
23 February 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Kotlin Assimilating the Android Ecosystem: An Appraisal of Diffusion and Impact on Maintainability / Coppola, Riccardo;
Fulcini, Tommaso; Ardito, Luca; Torchiano, Marco. - In: THE JOURNAL OF SYSTEMS AND SOFTWARE. - ISSN 0164-
1212. - ELETTRONICO. - 222:(2025). [10.1016/j.jss.2025.112346]

Original

Kotlin Assimilating the Android Ecosystem: An Appraisal of Diffusion and Impact on Maintainability

Publisher:

Published
DOI:10.1016/j.jss.2025.112346

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2996552 since: 2025-01-22T10:31:24Z

Elsevier

The Journal of Systems and Software 222 (2025) 112346

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Kotlin assimilating the Android ecosystem: An appraisal of diffusion and
impact on maintainability✩

Riccardo Coppola ∗, Tommaso Fulcini, Luca Ardito , Marco Torchiano
Department of Control and Computer Engineering, Polytechnic University of Turin, Italy

A R T I C L E I N F O

Keywords:
Software maintainability
Android development
Kotlin

A B S T R A C T

Kotlin was introduced in 2011 as an alternative to the Java programming language, promising to address
many of its predecessor’s limitations and positioning itself as a better option for application maintainability.
In 2017, Kotlin became a first-class language for Android application development, complete with extensive
tool support.

This paper aims to empirically assess the diffusion of Kotlin in developing Android applications and to
investigate the impact of Kotlin adoption on application maintainability.

We mined 2708 open-source Android applications from F-Droid, focusing on the extent of Kotlin code
presence, their popularity, and maintainability. This analysis adopted a set of six code metrics proxies.

The proportion of applications developed with Kotlin, either in conjunction with Java or exclusively, has
continuously increased over the past five years. Currently, Kotlin is used in approximately 40% of the projects.
The adoption of Kotlin in application development appears to be linked to greater popularity among end-users
and developers when compared to the applications written in Java. Notably, the exclusive use of Kotlin in
projects significantly enhances all the considered code maintainability metrics.

We conclude that Kotlin is rapidly gaining ground in the Android ecosystem. This trend is likely due to
Kotlin’s fulfilment of its promise as a superior alternative to Java, particularly in terms of maintainability.
1. Introduction

The Kotlin language was introduced in 2011, primarily as a di-
rect alternative to Java, with which it can seamlessly coexist. No-
tably, Kotlin has been associated with Android development since
Google made it a first-class language for writing applications in this
domain (Akhin and Belyaev, 2021).

Kotlin was developed to address several challenges inherent to the
Java language: handling null values, which can lead to NullPointerEx-
ceptions (Bose et al., 2018); enhancing maintainability by making code
easier to manage throughout an application’s evolution (Andrä et al.,
2020); improving understandability and conciseness, thereby directly
impacting developers’ productivity by making code more compact and
easier to comprehend (Hellbrück, 2019); and avoiding common Java
coding pitfalls, such as mandatory casts, extensive use of argument lists,
and data classes (Bose et al., 2018).

The novelty of the language, coupled with its characteristics men-
tioned above, has led to its widespread adoption among Android appli-
cation developers (Oliveira et al., 2020). It is commonly reported that

✩ Editor: Lingxiao Jiang.
∗ Corresponding author.
E-mail addresses: riccardo.coppola@polito.it (R. Coppola), tommaso.fulcini@polito.it (T. Fulcini), luca.ardito@polito.it (L. Ardito),

marco.torchiano@polito.it (M. Torchiano).

developers adopt Kotlin to enhance the quality of their code. However,
the actual impact of Kotlin on the maintainability of codebases, com-
pared to traditional Java-based Android applications, remains unclear.

The objectives of this paper are threefold: (i) we extend a prelim-
inary analysis of the state of popular Android application repositories
in terms of Kotlin adoption, building upon a dataset originally mined
in 2019 (Coppola et al., 2019); (ii) we compute a set of state-of-
the-art software quality and maintainability metrics for Kotlin; (iii)
we empirically analyse the impact of Kotlin adoption on both the
popularity and ratings of the applications, as well as the maintainability
of software projects.

The remainder of the paper is organized as follows: Section 2 pro-
vides background information on the Kotlin programming language and
maintainability metrics and reviews related work in analysing the non-
functional properties of projects written in Kotlin; Section 3 describes
the research method used in this study; Section 4 presents the results,
which are further discussed in Section 5, including potential threats to
vailable online 21 January 2025
164-1212/© 2025 The Authors. Published by Elsevier Inc. This is an open access ar

https://doi.org/10.1016/j.jss.2025.112346
Received 23 December 2023; Received in revised form 12 November 2024; Accepte
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

d 12 January 2025

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0000-0003-4601-7425
https://orcid.org/0000-0002-0501-7886
https://orcid.org/0000-0001-5328-368X
mailto:riccardo.coppola@polito.it
mailto:tommaso.fulcini@polito.it
mailto:luca.ardito@polito.it
mailto:marco.torchiano@polito.it
https://doi.org/10.1016/j.jss.2025.112346
https://doi.org/10.1016/j.jss.2025.112346
http://creativecommons.org/licenses/by/4.0/

The Journal of Systems & Software 222 (2025) 112346R. Coppola et al.
the validity of this study; Section 6 concludes the paper and suggests
directions for future research.

2. Background

In this section we report background information about the Kotlin
Language, the definition of Maintainability Metrics and available tool-
ing, and existing related work in the field of maintainability measure-
ment for mobile applications.

2.1. The Kotlin language

The Kotlin language was developed by JetBrains in 2011 to enhance
programming on the Java Virtual Machine (JVM). Although the first
stable release of the language was in 2016, Kotlin became a first-
class language for Android development in May 2017, with Android
Studio IDE supporting it since version 3.0 in October 2017. Google
self-reports that more than 60% of Android professional developers use
Kotlin as their primary language.1 Academic articles have highlighted
this trend of transitioning towards Kotlin. For instance, Martinez and
Mateus found that already in 2020 23% applications of a dataset
of 374 were fully migrated to Kotlin (Martinez and Mateus, 2020),
citing the exclusive features of the language as the main reasons
for such migration (Martinez and Mateus, 2021). Hecht and Bergel
quantified that in 2021 60% of the top 1000 Android apps already
contained Kotlin code (Hecht and Bergel, 2021). Furthermore, the
Kotlin language website highlights that developers interviewed feel
more productive using Kotlin compared to Java (Anon., 2023). A
significant increase in Kotlin adoption was also driven by the Android
programming guidelines and learning materials provided by Google,
which are now primarily in Kotlin. Major corporations, including Face-
book, have begun transitioning their Java codebases to Kotlin (Anon.,
2022).

