundary conditions, loads,
materials, and other pertinent characteristics.

All these steps will be proposed and integrated into a unified framework by leveraging the capabilities offered by CUF.
Furthermore, other possibilities are under development. Currently, a paper on shell structures is in preparation. Additionally,

applying the variable structural approximations presented here to composite plates holds significant potential. Finally, exploring
the application to multi-field analyses could be very promising.
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Table 10
Some results obtained during the present analyses for different cases.
Bi-sinusoidal pressure for square plate. Case 𝑎∕ℎ = 4.

Theory DOF

Exact —
TE4-TE4-TE4 25125
TE2-TE2-TE2 15129
TE2-TE2-TE4 18491
Model 1, Eq. (33) 16810
Model 2, Eq. (34) 20172

Constant pressure for a rectangular plate. Case 𝑎∕ℎ = 4.

Theory DOF

TE4-TE4-TE4 2745
TE1-TE1-TE1 1098
TE4-TE0-TE2 1647
TE2-TE0-TE4 1647
Model 1, Eq. (37) 1098

End-Effects on a clamped plate.

Theory DOF

TE5-TE5-TE5 8190
Model 1, Eq. (40) 3185
Model 2, Eq. (41) 2730
Model 3, Eq. (42) 2730
Model 4, Eq. (43) 2730

Isotropic plate loaded by localized distribution of pressure.

Theory DOF

TE4-TE4-TE4 125895
Model 1, Eq. (45) 58571
Model 2, Eq. (46) 75537
Model 3, Eq. (47) 92323
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Appendix. Explicit expression of the nine fundamental nuclei

𝐾𝑢𝑥𝑢𝑥𝑠𝜏 𝑗 𝑖 = 𝐶11𝑁
𝑛1
𝑗 ,𝑥𝑁𝑚1

𝑖,𝑥 ∫𝛺
𝑁𝑛1𝑁𝑚1d𝑥d𝑦∫𝐴

𝐹𝑢𝑥𝑠𝐹𝑢𝑥𝜏d𝑧

+ 𝐶55𝑁
𝑛1
𝑗 𝑁

𝑚1
𝑖 ∫𝛺

𝑁𝑛1𝑁𝑚1d𝑥d𝑦∫𝐴
𝐹𝑢𝑥𝑠,𝑧𝐹𝑢𝑥𝜏 ,𝑧d𝑧

+ 𝐶66𝑁
𝑛3
𝑗 ,𝑦𝑁𝑚3

𝑖,𝑦 ∫𝛺
𝑁𝑛3𝑁𝑚3d𝑥d𝑦∫𝐴

𝐹𝑢𝑥𝑠𝐹𝑢𝑥𝜏d𝑧 (48)

𝐾𝑢𝑥𝑢𝑦𝑠𝜏 𝑗 𝑖 = 𝐶12𝑁
𝑛2
𝑗 ,𝑦𝑁𝑚1

𝑖,𝑥 ∫𝛺
𝑁𝑛2𝑁𝑚1d𝑥d𝑦∫𝐴

𝐹𝑢𝑥𝑠𝐹𝑢𝑦𝜏d𝑧

+ 𝐶66𝑁
𝑛3
𝑗 ,𝑥𝑁𝑚3

𝑖,𝑦 ∫𝛺
𝑁𝑛3𝑁𝑚3d𝑥d𝑦∫𝐴

𝐹𝑢𝑥𝑠𝐹𝑢𝑦𝜏d𝑧 (49)

𝐾𝑢𝑥𝑢𝑧𝑠𝜏 𝑗 𝑖 = 𝐶13𝑁
𝑚1
𝑖,𝑥 ∫𝛺

𝑁𝑗𝑁𝑚1d𝑥d𝑦∫𝐴
𝐹𝑢𝑥𝑠,𝑧𝐹𝑢𝑧𝜏d𝑧

+ 𝐶55𝑁
𝑛1
𝑗 ,𝑥𝑁𝑚1

𝑖 ∫𝛺
𝑁𝑛1𝑁𝑚1d𝑥d𝑦∫𝐴

𝐹𝑢𝑥𝑠𝐹𝑢𝑧𝜏 ,𝑧d𝑧 (50)

