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Optimizing the Deployment of Tiny Transformers
on Low-Power MCUs

Victor J.B. Jung, Alessio Burrello, Moritz Scherer, Francesco Conti, Luca Benini

Abstract—Transformer networks are rapidly becoming State of the Art (SotA) in many fields, such as Natural Language Processing
(NLP) and Computer Vision (CV). Similarly to Convolutional Neural Networks (CNNs), there is a strong push for deploying Transformer
models at the extreme edge, ultimately fitting the tiny power budget and memory footprint of Micro-Controller Units (MCUs). However,
the early approaches in this direction are mostly ad-hoc, platform, and model-specific. This work aims to enable and optimize the
flexible, multi-platform deployment of encoder Tiny Transformers on commercial MCUs. We propose a complete framework to perform
end-to-end deployment of Transformer models onto single and multi-core MCUs. Our framework provides an optimized library of
kernels to maximize data reuse and avoid unnecessary data marshaling operations into the crucial attention block. A novel Multi-Head
Self-Attention (MHSA) inference schedule, named Fused-Weight Self-Attention (FWSA), is introduced, fusing the linear projection
weights offline to further reduce the number of operations and parameters. Furthermore, to mitigate the memory peak reached by the
computation of the attention map, we present a Depth-First Tiling (DFT) scheme for MHSA tailored for cache-less MCU devices that
allows splitting the computation of the attention map into successive steps, never materializing the whole matrix in memory. We
evaluate our framework on three different MCU classes exploiting ARM and RISC-V Instruction Set Architecture (ISA), namely the
STM32H7 (ARM Cortex M7), the STM32L4 (ARM Cortex M4), and GAP9 (RV32IMC-XpulpV2). We reach an average of 4.79× and
2.0× lower latency compared to SotA libraries CMSIS-NN (ARM) and PULP-NN (RISC-V), respectively. Moreover, we show that our
MHSA depth-first tiling scheme reduces the memory peak by up to 6.19×, while the fused-weight attention can reduce the runtime by
1.53×, and number of parameters by 25 %. Leveraging the optimizations proposed in this work, we run end-to-end inference of three
SotA Tiny Transformers for three applications characterized by different input dimensions and network hyperparameters. We report
significant improvements across the networks: for instance, when executing a transformer block for the task of radar-based
hand-gesture recognition on GAP9, we achieve a latency of 0.14 ms and energy consumption of 4.92 µJ, 2.32× lower than the SotA
PULP-NN library on the same platform.

Index Terms—Deep Neural Networks, Transformers, Micro-Controller Units, Edge Computing, DNN Acceleration

✦

1 INTRODUCTION

IN the last few years, there has been a significant trend
towards moving computing workload from centralized

facilities towards the extreme edge of the Internet of
Things (IoT), improving privacy, efficiency, and ensuring
a predictable and constant latency, independent from the
network coverage and congestion [1]. As a consequence,
modern IoT endpoints have been changing from simple
Micro-Controller Units (MCUs) equipped with the sensor
infrastructure for data collection and transmission towards
more complex heterogeneous Systems-on-Chip (SoCs) char-
acterized by dedicated accelerators and enhanced Instruc-
tion Set Architectures (ISAs) to optimize efficient on-board
computations – while still meeting to tight power, per-
formance, and cost constraints. For this reason, extensive
research has been conducted on how to squeeze complex
Machine Learning (ML) models into such constrained de-
vices with a strong emphasis on Deep Neural Networks
(DNNs) due to their success in solving many challenging
tasks. Standard hardware-agnostic optimization techniques
include topological changes [2], data quantization [3], [4],
and pruning [5]. These efforts are often collectively labeled
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as TinyML and are applied to State of the Art (SotA) Con-
volutional Neural Networks (CNNs), such as ResNets [6]
or MobileNets [7], that dominates most of the tasks of the
IoT domain, including image recognition, object detection,
or time-series analysis.

At the same time, increasing efforts have been dedicated
to finding a successor architecture to CNNs for IoT process-
ing to increase tasks’ accuracy further. A strong candidate
is the Transformer architecture [8], which first emerged as
SotA model in Natural Language Processing (NLP) and is
now also SotA in other domains such as Computer Vision
(CV) and Audio processing. Transformer models have been
initially developed targeting ”at scale” deployment in the
cloud. Industry and academia are now increasing efforts
toward Transformer models tuned for edge deployment.
Recent advancements have focused on the minimization of
Transformer model size [9] while still maintaining leading-
edge accuracy when compared with CNN models of similar
size, thus introducing a novel class of Tiny Transform-
ers. The success of these early reduced-scale Transformer
models confirms that Tiny Transformers are relevant and
applicable in Edge computing scenarios.

However, the Multi-Head Self-Attention (MHSA) opera-
tion comes with many challenges, such as the high memory
footprint of intermediate results and frequent data marshal-
ing. Despite our early work demonstrating encoder-only
Tiny Transformer deployment [9], the approach was highly
model and platform-specific and not easily generalizable
to multiple models and platforms. Moreover, early work
did not tackle the critical problem of optimized data tiling
and computation scheduling, which is essential for most
practical Tiny Transformers.

To facilitate the deployment and the optimization of a
wide range of encoder-only Transformer models for TinyML
platforms on multiple MCU platforms, we significantly
extend an existing deployment framework (DORY [10])
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and quantization library (Quantlib). Thus, we present a
comprehensive end-to-end and open-source 1 encoder-only
Transformer deployment flow to SotA MCUs. Further, we
explore optimizations at various levels of the stack, from
pure algorithmic techniques, to low-level code optimization, novel
scheduling and tiling schemes. Together, these optimizations
significantly enhance the performance of Transformers de-
ployment on low-power MCUs. In detail, we present three
main contributions:

1) We designed a library of highly efficient kernels for
both MHSA and Fused-Weight Self-Attention (FWSA).
The library is tailored to minimize the overhead asso-
ciated with data marshaling operations and maximize
data reuse through carefully optimized data layout and
loop reordering for each Attention layer. By reducing
unnecessary data movements and optimizing mem-
ory access patterns, the proposed library significantly
boosts the overall performance of Attention in an ISA-
agnostic fashion, with comparable improvements for
RISC-V and ARM with respect to SotA DNN libraries
PULP-NN and CMSIS-NN.

2) We introduce two novel optimizations: a fusion-based
tiling scheme for MHSA operations and an offline
weight fusion schedule for the MHSA operation. By
combining fusion-based tiling and pipelining-related
computations, the memory footprint and frequency
of memory transfers during MHSA computation are
substantially diminished, reducing the memory peak
to 6.19×. Furthermore, the weight fusion schedule re-
duces the latency by a factor of 1.53× while reducing
the number of parameters by 25 %.

3) We extensively benchmark our library and optimiza-
tions using published transformers targeting three
tasks, i.e., seizure detection from EEG signals, arrhyth-
mia classification from ECG signals, and hand-gesture
recognition from high-frequency short-range pulsed
RADAR.

Experimental evaluations on the above-mentioned MCUs
demonstrate an energy consumption reduction compared
to SoA libraries of up to 5.1× on GAP9 and 2.9× on ARM-
based platforms when executing the attention-building
block of the three transformers. When considering end-to-
end execution of the networks on GAP9, we obtain the best
latency of 9.42 ms, 2.85 ms, and 5.49 ms for the three different
tasks at the maximum frequency of 370 MHz. In the most
energy-efficient configuration, we achieved 310 µJ, 90 µJ,
207 µJ energy consumption, respectively, still respecting the
real-time constraint of the applications.

The rest of the paper is structured as follows. Sec. 2
provides the necessary background while Sec. 3 summarizes
related works on MHSA optimization and TinyML plat-
forms. In Sec. 4, we provide implementation details of the
library, tiling scheme, and Weight-Fusion schedule. Finally,
Sec. 5 presents experimental results, and Sec. 6 concludes
the paper.

2 BACKGROUND
2.1 Transformers and Multi-Head Self-Attention
Transformers are built around repeating an identical Trans-
former block. As shown in Figure 1, the encoder block
comprises two stages, the MHSA and the Fully-Connected
stage. To deploy transformers on MCUs, the MHSA stage is
the most challenging step, given that the Fully-Connected
stage is common in CNNs and its optimization has already
been tacked in previous work.

1. https://github.com/pulp-platform/pulp-transformer
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Fig. 1: Topology of the Transformer block, composed of a
MHSA stage and a Fully-Connected stage. The dimensions
of the tensors are indicated in red.