A key factor in Kotlin’s rapid adoption among developers is its
full interoperability with the Java language, as both languages run
on the JVM and can be freely mixed (Martinez and Mateus, 2021).
The developers of Kotlin adopted a pragmatic approach, opting not
to reimplement the entire Java collection framework and libraries
but rather to ensure compatibility with the JDK interfaces. Thus, the
transition to Kotlin is particularly advantageous when developing addi-
tional modules or new features in established projects without requiring
complete re-translation — as the same authors highlight, in fact, the
complete interoperability with Java is among the top five reasons for
the migration to the Kotlin language.

Although a detailed description of Kotlin’s features is beyond the
scope of this work, we highlight some of its key peculiarities, either
claimed or verified by empirical research, compared to Java:

• Kotlin is perceived as having a relatively flat learning curve for
developers, being a more modern language than Java;

• Kotlin’s design aims for safer code compared to Java, potentially
leading to fewer system failures and application crashes (Flauzino
et al., 2018). This is mainly achieved by supporting non-nullable
types, which can reduce the likelihood of null pointer exceptions;

• The syntax of Kotlin is focused on reducing verbosity, with rough
estimates suggesting a 40% reduction in Lines of Code (LOCs)
for equivalent code (Schwermer, 2018). This substantial decrease
in verbosity may significantly enhance the maintainability and
understandability of codebases developed in Kotlin.

1 https://developer.android.com/kotlin
2

2.2. Maintainability metrics

Maintainability, as defined in the literature, is the ease with which
a software system or codebase can be modified to correct faults, en-
hance performance, or adapt to changes in its environment (IEEE,
1990). Maintainability is a critical factor in the economic success of
software products. Numerous studies over the years have proposed and
organized software metrics to predict or assess the maintainability of
software projects. A recent systematic literature review identified 174
different software maintainability metrics in the software engineering
literature (Ardito et al., 2020b).

Various tools have been presented in the literature for automatically
computing maintainability metrics for software code written in differ-
ent languages (Ardito et al., 2020b). However, due to Kotlin’s relative
novelty, there are limited tools available for computing traditional
maintainability metrics for Kotlin code.

2.3. Related work

Recent literature has explored the non-functional qualities of soft-
ware developed with Kotlin, comparing these to traditional Android
applications written in Java.

Góis Mateus and Martinez (2019) analysed three different datasets
of Android open-source applications (F-Droid, Android-TimeMachine,
and Androzoo) in 2019. They found Kotlin code in just over 11% of
the projects, with 33.61% of these applications being entirely written
in Kotlin. The study noted an increase in the amount of Kotlin code
during the evolution of the applications for 63% of the cases. It also
investigated the prevalence of code smells, revealing that the studied
object-oriented code smells were more common in Kotlin than in Java
applications. However, the quantity of entities affected by smells was
higher for Java. The introduction of Kotlin positively impacted code
smell reduction in at least 50% of the apps.

Andrä et al. (2020) analysed tools for computing maintainability
metrics for Kotlin-based Android Applications. In their 2020 study, they
concluded that most tools available at the time offered limited support
for Kotlin. This lack of support was seen as a hindrance to comparisons
against Java codebases and underscored the need for the development
of appropriate tools to compute such metrics for Kotlin.

Peters et al. (2021) evaluated the impact of transitioning to Kotlin
on the runtime efficiency of Android apps. They reported a significant
positive impact on CPU usage, memory usage, and render duration of
frames, though the effect size was negligible. The study also found that
most Android applications either fully migrated to Kotlin (with over
90% Kotlin code) or contained low portions of Kotlin code (less than
10%).

Mohsen et al. (2021) introduced KotlinDetector, a tool for inves-
tigating the security and privacy implications of Android application
packages (APKs) that include Kotlin code. This tool performs heuristic
pattern scanning and invocation tracing.

3. Research method

This section details the design, goal, research questions, and proce-
dure adopted for the study.

3.1. Research questions

Our study is structured to answer four distinct research questions.
RQ1 to RQ3 aim to update a previous study from 2019 (Coppola et al.,
2019); RQ4 seeks to provide insights about maintainability metrics
computed on Android applications written in Kotlin, a gap identified
in current literature.

• RQ1 - Diffusion: How widespread is the adoption of Kotlin in
Android applications within open-source repositories?

https://developer.android.com/kotlin

The Journal of Systems & Software 222 (2025) 112346R. Coppola et al.

3

a
e

a
a
u
b
a
s
r

C
a
t
r

p
p
t

o
w

Fig. 1. Filtering steps and project sets used to answer the RQs of the study. The considered project groups are the following: F = hosted on F-Droid only; FG = hosted on F-Droid
and GitHub only; FP = hosted on F-Droid and PlayStore only; FGP = hosted on F-Droid, GitHub, and PlayStore.
• RQ2 - Evolution: At what rate are open-source Android applica-
tions transitioning from Java to Kotlin?

• RQ3 - Popularity: How does the use of Kotlin affect the popular-
ity of Android open-source applications among users and within
the developer community?

• RQ4 - Maintainability: What impact does Kotlin have on the
code maintainability of Android open-source applications?

.2. Selection of software objects

This section outlines the methodology employed to answer the
forementioned research questions and describes the creation of our
xperimental dataset.

The initial step involved mining the complete corpus of projects
nd associated information from the F-Droid repository of open-source
pplications. F-Droid was chosen for several reasons: (i) its extensive
se in the literature for mining Android applications (e.g., studies
y Zeng et al., 2019, Grano et al., 2017, Fu et al., 2018); (ii) the
vailability of source code for all hosted applications; (iii) its long-
tanding history, featuring applications dating back to the original
elease of the Android framework.

To mine Android projects from F-Droid, we utilized a Selenium
hromedriver script to scrape information from the project webpages
nd collect the .tar.gz files containing the source code and .apk dis-
ributable files. The scraping was conducted as of April 30, 2023,
esulting in the collection of 3889 Android projects.

For all packages obtained from F-Droid, we conducted a matching
rocess with corresponding projects on the PlayStore — to gather user
opularity metrics and dissemination information — and on GitHub —
o collect developer popularity metrics and evolution data.

To determine if an Android project on F-Droid was also available
n the PlayStore, we used the unique format of the PlayStore’s URI,
hich ends with details?id=package_name. A Selenium Chromedriver

script was developed to search for the packages from F-Droid and
scrape information from the PlayStore when available. Manual checks
were performed for each package due to a common practice of using
package names from other projects when releasing applications on the
PlayStore, leading to inconsistencies across repositories.