𝐾𝑢𝑦𝑢𝑥𝑠𝜏 𝑗 𝑖 = 𝐶12𝑁
𝑛1
𝑗 ,𝑥𝑁𝑚2

𝑖,𝑦 ∫𝛺
𝑁𝑛1𝑁𝑚2d𝑥d𝑦∫𝐴

𝐹𝑢𝑦𝑠𝐹𝑢𝑥𝜏d𝑧

+ 𝐶66𝑁
𝑛3
𝑗 ,𝑦𝑁𝑚3

𝑖,𝑥 ∫𝛺
𝑁𝑛3𝑁𝑚3d𝑥d𝑦∫𝐴

𝐹𝑢𝑦𝑠𝐹𝑢𝑥𝜏d𝑧 (51)

𝐾𝑢𝑦𝑢𝑦𝑠𝜏 𝑗 𝑖 = 𝐶22𝑁
𝑛2
𝑗 ,𝑦𝑁𝑚2

𝑖,𝑦 ∫𝛺
𝑁𝑛2𝑁𝑚2d𝑥d𝑦∫𝐴

𝐹𝑢𝑦𝑠𝐹𝑢𝑦𝜏d𝑧

+ 𝐶44𝑁
𝑛2
𝑗 𝑁

𝑚2
𝑖 ∫𝛺

𝑁𝑛2𝑁𝑚2d𝑥d𝑦∫𝐴
𝐹𝑢𝑦𝑠,𝑧𝐹𝑢𝑦𝜏 ,𝑧d𝑧

+ 𝐶66𝑁
𝑛3
𝑗 ,𝑥𝑁𝑚3

𝑖,𝑥 ∫𝛺
𝑁𝑛3𝑁𝑚3d𝑥d𝑦∫𝐴

𝐹𝑢𝑦𝑠𝐹𝑢𝑦𝜏d𝑧 (52)

𝐾𝑢𝑦𝑢𝑧𝑠𝜏 𝑗 𝑖 = 𝐶23𝑁
𝑚2
𝑖,𝑦 ∫𝛺

𝑁𝑗𝑁𝑚2d𝑥d𝑦∫𝐴
𝐹𝑢𝑦𝑠,𝑧𝐹𝑢𝑧𝜏d𝑧

+ 𝐶44𝑁
𝑛2
𝑗 ,𝑦𝑁𝑚2

𝑖 ∫𝛺
𝑁𝑛2𝑁𝑚2d𝑥d𝑦∫𝐴

𝐹𝑢𝑦𝑠𝐹𝑢𝑧𝜏 ,𝑧d𝑧 (53)

𝐾𝑢𝑧𝑢𝑥𝑠𝜏 𝑗 𝑖 = 𝐶13𝑁
𝑛1
𝑗 ,𝑥 ∫𝛺

𝑁𝑛1𝑁𝑖d𝑥d𝑦∫𝐴
𝐹𝑢𝑧𝑠𝐹𝑢𝑥𝜏 ,𝑧d𝑧

+ 𝐶55𝑁
𝑛1
𝑗 𝑁

𝑚1
𝑖,𝑥 ∫𝛺

𝑁𝑛1𝑁𝑚1d𝑥d𝑦∫𝐴
𝐹𝑢𝑧𝑠,𝑧𝐹𝑢𝑥𝜏d𝑧 (54)

𝐾𝑢𝑧𝑢𝑦𝑠𝜏 𝑗 𝑖 = 𝐶23𝑁
𝑛2
𝑗 ,𝑦 ∫𝛺

𝑁𝑛2𝑁𝑖d𝑥d𝑦∫𝐴
𝐹𝑢𝑧𝑠𝐹𝑢𝑦𝜏 ,𝑧d𝑧

+ 𝐶44𝑁
𝑛2
𝑗 𝑁

𝑚2
𝑖,𝑦 ∫𝛺

𝑁𝑛2𝑁𝑚2d𝑥d𝑦∫𝐴
𝐹𝑢𝑧𝑠,𝑧𝐹𝑢𝑦𝜏d𝑧 (55)