The dimensions of each operation in the MHSA are
determined by four parameters: the sequence length S, the
embedding dimension E, the projection dimension P and the
head dimension H . The first step in the MHSA stage is the
projection of the input sequence X ∈ RS×E into the query,
key, and values,Q,K, V ∈ RS×P , by means of three weights
matrices, Wquery,Wkey,Wvalue ∈ RH×E×P .

Q = XWquery, K = XWkey, V = XWvalue. (1)

In the second step, Q, K , and V are combined in the
Attention step, which is the core of the Transformer block.
It is defined as: Attention(Q,K,V) := Softmax

(
QKT
√
d

)
V,

with d being the dimensionality of K used as a scaling factor
and where the softmax function is applied to each row. The
softmax of the i-th element of a row of size n is defined as
follows:

Softmax(x)i =
exi−max(x)∑n
j=1 e

xj−max(x)
(2)

The output of this second step is the matrix M1. These
first two steps are repeated for every head of the MHSA
layer, leading to H parallel executions of the three Linear
projection layers and the two GEneral Matrix Multiplica-
tions (GEMMs). The final step of the MHSA stage involves
a Linear layer to project the matrix M1 back into the
input embedding space E, fusing the computation from the
different heads.

The second stage of the Transformer block, shown in
Figure 1, is the Fully-Connected stage. It is an entirely se-
quential stage comprising a row-wise layer normalization,
an element-wise Gaussian Error Linear Unit (GELU) [11],
and two Linear layers.

https://github.com/pulp-platform/pulp-transformer
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2.2 Hardware Platforms: RISC-V and ARM MCUs

We consider platforms relevant to the TinyML context, typi-
cally featuring ∼ 1 MB of on-chip memory [1] and based on
the two leading 32 bit ISAs for MCUs, namely the ARMv7
and RISC-V 32 bit (RV32). We open-source our framework
and target commercially available MCUs to facilitate bench-
marking and extensions.

2.2.1 ARM Cortex platforms

STM32L4 - Cortex-M4 2: The STM32L4 has a Cortex-M4 core
coupled with 640 kB of Random-Access Memory (RAM) and
2 MB of Flash. Among the platforms chosen, the M4 shows
the lowest average power consumption of 13.63 mW at a
clock frequency of 80 MHz. Additionally, the core supports
16 bit Single Instruction Multiple Data (SIMD) operations.
In detail, the board used is the STM32L476 3.

STM32H7 - Cortex-M7 4: This architecture is representa-
tive of the high-performance end of the spectrum for ARM
MCUs. At a frequency of 480 MHz, it consumes 234 mW
on average. Among the additional features, we highlight
a more complex memory hierarchy involving both data
and instruction caches as well as a Direct Memory Access
(DMA) for software-managed memory movements between
the main memory (1 MB of RAM) and a smaller but faster
data memory of 64 kB. Specifically, in this work, we use the
NUCLEO-H743ZI2 board 5.

We do not target hardware platforms using the ARM
Helium vector extension 6, such as the Cortex-M55 7 and
Cortex-M85 8, given that they are not yet widely available
on the market.

2.2.2 RISC-V platform: GAP9

GAP9 9 is a low-power RISC-V multi-core processor com-
mercialized by GreenWaves Technologies targeting DNN
workloads for hearable and smart sensors. This platform
features a RISC-V control core for I/O management and a
compute cluster. The cluster comprises 9 RISC-V cores to
parallelize computational intensive workload The RISC-V
cores have a 4-stages in-order single-issue pipeline based
on the RV32 XpulpV2 ISA extension [12], tailored for fast
and efficient signal processing. These extensions reduce
execution time by more than 5× for different workloads
with respect to RV32 baseline [12].

Every core in the cluster is tightly connected to an L1
memory of 128 kB via a single cycle logarithmic intercon-
nect. The on-chip L2 memory communicates with the L1
through the Advanced eXtensible Interface (AXI) bus, and
its size is 1.5 MB. To overlap computation with data trans-
fers, GAP9 relies on two DMA units to explicitly move data
between L1 and L2 or between L2 and external memories.
The DMA core responsible for L1-L2 transfers reaches a
peak bandwidth of 2 GB/s.

We do not include single-core RISC-V MCUs to the
benchmark, such as the ESP32-C3, as they use the vanilla
RV32 ISA and are dominated by the RV32-XpulpV2 cores in
terms of performance and energy efficiency.

2. https://developer.arm.com/documentation/dui0553
3. https://www.st.com/resource/en/datasheet/stm32l476je.pdf
4. https://developer.arm.com/documentation/ddi0489
5. https://www.st.com/en/evaluation-tools/nucleo-h743zi.html
6. https://developer.arm.com/documentation/102102
7. https://developer.arm.com/documentation/101051
8. https://developer.arm.com/documentation/101924
9. https://greenwaves-technologies.com/gap9 processor/

3 RELATED WORK

3.1 Attention Mechanism Optimizations

Since the release of the seminal attention paper in 2017 [8],
the research community put considerable effort into op-
timizing the basic MHSA, the major building block in
transformer-based architectures introduced in the previous
section. These optimizations can be classified into topology
optimizations, software optimizations, and hardware accel-
eration.

3.1.1 Topology optimizations

The first class of optimizations aims to modify the attention
mechanism’s topology to reduce deployment costs regard-
ing memory footprint or number of operations.

These approaches, including linearized attention, usu-
ally seek to eliminate the quadratic scaling of memory
and computational requirements relative to the sequence
length. To linearize models, researchers use either the
kernel trick [13], [14], [15], [16] or low-rank approxima-
tion [17]. However, linear transformers suffer from perfor-
mance degradation on various tasks compared to traditional
attention [18]. Hence, linear attention methods are currently
not widely adopted by the research community [18]. Con-
sequently, this work focuses on speeding up the traditional
attention mechanisms.

Another popular topological change to the Attention
mechanism is the Multi-Query Attention (MQA) [19]. It re-
formulates the MHSA to use only oneK and V head instead
of H heads. This modification drastically reduces the re-
quired memory bandwidth and increases data reuse. How-
ever, the impact on the output quality is non-negligible [20].
Grouped-Query Attention (GQA) is a variant of MQA pro-
posed to reduce this accuracy drop. Instead of reducing
the number of K and V heads to one, it groups a certain
number of KV heads, allowing the programmer to miti-
gate the accuracy drop. GQA has been successful used in
popular Large Language Models (LLMs) such as LLama-2
[21]. However, to the best of the authors’ knowledge, these
methods have yet to be successfully applied in the TinyML
domain. Furthermore, the implementation of GQA kernels
can be derived from the basic ones and does not require
extra optimization steps.

3.1.2 Software optimizations

The second optimizations category encompasses every soft-
ware optimization of the traditional MHSA operator. One
can notice that the vast majority of these works focus
on large-scale inference using server-class hardware [22],
[23]. Due to the extreme memory constraints and the small
number of cores present in TinyML platforms, many fun-
damental differences arise in the way one would optimize
the MHSA operator. However, despite not being directly
applicable to edge devices, most of these techniques can be
used as starting points.

We excluded batch size-based optimizations, given that,
due to the memory constraints of MCUs and the context
of online inference, we always consider batch sizes of 1 in
this work. Further, we do not consider transformer model
”partitioning” [24]: While this is crucial for large trans-
former models that are too large for a single compute unit
(e.g. a Graphics Processing Unit (GPU)), tinyML systems are
overwhelmingly based on a single MCU.

10. https://github.com/google/XNNPACK
11. https://github.com/pytorch/QNNPACK

https://developer.arm.com/documentation/dui0553
https://www.st.com/resource/en/datasheet/stm32l476je.pdf
https://developer.arm.com/documentation/ddi0489
https://www.st.com/en/evaluation-tools/nucleo-h743zi.html
https://developer.arm.com/documentation/102102
https://developer.arm.com/documentation/101051
https://developer.arm.com/documentation/101924
https://greenwaves-technologies.com/gap9_processor/
https://github.com/google/XNNPACK
https://github.com/pytorch/QNNPACK
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Library Supported
Platform Precision

Multi-
Core

Support

SIMD
Support

Loop
Unrolling

Fused
Reshape

XNNPACK ARM/x86
RISC-V fp16/fp32 ✗ ✓ ✓ ✗

QNNPACK ARM/x86 fp16/fp32 ✗ ✓ ✓ ✗

CMSIS-NN ARM int8/int16 ✗ ✓ ✓ ✗

PULP-NN RISC-V int8 ✓ ✓ ✓ ✗

TinyFormer
(Ours)

RISC-V
ARM int8 ✓ ✓ ✓ ✓

TABLE 1: Comparison of the SotA kernel libraries for
TinyML platforms.

