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Toward Attention-based TinyML.:
A Heterogeneous Accelerated Architecture and
Automated Deployment Flow

Philip Wiese

Scherer
Jung
Luca Benini

Abstract—One of the challenges for Tiny Machine Learning
(tinyML) is keeping up with the evolution of Machine Learning
models from Convolutional Neural Networks to Transformers.
We address this by leveraging a heterogeneous architectural
template coupling RISC-V processors with hardwired accelerators
supported by an automated deployment flow. We demonstrate
Attention-based models in a tinyML power envelope with an octa-
core cluster coupled with an accelerator for quantized Attention.
Our deployment flow enables end-to-end 8-bit Transformer
inference, achieving leading-edge energy efficiency and throughput
of 2960 GOp/J and 154 GOp/s (0.65 V, 22 nm FD-SOI technology).

Index Terms—Neural
Transformers, Accelerators

Networks, TinyML, Deployment,

I. INTRODUCTION

In recent years, Tiny Machine Learning (tinyML) has
attracted much attention, bringing compute-intensive Artificial
Intelligence (AI) models towards deployment on Microcon-
troller (MCU) class devices with power envelopes of a few
milliwatts. Embedding Deep Neural Networks (DNNs) in small,
low-power devices is highly relevant for numerous applications
ranging from multi-modal sensing and keyword spotting to
anomaly detection and smart wake-up [1]. Compared with
cloud-only inference, tinyML offers lower network utilization,
higher privacy, and more predictable latency. However,
extreme-edge devices typically run with a tightly constrained
memory budget, without fully-fledged operating systems and
advanced hardware features such as Memory-Management
Units (MMUs) and fully automated cache hierarchies.

One of the key research challenges is whether it is possible
to build systems that respect the tight hardware and software
cost and power constraints of tinyML systems while supporting
the rapid advancement of models. A key consideration for
addressing this research question is the trade-off between
specialization and generality on the computer architecture
level. Although numerous model-specific accelerators have
been proposed in recent years [1], designing System-on-Chips
(SoCs) that can integrate these accelerators while remaining
adaptable to evolving Al models remains an open challenge,
particularly under tight memory constraints. Moreover,
automatically and efficiently deploying rapidly evolving DNN
models, especially the increasingly popular Attention-based
networks, on accelerator-enhanced MCUs remains a significant
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challenge. Additionally, fast product cycles make it difficult to
accommodate the time and cost associated with hand-tuning
each model for deployment.

In this paper, we address what we believe to be a fundamental
question for the future of tinyML: How can we move from clas-
sical perceptive Al and Convolutional Neural Network (CNN)
models toward leading Attention-based Transformer models?
Unlike in CNNs, complex dataflow operations like Softmax
in Transformers can lead to high latency despite their low
arithmetic complexity. While General Matrix Multiplication
(GEMM) accelerators handle most computations in Transformer
networks efficiently, the remaining operations can become a bot-
tleneck. To address this challenge, we leverage a flexible MCU-
class architectural template for efficiently integrating specialized
hardware accelerators with multi-core clusters over a low-
latency Tightly-Coupled Data Memory (TCDM) interconnect.
At its core, we use a RISC-V (RV32) compute cluster based
on the latency-tolerant Snitch core [2]. To the best of our
knowledge, this is the first heterogeneous Snitch-based cluster
integrating Hardware Processing Engines (HWPEs)', advancing
beyond previous configurations which focused on instruction ex-
tension units tightly coupled to the pipeline. We introduce an ex-
tensible deployment flow based on a bottom-up DNN compiler,
Deeploy, that enables fast and automated End-to-End (E2E) de-
ployment. Using this template, we integrate an extended version
of the Integer Transformer Accelerator (ITA) [3] and prove our
hardware-software co-design flow on Attention-based models.
As a concrete use case, we showcase the E2E deployment
of MobileBERT [4], DINOv2 [5], and Whisper’s encoder [6]
within a power envelope of 52.0 mW (GlobalFoundries 22 nm
fully-depleted silicon-on-insulator technology at 0.65 V).