𝐾𝑢𝑧𝑢𝑧𝑠𝜏 𝑗 𝑖 = 𝐶33 ∫𝛺
𝑁𝑗𝑁𝑖d𝑥d𝑦∫𝐴

𝐹𝑢𝑧𝑠,𝑧𝐹𝑢𝑧𝜏 ,𝑧d𝑧

+ 𝐶44𝑁
𝑛2
𝑗 ,𝑦𝑁𝑚2

𝑖,𝑦 ∫𝛺
𝑁𝑛2𝑁𝑚2d𝑥d𝑦∫𝐴

𝐹𝑢𝑧𝑠𝐹𝑢𝑧𝜏d𝑧

+ 𝐶55𝑁
𝑛1
𝑗 ,𝑥𝑁𝑚1

𝑖,𝑥 ∫𝛺
𝑁𝑛1𝑁𝑚1d𝑥d𝑦∫𝐴

𝐹𝑢𝑧𝑠𝐹𝑢𝑧𝜏d𝑧 (56)

Data availability

Data will be made available on request.
30 



E. Carrera et al. Finite Elements in Analysis & Design 244 (2025) 104296 
References

[1] E. Zappino, E. Carrera, Multidimensional model for the stress analysis of reinforced shell structures, AIAA J. 56 (4) (2018) 1647–1661.
[2] E. Carrera, L. Demasi, Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: Derivation of finite element matrices,

Internat. J. Numer. Methods Engrg. 55 (2) (2002) 191–231.
[3] G. Kirchhoff, Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J. Reine Angew. Math. 40 (1850) 51–88.
[4] E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech. 12 (1945) 69–77.
[5] R.D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech.-Trans. ASME 18 (1951) 31–38.
[6] J.H. Argyris, Matrix displacement analysis of plates and shells, Prolegomena to a general theory, Part I, Ingeniur-Archiv 35 (1966) 102–142.
[7] C.W. Pryor, R.M. Baeker, A finite-element analysis including transverse shear effects for applications to laminated plates, AIAA J. 9 (5) (1971) 912–917.
[8] L. Leonetti, M. Aristodemo, A composite mixed finite element model for plane structural problems, Finite Elem. Anal. Des. 94 (2015) 33–46.
[9] D. Ribari, G. Jelenic, Higher-order linked interpolation in quadrilateral thick plate finite elements, Finite Elem. Anal. Des. 51 (2012) 67–80.

[10] K.J. Bathe, Finite Element Procedure, Prentice hall, Upper Saddle River, New Jersey, USA, 1996.
[11] J.H. Argyris, Matrix analysis of three-dimensional elastic media - small and large displacements, AIAA J. 3 (1) (1965) 45–51.
[12] K.S. Surana, Transition finite elements for three-dimensional stress analysis, Internat. J. Numer. Methods Engrg. 15 (7) (1980) 991–1020.
[13] K.S. Surana, Geometrically non-linear formulation for the three dimensional solid-shell transition finite elements, Comput. Struct. 15 (5) (1982) 549–566.
[14] C.G. Dávila, Solid-to-shell transition elements for the computation of interlaminar stresses, Comput. Syst. Eng. 5 (2) (1994) 193–202.
[15] P.J. Blanco, R.A. Feijóo, S.A. Urquiza, A variational approach for coupling kinematically incompatible structural models, Comput. Methods Appl. Mech.

Engrg. 197 (17) (2008) 1577–1602.
[16] A.K. Noor, Global-local methodologies and their application to nonlinear analysis, Finite Elem. Anal. Des. 2 (4) (1986) 333–346.
[17] J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, New York, USA, 1997.
[18] J.N. Reddy, D.H. Robbins, Theories and computational models for composite laminates, Appl. Mech. Rev. 47 (6) (1994) 147–169.
[19] E. Carrera, Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells,

Appl. Mech. Rev. 54 (4) (2001) 301–329.
[20] K. Washizu, Variational Methods in Elasticity and Plasticity, Pergamon, Oxford, United Kingdom, 1968.
[21] T. Kant, D.R.J. Owen, O.C. Zienkiewicz, A refined higher-order C◦ plate bending element, Comput. Struct. 15 (2) (1982) 177–183.
[22] T. Kant, J.R. Kommineni, Large amplitude free vibration analysis of cross-ply composite and sandwich laminates with a refined theory and C◦ finite

elements, Comput. Struct. 50 (1) (1994) 123–134.
[23] J.N. Reddy, An evaluation of equivalent-single-layer and layerwise theories of composite laminates, Compos. Struct. 25 (1) (1993) 21–35.
[24] K. Swaminathan, S.S. Patil, Analytical solutions using a higher order refined computational model with 12 degrees of freedom for the free vibration

analysis of antisymmetric angle-ply plates, Compos. Struct. 82 (2) (2008) 209–216.
[25] T. Kant, K. Swaminathan, Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories, J. Sound Vib. 241 (2)