Some works present optimizations partially applicable
in the context of TinyML platforms [19], [20], [22]. FlashAt-
tention and FlashAttention-2 use online softmax and nor-
malization [25] to break the row dependencies, which re-
sults in better tiling. Together with carefully tuned kernels,
FlashAttention significantly improves the performances of
transformer inference of large models on GPUs and is now
fully integrated into the PyTorch library. However, some
of the optimizations FlashAttention uses are not beneficial
for extreme edge platforms, given the smaller memory and
fewer computational resources. For instance, the block tiling
and partial softmax from [22] are not suited for MCUs as
it induces non-negligible overhead to store partial sums
and renormalize the softmax at each block. Additionally,
many transformer models exhibit a high amount of spar-
sity. Therefore, various approaches exploiting this sparsity
have been studied to accelerate the inference [26]. However,
sparsity exploitation generally requires dedicated hardware
support to be beneficial, which is not available in the current
generation of MCUs.

3.1.3 Hardware accelerators
Hardware accelerators optimize efficiency by tailoring archi-
tecture and circuits to specific computational patterns at the
price of flexibility. Many have been proposed to accelerate
MHSA in all kinds of contexts, from server-class to the
edge [27]. However, hardware accelerators usually employ a
fixed dataflow and attention flavor, reducing the adaptabil-
ity to different attention mechanisms (i.e. such as GQA or
MQA) and network topologies. Their extra cost and limited
flexibility limit their adoption in the current generation of
MCUs. Hence, we focus on the most general and accessible
way to port transformers to the edge: computing MHSA on
the ARM or RISC-V cores.

3.2 DNN Kernel Libraries for TinyML Platforms
Optimized kernel libraries are at the core of every DNN
deployment stack. These libraries contain manually opti-
mized kernels to efficiently run operators commonly found
in DNNs such as convolutions or matrix multiplications.
Efficient kernel design relies heavily on hardware-specific
expert knowledge and is very time-consuming. Despite
some attempts of automatizing their generation [28], the
vast majority of kernels in well-known libraries such as
CUDA 10 and BLAS [29] are still handwritten by experts.
However, to the best of our knowledge, there are no opti-
mized libraries specifically tailored for transformer execu-
tion on edge devices.

On the other hand, given that Attention layers mainly
exploit GEMMs and Linear layers, SotA DNN libraries can
be reused and extended to execute transformers. Table 1
provides a qualitative description of the existing DNN li-
braries commonly used for TinyML platforms. XNNPACK
is a library commonly used to accelerate high-level machine

10. https://docs.nvidia.com/cuda/
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Fig. 2: Overview of our Tiny Transformers deployment flow.
The floating point Pytorch model in A can be transformed
by the FWSA node in B and is then fed to QuantLib C .
Afterward, the quantized Open Neural Network Exchange
(ONNX) graph is ingested by the deployment frameworks
enhanced with our library D and Depth-First Tiling (DFT)
optimization E . Finally, in F , the generated C code is
deployed on the desired platforms.

learning frameworks such as TensorFlow or PyTorch. As
indicated in Table 1, it supports a wide range of platforms
but does not support multi-core or efficient data reshaping.
It is also used in a TinyML context when using the Tensor-
Flow Lite [30] deployment framework to execute code on
Raspberry Pi 11. XNNPACK has been expanded to optimize
efficiency further by targeting 8 bit integer quantized neural
networks, which are now the SotA networks in terms of
efficiency.

CMSIS-NN [31] is the first kernel library for the de-
ployment of DNNs that explicitly targets MCU class de-
vices, namely platforms relying on ARM Cortex-M cores.
CMSIS-NN is tailored for single-core platforms and cannot
handle parallelization over any input/output dimensions.
It exploits SIMD operations on 16 bits when supported,
and its main focus is on optimizing the data reuse in the
register file to minimize the additional load/store latency,
which was observed to be one of the sources of signif-
icant overhead. PULP-NN [12] is another kernel library
aiming to perform inference of DNNs on RISC-V MCUs
efficiently. It targets explicitly Parallel Ultra Low Power
(PULP) SoCs such as GAP9 based on the RV32 XpulpV2 ISA.
Similarly to CMSIS-NN, it supports SIMD and Loop Un-
rolling, boosting the computational intensity for quantized
workloads and minimizing memory access stalls. However,
both libraries lack support for fused data marshaling that
has been demonstrated to be worth 20 % of the latency of
transformer networks execution [32]. Hence, they struggle
to efficiently execute operators involving data-layout recon-
figuration, such as Transposition.

The four libraries described above have a few limitations
when boosting the performance of transformers’ execution.
For instance, they do not consider the specific attention layer
topology, they do not provide flexible parallelization dimen-
sion, and they do not fuse data marshaling and transpose
operators, thus missing crucial optimization opportunities.
Finally, they do not provide efficient softmax implementa-
tion, a key operator in MHSA. To the best of the authors’

11. https://www.raspberrypi.org/

https://docs.nvidia.com/cuda/
https://www.raspberrypi.org/
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knowledge, we introduce the first attention-tailored library
for MCUs. Our library addresses the limitations of the SotA
DNN libraries by providing an optimized parallelization
scheme and loop ordering, alleviating the need for expen-
sive data marshaling operations.

4 METHODS

This section describes our end-to-end deployment toolchain
depicted in Figure 2; this framework unlocks the execution
of Transformer networks on several MCUs. We first give an
overview of every tool we use; then, we detail our contri-
butions at each step of the toolchain. Finally, we introduce
the three Transformers that we deploy to benchmark our
method.

4.1 Deployment Toolchain Overview
The input of our toolchain is a PyTorch Transformer floating
point model A represented as an ONNX graph. Then,
this graph goes through the optional FWSA transformation
B before being processed by QuantLib 12 C , our open-

source library for model quantization and graph topology
transformation. QuantLib’s output is a quantized ONNX
graph compatible with the downstream deployment tool.
The deployment frameworks are enhanced by our kernel
library D and a DFT scheme for MHSA E ; their output is
code that can be executed on the target platforms F .

We exploit two different deployment tools depending
on the target platform. For commercial ARM-based MCUs
such as STM32, we utilize DumpO, an internally devel-
oped automated code generation tool leveraging CMSIS-
NN or our optimized transformer library as backend ker-
nels. GAP9 and other PULP platform SoCs require ad-
ditional deployment steps, such as tensor tiling, as they
employ an explicitly managed memory hierarchy instead of
conventional caches. For this reason, in this work, we rely
on and enanched DORY [10], a SotA open-source tool used
to deploy DNNs on MCUs with software-managed caches
such as GAP9.

4.2 Fused-Weight Self-Attention B
In small-scale Transformers, the embedding size E is often
tiny, unlike in larger transformers. We introduce an isomor-
phic transformation of the MHSA, fusing the weights for the

12. https://github.com/pulp-platform/quantlib

20 40 60 80 100
Embedding Dim (E)

0K

100K

200K

300K

M
AC

MHSA #MACs
FWSA #MACs
MHSA #Params
FWSA #Params

0K

5K

10K

Pa
ra

m
s

52 64

Fig. 4: Number of parameters and Multiply-Accumulate
(MAC) as a function of the embedding dimension E and
for S = 32, P = 32 and H = 8. The intersection points
happen at E = 52 and E = 64 for the number of MAC and
the number of parameters, respectively.

Q and K Linear projection offline to exploit this fact. We call
this transformation Fused-Weight Self-Attention. Note that
this transformation only reorders the matrix multiplications
used in the computation of the attention matrixA. Addition-
ally, it is mathematically equivalent to the MHSA. Hence,
it does not affect the accuracy of the transformers. This
optimization aims to speed up the inference by performing
one of the matrix multiplications offline, hence reducing the
number of operations to execute at inference-time on the
MCU and the number of parameters to store on-chip. In the
equations below, we decompose the matrix product between
Q and KT and demonstrate the equivalence between the
MHSA and the FWSA. A denotes the attention matrix, X
the input, ϕ the softmax, and WQK the weights of the
Q and K linear projection. We define the fused weight
W ∗ such as: W ∗ = WQ · WT

K Additionally, X ∈ R(S×E),
W ∗ ∈ R(H×E×E), WQK ∈ R(H×E×P ), Q ∈ R(H×S×P ),
KT ∈ R(H×P×S), and A ∈ R(H×S×S).

