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Abstract—Increasing driver and driving safety is one of the most
compelling needs of the automotive industry, both in terms of
economic and social impact. Current approaches primarily focus
on analyzing unsafe vehicle behavior, often overlooking the critical
factor of the driver’s physiological state. This paper introduces a
novel solution leveraging temporal convolutional networks (TCNs)
for unobtrusive driver drowsiness detection based on photoplethys-
mography (PPG). PPG data is collected seamlessly using sensors in-
tegrated into the steering wheel, providing a non-invasive assessment
of the autonomic nervous system (ANS). We benchmarked our model
on 16 subjects using a leave-one-subject-out (LOSO) cross-validation
scheme, achieving an average accuracy of 77.03%. The model also
shows good performance in avoiding false alarms when the driver is
alert with a false positive ratio of just 8.21% and correctly detecting
drowsiness with a low false negative ratio of 13.92%, improving
the state-of-the-art for PPG based approaches. A quantized version
of the model is deployed on a commercial ultra-low-power (ULP)
system-on-a-chip (SoC), demonstrating real-world feasibility with an
inference time of 4.8 ms and energy per inference of 117 µJ. This
work represents a significant step towards unobtrusive, real-time
physiological monitoring in driving environments, contributing to
the ongoing efforts to improve driver’s safety.

I. INTRODUCTION AND RELATED WORKS

Human-machine interaction (HMI) has recently garnered at-
tention within the automotive sector, emerging as a compelling
way to enhance the driving experience and bolster driver safety.
Numerous research and commercial initiatives in academia and
industry focus on addressing attention deficits and drowsiness,
significant contributors to vehicular accidents. These solutions are
increasingly available in high-end vehicles and encompass driving
and driver monitoring devices, including lane assistants, braking
aids, collision avoidance radar, and intermittent stop warnings.
While these approaches analyze unsafe vehicle behavior, they
often fall short of monitoring the primary causative factor: the
driver’s physiological state. Monitoring specific physiological
parameters, such as fatigue and stress levels [1], offers crucial
insights, enabling the implementation of proactive measures to
avert hazardous situations rather than relying solely on reactive
responses tied to vehicle behavior [1], [2].

Recent research underscores the efficacy of monitoring phys-
iological signals, utilizing sensors integrated into the vehicle’s
cockpit or worn by the driver, for detecting fatigue or drowsiness
states. This approach allows the car to inform the driver or initiate
contingency actions promptly. Well-established methods in this
domain involve biosignal analysis, encompassing electrocardio-
graphy (ECG) [3], photoplethysmography (PPG) [4], and elec-
troencephalography (EEG) [5], alongside the examination of eye
movements and blink rates via camera-based systems [6]. While

camera-based techniques are integrated into selected high-end
vehicles1, challenges persist in terms of light condition variability
and line-of-sight hindrances (e.g., glasses or sunglasses) [7].

From a clinical standpoint, direct measurement of sleep and
wake states primarily relies on EEG due to its ability to detect
autonomic nervous system (ANS) activity. However, direct skin
and scalp contact is required, making EEG unsuitable for unob-
trusive integration in a normal driving scenario.

On the other hand, both ECG and PPG can be used for non-
invasive assessment of ANS [8], and they have been analyzed
in several studies to detect drivers’ drowsiness. For instance,
Babaeian et al. [3] and Fujiwara et al. [9] analyzed drowsiness
using ECG electrodes attached to drivers, with accuracy reach-
ing 80% and 92%, respectively. Despite their high accuracy in
drowsiness detection, these studies are based on obtrusive acqui-
sition systems, such as medical devices, which are impractical
in a normal driving scenario, or smartwatches, which require a
wireless connection and a data link into the car, which is not
always possible or desirable for the driver.

Furthermore, many of these studies do not consider inter-
subject variability, showing results that are not based on a solid
cross-validation scheme and can vary enormously. For example,
the work of Kundiger et al. [10] demonstrates a high accuracy of
92% when tuning parameters on a subject-dependent basis (i.e.,
intra-subject). However, the accuracy drops significantly to 73%
when the model is applied inter-subject.