(2001) 319–327.
[26] T. Kant, B.S. Manjunatha, An unsymmetric FRC laminate C◦ finite element model with 12 degrees of freedom per node, Eng. Comput. 5 (4) (1988)

300–308.
[27] B.N. Pandya, T. Kant, Finite element analysis of laminated composite plates using a higher-order displacement model, Compos. Sci. Technol. 32 (2) (1988)

137–155.
[28] J.N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech. 51 (1984) 745–752.
[29] N.R. Senthilnathan, S.P. Lim, K.H. Lee, S.T. Chow, Buckling of Shear-Deformable Plates, AIAA J. 25 (9) (1987) 1268–1271.
[30] J.M. Whitney, N.J. Pagano, Shear Deformation in Heterogeneous Anisotropic Plates, J. Appl. Mech. 37 (4) (1970) 1031–1036.
[31] E. Carrera, A. Pagani, F. Zangallo, Comparison of various 1D, 2D and 3D FE models for the analysis of thin-walled box with transverse ribs subjected to

load factors, Finite Elem. Anal. Des. 95 (2015) 1–11.
[32] A. Robaldo, E. Carrera, A. Benjeddou, Unified formulation for finite element thermoelastic analysis of multilayered anisotropic composite plates, J. Therm.

Stresses 28 (10) (2005) 1031–1065.
[33] D. Ballhause, M. d’Ottavio, B. Kröplin, E. Carrera, A unified formulation to assess multilayered theories for piezoelectric plates, Comput. Struct. 83 (15–16)

(2005) 1217–1235.
[34] E. Carrera, Theories and Finite Elements for Multilayered Plates and Shells: A Unified compact formulation with numerical assessment and benchmarking,

Arch. Comput. Methods Eng. 10 (2003) 215–296.
[35] A. Pagani, E. Carrera, D. Scano, R. Augello, Finite elements based on Jacobi shape functions for the analysis of beams, plates and shells, Internat. J.

Numer. Methods Engrg. 124 (20) (2023) 4490–4519.
[36] A.L. Gol’denveizer, Theory of Elastic Thin Shells, Pergamon Press, Oxford, United Kingdom, 1961.
[37] P. Cicala, Systematic Approximation Approach to Linear Shell Theory, Levrotto e Bella, Turin, Italy, 1965.
[38] L.A. Aghalovyan, M.L. Aghalovyan, On Asymptotic Theory of Beams, Plates and Shells, Curved Layer. Struct. 3 (1) (2016).
[39] V.L. Berdichevsky, An asymptotic theory of sandwich plates, Internat. J. Engrg. Sci. 48 (3) (2010) 383–404.
[40] E. Carrera, M. Petrolo, Guidelines and Recommendations to Construct Theories for Metallic and Composite Plates, AIAA J. 48 (12) (2010) 2852–2866.
[41] E. Reissner, On transverse bending of plates, including the effect of transverse shear deformation, Int. J. Solids Struct. 11 (5) (1975) 569–573.
[42] E. Carrera, D. Scano, E. Zappino, One-dimensional Finite Elements with Arbitrary Cross-Sectional Displacement Fields, 2024, Under review.
[43] M. Petrolo, A. Lamberti, F. Miglioretti, Best theory diagram for metallic and laminated composite plates, Mech. Adv. Mater. Struct. 23 (9) (2016) 1114–1130.
[44] M. Petrolo, A. Lamberti, Axiomatic/asymptotic analysis of refined layer-wise theories for composite and sandwich plates, Mech. Adv. Mater. Struct. 23 (1)

(2016) 28–42.
[45] M. Petrolo, E. Carrera, Best theory diagrams for multilayered structures via shell finite elements, Adv. Model. Simul. Eng. Sci. 6 (4) (2019) 1–23.
[46] L. Demasi, ∞3 hierarchy plate theories for thick and thin composite plates: The generalized unified formulation, Compos. Struct. 84 (3) (2008) 256–270.
[47] L. Demasi, Partially Layer Wise advanced Zig Zag and HSDT models based on the Generalized Unified Formulation, Eng. Struct. 53 (2013) 63–91.
[48] K.J. Bathe, E.N. Dvorkin, A formulation of general shell elements—the use of mixed interpolation of tensorial components, Internat. J. Numer. Methods