A = ϕ(Q ·KT ) (3)

A = ϕ(X ·WQ · (X ·WK)T ) (4)

A = ϕ(X ·WQ ·WT
K ·XT ) (5)

A = ϕ(X ·W ∗ ·XT ) (6)

In the equations above, we reorder the operations using
the associativity of the matrix product and the transpo-
sition’s reversal order of the product. The fused weight
matrix W ∗ is computed offline and considered as fixed
parameters during the inference. In detail, we reduce the
number of matrix multiplications to perform online from
three to two. Figure 3 shows the computational graph of the
classical Multi-Head Attention (left) and the FWSA (right),
we indicate the dimension of the tensors in red.

To evaluate when this transformation is beneficial, we
compare the number of operations O and parameters θ
between the FWSA and the MHSA in Eq. 7&8 below:{

OMHSA = 2HSPE +HS2P

OFWSA = HSE2 +HS2E
(7)

{
θMHSA = 2HPE

θFWSA = HE2 (8)

Looking at Eq. 7&8, we notice that using the FWSA is
indeed beneficial for some conditions of S, P , and E values.
More specifically, in Eq. 9, we provide the inequalities that
need to be satisfied to benefit from the FWSA in terms of
number of operations (left) and parameters (right).

E < P − S

2
+

√
4P 2 + S2

2
E < 2P (9)

https://github.com/pulp-platform/quantlib
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In Figure 4, we show the relationship between E and the
number of MAC/Parameters for the MHSA and FWSA. For
E < 52, FWSA always shows a lower number of MAC and
parameters. When considering the intermediate condition of
52 ≤ E < 64, the FWSA reduces the number of parameters
but increases the number of MACs. Finally, in the third case
(E ≥ 64), the MHSA is more advantageous than the FWSA.

4.3 Transformers Quantization with QuantLib C
To quantize Transformers, we employ and extend the open-
source quantization library QuantLib. QuantLib transforms
the ONNX graph representing the floating-point model of a
DNN to an integerized ONNX graph. This transformation
from a floating-point to an integerized graph is done in two
steps.

All operation nodes in the graph, such as matrix mul-
tiplication, convolution, or softmax, are replaced by their
integer equivalent. As the softmax, GELU, and layer nor-
malization present in Transformers do not have an integer
equivalent, we extend QuantLib to support the integer
version of these operands from I-BERT.

Then, we add a re-quantization step after operations
whose output is not represented in 8 bit. For instance, the
output type of an integer GEMM is int32; thus, to convert
it to 8 bit, we have to re-quantize it. We use the uniform
symmetric quantizer from the SotA Trained Quantization
Threshold (TQT) method [3]. Below, we describe the func-
tional behavior of the TQT quantizer denoted ψ:

ψ(x) = max(2b−1,min((x · ϵmul) >> ϵdiv, 2
b−1 − 1)) (10)

The number of bits of the quantized values is b, while ϵmul

and ϵdiv are the re-quantization parameters. This quantizer
constrains the scale factor to a powers-of-2 (i.e., 2ϵdiv ) and
uses per-tensor scaling of activations and weights, making
it hardware-friendly as we can use the bit-shift operation
to apply ϵdiv . Additionally, we use Quantization Aware
Training (QAT) to adjust weights to reduce the accuracy
loss induced by quantization. Note that we could use Post-
Training Quantization (PTQ) instead of QAT, we choose to
use QAT because it mitigates even further the quantization
accuracy loss, compared to PTQ.

After applying the necessary transformations and ob-
taining an integerized ONNX graph, we integrate into
QuantLib a new export module to format the graph such
that it can be ingested by the deployment framework (DORY
or DumpO).

4.4 Deployment Framework Integration
For ARM platforms, we use DumpO to compile the inte-
gerized ONNX graph into C code. DumpO first transforms
the graph so that each node can be executed by one kernel
from the available libraries. Then, it parses the graph to
match every node with the appropriate kernel and generates
the code for the target platform. We modify the kernels to
use the appropriate intrinsics for vector packing and SIMD
calls to leverage our optimized library in ARM platforms.

This simple code generation strategy does not work for
the GAP9 target due to the nature of the hardware archi-
tecture. As mentioned in Sec. 4.1, unlike ARM processors,
the family of GAP processors does not have hardware-
managed data caches, meaning that software must handle
data movement and tiling. While increasing the complexity
of the deployment framework, this choice unlocks several
optimizations, such as tiling and double-buffering. An ex-
ample of implementing these optimizations is provided
in Listing 1, comparing the generated code between the
ARM/DumpO and GAP/DORY cases.

DumpO-generated pseudocode for ARM MCUs
1 Inputs: X; Output: Y
2 kernel_params = {param1, param2, etc...};
3 Kernel(X, Y, kernel_params);

DORY-generated pseudocode for GAP9
1 Inputs: X; Output: Y
2 kernel_params = {param1, param2, etc...};
3 for (i = 0; i < Ntile; i++)
4 DMA_wait(L1X next); swap(L1X next, L1X current);
5 DMA_transfer_async(L1X next <- L2X[i]);
6 Kernel(L1X current, L1Y current, kernel_params);
7 DMA_wait(L1Y previous); swap(L1X current, L1X previous);
8 DMA_transfer_async(L2Y [i] <- L1Y previous);

Listing 1: Example of code generated by DORY and DumpO
for executing a DNN layer. The input and output tensors
are noted as X and Y , respectively. The code generated
by DORY features tiling with double-buffering, it uses the
DMA core to fetch input tiles (noted L1X ) and send back
output tiles (noted L1Y ) asynchronously to the execution of
the kernel.

For this reason, we employ and extend a different tool,
DORY, when targeting GAP9. Similarly to DumpO, DORY
transforms the graph to fuse operands and features a parser
to match layers to kernels. Furthermore, it supports multi-
level layer-wise tiling with double-buffered DMA transfers
to overlap data movement behind computation [10]. The tile
dimensions are chosen using constrained optimization [10]
and relies on handcrafted heuristics such as maximizing the
L1 memory utilization. DORY also integrates the PULP-NN
library [12] in its backend natively.

The baseline version of DORY focuses exclusively on
convolutional DNNs and cannot handle Transformers. Fur-
thermore, the baseline DORY targets feed-forward Convolu-
tional DNNs, allowing only one skip connection branch. For
example, it can support a network such as MobileNet V2 [7],
but not SSD [33]. We extend DORY by adding support for
Transformer-related operators such as MHSA GELU, layer
normalization, and softmax, adding our specialized library
of efficient MHSA and FWSA kernels D as a new backend
for DORY. Additionally, we integrated support for a new
tiling scheme E and added support for multiple skip con-
nection branches. In the following subsections, we describe
in detail this tiling scheme tailored for MHSA for MCUs
without hardware-managed caches and our optimized ker-
nel library.

4.5 MHSA Depth-First Tiling E
Tiling is usually done layer per layer; the intermediate
activation tensors are entirely moved from one level to the
other after each DNN layer. This approach is referred to as
Layer-Wise Tiling (LWT) and is by far the most common one
for deployment at the edge [10], [34].

On the other hand, recently, Depth-First Tiling (DFT) has
been gaining traction. The idea behind this is to tile several
layers together, effectively using Layer-Wise Tiling but on a
group of layers [35], [36].

We propose a DFT scheme specifically tailored for
MHSA on MCUs and inspired by the flash-attention ap-
proach [22]. This scheme aims to reduce the memory peak
encountered when materializing the attention matrix A.
Since the attention’s matrix dimensions are (H × S × S),
its size grows quadratically with respect to the sequence
length S. Hence, the materialization of A can bottleneck
systems where on-chip memory is very limited, such as
MCUs. To cope with this problem, we propose an output
stationary dataflow for our DFT scheme, meaning that we
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1 Inputs: I, W; Outputs: Q, K, V
2 C = H / CORES
3 Hstart = min(C * COREID, H); Hend = min(Hstart + C, H)
4 LH: for (h = Hstart; h < Hend; h++)
5 LP: for (p = 0; p < P/2; p++)
6 LS: for (s = 0; s < S/4; s++)
7 S0...7 = {0};
8 LE: for (e = 0; e < E/4; e++)
9 A1 = I(4sE+4e); A2 = I((4s+1)E+4e);

10 A3 = I((4s+2)E+4e); A4 = I((4s+3)E+4e);
11 B1 = W(hPE+4e); B2 = W(hPE+2pE+4e);
12 S0 += sdot4(A1,B1); S1 += sdot4(A1,B2);
13 S2 += sdot4(A2,B1); S3 += sdot4(A2,B2);
14 S4 += sdot4(A3,B1); S5 += sdot4(A3,B2);
15 S6 += sdot4(A4,B1); S7 += sdot4(A4,B2);
16 O(h,2p,4s) = requantization(S0);
17 O(h,2p,4s+1) = requantization(S1);
18 O(h,2p,4s+2) = requantization(S2);
19 O(h,2p,4s+3) = requantization(S3);
20 O(h,2p+1,4s) = requantization(S4);
21 O(h,2p+1,4s+1) = requantization(S5);
22 O(h,2p+1,4s+2) = requantization(S6);
23 O(h,2p+1,4s+3) = requantization(S7);