The contributions of this paper are as follows:

+ We propose a novel, flexible hardware-software architec-
ture template designed to meet the dataflow and compute
requirements of emerging Attention-based Al workloads.
Our hardware architecture allows the co-integration of a
multi-core latency-tolerant Snitch compute cluster with
complex hardware accelerators over a high-bandwidth,
low-latency TCDM interconnect. At the same time, our co-
optimized software template facilitates efficient E2E work-

Uhttps://hwpe-doc.readthedocs.io/en/latest/index.html
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load mapping. We demonstrate that our hardware-software
template enables starvation-free contention for resources in
the shared memory with its tunable interconnect bandwidth
and the Direct Memory Access (DMA) engine. As a result,
we achieve accelerator utilization of up to 85.1 %.

o As a concrete use-case, we integrate ITA, a Transformer
accelerator tuned for the specific dataflow of the
Attention calculation, into our hardware-software template
and extend Deeploy? with an accelerator model to
enable automated mapping, scheduling, tiling, and code
generation. We evaluate the performance through post-
layout power analysis, achieving a peak performance of
741 GOp/s and energy efficiency of up to 6.35 TOp/J. The
integration incurs only a 4.7 p.p. decrease in utilization
compared to the standalone accelerator, demonstrating the
low overhead of our template.

o We showcase the capability of our hardware-software
template to support a range of Attention-based tinyML
models, including MobileBERT, DINOv2, and Whisper’s
encoder. Our flow unlocks the potential for collaborative
execution between the cluster and the hardware accelerator,
which optimizes performance and energy efficiency and
prevents resource starvation. By enabling this collaborative
execution, we significantly enhance E2E inference energy
efficiency by 102x compared to inference without
the accelerator, achieving an E2E throughput of up to
154 GOp/s and energy efficiency of 2.96 TOp/J.

II. THE CHALLENGES OF TINYML ACCELERATION

A. HW Integration Challenges for Attention-based Networks

Over the years, several approaches to integrating hardware
accelerators into SoCs were proposed, varying in their degree
of coupling to the SoC’s processor.

A well-developed approach relies on closely coupling the
accelerator with the processor cores through instruction-set
extensions [7]. While this approach enables ample flexibility in
workload mapping, it is inadequate for Attention accelerators
that require large bandwidth. In fact, instruction extensions are
limited by the core’s load/store interface, the bandwidth and
size of the register file, and instruction fetch bandwidth.

On the other end of the spectrum is the loosely coupled
integration of accelerators with internal private memory [8].
While this approach eliminates memory access contention dur-
ing inference, it requires a large in-accelerator and fully private
integrated memory to store the intermediate tensors generated
for Attention. This causes large area requirements, which
increase the cost of the accelerator. It also hinders collaboration
between different engines, as data must be moved explicitly
between memory hierarchy levels with a significant energy
overhead. An interesting middle ground between these two
extremes is to couple the accelerator and cores through shared
memory [8]. Unlike private memory solutions, this approach
facilitates data exchange between the accelerators and cores.
This is a key feature for Attention-based networks since it allows
cores to perform auxiliary operations easily without memory

Zhttps://github.com/pulp-platform/Deeploy

copy overheads. These operations vary significantly across
different model variants, often preventing hardware acceleration.

In this work, we propose a novel architectural template,
integrating a cluster of RISC-V cores with an accelerator over
shared L1 memory. We show that our proposed design enables
close interaction between the cluster cores and the accelerator,
supporting emerging and evolving variations of non-linearities
and normalization layers found in Attention-based models
while exploiting the accelerator for supported operators.

B. TinyML Software Deployment Challenges

Deploying Transformers at the extreme edge on devices with
hardware accelerators comes with many difficulties as they
require significant software effort to unlock the performance
and efficiency of the accelerators. First and foremost, tinyML
devices have highly constrained on-chip memory, in the order
of MiB, and no operating systems. Hence, one must tfile
layers to process tensors from the lowest level of the memory
hierarchy. Moreover, these systems often feature software-
managed scratchpad memory hierarchies. Thus, explicit and
uncached DMA transfers are required to transfer tiled tensors.
Furthermore, static memory allocation is crucial to guarantee
conflict-free memory transfers.

While several code generation tools for CNNs have been
demonstrated [1], most do not generalize to Attention-based
models. While CNNs use few branches in their dataflow graphs
and therefore do not require sophisticated memory allocation
strategies, the highly parallel and branching structure of
Attention-based networks requires novel lifetime analysis and
tiling strategies to effectively tile and schedule their execution.