To identify if an F-Droid project had a corresponding repository on
GitHub, we developed a Selenium script to locate projects declaring
package names in the Android manifest file that matched those from
F-Droid. Manual inspections were necessary to correctly identify the
appropriate GitHub repository in cases of duplicates or forked projects
3

sharing the same package name.
Different sets of projects were thus defined based on their presence
in the considered stores (Fig. 1). As of the end of April 2023, when
our final measurements were collected, we had mined 3889 projects
from the F-Droid platform. Among these projects open-source (OS),
1571 (40.4%, FP ∪ FGP in figure) were also released on the Google
Play Store, and 2110 (54.2%, FG ∪ FGP in figure) were published as
GitHub repositories. A total of 892 (22.9%, FGP in figure) apps were
available on all three repositories. Focusing on the diffusion of Kotlin,
we restricted our analysis to projects updated on F-Droid or GitHub
after October 2017, i.e., since Kotlin’s official support by the Android
Studio IDE. Of the projects, 2869 (73.7%) have been updated since
October 2017, marking Kotlin’s adoption as a first-class programming
language for Android applications. Our analysis revealed that many
projects featured negligible amounts of Java or Kotlin code. Upon
manual inspection, we identified these as hybrid Android applications
developed using tools for creating web-optimized mobile applications
(e.g., Flutter). Consequently, we established a threshold of at least 20
lines of code in Java or Kotlin for a project to be considered native,
resulting in 2708 non-hybrid projects in total. We defined a threshold
of 20 lines because no such threshold has been previously defined in the
literature. The threshold was slightly higher than the typical number of
lines of code in default classes appearing in hybrid projects, to reduce
the possible number of false positives excluded from the sample. We
verified manually that all the projects with a number of LOCs below
the threshold were hybrid or empty. By sampling the distribution of
projects over the threshold, we were not able to identify any false
negatives.

By comparing the last updates across the three repositories, we iden-
tified projects that were not concurrently updated across the platforms.
We set a 45 day threshold to categorize a project as abandoned on a
given repository. This concept of abandonment helps avoid inconsistent
results from comparative analyses of metrics computed on unaligned
versions of the same project on different repositories. No exact thresh-
old has been provided in the literature to define a project as abandoned
on a versioning platform like GitHub. We based our threshold on the
works by Ait et al. who empirically verified that GitHub projects have
on average a typical life of 3 months without commits before being
considerable as dead projects (Ait et al., 2022). The risk of mining
abandoned projects is also underlined by Kalliamvakou et al. who found
that only 13% of the projects on GitHub have an update in the last 30
days (Kalliamvakou et al., 2014). Therefore, to cope with the possible
high risk of considering abandoned projects and to reduce the possible
number of false negatives, we halved the threshold proposed by Ait

et al. for our purposes.

The Journal of Systems & Software 222 (2025) 112346R. Coppola et al.

s
t
f

c
t

w

i

All information about the collected projects, along with the com-
puted metrics, is available in an online repository.2

3.3. Analysis procedure

In Fig. 1, we outline the characteristics of the project sets used in
each step of our study and correlate them with the research questions
they help to address. Details about each filtering step and all performed
analyses are described below.

3.3.1. Diffusion analysis (RQ1)
To address RQ1, we focused on non-hybrid projects updated after

October 2017 (2708 projects) to compute diffusion metrics. We used
the number of Kotlin Relative Lines of Code (KRL) and Kotlin Relative
Files (KRF) as diffusion metrics. These ratios were computed over the
total number of implementation lines and files, excluding documenta-
tion and configuration files. The most recently updated app package
was considered, whether it was the tarball released on F-Droid or the
last tagged release on the GitHub repository (if available). These two
code metrics were calculated using the cloc tool.3

To facilitate understanding, we introduce a derived measure, Kotlin
𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒, an ordinal variable with four levels:

• No Kotlin: Projects containing only Java code.
• Kotlin < 50%: Projects with a minority of Kotlin code, i.e., less

than 50% in terms of LOCs.
• Kotlin > 50%: Projects with a majority of Kotlin code, i.e., more

than 50% but less than 100%.
• Only Kotlin: Projects featuring only Kotlin code.

We then computed the ratio of projects in each category relative to
the starting set of projects.

3.3.2. Evolution analysis (RQ2)
To address RQ2, we focused on the set of projects that were active

on GitHub with the last updates after October 2017, encompassing
967 projects. For analysing the evolution of these projects, we took
monthly snapshots from October 2017 to April 2023, considering the
last commit of each month. Each snapshot was analysed using the
cloc tool, as was done for RQ1. We then categorized the projects into
different Kotlin adoption groups (as defined for the previous research
question) and reported the ratio of projects in each group relative to
the total number of projects at each monthly snapshot.

3.3.3. Collection of popularity metrics (RQ3)
To address RQ3, we analysed two distinct sets of projects: (i)

projects present on the PlayStore (regardless of their GitHub presence)
that were not abandoned on the PlayStore (totalling 912 projects).
For these, we used the average rating (i.e., Stars) as a popularity
metric; (ii) projects available on GitHub (regardless of their PlayStore
presence) that were active on GitHub. For these, the number of stars
and the number of watching accounts were considered as popularity
metrics. Both metrics for GitHub projects are absolute figures and thus
greatly influenced by the project’s lifespan. Consequently, they were
normalized by dividing the absolute numbers by the project’s lifespan
in months.

2 http://softeng.polito.it/coppola/kotlin_2023_subject_data.csv
3 https://github.com/AlDanial/cloc
4

s

3.3.4. Computation of maintainability metrics (RQ4)
To answer RQ4, we focused on the set of projects updated after Oc-

tober 2017, considering the most recent repository update between the
tarball hosted on F-Droid and the last commit on GitHub (if available).

For this study, we utilized rust-code-analysis,4 a Rust library that
analyses and extracts information from source code. This library is
based on the TreeSitter parsing library (Ardito et al., 2020a). Rust-
code-analysis was chosen for its reliability, having been used by Mozilla
to assess the maintainability of their codebases and the existence of
a branch of the tool capable of analysing Kotlin code.5 The rca tool
provides a single value for each metric per project; the metrics are
computed for each space6 in the project, and then summed over all the
paces. A space is defined in rca as the smallest source code structure
hat includes at least a function or a closure, and is a language-agnostic
eature that can be extracted for all languages supported by the tool.

From the metrics computed by rca, we selected six that are most
losely related to code maintainability and understandability. Defini-
ions of these metrics are provided below.

• CC: McCabe’s definition of cyclomatic complexity: it calculates
the code complexity by examining the control flow of a pro-
gram. It is measured as the number of linearly independent paths
through a piece of code (Ebert et al., 2016).
The cyclomatic number of a graph 𝐺 with 𝑛 vertices, 𝑒 edges, and
𝑝 connected components is computed with the following formula
and is equal (for a strongly connected graph) to the maximum
number of linearly independent circuits (McCabe, 1976):

𝐶𝐶 = 𝑒 − 𝑛 + 𝑝

McCabe’s CC for a program is lower-bounded by 0 and is not
upper-bounded. Higher values indicate a higher complexity of the
code. Average values for CC are reportedly between 1 and 2 (Vasa
and Schneider, 2003).