Listing 2: Example of kernel pseudocode 1 . requantization
denotes the function ψ from Equation 10 and sdot4 repre-
sents the 4-way dot-product SIMD instruction.

do not store partial results to accumulate them later. Instead,
we directly compute the final output, avoiding overhead
of storing partial outputs. The proposed DFT scheme tiles
the two GEMM layers (kernels 3 and 4 ) of the MHSA
stage depicted in Figure 1, as well as the softmax operator
together. Our DFT scheme takes x rows of the Q tensor
as input. Note that the choice of the number of rows to
process in one tile depends on the memory hierarchy of
the platform and the specific dimensions of the transformer.
Additionally, one entire head of K and V is necessary to
apply our scheme. The rows of Q are multiplied with one
head of K to create x rows of the attention matrix A; then
we consume these rows of A by multiplying them with one
head of V to generate x rows of M1. Hence, to use our DFT,
the L1 memory needs to hold at least one complete head
of the K and V tensors as well as one row of Q, A, and
M2. Thus, the L1 memory size required to apply this tiling
scheme and produce x rows of M2, noted MemDFT, can be
expressed as follows:

MemDFT(x) = (2P + S)x+ 2PS (11)

where Px bytes are used to store a tile of Q, Sx to store
the intermediate tile of A, and Px bytes for the output tile
of M2. 2PS bytes are used to store a head of K and V .
The DFT scheme cannot be used if MemDFT(1) > L1size, in
this situation we use the LWT instead. When we cannot fit
L1 memory given the smallest possible x, LWT is used as a
fallback solution. The result section compares the LWT and
DFT approaches in all evaluation scenarios.

4.6 Multi-Head Self-Attention Kernel Library D
Every layer of the MHSA, described in Figure 1, is

followed by transpositions, reshape, or concatenation op-
erations. These memory marshaling operations are hard to
execute efficiently on multi-core processors as they only
comprise data movement. Hence, hiding the data transfer
latency behind computation is impossible. Therefore, their
impact on performances is non-negligible, causing over-
heads up to 20 % in some network execution [32]. Further-
more, SotA DNNs libraries [12], [31] do not tune data layout
to avoid data marshaling operations and do not fine-tune
their parallelization scheme for MHSA. Hence, they perform
poorly for executing MHSA, exhibiting low data reuse and
sub-linear scaling on multi-core processors. We propose our
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Fig. 5: Linear layer dataflow for generating Q, K, and V. The
output data layout is HPS and HSP . Matrices are filled
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optimized library of tailored kernels for each layer in the
MHSA to address these issues. Each kernel of the library
embeds the re-quantization step and takes 8 bit input and
output tensors. The scaling factors and the bias of the linear
projection are stored on 16 bit.

4.6.1 Kernel Execution Loop
We follow three primary guidelines for kernel optimiza-
tions: i) keep the parallelization (when available on the
target platform) as much as possible on the H dimension;
ii) exploit output stationarity; and iii) produce the output
tensors sequentially (i.e., element i + 1 in the innermost
dimension is always generated immediately after the i-th
element).

When the memory constraints of the platform allow
it, we parallelize our kernels on the H dimension. Spa-
tially unrolling the heads has several advantages. First,
this dimension is present in every kernel of the MHSA.
Second, it allows for minimizing synchronization among
cores since the heads perform independent computation,
avoiding race conditions. Note that this parallelization strat-
egy, both for the MHSA and for the FWSA, would not be
efficient on high-performance devices such as GPUs. These
high-performance platforms have thousands of cores, which
is considerably more than the typical number of heads.
For instance, Llama3-405B13 one of the largest transformer
model available have 128 heads.

The second guideline saves memory by avoiding the
storage of many intermediate int32 accumulators for the
partial outputs, as described in [10]. Besides the memory
saving, output stationarity maximizes the exploitation of the
dot-product SIMD instructions, as demonstrated in [12].

Finally, our motivation to enforce the last guideline is
to prevent potential computational overhead induced by
the additional operations in the innermost loop to compute
storage locations.

4.6.2 Linear Layers
Figure 5 depicts two distinct implementations for the Linear
layers, used to project the input to the Q, K , and V matrices
and compute the output of the MHSA. In each tensor from
Figure 5, the rows and columns are indicated by the low-
ercase letter of the dimension and a subscript that denotes
the index of the row/column. For instance, the fifth row of

13. https://huggingface.co/meta-llama/Meta-Llama-3.1-405B

https://huggingface.co/meta-llama/Meta-Llama-3.1-405B
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I ∈ RS×E is noted as s4. For concatenated dimensions, the
innermost element is specified by the rightmost letter, i.e.
in WQ ∈ RE×HP , h2p3 is associated with the 2 ∗ P + 3-ith
column. Implementation 1 , is called Weight-Reuse Linear
(WRL) and is used to project the V tensor from X, while
we use the implementation 2 , named Input-Reuse Linear
(IRL), for Q and K. These two implementations have a
different loop ordering and data layout.

From a functional point of view, for a single head, one
can write the functions of the WRL and IRL kernels as
follows: {

φIRL(X,W
T ) = O

φWRL(X,W
T ) = OT (12)

Where φ is the function of the kernel, X , W , and O are the
Input, Weight, and Output tensors, respectively.

WRL kernel produces output data in the HPS order,
allowing the subsequential matrix multiplication to ingest
data sequentially without stridden access. In this way, we
remove the data-reshaping operator, reducing the overall
number of memory accesses. At every iteration of the P
loop, the whole input (S × E) matrix is multiplied by a
single weight sample (1×E). From outermost to innermost,
we order the loop as H → P → S → E. On the other hand,
the IRL requires the output layout to be HSP to allow the
following matrix multiplications to read data sequentially.
Therefore, the loop order in this case is H → S → P → E,
from outermost to innermost. Contrary to WRL, at every
iteration of IRL, the S loop, a single input sample (1×E), is
multiplied by a weight-head (E × P ).

The last Linear layer, which projects the output tensor of
the matrix multiplication, noted M , to the final output, uses
the S → E → H × P loop order. Since the H dimension is
a part of the reduction dimension, we parallelize this kernel
over S, the outermost loop.

Listing 2 reports an example of the pseudocode of
layer 1 with the RV32IMCXpulpV2 ISA and GAP9 target.
In the innermost loop, we exploit the 4-way dot-product
SIMD instruction (noted sdot4) to perform 4 MAC op-
erations in a single instruction. Once a final output is
generated, we apply the re-quantization function ψ from
Equation 10. Additionally, we perform loop unrolling in
the same fashion as [12]. We select the window size of
the loop unrolling to be 4 × 2, meaning that we perform
8 dot-products on 8 register-allocated accumulators at each
loop iteration. This optimization allows us to avoid Read-
After-Write (RAW) hazards and increase the register files
data reuse. Similarly to PULP-NN [12], incrementing the
number of produced output values in a single iteration, e.g.,
to 16, would cause an increase in the number of required
registers to 24 (16 for outputs, 4 for inputs, 4 for weights);
we observe that the compiler14 can not generate valid code,
in this case, keeping all accumulators allocated to registers:
some of them are spilled to the stack to make room for
operands, causing extra load/store operations and reducing
the overall performance. Conversely, reducing the number
of registers employed causes a reduction in the MAC/load
ratio and impairs the performance.

4.6.3 Matrix Multiplications
To optimize matrix multiplications, we optimally order the
loop executions and parallelize over the outermost dimen-
sions to improve performance. Figure 6 reports two different

14. A precompiled RISC-V toolchain for GAP IoT Ap-
plication Processor compiled with gcc-9.4.0 available at
https://github.com/GreenWaves-Technologies/gap-riscv-gnu-
toolchain
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Fig. 6: Dataflow of the matrix multiplication kernels de-
signed to work with multiple heads with different data
layouts.

implementations for the two GEMMs in the MHSA kernel.
The notation used to denote rows and columns of the
tensors is the same as Figure 5 and a detailed description
is provided in section 4.6.2.