III. ARCHITECTURE TEMPLATE

In this Section, we describe a flexible architecture template,
shown in Figure 1, that combines multiple Digital Signal
Processing (DSP) optimized RISC-V cores into a compute
cluster and facilitates the integration of newly developed
hardware accelerators using the HWPE infrastructure and
automated deployment. Compared to a single-core system,
this enables efficient operation through higher performance
and parallelism and enhances adaptability and scalability. The
HWPE interface developed for the Parallel Ultra Low Power
(PULP) platform facilitates the integration of accelerators with
multi-core compute cluster into a shared memory cluster. Our
template integrates the area-efficient Snitch cores, occupying
22kGE each [2]. Snitch is a single-stage, in-order core
implementing integer base RV32I, RV32M subset for integer
multiply/divide instructions, and standard atomic instruction
extension RV32A. Unlike CV32E40P cores used in other PULP-
derived clusters®, Snitch cores are significantly smaller (-56%)
and provide a decoupled memory interface, allowing latency-
tolerant memory access by pipelining multiple loads and stores.

We couple the cores and accelerators through the shared
interleaved L1 TCDM to facilitate energy-efficient data
exchange between the compute elements. This is especially
crucial for rapidly evolving Attention-based networks as
various auxiliary operations need to be computed on the cluster

3https://docs.openhwgroup.org/projects/cv32e40p-user-manual
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Fig. 1. Overview of the Hardware-Software Architecture Template. The flexible template allows modular integration of accelerators into an SoC and deployment
of different workloads with Deeploy. The workflow is as follows: (1] Integrate an accelerator as an HWPE engine, a configurable interface designed for efficient
integration of memory-coupled accelerators, enabling streamlined data transfer and control between the accelerator and shared memory. @ Ensure sufficient
bandwidth for the accelerator by tuning the wide AXI interconnect, allowing high-bandwidth access to L2 memory via the DMA. (3] Configure the operator
mapping in Deepooy and provide the workload as an ONNX graph. @ Define the tiling constraints according to the accelerator buffer and datapath sizes and
provide minimal kernel templates to control the accelerator via a register interface. O Use Deeploy to perform automated graph optimization and scheduling,
to co-optimize operator tiling and static memory allocation, and to generate C code. This code orchestrates memory transfers using the DMA and coordinates

execution on the compute cores and the accelerator.

while the majority of the computation is conducted on the
accelerator. To reduce banking conflicts and provide the high
bandwidth Attention accelerators need, we use 32 banks with
4KiB each, resulting in a total capacity of 128 KiB. The
multi-banked memory makes it unnecessary to attach additional
private memory to the accelerator, as data can be accessed
by both the accelerator and the cluster’s cores simultaneously.
We use a 64-bit TCDM interconnect, which is implemented
as a combinatorial crossbar, resulting in single-cycle latency in
the absence of conflicts with 256 B/cycle bandwidth towards
the L1. Each core has one master port with decoupled request
and response path connected to the TCDM interconnect, and
the HWPE subsystem features a parametric number Npwpg of
master ports to allow the integration accelerators.

The cluster includes two parametrizable AXI interconnects:
a wide crossbar with a Dax;w bit data width and a narrow
crossbar with a Daxyn bit data width. The wide AXI
interconnect is used to load instructions into the shared 8 KiB
instruction cache and to transfer data from and to the SoC
level memory system in conjunction with the DMA. The
narrow AXI interconnect is intended to connect to the SoC
interconnect to attach peripherals and communicate with a host
system. Moreover, one Snitch core is coupled with a DMA to
manage data movements within the cluster, facilitating double
buffering to maintain high accelerator utilization.

A. HWPE Subsystem

The HWPE template provides three modules: a controller,
one or multiple streamers, and the engine. The controller is the
interface between the cores in the cluster and the accelerator.
It has a Finite State Machine (FSM) specific to the engine to
govern the operation of the accelerator and a memory-mapped

register file to keep parameters for the accelerator. The
register file can hold a sequence of multiple fasks that can be
programmed by any core in the cluster through the controller
interface over the narrow AXI interconnect. A task represents
a set of configuration values used by the accelerator. The
streamers act as a special-purpose low-cost DMA to load and
store data from the shared TCDM. Finally, the engine contains
a hardware accelerator that accepts the streamer’s data and the
controller’s configuration.