Engrg. 22 (1986) 697–722.
[49] M.L. Bucalem, K.J. Bathe, Higher-order MITC general shell elements, Internat. J. Numer. Methods Engrg. 36 (21) (1993) 3729–3754.
[50] M. Cinefra, E. Carrera, Shell finite elements with different through-the-thickness kinematics for the linear analysis of cylindrical multilayered structures,

Internat. J. Numer. Methods Engrg. 93 (2) (2013) 160–182.
[51] E. Carrera, M. Cinefra, M. Petrolo, E. Zappino, Finite Element Analysis of Structures Through Unified Formulation, John Wiley & Sons, 2014.
[52] K.H. Lo, R.M. Christensen, E.M. Wu, A High-Order Theory of Plate Deformation—Part 1: Homogeneous Plates, J. Appl. Mech. 44 (4) (1977) 663–668.
[53] B.S. Manjunatha, T. Kant, Different numerical techniques for the estimation of multiaxial stresses in symmetric/unsymmetric composite and sandwich

beams with refined theories, J. Reinf. Plast. Compos. 12 (1) (1993) 2–37.
[54] K.J. Bathe, F. Brezzi, S.W. Cho, The MITC7 and MITC9 plate bending elements, Comput. Struct. 32 (3) (1989) 797–814.
31 

http://refhub.elsevier.com/S0168-874X(24)00190-2/sb1
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb2
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb2
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb2
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb3
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb4
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb5
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb6
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb7
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb8
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb9
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb10
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb11
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb12
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb13
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb14
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb15
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb15
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb15
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb16
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb17
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb18
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb19
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb19
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb19
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb20
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb21
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb22
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb22
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb22
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb23
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb24
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb24
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb24
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb25
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb25
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb25
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb26
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb26
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb26
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb27
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb27
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb27
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb28
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb29
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb30
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb31
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb31
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb31
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb32
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb32
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb32
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb33
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb33
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb33
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb34
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb34
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb34
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb35
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb35
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb35
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb36
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb37
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb38
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb39
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb40
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb41
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb42
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb43
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb44
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb44
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb44
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb45
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb46
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb47
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb48
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb48
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb48
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb49
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb50
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb50
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb50
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb51
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb52
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb53
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb53
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb53
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb54


E. Carrera et al. Finite Elements in Analysis & Design 244 (2025) 104296 
[55] N. Ghazouani, R. El Fatmi, Higher order composite beam theory built on Saint-Venant’s solution. Part II: Built-in effects influence on the behavior of
end-loaded cantilever beams, Compos. Struct. 93 (2) (2011) 567–581.

[56] E. Carrera, M. Petrolo, E. Zappino, Performance of CUF approach to analyze the structural behavior of slender bodies, J. Struct. Eng. 138 (2) (2012)
285–297.

[57] E. Zappino, G. Li, A. Pagani, E. Carrera, A.G. de Miguel, Use of higher-order Legendre polynomials for multilayered plate elements with node-dependent
kinematics, Compos. Struct. 202 (2018) 222–232, Special issue dedicated to Ian Marshall.

[58] M. Petrolo, E. Carrera, Best spatial distributions of shell kinematics over 2D meshes for free vibration analyses, Aerotecnica Missili & Spazio 99 (2020)
217–232.
32 

http://refhub.elsevier.com/S0168-874X(24)00190-2/sb55
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb55
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb55
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb56
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb56
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb56
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb57
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb57
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb57
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb58
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb58
http://refhub.elsevier.com/S0168-874X(24)00190-2/sb58

	Plate finite elements with arbitrary displacement fields along the thickness
	Introduction
	Review of the Plate theories
	Classical plate theories
	Use of ad-hoc Higher-order theories
	Taylor-based Higher-order theories

	Unified formulation for plate and generalization to the higher-order theories
	Governing equations and Finite Element matrices
	MITC Q9
	Governing equations
	Stiffness Matrix

	Assembly
	Numerical Results
	Bending of a square plate
	Cylindrical bending of a plate
	End-Effects on a clamped plate
	Isotropic plate loaded by localized distribution of pressure

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Explicit expression of the nine Fundamental Nuclei
	Appendix. Explicit expression of the nine Fundamental Nuclei
	Data availability
	Appendix . Data availability
	References