The Matmul-Softmax 3 fuses the matrix multiplication
with the integer softmax; it uses the S → H → S loop order;
P is the dimension over which the reduction is performed.
Each iteration of the H loop produces a new row of A. We
apply the softmax to the produced row (e.g., the first one,
S0H0). The final Linear layer of the MHSA (see Figure 1)
performs the reduction over the concatenated dimension of
H and P . Hence, to avoid this concatenation operator, we
choose the output data layout to be SHS, interleaving the
heads with the sequence length. For instance, the first row
of Q (S × 1) is multiplied with the first head of K (P × S),
then the softmax is applied, resulting in the first row of A
(1 × S). Next, the process is repeated with the second head
of K , resulting in the second row of A. Once the first row of
Q has been matched with the whole K matrix, we reiterate
using the next row of Q.

Matmul 4 produces the tensor M , which is then fed
to the output projection Linear layer. Its implementation is
straightforward given the design of the previous layers 1
and 3 . The loop execution order is S → H → P , with P
as the innermost dimension. The reduction dimension is the
innermost S of the M1 matrix.

4.6.4 Fused-Weight Self-Attention Kernel
Figure 3 shows the computational graph of the FWSA, and
Sec. 4.2 describes its equation. Like the other kernels of our
library, the FWSA kernel uses SIMD and loop unrolling to
maximize hardware utilization. The FWSA kernel is broken
down into two parts, one responsible for the computation
of M2 and the other for A.

The kernel to compute M2 is derived from the Linear
IRL kernel 1 used for the Linear projection of Q and K
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Fig. 7: Overall architecture of TR-Former. The front end com-
prises 3 Tokenizer blocks, each containing Pointwise Convo-
lution, Depthwise Convolution, and Pooling, followed by a
Linear layer. Each of the six encoder blocks consists of layer
normalization layers (LN), a MHSA layer (MH), and Linear
layers (FF).

and described in detail in Sec. 4.6.2. Its loop ordering isH →
S → E to create output with the HSE layout. The second
part of the kernel perform the Matmul-Softmax on IT ∈
RE×S and M2 ∈ RH×S×E ; its loop ordering is identical to
3 (S → H → S). However, inputs of 3 are Q ∈ RH×S×P

and KT ∈ RH×P×S , but the input tensors of this kernel are
M2 ∈ RH×S×E and IT ∈ RE×S , hence the innermost loop
performing the dot-product is over E instead of P in 3 .

4.7 End-to-end Tiny Transformers Applications
To demonstrate the performances of our deployment
toolchain, we decided to use three real-world Tiny Trans-
former networks targeting very different applications, from
biosensing wearables use cases like arrhythmia classifica-
tion or seizure detection to more traditional hand gesture
recognition.

Two of the three transformers we are benchmarking in
this paper have been introduced in [37], demonstrating bet-
ter performance than the CNN counterpart. The other one,
TR-Former, has been first introduced in [9]. In the following
subsections, we summarize the rationale and describe the
architecture of TR-Former, EEGFormer, and ECGFormer.

Recent research has empirically shown that Transform-
ers can tolerate a quantization down to 4 bit [38]. How-
ever, quantizing to 4 bit would negatively impact execution
efficiency for all the targeted MCUs due to the lack of
hardware support for 4 bit SIMD. The only benefit would
be to divide by two the memory footprint compared to
8 bit quantization. Because of the performance impact and
potential accuracy degradation, we use a 8 bit quantiza-
tion scheme. It’s worthy to note that we deploy already-
quantized transformer models and do not explore other
quantization schemes further.

4.7.1 Hand Gestures Recognition: TR-Former
The first application is hand-gesture recognition based on
short-range radar. We use the Tiny Transformer proposed
in [9] and trained on the TinyRadar dataset. It demon-
strates the feasibility and the advantages of Transformers
on TinyML platforms. The dataset consists of over 10K
recordings of 11 hand gestures by 26 people made with a
short-range radar. The architecture is shown in Figure 7.
Using S = 5 processed input time samples as a sequence, a
5× 32 input is fed to the Transformer backend. The 6 layers
constituting the backend are identical to the ones of [39],
with S = 5, E = 32, P = 32, and H = 8. Finally, the output
of the encoder is fed to a dense layer, which is used as a
classifier, returning a prediction for each time step.

Fig. 8: Heatmap representing the throughput of our MHSA
kernel on GAP9 and STM32H7 for various input dimensions
of (S × E). The projection dimension P is equal to E and
the number of heads (H) is set to 8.

4.7.2 Seizure Detection: EEGFormer
The second Tiny Transformer targets a non-obtrusive and
non-stigmatizing Electroencephalogram (EEG) acquisition
setup to detect seizures. The encoder contains a MHSA layer
of the following dimensions: S = 81, E = 32, P = 32, and
H = 8. A detailed description of the architecture can be
found in [37].

4.7.3 Arrhythmia Classification: ECGFormer
The last task we target is arrhythmia classification; the
dataset used is MIT-BIH. ECGFormer’s [40] architecture is
also based on BioFormer and targets ultra-low power appli-
cations. ECGFormer features a single transformer encoder
block with MHSA dimensions of S = 66, E = 16, P = 2,
and H = 8. More details on the architecture can be found
in [40].

5 RESULTS AND DISCUSSION

In this section, we detail our evaluation setup, and we
benchmark our library against the SotA libraries, CMSIS-
NN for ARM platforms and PULP-NN [12], [31] for RISC-V
ones, to showcase the advantage of our method for various
input dimensions, number of cores, and hardware plat-
forms. Afterward, we demonstrate the usage of the library
with the deployment tools to deploy three end-to-end SotA
transformers for different edge applications. Different input
dimensions and architectural hyperparameters characterize
each application. To conclude, in Sec. 5.4, we provide an
ablation study of the impact of the FWSA and the DFT on
latency and memory footprint on these applications.

5.1 Evaluation Setup
We benchmarked and compared our library with SotA ker-
nels on the three platforms introduced in Sec. 2.2. On GAP9,
we use internal performance counters to measure the cycles
of both single attention blocks and the entire Transformers
execution. Furthermore, to simulate larger dimensions of
the GAP9 internal memories, we rely on the event-driven
simulator GVSoC from GreenWaves Technologies, which
enables cycle-accurate simulations. To measure the power
consumption, we use Nordic Semiconductor’s Power Pro-
filer Kit 2 (PPK2) 15 with a sampling frequency of 100 kHz.
We measure the power of the cluster and fabric controller
and the off-chip RAM and Flash. We consider a hot start,
meaning that we neglect the movements of weights from L3
to L2, executed a single time for consecutive inferences.

15. https://www.nordicsemi.com/Products/
Development-hardware/Power-Profiler-Kit-2

https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
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Fig. 9: Breakdown of the execution time of each MHSA layer
on GAP9 and STM32H7 for sequence lengths of 16 and 128.
The other dimensions are fixed to E = 64, P = 64, and
H = 8.

Fig. 10: Thoughtput comparison of attention block on GAP9
and STM32H7 for various embedding sizes and sequence
lengths. We use our MHSA and FWSA kernels and SotA
kernel libraries PULP-NN or CMSIS, depending on the
platform.

For STM32L4 and STM32H7, we use internal hardware
counters to measure the number of cycles, and we consider
constant power consumption measured under an identical
workload to estimate the energy. For STM32H7, we activate
the data and instruction caches and store the weights and
activation tensors in the Static Random-Access Memory
(SRAM) to maximize the performance. For the STM32L4
platform, as we do not have caches in this processor, we
store every constant tensor (input and weights) in the read-
only data section of the Flash.

5.2 Micro-benchmarking: MHSA and FWSA
5.2.1 Input Size Scaling
First, we show the performance of our library for various
dimensions of the input tensor X . To benchmark kernel
optimizations on GAP9 without considering data move-
ments, we increase the L1 memory size using GVSoC and
directly store both weights and activations at this level.
We report only STM32H7 performance for the ARM-based
platforms, given that the same conclusions can be drawn for
the STM32L4, which shares the same ISA and architecture.

Figure 8 shows the performance in terms of GMAC/s
when executing a MHSA with different input sizes. On
the x-axis, we increase E|P dimensions, while on the y-
axis, we increase the S dimension. The number of heads
has been kept constant at 8 to maximize parallelization
on GAP9 and at 1 for the STM32H7. In the figure, we
observe two significant trends for GAP9: firstly, a notable

Fig. 11: Parallelization of the MHSA on GAP9 for the three
SotA libraries. For PULP-NN, we indicate the breakdown
of sequential and parallel execution time. Fused-Weight and
Vanilla are completely parallelized. The dimensions of the
MHSA are (S = 64, E = 64, P = 64, and H = 8).