HWPE allows connecting accelerators seamlessly to PULP
clusters and makes programming straightforward over the
peripheral interface accessible via AXI. Three steps are
necessary to integrate an accelerator into the HWPE subsystem.
First, the required number of streamers must be instantiated
in accordance with the accelerator’s data ports. Next, the
streamers must be connected with the accelerator’s data ports
and the TCDM interconnect. Finally, an FSM controlling the
accelerator and streamers must be implemented.

HWPE provides two types of streamers: one for input, source
streamers and one for output, sink streamers. The streamers uti-
lize a simple valid-ready handshake protocol on the accelerator
side, ensuring compatibility with most accelerators. Addition-
ally, HWPE includes first-in, first-out buffers (FIFOs) on both
the TCDM and accelerator sides, which can be instantiated and
sized according to the specific needs of the accelerator and clus-
ter. We time-multiplex multiple streamers to a multi-port inter-
face with Npgwpg ports and connect to the TCDM interconnect.

The final step of integrating an accelerator into the HWPE
involves designing an FSM to control both the accelerator
and the streamers. We use a controller that supports a
programmable multi-context register file, allowing the cores
to offload the next task while the accelerator runs, thereby



hiding configuration latency. The FSM designed around the
control slave is straightforward: it reads the configuration for
the accelerator from the register file, transfers it to the engine,
and configures the streamers accordingly.

B. Neural Network Deployment Framework

To execute Transformer models on the proposed architectural
template, we integrate our hardware template in the Deeploy
compiler [9], which maps neural networks to user-defined,
platform-specific C code kernel templates. Deeploy is a DNN
compiler that offers architecture-agnostic tinyML optimizations
like double-buffering, memory-aware operator tiling, DMA-
aware code generation, and fully static offline memory layout
generation. These features allow us to accommodate the custom
tiling required for operators exclusively present in Transformer
networks.

In this way, Deeploy generates code to offload supported
DNN operators onto accelerators while providing highly
optimized fallback kernel implementations for unsupported
operators on the cluster. This bottom-up approach guarantees
that emerging DNNs operators can be mapped to our general-
purpose cores while fully leveraging integrated accelerators
for their supported operators. This is especially useful when
considering the numerous variants of Attention-based models,
which contain the same Attention mechanism but have slightly
different activation or normalization functions.

To integrate a new HWPE accelerator, Deeploy only requires
a minimal accelerator model; first, the accelerator model must
specify the geometrical tiling constraints for operators it can
run. Second, the model must provide minimal arithmetic
templates for running each supported operator. All other
necessary performance optimizations, including memory-aware
operator tiling, static memory layout generation, double-
buffering code generation, and DMA-aware memory transfers,
are inserted by Deeploy automatically.

By integrating a model of the hardware template with
Deeploy, we propose a low-overhead, adaptable hardware-
software architecture template that minimizes the development
effort for both hardware and software integration while meeting
the strict requirements of extreme edge Attention-based model
deployment.

IV. IMPLEMENTATION

As a concrete implementation of our template, we show
a platform that couples a cluster with 8+1 RV32IMA Snitch
cores with the Integer Transformer Accelerator (ITA) [3]. The
ITA accelerator enables the acceleration of 8-bit GEMM and
the more complex multi-head Attention (MHA) present in
Transformer networks. ITA used in this work is an extended
version of the accelerator presented in [3], featuring additional
functionality through the inclusion of a partial sum buffer and
an activation unit supporting ReLU and GeLU. Furthermore, it
is wrapped with HWPE components.