• Halstead Difficulty: The Halstead suite is a set of seven statically
computed metrics, all based on the number of distinct operators
(n1) and operands (n2) and the total number of operators (N1)
and operands (N2). The suite provides a series of information,
such as the effort required to maintain the analysed code, the
size in bits to store the program, the difficulty of understanding
the code, an estimate of the number of bugs present in the
codebase, and an estimate of the time needed to implement the
software (Dorofeev and Wenger, 2019; Hariprasad et al., 2017).
Halstead Difficulty (or error-proneness) represents the difficulty
in developing a specific errorless piece of code, and is computed
with the following formula:

𝐷 = 𝑛1
2

∗ 𝑛2
𝑁2

Halstead Difficulty is not upper-bounded and values are typically
in the 10–100 range even for small-sized software artefacts (Govil,
2020).

• Halstead Effort: The effort required to implement or understand
a program. The measure is directly proportional to the difficulty
and the volume (measured as 𝑉 = 𝑁 log 2(𝑛)) of the program, as
computed with the following formula:

𝐸 = 𝐷 ∗ 𝑉

In the Volume formula, 𝑛 is defined as the program vocabulary
(sum of the number of distinct operators and the number of

4 Please note that the name Rust Code Analysis indicates that the tool is
ritten in Rust and is not exclusively for measuring Rust code.
5 https://github.com/mozilla/rust-code-analysis
6 Additional documentation about spaces is available on the GitHub repos-

tory of rca: https://github.com/mozilla/rust-code-analysis/blob/master/src/

paces.rs#L27-L50.

http://softeng.polito.it/coppola/kotlin_2023_subject_data.csv
https://github.com/AlDanial/cloc
https://github.com/mozilla/rust-code-analysis
https://github.com/mozilla/rust-code-analysis/blob/master/src/spaces.rs#L27-L50
https://github.com/mozilla/rust-code-analysis/blob/master/src/spaces.rs#L27-L50

The Journal of Systems & Software 222 (2025) 112346R. Coppola et al.

3

c
—

s
e
o

𝑌

distinct operands in the program) and 𝑁 is defined as the program
length (sum of the total number of operators and the total number
of operands).
Halstead Effort is not upper-bounded and values are typically
above 10e4 even for small-sized software artefacts (Govil, 2020).
Given the large absolute size and variation of the Halstead Effort
metric, in this study, we will consider its log10 for our analyses.

• MI: Maintainability Index, a derived metric to measure the easi-
ness of maintaining a code base. Several variations are available
for MI. In the context of this empirical experiment we have used
the MI formula implemented in the Visual Studio IDE:

𝑀𝐼 = max(0, 171 − 5.2 ln(𝑉) − 0.23𝑉 (𝑔′)

− 16.2 ln(𝐿𝑂𝐶) ∗ 100∕171)

where 𝑉 is the average Halstead Volume per module, 𝑉 (𝑔′) is
the average cyclomatic complexity per module, and 𝐿𝑂𝐶 is the
average lines of code per module. In the case of Java and Kotlin
code, a function or method is considered an individual module.
The Visual Studio implementation of the Maintainability Index
is lower-bounded by 0, and higher values signal higher code
maintainability (low maintainability for 𝑀𝐼 ≤ 10, medium main-
tainability for 𝑀𝐼 < 10 < 20, high maintainability for 𝑀𝐼 ≥
20).

• WMC: The Weighted Method per Class (WMC) metric is defined
as the sum of the complexity of a class’ local methods. The WMC
metric is intended to measure the combined complexity of a class’
local methods (Li, 1998). In rca, McCabe’s Cyclomatic Complexity
(CC) is used as the base complexity metric for WMC.

WMC =
𝑛
∑

𝑖=1
𝑐𝑖

where 𝑐𝑖,… , 𝑐𝑛 are the complexities of the methods (Chidamber
and Kemerer, 1994).

• Cognitive Complexity: It is a measure of how difficult a unit
of code is to intuitively understand, by examining the cognitive
weights of basic software control structures (Shao and Wang,
2003). The rust-code-analysis tool implements the definition of
Cognitive complexity provided by SonarSource.7 Typical values
of the Cognitive metric are lower than 10, with higher values in-
dicating a lower comprehension of the source code by developers
and maintainers.

.3.5. Statistical analysis (RQ3, RQ4)
As far as RQ3 and RQ4, we formulate a generic null hypothesis

oncerning the effect of Kotlin’s presence in a project on the output
popularity and maintainability — variables (𝑌).

𝐻0 : there is no difference in the mean level of the variable 𝑌 between
the different levels of Kotlin presence.

To test the hypothesis we perform a linear regression and test the
ignificance of the coefficients using an ANOVA test. The regression
quation uses the No Kotlin level as a reference and has three dummy
r indicator variables for the three remaining Kotlin levels:

= 𝑐0 + 𝑐𝑚𝑖𝑛𝐾 ⋅ 𝑥𝑚𝑖𝑛𝐾 + 𝑐𝑚𝑎𝑗𝐾 ⋅ 𝑥𝑚𝑎𝑗𝐾 + 𝑐𝑜𝑛𝑙𝑦𝐾 ⋅ 𝑥𝑜𝑛𝑙𝑦𝐾

Where:

• 𝑐0 is the so-called intercept, represents the mean value for projects
with Presence = No Kotlin

7 https://www.sonarsource.com/docs/CognitiveComplexity.pdf
5

• 𝑥𝑙𝑘 are the indicator variables for the distinct levels of Kotlin
presence (𝑙𝑘),

𝑥𝑙𝑘 =
{

1 if 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = 𝑙𝑘
0 otherwise

• 𝑐𝑙𝑘 are the coefficients of the indicator variables.

The ANOVA test checks the null hypothesis that the coefficients are
0. Thus if the 𝑝-value for a given coefficient is < 𝛼 we reject the null
hypothesis and assume that it is non-zero, i.e. the effect of the indicator
variables is statistically significant.

The decision on whether to reject the null hypotheses will be taken
using the usual 𝛼 = 0.05 level, i.e. we accept a 5% risk of type I error.
Since we perform multiple tests (𝑛 = 9, one for each of the three metrics
to answer RQ3 and one for each of the six metrics to answer RQ4) on
the same independent variable — Presence — to compensate for the
family-wise error rate, we apply the Bonferroni correction, i.e. we will
take our decisions comparing then p-values to 𝛼𝐵 = 𝛼∕𝑛 = 5.5 ⋅ 10−3.

4. Results

This section reports the results of our experiment, divided by Re-
search Question. The repository for the analysis is provided as a repli-
cation package on GitHub.8

4.1. Diffusion (RQ1)

In Table 1, we present the results of measuring the diffusion metrics
defined to address RQ1. We divided the projects into two categories:
based on the marketplaces where they were released and based on
the platform (either F-Droid or GitHub) where the source code was
most recently updated. The table enumerates the total number of
applications per group, projects that feature only Java code (no Kotlin),
projects with a minority (less than 50%) of Kotlin in terms of LOCs,
projects with a majority (more than 50%, less than 100%) of Kotlin
code, and projects exclusively using Kotlin. We also provide the average
LOCs of Kotlin in the projects, but this average is calculated only for
projects that include Kotlin code. The distribution of projects based on
the level of Kotlin presence is visualized in bar plots in Fig. 2 divided
by the hosting repository (F: hosted on F-Droid only; FG: hosted on F-
Droid and GitHub; FP: hosted on F-Droid and PlayStore; FPG: hosted on
all three repositories) and Fig. 3 (divided by the most recently updated
source code).