TABLE 2: Performances of end-to-end applications on GAP9
at maximum frequency and at the most energy-efficient
configuration. 370MHz/50mW 230MHz/20mW

Task MACs Cycles Lat. (ms) E. (µJ) Lat. (ms) E. (µJ)
EEG 7.35M 3.33M 9.42 460 13.76 310
ECG 0.97M 1.15M 2.85 120 4.28 90
TR 6.00M 1.92M 5.49 315 8.52 207

decrease in efficiency occurs with an increase in sequence
length; secondly, an improvement in efficiency when E and
P increase.

The first effect is due to the latency of the softmax
nonlinearity. We measure the complexity of the MHSA with
the number of MACs of the Linear and GEMM layers. Thus,
the softmax counts as zero MACs but strongly impacts the
overall latency. The latency of softmax rises proportionally
with the dimension of the vector on which it is computed, S.
The effect of the softmax on performance for large sequences
is quantified in Figure 9. For both platforms, the proportion
of time spent on the softmax drastically increases by a factor
of 3.3× when going from a sequence length of 16 to 128.

The efficiency growth with E and P is well visible
in Figure 8: up to 4.7× better between E|P = 16 and
E|P = 128 with S = 128. This is because P and E are
the dimensions over which the reduction is made in five
out of the six matrix multiplications of the MHSA. Since
we produce the output tensors sequentially, as explained in
subsection 4.6.1, increasing the reduction dimension leads to
better utilization of the SIMD units and less overhead due to
loop indexes and pointer computations. For the STM32H7
platform, when we increase E|P , we observe the same
behavior as for GAP9: the throughput is 1.72× higher for
E|P = 128 than for E|P = 16 with S = 64. We notice that
an increase of S leads to a reduction in performance only for
low E|P values. When E is higher, the softmax operation’s
latency on STM32H7 is negligible compared to the other
blocks, and, therefore, it does not negatively impact the
throughput.

Figure 10 reports E|P scaling with constant S, and S
scaling with constant E|P on GAP9 and STM32H7 for our
MHSA and FWSA kernels, comparing them with the two
SotA kernel baselines, i.e., PULP-NN and CMSIS-NN. It can
be noticed that our kernels (MHSA and FWSA) consistently
show higher throughput than PULP-NN and CMSIS-NN
on both platforms. On GAP9, for the various values of S
and E|P , the average throughput of the MHSA and FWSA
kernels is 4.04× and 4.53× higher than the PULP-NN
implementation. In STM32H7, compared to CMSIS-NN, the
throughput is 3.28× and 4.45× higher on average for the
MHSA and FWSA, respectively.
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TABLE 3: Ablation study of the effect of Fused-Weight
attention and Depth-First Tiling on the runtime and L2
memory peak for the Attention Stage of the three trans-
former studied.

Memory Peak Cycles
MHSA FWSA

MHSA FWSA
Tasks LWT DFT LWT
EEG 129.3 KB 97.1 KB 121.2 KB 1.07M 1.01M
ECG 39.0 KB 6.3 KB 38.5 KB 553K 569K
TR 34.2 KB 34.2 KB 24.9 KB 52K 34K

5.2.2 Parallelization Scaling on GAP9
Figure 11 details the performance of an attention block using
the MHSA, the FWSA, and the baseline PULP-NN kernels
on GAP9 with 1, 2, 4, and 8 cores. As can be noticed,
the speed-up of the PULP-NN baseline from 1 to 8 cores
is only 2.75× while our kernels reach 7.87× and 7.84×
speed-up for FWSA and MHSA, respectively. We identify
three main reasons for the better parallelization scaling:
(i) unlike PULP-NN, in both our kernels, we parallelize
over the outermost loop, requiring fewer synchronization
steps. (ii) Moreover, since the GEMM in the PULP-NN
implementation exploits individual Linear kernels, the cores
split the computation on the same dimension on which the
softmax has to be executed. In this way, all the cores must
be synchronized before the softmax, executed from CORE 0,
strongly impacting the parallelization. (iii) Similarly, our ap-
proach eliminates the data marshaling operations executed
sequentially from CORE 0 inside PULP-NN. These last two
problems can be observed in Figure 11, which shows the
sequential part of the kernel in light colors: while it is
constant for the PULP-NN baseline, we eliminate it in our
kernels.
5.3 End-to-end Transformers performance
Table 2 describes the latency and energy of the end-to-end
execution of the three Tiny Transformers introduced in Sec.
4.7. We here report the end-to-end performance on GAP9
only, given that we can exploit all the optimizations and
features of our kernels, i.e., the influence of parallelization,
FWSA, and DFT. A more detailed analysis of the perfor-
mance of the attention blocks of these three networks for
all hardware platforms is reported in Sec. 5.5. Here, we
report only the results obtained with the best combination
of optimizations to minimize latency. In detail, we use
the FWSA on EEGFormer and TR-Former to reduce the
latency, while we use MHSA for ECGFormer. Additionally,
we do not use the DFT as it only reduces the L2 memory
consumption, and GAP9 features a large enough L2 mem-
ory when executing a single transformer. Note that this is
given by the specific shapes of the networks of our use
cases, where the memory transfers are entirely hidden by
computation with double buffering. Therefore, reducing the
memory-transfer time does not improve the overall latency
of the network. Further, we show two different hardware
configurations: the first one minimizes the latency and runs
at 370 MHz with a power consumption of 50 mW. The sec-
ond configuration runs at 230 MHz, consuming 20 mW and
is the most energy-efficient point. For the three networks
(EEGFormer, ECGFormer, and TR-Former), we obtain a best
latency of 9.42 ms, 2.85 ms, and 5.49 ms. Additionally, all
three networks respect the real-time constraints imposed by
their respective task. The most efficient configuration leads
to an energy consumption of 310 µJ, 90 µJ, and 207 µJ for the
three networks.
5.4 Ablation Study: Optimizations Impact
In this subsection, we analyze the individual impact of the
proposed optimizations for the GAP9 platform. Figure 12
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Fig. 12: Breakdown of the impact of each optimization
of the proposed method onto the runtime of EEGFormer,
ECGFormer, and TR-Former.

provides a breakdown of the impact of each optimiza-
tion performed on the runtime for the three transformers
studied. Compared to the PULP-NN baseline, on GAP9,
our optimizations provide a total speedup of 5.79×, 5.8×,
and 2.79× on EEGFormer, ECGFormer, and TR-Former,
respectively. It is crucial to notice that the impact of the
optimizations considerably varies depending on the param-
eters and the structure of the network. For instance, the
parallelization of the softmax is the major contributor of
speedup for the networks whose sequence length S is larger
than the projection dimension P . On one hand, ECGFormer,
with S = 66 and P = 2 is an extreme example of this effect,
where only parallelizing the softmax brings a 4.2× speedup.
On the other hand, on TR-Former (S = 5 and P = 32), the
parallelization of the softmax only speeds up the execution
by 20 %. Concerning EEGFormer, after the parallelization
of the softmax, the improved parallelization of the kernels
is the greatest contributor to the speedup. The overhead
of data marshalling operators is negligible compared to
the PULP-NN baseline when the runtime is dominated by
sequential softmax and suboptimal parallelization scheme.
However, when compared to the runtime post optimization,
the overhead of data marshalling operators is non-negligible
and represents 9.6 %, 0.9 %, and 17 % of the runtime on
EEGFormer, ECGFormer, and TR-Former, respectively.

Table 3 provides an ablation study of the effect of the
FWSA and the DFT on the three attention stages of the net-
works detailed in the previous section in terms of memory
and latency saved. As said above, given that the DFT does
not impact the latency, we only report memory saving for
this optimization. However, note that in actual application
scenarios, such as object detection, multiple networks often
run on the same platform. Thus, reducing the memory
footprint of each single network is crucial. For the FWSA,
we measure both the impact on the memory peak and the
number of cycles.

Concerning the FWSA, its memory peak and the number
of operations can be computed offline with Eq. 7. Using this
equation, we find that the number of operations of FWSA
compared to the MHSA is reduced by 11 % and 23 % for
EEGFormer and TR-Former, respectively, while it increases

by 30 % for ECGFormer. We measure a reduction of the
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TABLE 4: Comparison of our kernel library with PULP-NN and CMSIS-NN onto three commercial MCUs. For each
application, we only report our fastest kernel.