It is also important to note that these methods depend heavily
on manually extracting features from PPG and ECG data, pri-
marily those related to heart rate (HR) and heart rate variability
(HRV). This leads to many manually adjusted parameters and
considerable computational complexity.

This work targets PPG sensors seamlessly integrated into the
steering wheel. These sensors offer a significant advantage over
traditional methods such as ECG, as they do not require the
driver to always have both hands on the steering wheel, thereby
offering greater flexibility and comfort. To process the PPG data,
we rely on a temporal convolutional network (TCN). The TCN
model enables learning long-range features spanning significant
intervals in time series, as required for a potentially slow and
gradual process like drowsiness.

In our experiments, the drowsiness ground truth is obtained us-
ing the Karolinska sleepiness scale (KSS), a widely accepted mea-
sure [12]. Using leave-one-subject-out (LOSO) cross-validation

1https://www.lexus.com/models/GX/safety/pre-collision-system



Author Bio-Signals Sensor Type Obtrusive Testers Drowsiness Ground-Truth Cross-Val Method Accuracy

Lee, H. [11] ECG and PPG Wearable Yes 6 External expert Yes CNN ECG: 70%
PPG: 64%

Kundinger, T. [10] ECG and PPG Elelctrodes and
Smartwatch Yes 15 External expert Yes KNN ECG: 78%

PPG: 73%
Fujiwara, K. [9] ECG and EEG Electrodes Yes 17 EEG No MSPC 92%
Babaeian, M. [3] ECG Electrodes Yes 24 External expert No KNN 80%

Our work PPG Probes on
steering wheel No 16 KSS Yes TCN 77%

TABLE I
SOA COMPARISON TABLE.

scheme, we also ensured the robustness and generalization of our
model, which is tested in the inter-subject scenario.

The main contributions of this work are the following:
• We extend a published dataset [13] to enable more robust

training and validation of our new data-driven approach.
• We present a PPG-based solution to detect driver’s drowsi-

ness using a TCN, reaching an average cross-validated
accuracy on 16 subjects of 77.03%, which, to the best of
our knowledge, is higher than the other PPG-based SoA
solutions [11], [10].

• We deploy a quantized version of our model on a commercial
ultra-low power (ULP) system-on-a-chip (SoC) to ensure that
the full processing chain, alongside the unobtrusive acqui-
sition, runs in real-time in a realistic driving environment.
We evaluate the deployment in terms of inference speed and
energy efficiency, achieving an inference time of just 4.8ms
and energy per inference of 117µJ.

II. MATERIAL AND METHODS

A. Temporal convolutional networks

TCNs are a class of neural networks designed specifically
to process time series [14], [15]. They are built upon 1D con-
volutions, which are applied along the temporal dimension of
the input data, enabling the network to process sequences with
variable length. In particular, TCNs have been proven to be more
effective than recurrent neural networks (RNNs) for sequence
modeling [15]. One of the key features of TCNs is dilation: by
introducing a fixed step size d (i.e., the dilation factor) between
filter inputs in the convolutional layers, the network increases
its receptive field—and thus can capture long-term dependencies
in the input sequence—with a reduced number of parameters.
Another important aspect is causality, which ensures that each
output y(tN ) is based only on current data and on the previous
history of the signal x(tI), with tI ≤ tN .

In our work, we employ a modified version of TEMPONet,
a TCN model designed for gesture classification and hand
kinematics regression from surface electromyography (sEMG)
signals [16], [17]. The feature extraction part consists of three
main blocks, each composed of:

• two convolutional layers (each followed by batch normal-
ization and ReLU non-linearity) with filter size 3 × 1, full
padding and variable dilation;

• one convolutional layer with filter size 5×1, variable padding
and stride s = 4, followed by an average pooling with kernel
2× 1, batch normalization and ReLU non-linearity.

As in [16] and [17], the three blocks are characterized by
dilation factor d = 2, 4, 8, respectively. The convolutional layers
in the three blocks produce 8, 16, and 32 output channels,
respectively. In [16] and [17], the stride varies between the three

blocks (s = 1, 2, 4); conversely, we apply the same stride s = 4
in all the blocks: this choice ensures that the receptive field
is large enough to cover the whole 2min-long (2400 samples
at 20Hz) window in input. Lastly, the classifier part consists
of two fully-connected (FC) layers: the first, comprising 64
neurons, is followed by batch normalization, ReLU non-linearity,
and a dropout layer with probability p = 0.5 for regularization
purposes; the second, comprising 1 neuron, is followed by a
Sigmoid non-linearity and outputs the probability of the subject
being drowsy in the time window considered.