Upon analysing the total number of projects, it is evident that 1023
out of 2708 (37.8%) featured Kotlin code. Of these, 551 out of 2708
(20.3%) were entirely written in Kotlin. The proportion of projects with
Kotlin presence increases if the most recent update was on F-Droid
(38.9%) rather than on GitHub (35.8%).

In the rightmost two columns of Table 1, we present the percentage
of Kotlin LOCs and Kotlin files in projects that include Kotlin. These
data suggest that when Kotlin is used, it typically comprises the ma-
jority of the code (75.90% LOCs, 77.80% files), indicating a preference
among developers for Kotlin over Java when both languages are used
in the same project.

In Table 2, we report statistics on project abandonment for the
non-hybrid projects updated after October 2017. A comparison of the
most recent update dates across multiple platforms reveals that many
projects on F-Droid and the PlayStore are not kept synchronized with
their GitHub counterparts (nearly half of the projects on F-Droid and
GitHub, and on all three repositories). Conversely, fewer projects are
abandoned on GitHub while being updated on other platforms. This
trend could be anticipated, as it is unlikely that updates on the stores
follow every tagged release on GitHub. Notably, nearly 16% of the
projects available on all three platforms were not updated on GitHub,
possibly due to the projects becoming closed-source or migrating to
other source code hosting platforms.

8 https://github.com/riccardocoppola/kotlin_rmd_study

https://www.sonarsource.com/docs/CognitiveComplexity.pdf
https://github.com/riccardocoppola/kotlin_rmd_study

The Journal of Systems & Software 222 (2025) 112346R. Coppola et al.
Fig. 2. Statistics about the diffusion of Kotlin per platform where apps are released (F = F-Droid; P = PlayStore; G = GitHub).
Table 1
Diffusion (RQ1) metrics on non-hybrid projects updated after October 2017 (F: F-Droid; P: PlayStore; G: GitHub)

Avg. on Projects w/Kotlin

Apps No Kotlin Kotlin min. Kotlin maj. Only Kotlin Kotlin LOCs Kotlin files

F 566 376 (66.4%) 50 (8.83%) 32 (5.65%) 108 (19.1%) 75.10% 77.00%
F, P 564 300 (53.2%) 78 (13.8%) 59 (10.5%) 127 (22.5%) 72.10% 74.20%
F, G 773 567 (73.3%) 44 (5.69%) 42 (5.43%) 120 (15.5%) 79.20% 80.90%
F, P, G 805 442 (54.9%) 80 (9.94%) 87 (10.8%) 196 (24.3%) 77.00% 79.10%

Last update: F 1751 1070 (61.1%) 185 (10.6%) 140 (7.99%) 356 (20.3%) 74.10% 76.10%
Last update: G 957 615 (64.3%) 67 (7.00%) 80 (8.36%) 195 (20.4%) 79.40% 81.20%

Whole set 2708 1685 (62.2%) 252 (9.30%) 220 (8.12%) 551 (20.3%) 75.90% 77.80%
Fig. 3. Statistics about the diffusion of Kotlin per platform where the source code was lastly updated.
Table 2
Statistics about project abandonment (update on the store less recent than 45 days
before the overall last update) for non-hybrid projects updated after October 2017. (F:
F-Droid; P: PlayStore; G: GitHub)

Abandoned on

Present on ↓ F-Droid PlayStore GitHub

F, P 122 (21.6%) 122 (21.6%) –
F, G 375 (48.5%) – 76 (9.8%)
F, P, G 380 (47.2%) 390 (48.4%) 127 (15.8%)
6

4.2. Evolution (RQ2)

We evaluated the history of Kotlin adoption in projects that had
their last update after October 2017 and were most recently updated on
the GitHub platform, encompassing 957 projects. These projects were
analysed through monthly snapshots to identify the trend of Kotlin code
adoption.

Fig. 4 illustrates the trend of Kotlin adoption by month since Octo-
ber 2017, within the set of 957 considered projects. For each month,
projects that were no longer updated in the previous year were ex-
cluded from the analysis. It is observed that the number of projects
incorporating Kotlin has steadily increased over the surveyed period:

from 6.8% (39 out of 574) to 48% (241 out of 501). Concurrently, there

The Journal of Systems & Software 222 (2025) 112346R. Coppola et al.
Fig. 4. Projects that were updated in the last 12 months, with only Kotlin, with Kotlin minority, with Kotlin majority, and with only Java, per month from October 2017 to May
2023.
Fig. 5. Evolution of Kotlin relative LOCs on the lifespan of projects featuring Kotlin and with a most recent update on GitHub.
is a noticeable decrease in the number of projects featuring only Java,
with a reduction of 52.2% since October 2017, and 13.4% in the first
four months of 2023 alone.

Fig. 5 narrows the focus to the 342 projects that included Kotlin
and were most recently updated on GitHub. In this analysis, we also
included projects that had not been updated in the last 12 months.
The figure reveals a clear trend of increasing proportions of Kotlin code
within Android projects.
7

4.3. Popularity (RQ3)

To determine whether the adoption of Kotlin had any impact on
how end-users and other developers perceive the projects, we in-
vestigated the correlations between the presence of Kotlin code and
popularity metrics on both the PlayStore market and the GitHub plat-
form.

We gathered the ratings from the PlayStore for all projects available

on this market and not abandoned, totalling 912 projects. Additionally,

The Journal of Systems & Software 222 (2025) 112346R. Coppola et al.
Fig. 6. Violin plots of distribution of popularity metrics (RQ3), higher values mean better popularity.
Table 3
Mean and standard deviation for RQ3 metrics.

No Kotlin Kotlin minority Kotlin majority Only Kotlin

Mean SD Mean SD mean SD Mean SD

PlayStore stars 4.14 0.49 4.11 0.55 4.22 0.47 4.40 0.37
GitHub stars per month 6.63 24.34 13.90 33.05 14.17 35.91 15.47 46.35
GitHub watching per month 0.49 1.20 0.62 1.01 0.48 0.59 0.65 1.91
Table 4
Results (estimates and 𝑝-values) of the statistical analysis for RQ3 metrics (𝑝-values in
bold if smaller than 𝛼𝐵 = 𝛼∕𝑛 = 5.5 ⋅ 10−3)

PS Stars GH Stars GH Watching

est. 𝑝-value est. 𝑝-value est. 𝑝-value

Kotlin minority −0.03 0.719 7.27 0.026 0.13 0.356
Kotlin majority 0.08 0.300 7.54 0.012 −0.01 0.907
Only Kotlin 0.26 𝟏.𝟑𝟓 ⋅ 𝟏𝟎−𝟒 8.84 𝟑.𝟓𝟏 ⋅ 𝟏𝟎−𝟓 0.15 0.081

we collected data on the number of stars and watching users on GitHub
for all projects present on this platform and not abandoned, totalling
1419 projects. These metrics were then normalized with respect to the
project’s age in months. Fig. 6 displays the distribution of these three
metrics across the respective project sets. Table 3 shows the mean and
standard deviation for the metrics, while Table 4 presents the results of
the ANOVA test on the linear models used to assess the effect of Kotlin
presence on the popularity metrics.