A. Integer Transformer Accelerator (ITA)

ITA is an accelerator for encoder-only Transformer models
and performs efficient inference in 8-bit arithmetic, using an

integer-only Softmax approximation. Figure 2 shows the archi-
tecture of ITA. At the core of ITA, there are N dot product units
that compute the dot product between two vectors of length M.
ITA integrates a Softmax approximation, referred to as ITA-
Max, that operates on integer values in a streaming mode. This
enables computing Softmax on the fly. Softmax is defined as

ezifmax(w)
SOftmaX(m)i = W (1)
j=
and normalizes the input matrix row-wise, transforming them
into probabilities. This is used in Transformers to calculate the
Attention A X'V with

A xV=Softmax(QxK") xV 2)

The ITAMax unit has three stages of operation as illustrated in
Figure 2. The first Denominator Accumulation (DA) stage oper-
ates on the 8-bit quantized dot product results from the Q x K™
matrix multiplication. It determines the maximum of the partial
row results and accumulates the denominator of the Softmax
with the current maximum. The current maximum and the accu-
mulated denominator are stored in buffers. At every iteration, if
the local row maximum differs from the previous one, the partial
sum is renormalized, and the global maximum is updated.

Once ITAMax processes the entire row and accumulates the
denominator with the global maximum of the row, it inverts the
denominator in the Denominator Inversion (DI) stage and stores
it internally. The Element Normalization (EN) stage only starts
when the post-Softmax activations are required as input to ITA
in the next matrix multiplication (A x V). This stage normalizes
the values from the Q x K™ calculation on the fly to produce A.

With this unique dataflow, ITAMax performs Softmax
without additional latency and data fetching from the L1
memory with a low area and power overhead. Since ITA
integrates a datapath for single-head Attention, MHA must be
calculated sequentially head-by-head. Therefore, ITA operates
on a single head at a time and computes the partial output
projection for each head. The partial outputs of each head need
to be summed by the external cluster.

Additionally, ITA integrates activation units that fully
operate in integer arithmetic. The activation unit has three
modes of operation: Identity, ReLU, and GeLU, which can be
selected for each computation via the configuration interface
of HWPE. For the integer approximation of GeLU, we use
the i-GeLU [10] performed in D-bit and quantized the results
to 8-bit. This allows using ITA as a GEMM accelerator with
activation functions accelerated in hardware.

B. Accelerator Integration

For ITA, we use N =16 dot product units with a D =26-bit
accumulator to support matrix dimensions up to 512 and a
vector length of M = 64. We choose this configuration to
exploit the memory-side bandwidth the TCDM offers. As ITA
features three input ports (input, weight, bias) and one output
port, three input streamers and one output streamer are required.

As the four streamers are multiplexed in time, ITA requires
128 B/cycles of maximum bandwidth to fetch two input vectors
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Fig. 2. Architecture of the Integer Transformer Accelerator (ITA). ITA combines an output stationary dataflow with a local weight stationary dataflow and

streaming Softmax operation to achieve high data reuse and minimal memory interaction. (1] Weights are stored in a double-buffered weight memory to fetch the

next set of weights while performing computation with the current set of weights. (2] Inputs are fetched via streamers and passed through the ITAMax module

during A X'V step. © While Qx KT is computed, the ITAMax module operates on the outputs to accumulate the denominator. ITAMax operates in three stages:

XD Find the local maximum and compare it with the previous maximum stored in the buffer, accumulate the denominator of the Softmax using the current

maximum and normalize the previous sum if the maximum is changed. €I After the accumulation, the denominator is inverted and saved to the same buffer.
Inputs for A X'V step are normalized using the saved maximum and inverted denominator.

per cycle; therefore, we use 16 master ports on the TCDM
interconnect for the HWPE subsystem. To produce one output
tile, ITA takes at least 256 cycles and the DMA needs to fetch at
most two 64 x 64 8-bit inputs/weights, 64 24-bit bias values and
write back 64 x 64 8-bit outputs from and to the L2 memory.
This results in a worst-case average bandwidth of 48.75 B/cycles
towards the SoC memory. Consequently, we use a 512-bit wide
data AXI interconnect to provide enough bandwidth for the
instructions cache and ITA. Moreover, we use 64-bit for the
narrow AXI interconnect to enable the integration of the cluster
into a 64-bit host system. Finally, in ITA, we use a dual-context
register file that can be programmed via the narrow 64-bit AXI
interconnect. As the HWPE Controller uses the peripheral inter-
face, we place an adapter between the AXI bus and the module.