In addition to the PPG signal, we include as a second input the
driving time DT(t), which provides the network with a simple but
important information about the driver’s state, taking into account
fatigue-induced drowsiness. We modeled DT(t) as an exponential
function:

DT(t) = 1− e−t/τ (1)

where the time constant τ is heuristically set to 2 h. Compared
to a simple linear time feature, the usage of Eq. 1 delivers a
double advantage: it guarantees that the network inputs are in a
well-defined range, as DT(t) ∈ [0, 1[ ∀t ≥ 0; it weighs more the
latest stages of the driving—in particular, τ = 2h ensures that
Eq. 1 saturates at ∼ 9 h, which is the limit recommended by EU
regulations2. The model’s architecture is summarized in Fig. 1.

B. Dataset
We evaluate our model on a PPG-based dataset for driver

drowsiness detection presented in [13]. Initially comprising 14
subjects, the dataset has been extended with 7 additional subjects.
All the recordings take place in the Maserati Innovation Lab in
Modena (IT) using the static driving simulator DIL (Driver-In-the-
Loop). The simulator room comprises a fully functional vehicle
cockpit, a projector, and an audio system to ensure an immersive
driving experience. The simulated scenario involves a two-lane
road with light traffic to keep the driver engaged. The dataset
features two PPG channels acquired at 1 ksps from PPG sensors
integrated into the steering wheel cover and the driver’s perceived
level of drowsiness through the KSS questionnaire [18]. The KSS
is a 9-point scale that matches verbal sentences to the psycho-
physical status experienced, where 1 is the lowest and 9 is the
highest level. Drivers were to report their drowsiness level every
5min using a tablet positioned in the simulator’s cockpit.

The acquisition protocol was designed to induce drowsiness
thanks to the night-time recording sessions and the simulation
room maintained completely dark and sound-isolated. The drivers
were introduced to the KSS and instructed how to report the score
using the tablet, they were also asked to keep their hands on
the steering wheel in a normal “10 and 2 o’clock” position to

2https://transport.ec.europa.eu/transport-modes/road/social-provisions/driving-
time-and-rest-periods en



Fig. 1. TEMPONet [16], [17] architecture adapted for drowsiness detection.

ensure proper sensors coverage. The recording time was not fixed,
but the driving sessions were monitored from the simulator’s
control room, and they were stopped when the driver fell asleep,
or the driving style became very dangerous, i.e., collisions with
other vehicles or objects. The dataset includes more than 22 h of
recording with ∼ 83min average duration per driving session.

C. Data preparation

Starting from the original dataset, we focus the analysis only
on the PPG channel positioned on the left part of the steering
wheel; since the left hand was not used to prompt KSS scores,
the recorded signal shows a better quality. Moreover, we apply
a zero-phase band pass filter between 0.5Hz and 10Hz, and we
downsample the PPG signal to 20Hz. Then, the signal is divided
into overlapped windows of 2min with a step size of 30 s.

We employed KSS scores as the ground truth labels for our
classification model. The KSS was binarized into two classes,
denoted as Alert and Drowsy. The Alert class includes scores
ranging from 1 to 6, while the Drowsy class ranges from 7 to
9 on the KSS. Subsequently, we upsampled the binarized KSS
scores to match the frequency of PPG measurements. Ultimately,
we designated the last KSS score as the class label within each
window.

To ensure homogeneity in the dataset, we evaluated the class
distribution for each subject and excluded five subjects from the
analysis. Notably, three subjects exclusively exhibited the Alert
class, while the remaining two displayed a significant imbalance,
favoring the Drowsy class. Consequently, all experimental proce-
dures were conducted on a subset of 16 subjects.