We observed a significant positive effect of having a project fully
developed in Kotlin on the average number of stars on the PlayStore
platform (average 4.4 mean rating, compared to a 4.14 mean rating,
with a 𝑝-value of 1.35e−04). There was no statistically significant
difference between the groups ‘‘Kotlin minority’’ and ‘‘Kotlin majority’’
compared to the reference group ‘‘Only Java’’.

In terms of GitHub stars — normalized by the project’s lifespan in
months — per project, the estimate for the group ‘‘Only Kotlin’’ is 8.84,
with a 𝑝-value of 3.35e−05. This indicates a statistically significant pos-
itive difference in normalized GitHub stars for projects fully developed
in Kotlin. A positive difference was also observed for projects with a
Kotlin minority and majority, but these differences were not statistically
significant.

Regarding GitHub Watching — normalized by the project’s lifespan
in months —per project, there was no statistically significant difference
between any group and the reference ‘‘Only Java’’ group. However, we
noticed a slight increase in the GitHub Watching metric for projects
featuring Kotlin compared to those with full Java implementations.

4.4. Maintainability (RQ4)

The metrics to address RQ4 were collected for all projects updated
after October 2017. Following the application of the rust-code-analysis
tool, we excluded projects from the set that returned null results for
any of the 6 computed metrics. This exclusion was due to either
computation errors in the tool or the inability to analyse the complete
code tree in very large-sized projects. After this additional filtering
phase, 2639 projects were considered for analysis. Fig. 7 depicts the
8

distribution of the six metrics, Table 5 reports the mean and standard
deviation, and Table 6 presents the results of the ANOVA analysis
of linear models used to evaluate the impact of Kotlin presence on
maintainability metrics.

For the Weighted Methods per Class (WMC) metric, the ‘‘Kotlin
Majority’’ and ‘‘Only Kotlin’’ groups showed a statistically significant
difference compared to the reference group ‘‘No Kotlin’’. This suggests
that applications using Kotlin tend to have fewer weighted methods per
class, with an average decrease from 17.03 to 7.47 when only Kotlin is
utilized.

In terms of the Cyclomatic Complexity (CC) metric, the difference
between the ‘‘Kotlin Majority’’ and ‘‘Only Kotlin’’ groups, compared to
the reference group ‘‘No Kotlin’’, was statistically significant, with an
average decrease from 1.88 to 1.74 and 1.70, respectively.

Concerning the log10 of the Halstead Effort, a statistically sig-
nificant difference was observed between the ‘‘Kotlin Majority’’ and
‘‘Only Kotlin’’ groups against the reference group ‘‘Only Java’’, with
an average decrease from 5.43 to 4.79 and 4.42, respectively.

A similar significant difference was noted for the Halstead Difficulty,
with a decrease from 29.33 to 11.49 moving from ‘‘No Kotlin’’ to ‘‘Only
Kotlin’’.

Regarding the Maintainability Index (MI) metric, all groups ex-
hibited a statistically significant positive effect compared to the ‘‘No
Kotlin’’ reference group. For projects exclusively using Kotlin, an in-
crease from 30.64 to 38.14 was observed.

Finally, for the Cognitive Complexity metric, a statistically signifi-
cant decrease was noted only for the ‘‘Kotlin Majority’’ (reduction of
0.44) and ‘‘Only Kotlin’’ (reduction of 0.56) groups, compared to the
average value of 1.42 for the ‘‘No Kotlin’’ reference group.

5. Discussion

On the basis of the finding reported above, we summarizes the main
findings of our study and frame them in the context of related work.
We also discuss potential threats to the validity of this study.

5.1. Summary of findings

Our primary objective was to evaluate the extent of migration from
Java to Kotlin in the Android ecosystem and to quantify the impact of
such migration on code maintainability.

Over ten years since Kotlin’s initial release and more than five
years since Google adopted it as a first-class language for Android
applications, Kotlin has established itself as a mature and reliable
language.

Answer to RQ1: 38% of analysed apps contain Kotlin code.

The Journal of Systems & Software 222 (2025) 112346R. Coppola et al.

p
r
w
r
r
l
d
K
o

Fig. 7. Violin plots of distribution of maintainability metrics (RQ4), lower value indicate better maintainability except for MI.
Table 5
Mean and standard deviation for RQ4 metrics.

No Kotlin Kotlin minority Kotlin majority Only Kotlin

Mean SD Mean SD Mean SD Mean SD

WMC 17.03 7.1 15.81 6.66 9.19 4.36 7.47 4.98
CC 1.88 0.34 1.84 0.31 1.74 0.30 1.70 0.36
log10(Halstead E) 5.43 0.39 5.35 0.38 4.79 0.42 4.42 0.38
Halstead D 29.33 7.24 26.3 6.74 14.82 5.26 11.49 3.94
MI 30.64 6.47 33.33 4.69 37.88 5.03 38.14 5.23
Cognitive 1.42 0.60 1.35 0.56 0.98 0.48 0.86 0.54
Table 6
Results (estimates and 𝑝-values) of the statistical analysis for RQ4 metrics (𝑝-values in bold if smaller than 𝛼𝐵 = 𝛼∕𝑛 = 5.5 ⋅ 10−3)

WMC CC Halstead Effort

est. 𝑝-value est. 𝑝-value est. 𝑝-value

Kotlin Minority −1.22 0.011 −0.04 0.131 −0.08 0.006
Kotlin Majority −7.84 𝟏.𝟒𝟑 ⋅ 𝟏𝟎−𝟔𝟑 −0.15 𝟐.𝟕𝟕 ⋅ 𝟏𝟎−𝟗 −0.64 𝟐.𝟕𝟗 ⋅ 𝟏𝟎−𝟏𝟏𝟎

Only Kotlin −9.57 𝟑.𝟒𝟖 ⋅ 𝟏𝟎−𝟏𝟓𝟕 −0.18 𝟓.𝟕𝟒 ⋅ 𝟏𝟎−𝟐𝟒 −1.01 < 𝟏.𝟎 ⋅ 𝟏𝟎−𝟐𝟎𝟎

Halstead Difficulty MI Cognitive

est. 𝑝-value est. 𝑝-value est. 𝑝-value

Kotlin Minority −3.02 𝟖.𝟔𝟓 ⋅ 𝟏𝟎−𝟏𝟏 2.69 𝟏.𝟔𝟔 ⋅ 𝟏𝟎−𝟗 −0.07 0.129
Kotlin Majority −14.51 𝟑.𝟎𝟗 ⋅ 𝟏𝟎−𝟏𝟗𝟎 7.24 𝟏.𝟑𝟔 ⋅ 𝟏𝟎−𝟓𝟕 −0.44 𝟐.𝟓𝟏 ⋅ 𝟏𝟎−𝟐𝟕