Platform GAP9 STM32L4 STM32H7
Core(s) 9 RISC-V 1 Cortex-M4 1 Cortex-M7
Power (mW) / Frequency (MHz) 50mW / 370MHz 10mW / 80MHz 234mW / 480MHz
Kernels Ours PULP-NN [31] Ours CMSIS-NN [31] Ours CMSIS-NN [31]
EEGFormer MHSA (S=81 , E=32 , P=32, H=8)
Cycles 1.01M 5.85M 39.71M 60.17M 13.6M 36.47M
Time/Inference (ms) 2.84 15.96 496.37 752.12 28.33 75.98
Energy (µJ) 136 683 4963.8 7521.3 662.98 1777.87
MACs/cycle 5.94 1.03 0.15 0.10 0.44 0.16
Throughput (GMAC/s) 2.20 0.38 0.012 0.0079 0.21 0.079
Energy Efficiency (GMAC/s/W) 46.09 8.88 1.21 0.79 9.07 3.38
ECGFormer MHSA (S=66 , E=16 , P=2, H=8)
Cycles 553K 3.21M 3.28M 5.75M 1.77M 2.98M
Time/Inference (ms) 1.63 8.70 41 71.87 3.69 6.08
Energy (µJ) 62.1 316.0 410 718.75 86.28 142.34
MACs/cycle 0.37 0.06 0.05 0.03 0.10 0.06
Throughput (GMAC/s) 0.14 0.02 0.0043 0.0024 0.048 0.029
Energy Efficiency (GMAC/s/W) 3.63 0.66 0.43 0.24 2.04 1.24
TR-Former MHSA (S=5 , E=32 , P=32, H=8)
Cycles 34K 95K 1.18M 1.71M 357K 1.04M
Time/Inference (ms) 0.14 0.26 14.75 21.37 0.74 2.16
Energy (µJ) 4.92 11.40 147.5 213.73 17.4 50.70
MACs/cycle 5.19 1.85 0.17 0.12 0.58 0.20
Throughput (GMAC/s) 1.92 0.68 0.014 0.010 0.28 0.095
Energy Efficiency (GMAC/s/W) 58.51 15.60 1.4 0.97 11.89 4.08

Fig. 13: L2 memory allocation breakdown for each layer of
the MHSA for Classical and Depth-First tiling schemes. The
dimensions of the MHSA are from EEGFormer [37] (S = 81,
E = 32, P = 32, and H = 8). Peak L2 memory utilization
is indicated in red.
number of cycles of 6 % for EEGFormer and 35 % for TR-
Former. The difference is explained by the hyperparameters
of the transformers that influence the efficiency of the sin-
gle layers and by the softmax, whose operations are not
included in the number of operations of Eq. 7. Reciprocally,
for ECGFormer, the number of cycles increases less than
expected, by only 3 %.

This effect is caused by the modification of the reduction
dimension of the GEMM inside the ECGFormer attention
block, from P = 2 for the MHSA to E = 32 for the FWSA,
which strongly improves the usage of the SIMD and loop
unrolling.

Concerning the L2 memory peak, Table 3 shows that

the FWSA reduces the memory peak only for TR-Former.
Compared to MHSA, the FWSA does not store the Q and
K tensors to generate A, effectively skipping the Linear V
computation step. Therefore, the FWSA reduces the overall
memory peak of the network only when this step is the most
memory-demanding.

We evaluate the impact of the DFT both at the scale
of the Attention Stage and at the network scale. While
the DFT reduces the memory peak of the Attention Stage,
if the memory peak is present in another stage, such as
the Tokenizer or the Fully-Connected (FC) Stage, it may
not reduce the memory peak at the network scale. Thus,
we first evaluate the memory peak locally in Table 2 and
Figure 13, then we show the impact on the whole networks
in Figure 14.

Figure 13 details the L2 memory allocation at each step of
the sequential and depth-first tiling for the Attention Stage
of EEGFormer. The x-axis shows the individual computa-
tional steps of the MHSA while the y-axis represents the
L2 memory allocation. A computational step ends when the
tiled output reconstructs the complete output tensor. As one
can notice, DFT reduces the number of computational steps
by one. As explained in Sec. 4.5, this is because we tile the
two GEMMs of the MHSA together and do not materialize
the attention matrix A. Consequently, the memory peak
moves from 129 kB to 97 kB mainly due to skipping the
storage of the matrix A. As shown in Table 2, at the scale of
the Attention Stage, using DFT allows a substantial reduc-
tion of the memory peak of 24 % and 84 % for EEGFormer
and ECGFormer’s attention block, respectively. Indeed, our
DFT scheme aims at avoiding storing the attention matrix
A of dimension (H × S × S). Hence, transformer networks
with a large ratio between sequence length and projection
dimension will benefit more from it. Concerning TR-Former,
the memory peak in the Attention Stage happens in the
Linear V computation step; therefore, the DFT does not
reduce it.

Figure 14 shows the memory peak of the three stages
of the transformer, (Tokenizer, Attention, and FC), for EEG-
Former, ECGFormer, and TR-Former. The reduction of the
Attention Stage memory peak is represented by the hashed
bar. At the network scale, the DFT reduces the memory
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Fig. 14: Impact of the DFT on the memory peak at the
network scale. The green line denotes the memory peak
after applying DFT while the red one indicates the memory
peak before using DFT.
peak by 24 % for EEGFormer and 71 % for ECGFormer.
Interestingly, the effect of DFT at the network scale for each
transformer is different. On EEGFormer, the DFT reduces
the memory peak at the network scale, but the memory
peak is still caused by the attention stage. In the case of
ECGFormer, the network’s memory peak moves from the
attention stage to the FC stage when one apply the DFT.
Finally, for TR-Former, the DFT does not reduce the memory
peak of the attention stage and the tokenizer is completely
dominating the memory peak.

5.5 Comparison with State-of-the-art
We demonstrated in Sec. 5.2.1 and Sec. 5.2.2 the higher ef-
ficiency and scaling capabilities of our kernels compared to
the SotA. In this section, we compare them on the three real
transformer networks, characterized by layers dimensions
often unsuited to exploit kernel efficiency. For instance, the
value of the projection dimension P of ECGFormer is 2.
Hence, we cannot use SIMD for kernels where P is the most
internal loop, such as the first GEMM operation (see Fig. 1).

Table 4 showcases latency, energy, and different effi-
ciency metrics for the attention blocks of our three use cases
onto three hardware targets. We reported the reference SotA
kernel results for each target compared to our best ker-
nel alternative, i.e., FWSA for EEGFormer and TR-Former
and MHSA for ECGFormer. Specifically, to compare with
SotA PULP-NN and CMSIS-NN kernels libraries, we lever-
age their optimized linear layers kernels, add additional
loops, data marshaling operations, and I-BERT’s integer
softmax [41] to implement the attention layer. The average
improvement in terms of latency of our best kernels on
the three attention blocks is 4.80×, 1.57×, and 2.43× for
GAP9, STM32L4, and STM32H7, respectively. Interestingly,
the significant improvement compared to the SotA for the
three different hardware platforms is always associated with
a different attention block.

For GAP9, our kernels reach the top latency improve-
ment of 5.80× on EEGFormer where our kernels can max-
imally exploit the SIMD usage on the P dimension and
exploit the parallelization also on the S dimension. As dis-
cussed in Sec. 5.2.2, the speed-up of our library over PULP-
NN on GAP9 is primarily due to parallelizing the execution
of the softmax and getting rid of sequential data marshaling
operations such as transpositions. For the STM32 platforms,
we obtain significant latency gains of 1.73× and 2.91×
for STM32L4 and STM32H7 on the ECGFormer and TR-
Former attention block, respectively. Noteworthy, these two
networks further highlight the ability of our kernels also
to manage non-ideal MHSA parameters, e.g., P=2 for ECG-
Former or S=5 for TR-Former, which, on the other hand,
strongly impair the performance of SotA kernels. Compared
to CMSIS-NN, our kernels feature higher data reuse for

these single-core platforms thanks to loop reordering and
data marshaling operations fusion. Additionally, we mea-
sured the overhead of the re-quantization step performed
after each layer and report an average overhead of 7.5% for
three networks studied, this results confirm the benefits of
executing the network completely in 8 bit integers.

6 CONCLUSION AND FUTURE WORK
In this work, we proposed an end-to-end flow to enable
efficient deployment of small Transformer models onto
commercial MCUs. Our kernel library, tailored for MHSA,
together with our optimized schedule and tiling strategy,
allows us to speed up the execution of the attention block by
a factor of 2.94× on average on RISC-V and ARM platforms.
Furthermore, we demonstrate the efficiency of our flow by
deploying three Tiny Transformers onto the GAP9 MCU,
reaching an average energy consumption and latency of
202 µJ and 5.92 ms, respectively. Our work is open-source at
https://github.com/pulp-platform/pulp-transformer. Fu-
ture research direction would extend our framework to
support emerging transformers such as encoder-decoder
and decoder-only.
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