D. GAP9 SoC

To test the feasibility of our model in a real driving application,
we deployed our model on GAP93, a commercial ULP SoC,
featuring a 9-core RISC-V compute cluster, an AI accelerator and
a single-core RISC-V controller, showing state-of-the-art (SoA)
performance in terms of energy efficiency4. GAP9 doesn’t have a
data cache but adopts a hierarchical memory model comprising a
fast-access L1 memory (128 kB) shared by all cores belonging to
the cluster; a retentive L2 RAM (1.6MB), accessible by all the
cores and direct memory access (DMA) controllers; a non-volatile
L3 on-chip flash memory (2MB). The peripheral subsystem has
a dedicated DMA component (µDMA), allowing the autonomous
control of data transfers between peripherals and L2 memory
without keeping the control core busy. We used GAPflow, a set
of tools that allow to port a pre-trained neural network algorithm
on GAP9. GAPflow is composed of two main tools: NNTool, a
Python package that takes a high-level network description and
translates all the layers and parameters to a model description that

3https://greenwaves-technologies.com/gap9 processor/
4https://mlcommons.org/en/inference-tiny-10/

can be fed to the second tool, the AutoTiler, that optimizes data
memory movements running on the GAP platform and generates
code optimized for a multi-core cluster.

III. EXPERIMENTAL RESULTS

A. Experimental setup
We evaluate our model utilizing a LOSO cross-validation

scheme with 16 folds. Each fold contains 13 subjects for training,
2 subjects for validation, and 1 subject for the test.

Using NNtool, we run two optimization steps on the original
network: (i) we reduce the number of operations and the memory
overhead by fusing different basic operations (e.g., convolution
followed by pooling and ReLU can be fused in a single “Con-
vPoolRelu” operation), (ii) we quantize the network to reduce
memory usage and enable integer-only arithmetic using a post-
training 8-bit quantization. The intermediate representation of the
graph generated after these two steps is fed to the AutoTiler, which
generates the actual C code using optimized software library
primitives. This step is crucial, given that there is no data cache
in GAP9. In order to be as efficient as possible, data must be
stored in the L1 memory with a limited capacity (128 kB). The
AutoTiler finds the optimal way to split the data and move them
into the L1 memory when needed.

B. Experimental evaluation
In Tab. II, we show the accuracy and the F1 score for each

subject before and after the INT8 quantization. Overall, we
reached an average accuracy and F1 score of 77.30% and 77.03%,
respectively, with a negligible drop when quantization is used.

We extend our analysis by arranging the original reported KSS
scores into three groups—alert (1–4), hypovigilant (5–6) and
drowsy (7–9)—and evaluating the binary predictions of our model
for each of them: in particular, for the alert and hypovigilant
states we expect the model to predict 0 (i.e., “not sleepy”), while
for the drowsy state we expect it to predict 1 (i.e., “sleepy”). We
compute the accuracy of the model’s predictions against the three
groups, and we obtain a 91.42% of accuracy for alert, a 68.63% of
accuracy for hypovigilant and a 83.48% of accuracy for drowsy.
Note that the reported accuracies correspond to the true negative
ratio (TNR) for the alert and hypolvigilant groups and to the true
positive ratio (TPR) for the drowsy group. Furthermore, we obtain
a false positive ratio (FPR) of 8.21% for alert, a FPR of 32.43%
for hypolvigilant and a false negative ratio (FNR) of 13.92% for
drowsy.

There is a clear indication that our model has a drop in
performance in the hypovigilant state. Fig. 2 shows, in addition
to the predictions of the network and the binary target classes,
the three regions corresponding to the three groups: the top plot
illustrates a successful prediction by our model, while the bottom
plot depicts a prediction with low accuracy, marked by a notable
misclassification in the hypovigilant state. The top plot of Fig. 3



S01 S02 S03 S05 S06 S07 S08 S09 S10 S11 S13 S15 S16 S17 S18 S19 Avg ± Std

F1 Score
FP32 82.05% 68.10% 99.07% 83.21% 62.50% 87.50% 88.65% 70.97% 71.60% 58.33% 93.83% 63.58% 99.46% 95.88% 52.56% 59.46% 77.30%± 15.26%

INT8 81.58% 67.86% 99.38% 83.21% 63.56% 87.50% 88.65% 73.42% 81.82% 57.31% 91.57% 59.52% 97.85% 93.94% 55.21% 59.21% 77.60%± 14.83%