Only Kotlin −17.84 < 𝟏.𝟎 ⋅ 𝟏𝟎−𝟐𝟎𝟎 7.5 𝟐.𝟓𝟒 ⋅ 𝟏𝟎−𝟗𝟕 −0.56 1𝟒.𝟔𝟕 ⋅ 𝟏𝟎−𝟕𝟒
A consistent increase was observed in the number of Android
rojects featuring at least partial Kotlin implementation. Many project
epositories that now include Kotlin code started with Java only and
ere migrated during their lifespan, either through complete codebase

ewrite or by using Kotlin to integrate new features. This trend may
eflect a widespread perception among developers of the benefits of a
anguage transition. Other influencing factors could include Android
evelopment guidelines, which now favour Kotlin over Java, and
otlin’s full interoperability with Java, facilitating the rapid integration
f Kotlin-written features into existing Java codebases.
Answer to RQ2: Since 2017, the proportion of active projects
using Kotlin increased from 8% to 48%.

Regarding software quality perception, we used three quantitative
measures as proxies: the average rating (number of stars) on the Play-
Store and the average number of stars and watching users on GitHub.
These metrics represent different stakeholder perspectives for Android
projects: PlayStore stars reflect the final users’ quality perception, while
GitHub measures indicate interest from open-source developers and
contributors. We observed a significant positive difference for projects
developed entirely in Kotlin compared to pure Java projects in terms
9

of PlayStore stars and GitHub stars. Although potentially biased by a
the size and variability of the applications considered, the PlayStore
stars result suggests that preferring Kotlin over Java positively impacts
the quality as perceived by end-users. This finding can guide develop-
ers, evidencing the beneficial effects of transitioning an existing Java
project to Kotlin or adopting Kotlin from the start of a new project.
The GitHub stars result was anticipated, as it is reasonable that projects
using newer languages attract more interest from fellow developers.

Answer to RQ3: End-users on the PlayStore rate projects using
Kotlin a quarter of a star higher; on GitHub, pure Kotlin projects
receive 8 additional stars per month w.r.t. pure Java ones.

Maintainability is a highly touted aspect of the Kotlin language, with
its primary appeal being enhanced code understandability. The results
for the six maintainability metrics considered consistently demonstrate
significantly higher maintainability for Android applications that in-
clude Kotlin code (either exclusively or mixed) compared to pure Java
applications. The differences were significant for all metrics when
Kotlin predominated over Java, with more pronounced effects ob-
served when Kotlin was the sole language used. The reduction in
code complexity when transitioning from Java to Kotlin is highlighted
by the decrease in average McCabe’s Cyclomatic Complexity (−9.6%)
nd particularly in Weighted Methods per Class (−56%), indicating

The Journal of Systems & Software 222 (2025) 112346R. Coppola et al.

V
a
−
d
f
v
t
r

s
r
a
f
m
o
h
m
d
T
n
a
t
c
o
a
a

r
d
p
o
d
v
a
E
b
c
t
a
s
a

o
T
c
g
a
s
a
m
f
c
a
e
s
t
e
d

c
i
t
p
t
o
t
(
w
i

a substantial simplification in code structure and organization with
Kotlin.

The size of the code, measured by the Halstead Effort, and the
relative difficulty in maintaining an error-free version, indicated by
the Halstead Difficulty, both decreased significantly by −18.6% and
−60.8%, respectively. However, caution should be exercised when
interpreting results involving Halstead metrics, given their known lim-
itations in adapting to newer programming languages and software
paradigms. The Halstead metrics we considered are derived from the
number of operators and operands in the program, so their reduction
can be seen as evidence of reduced verbosity and, thus, increased
understandability (Shepperd, 1992).

Acknowledging the debated limitations of Halstead metrics, we
included the more contemporary Maintainability Index (MI) and Cog-
nitive Complexity metrics in our study. The Maintainability Index
showed a notable increase when comparing Java-only versus Kotlin-
only projects (+24.5%). It is important to note that, based on the

isual Studio implementation of the Maintainability Index we used,
ll project groups averaged high maintainability (values above 20). A
39.4% decrease in the Cognitive Complexity metric aligns with the
ifferences measured for other complexity measures (WMC and CC) and
urther suggests greater readability of Kotlin code. These findings offer
aluable insights to the Android developer community, highlighting
angible benefits in terms of code understandability, conciseness, and
eadability compared to traditional Java code.

It is worth underlining that five out of six metrics that were con-
idered in this study were not influenced by the grammar and syntax
ules of the involved languages, given that the CC and Cognitive metrics
re only influenced by the control flow graph that can be defined
or the analysed source code, WMC is influenced by the number of
ethods, and Halstead Effort and Difficulty are based on the number

f operators and operands. The specific language features of Kotlin
ave no direct impact on these items, therefore all the changes in this
etric are assumed to reflect changes in the way developers utilize the
ifferent languages and to the enforcement of Kotlin best practices.
he Maintainability Index (MI) metric instead does depend on the
umber of LOCs of the analysed code artefact, therefore the syntax
nd grammar aspects of Kotlin may have a significant influence on
he number of lines of code that are produced. We however deem a
omparison of MI as fair between the two languages, since our final
bjective is an evaluation of the maintainability of codebases in Java
nd Kotlin, and the number of LOCs to implement an application is an
spect that directly influences its maintainability.
Answer to RQ4: Consistent improvement of all maintainability
related metrics: McCabe CC ↓ 9.6%, WMC ↓ 56%, Halstead Effort
↓ 18.6%, Halstead Difficulty ↓ 60.6%, Cognitive Complexity
↓ 39.4%, Maintainability Index ↑ 24.5%.

5.2. Comparison with related work

Góis Mateus and Martinez (2019) in 2019 assessed the adoption
of the Kotlin language and the evolution of applications utilizing it.
Compared to their findings, our study identified both a higher ratio of
applications containing Kotlin (1023 out of 2708 vs 244 out of 2167)
and a greater number of applications entirely written in Kotlin (551 vs
82), effectively demonstrating how the Android developer community
has transitioned to Kotlin over the last four years. In terms of code
quality, Mateus and Martinez evaluated the presence of 10 Code Smells
as a proxy for app quality, whereas we employed a set of six theoretical
metrics. Their findings indicate that while Kotlin is not free from flaws,
applications initially written in Java showed improved quality after
introducing Kotlin.