C. Physical Implementation

To evaluate our architecture in a tinyML-friendly technology
node, we implemented the complete Snitch cluster with an
extended version of the ITA accelerator in GlobalFoundries’
22nmFDX fully-depleted silicon-on-insulator  (FD-SOI)
technology, targeting an operating frequency of 500 MHz under
typical conditions (TT, 0.8V, 25°C), and 425MHz in the
energy-efficient core voltage configuration (TT, 0.65V, 25°C).
The extended design includes a partial sum buffer, an activation
unit, and the HWPE components. The complete cluster requires
0.991 mm? (5 MGE) with the HWPE subsystem occupying
39.3% of the total area. The longest paths of the design are
located between the input to the output of the dot product units
in the HWPE, within the DMA, and the instruction cache to the
data mover core with gate delays of 12, 11, and 11, respectively.

D. Neural Network Deployment

To extend Deeploy with our architecture template, including
the cluster and ITA, the mapping process of ITA-compatible
operators is implemented in a multi-step approach. Deeploy
starts by matching an MHA pattern and fuses it to form a
monolithic node in the graph. This node is then split along the
head dimension to map the MHA operator head-by-head on
ITA. Finally, a head accumulation layer is inserted at the end,
which runs on the cluster cores.

As described in Section III-B, we extend Deeploy with a
model for ITA to support HW-specific optimizations. To solve
the tiling problem, we specify geometrical tiling constraints
to ensure all inputs and outputs have shapes compatible with
ITA’s requirements. In the kernel, we preprogram the next tile
using the dual-context register file and configure ITA to load
the weights for the next step in the current one. This enables us
to achieve a fully double-buffered dataflow without starvation.

To the best of our knowledge, this is the first deployment
flow that supports the E2E acceleration of Attention-based
Transformers at the edge.

V. RESULTS

To measure the power consumption and latency of deployed
workloads on our design, we perform cycle-accurate post-layout
simulation of the entire cluster using Siemens QuestaSim for
latency and throughput evaluation at 425 MHz and post-layout
gate-level simulations for power measurement under typical
conditions (TT, 0.65V, 25 °C). We choose the 0.65V operating
corner to maximize energy efficiency. Our simulation setup
accounts for latency and energy costs of memory transfers
between the L1 and the system’s background memory via
the DMA, programming of the accelerator and cores, and



TABLE I
END-TO-END NETWORK PERFORMANCE METRICS AND COMPARISON TO DNNS ON COMMERCIAL TINYML DEVICES

Ours Commercial Devices
Metric Unit Multi-Core  Multi-Core + ITA  Syntiant NDP120* [11]  AlifSemi E3*  GreenWaves GAP9™* [11], [12]
Throughput [GOp/s] 0.74 56-154 2-7 2-45 10-60
Energy Efficiency [GOp/J] 28.9 1600-2960 280-400 50-560 150-650
Power [mW] 26.0 35.2-52.0 - - -

MobileBERT? DINOV2-Small® Whisper-Tiny Encoder®

Metric Unit Multi-Core  Multi-Core + ITA  Multi-Core = Multi-Core + ITA  Multi-Core =~ Multi-Core + ITA
Energy per Inference [mJ/Inf] 164 1.60 407 7.31 340 5.55
Inference per Second  [Inf/s] 0.16 32.5 0.06 4.83 0.08 6.52

# MobileNetV1(x0.25) with 28 MOp

§ MicroNet Medium, MobileNetV2 1.0, Yolo-Fastest v4, Tiny Wav2letter Pruned, https://alifsemi.com/

* TinyissimoYOLO

2 4.74 GOp per inference with sequence length S =128
b 11.7GOp per inference with sequence length S =241
€ 9.74 GOp per inference with sequence length S =512

execution of the operators, both on the cluster and ITA. In the
following sections, we profile representative microbenchmarks
and the execution of three different Transformer networks.
Finally, we compare our results with state-of-the-art MCU-class
heterogeneous SoCs for tinyML.

A. Microbenchmarking Result

We analyze the performance and efficiency of GEMM and
the more complex Attention operations and compare the multi-
core cluster without any accelerator with the ITA integrated
cluster. Our heterogenous cluster achieves a throughput of
741 GOp/s and energy efficiency of 5.42TOp/] in GEMM
computation, corresponding to 986x and 188x improvement
respectively compared to the cluster without ITA with a peak
accelerator utilization of 85.1 %. Running single-head Attention
operation offers an even higher performance improvement of
more than 3 orders of magnitudes and a 901x better energy
efficiency resulting in 663 GOp/s and 6.35TOp/J with 74.9 %
accelerator utilization. The standalone accelerator achieves
a slightly higher utilization of 79.6 %, with the integration
into the template incurring only a small decrease of 4.7 p.p..
This demonstrates that the template has minimal impact on
the accelerator utilization. This trend can be attributed to the
efficient Softmax implementation in ITA, which does not add
latency and thus avoids bottlenecking the overall efficiency.