Accuracy
FP32 86.14% 63.22% 98.61% 80.34% 59.46% 86.00% 85.00% 64.57% 76.77% 60.23% 93.01% 63.79% 99.17% 94.94% 55.15% 66.10% 77.03%± 14.75%

INT8 86.14% 62.81% 99.07% 80.34% 61.26% 86.00% 85.00% 66.93% 83.84% 58.52% 90.21% 60.92% 96.69% 92.41% 55.76% 64.97% 76.93%± 14.40%

TABLE II
RESULTS OF THE LOSO CROSS-VALIDATION FOR BOTH ORIGINAL AND QUANTIZED MODELS.

further demonstrates this phenomenon, revealing heightened vari-
ability and lower median accuracy in the hypovigilant state.

Going deeper into the analysis, we further divide the hypovigi-
lant and drowsy groups into their original KSS scores (i.e., 5–9),
and we evaluate the model’s predictions: for scores 5 and 6, we
expect the model to predict a 0, whereas for scores between 7
and 9, a 1. As shown in the bottom plot in Fig. 3, we observe
a significant variability in the accuracy on score 6, indicating
challenges in accurately classifying scores on the border between
hypovigilant and drowsy groups. Conversely, the accuracy on
KSS scores far from that border is substantially higher: for
instance, the accuracy on score 7 (near the border) is 76.47%
while the accuracy on score 9 (far from the border) is 98.33%.
We attribute hypovigilant-related misclassifications to the inherent
self-reported nature of the KSS and to the ambiguity of the verbal
sentences that describe the driver’s status.

Notably, we obtain a low FPR of 8.21% in the alert group,
which indicates that our model is able to effectively reduce the
number of false alarms when the driver is certainly awake but
also a low FNR of 13.92% in the drowsy group, which is the
most dangerous state and, consequently, the state in which it is
crucial that our model performs correctly. Even though this value
leads SoA for PPG, the approach can be integrated with others,
e.g., based on driving events, to further reduce the FNR.

C. Deployment on GAP9

We evaluate the performance of the model in terms of en-
ergy consumption, time per inference, and memory occupation.
The profiling was conducted setting GAP9 cluster frequency to
240MHz and the Vdd core to 0.65V. We use a power profiler from
Nordic Semiconductor to measure the current draw and a GPIO
to synchronize the measurement with the code execution. The
final deployed model has 24.07k parameters and the final memory
occupancy is 92.67 kB. Given the small memory footprint, we
promote most of the tensors and weights of the network into the
fast-access L1 memory to minimize memory movements.

The network requires 1.51MOPs to be executed, resulting
in a time per inference of 4.83ms, totally compatible with the
online constraint of a new prediction every 30 s, and an energy
consumption of only ∼ 117µJ.

IV. CONCLUSIONS

This paper introduces a novel solution for unobtrusive driver
drowsiness detection. Leveraging TCNs and photoplethysmog-
raphy PPG data seamlessly collected by sensors integrated into
the steering wheel, the proposed model achieves a SoA average
cross-validated accuracy of 77.60% across 16 subjects. Our model
is able to effectively reduce the number of false alarms when
the driver is clearly awake, as evidenced by our low FPR of
8.21% in the alert group. We also obtain a low FNR of 13.92%
in the drowsy group, which is the most hazardous state and,
therefore, the state in which it is critical that our model performs
correctly. The deployment of a quantized version of the model

Fig. 2. Comparison of model’s predictions output (in purple) and the ground truth
target (in black) for two subjects, with the colored regions indicating the three
driver’s states: above, a subject that shows high accuracy; below, a subject with
low accuracy and misclassified predictions in hypovigilant state.

Fig. 3. Above, the accuracy boxplot on the three driver’s states; below, the close-
up view of the accuracy boxplot on the original KSS scores for hypovigilant and
drowsy states.

on a commercial ULP SoC demonstrates real-world feasibility,
with an inference time of 4.8ms and energy consumption of
117µJ. Future work will concentrate on integrating the optimized
TCN model into online drowsiness detection systems, creating a
comprehensive end-to-end application. Moreover, leveraging the
computational capabilities of the GAP9 processor opens avenues
for system scalability, potentially exploring the integration of the
second PPG channel and other types of sensors.
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