B. End-To-End Deployment Results

To benchmark the execution of a complete model, we
quantize MobileBERT*, DINOv2’ and Whispelr’s6 encoder
using the QuantLib’ library to perform 8-bit full integer
inference. Due to the extensive simulation time, we measure
each layer separately and sum their execution times to
extrapolate to the entire network. Table I display the E2E

46 =128, E =128, P =64, H =4, N = 24, dys = 512 (Sequence
Length, Embedding Size, Projection Dimension, Attention Heads, Layers, Feed-
Forward)

56=241, E=384, P=64, H=6, N=12, dyy=1536

65=512, E=384, P=64, H=6, N=4, dy; =1536

7https://github.com/pulp-platform/quantlib

results for two scenarios: multi-core cluster without the
accelerator and multi-core cluster with the ITA accelerator.

In the scenario with a multi-core cluster, using ITA improves
throughput up to 208 at 102x higher energy efficiency.

C. Comparison with the State-of-the-art

To compare our work with the state-of-the-art in tinyML
computer architectures, we present the throughput and energy
efficiency for various devices in Table 1. Due to the lack of E2E
benchmarks for Transformers on similar devices, we compare
against CNNSs instead. It is important to note that Transformers
pose a greater challenge for accelerators due to their complex
dataflow and computational demands.

The Syntiant NDP1208 MCU implemented in UMC 40 nm
ULP technology uses the Syntiant Core 2 tensor processor
coupled with an Arm Cortex MO processor and a HiFi-3 DSP. It
achieves up to 7 GOp/s at 400 GOp/J in MLPerf Tiny Inference
on MobileNetV1 [11]. We also compare with the Ensemble E3
AI MCU from Alif Semiconductor’ which couples Ethos-U55
Machine Learning (ML) processors with ARM Cortex M55 pro-
cessors. Depending on the network it achieves up to 45 GOp/s
at 560 GOp/J. Compared to both devices, we achieve at least
3.4x more throughput with a 5.3 x higher energy efficiency.

A comparison with a very similar architecture is possible
against GreenWaves GAP9 MCU containing the NE16 neural
engine. The SoC implemented in 22 nm technology contains a
fabric controller and a compute cluster with nine RISC-V cores
and 128 kB shared L1 memory. In the MLPerf Tiny Inference
benchmark on MobileNetV1 it achieves 25 GOp/s at 480 GOp/J
while Moosmann et al. [12] report better numbers with up to
60 GOp/s at 650 GOp/J for a different network. In comparison,
we achieve 2.6x more throughput and 4.6x higher energy
efficiency even though we deploy a more complex network.

VI. CONCLUSION
We presented a flexible hardware-software architecture
template, enabling collaborative accelerated execution of

Shttps://www.syntiant.com/hardware
“https://alifsemi.com/
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https://github.com/pulp-platform/quantlib
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https://alifsemi.com/faster-ai-mcu-inferencing-low-power-consumption/

emerging Attention-based workloads that can be easily extended
for the demands of future networks. By integrating our hardware
template in Deeploy, we demonstrate a flexible deployment
flow capable of efficiently mapping both accelerator-specific
and generic DNN operators on our target architecture. We
demonstrate the first E2E deployment of multiple Transformer-
based encoder models on a parallel heterogeneous accelerator-
enhanced MCU. Our implementation, which leverages ITA for
computing the MHA and Linear layers and the cluster cores
for auxiliary operators, achieves state-of-the-art throughput of
154 GOp/s with an energy efficiency of 2.96 TOp/J. This enables
inference rates of 32.51Inf/s at 1.60 mJ/Inf for MobileBERT,
4.83 Inf/s at 7.31 mJ/Inf for DINOv2-Small, and 6.52 Inf/s at
5.55 mJ/Inf for encoder block of Whisper.
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