Peters et al. (2021), in a more recent study, confirmed the positive
trend of adopting Kotlin for Android app development. Aligning with
Mateus and Martinez, they observed that the highest concentration of
10

apps occurs when the percentage of Kotlin LOCs is between 90 and
100% or 0 and 10%. From their sample of 7972 applications, they noted
an increase in apps with more than 90% Kotlin LOCs from 127 in 2019
to 659 in 2023, and those with less than 10% Kotlin rose from 44 in
2019 to 123 in 2023. This indicates that while the number of apps using
Kotlin increased, their distribution based on the percentage of LOCs
remained consistent. analysing our trends for the ratio of Kotlin LOCs,
we also observed that when Kotlin is adopted, most projects are nearly
entirely written in Kotlin (in our set of 1053 projects with Kotlin, 659–
64.4% —feature more than 90% Kotlin LOCs). Our results thus align
with Peters et al.’s findings, suggesting that developers transitioning to
Kotlin eventually prefer it over Java.

Finally, the results of RQ4 address the open question posed
by Ardito et al. (2020c) in their 2020 study, which stated, ‘‘there is
no evidence that the use of Kotlin, as a substitute for Java, either enhances
or lessens software maintainability ’’. Our study provides statistically sig-
nificant evidence that using Kotlin as a native programming language
leads to better maintainability than Java.

5.3. Threats to validity

We discuss the threats to the validity of this study as per the
taxonomy presented by Wohlin et al. (2012).

Threats to external validity concern the generalizability of our study’s
esults to broader populations beyond the sampled applications. The
ataset’s size may not encompass the full diversity of Android ap-
lications. Enhancing the study by considering other repositories of
pen-source Android applications cited in related literature (e.g., An-
roidTimemachine or AndroZoo) or by accounting for the inherent
ariability of Android applications (e.g., distribution across different
pplication categories in various stores) could improve this aspect.
xtending the study to include hybrid applications and other domains
eyond Android would also increase external validity, providing a more
omprehensive understanding of Kotlin vs. Java maintainability. A final
hreat to external validity is that our sample is limited to open-source
pplications. Thus, we cannot assert that the results extend to closed-
ource, proprietary apps, although a similar trend might be present,
lbeit potentially slower.
Threats to construct validity relate to the accuracy and suitability

f the measurements used to evaluate the applications’ characteristics.
he project size and diffusion were based on LOCs and files without
onsidering the code’s internal organization or the presence of lan-
uages other than Java or Kotlin, potentially introducing bias when
ssessing the relative importance of Java vs. Kotlin in an Android open-
ource project. The selected popularity metrics were those immediately
vailable on the hosting platforms, but other measures might offer
ore precise insights into user-perceived application quality (e.g., user

eedback, review comments, or developer discussions). For stronger
onstruct validity, comparing the same set of applications in both Kotlin
nd Java would be beneficial, reducing confounding variables. How-
ver, this extension would require a complete rewrite of experimental
ubjects, as there are no known open-source Android applications writ-
en in both languages covering identical features. Future work might
valuate files translated from Java to Kotlin in projects that transitioned
uring their lifespan.
Threats to internal validity pertain to potential biases and errors that

ould affect the study’s outcomes. A first threat to the internal validity
s related to the selection and classification of the projects in the sample
o hybrid projects (by using a 20 LOCs threshold) and to abandoned
rojects (by using a threshold of 45 days since last code update). These
hresholds have been validated in the present study for the absence
f false positives but are not systematically validated and can lead
o false negatives in the final set of papers used for our measures
i.e., hybrid projects with more than LOCs and/or abandoned projects
ith a commit more recent than 45 days). Future research may take

nto consideration the utilization of more refined ML-based approaches,

The Journal of Systems & Software 222 (2025) 112346R. Coppola et al.

n
P
D

such as the one proposed by Coelho et al. (2020), for a more depend-
able classification of abandoned projects. A critical aspect is the tool
used for measuring maintainability; if the tool has inherent biases or
flaws favouring one language, it could compromise internal validity.
Nevertheless, the tool is considered reliable, having been utilized in
large-scale open-source projects and previous empirical studies (Ardito
et al., 2021). Other internal validity threats include possible errors
in manual checks during project mining (e.g., identifying the correct
manifest file in GitHub projects with multiple manifests). A final threat
to the internal validity of the study is the fact that the maintainability of
a software project is not only influenced by static properties (i.e., lines
of code and size and number of methods) but also by the developers’
skill level and expertise, and by the functionalities implemented by the
source code. The influence of these aspects cannot be captured by the
metrics that are computed in this study.

Threats to conclusion validity are about the accuracy of conclusions
drawn from statistical tests. Variance analysis on a linear model was
used to check the statistical significance of the coefficients. We did
not use non-parametric tests, considering the sample size — 2700 data
points — sufficient for the central limit theorem to apply, allowing
for result interpretation despite minor deviations from normality. Our
decision was based on the conventional 5% significance level, and we
applied the Bonferroni correction to mitigate the family-wise error rate.

6. Conclusions

In this paper, we conducted an empirical analysis of the diffusion,
evolution, perceived quality, and maintainability of Android applica-
tions developed with Kotlin compared to pure Java software projects.
The results indicate no negative effects of adopting Kotlin for Android
projects. Furthermore, we found that projects predominantly or en-
tirely using Kotlin significantly enhance the maintainability of software
artefacts.

The findings have several implications for various stakeholders in
the Android ecosystem:

• For open-source developers interested in Kotlin, our research
offers evidence of a large and growing body of Kotlin-based
open-source Android projects. This software corpus has received
positive developer feedback on the platform, affirming Kotlin’s
initial purpose to provide a better Java for developers.

• For companies releasing Android applications, our study pro-
vides empirical evidence that adopting Kotlin in Android projects
is cost-effective compared to Java programming, without compro-
mising the quality perceived by end-users.

• For software engineering researchers, this work serves as a
foundation for comparative analyses of Kotlin and Java, offering a
dataset of Android projects with corresponding code-level metrics
for future studies.

Compared to our initial 2019 study (Coppola et al., 2019), which
examined Kotlin’s diffusion among Android projects on F-Droid, we
observed an increase from nearly 1/5th to 1/3rd of projects containing
Kotlin, among those updated since October 2017. These figures confirm
an ongoing transition from Java to Kotlin in Android development.
This study not only corroborates previous findings on Kotlin’s spread
but also presents new evidence of Kotlin’s superior maintainability and
readability compared to Java. All Android systems will be assimilated:
resistance is futile (Frakes, 1996).

Future research could extend the dataset to encompass open-source
application repositories from various platforms beyond Android, offer-
ing a broader view of Kotlin and Java’s maintainability in different
development contexts. A more detailed examination of maintainability
metrics could also be undertaken, including additional metrics for
Kotlin and Java. Further, a more granular, file-by-file analysis during
the transition from Java to Kotlin could identify specific maintainabil-
ity advantages, providing practical guidance for developers aiming to
11

optimize their migration process for improved maintainability.
CRediT authorship contribution statement

Riccardo Coppola: Writing – review & editing, Writing – origi-
al draft, Visualization, Validation, Supervision, Software, Resources,
roject administration, Methodology, Investigation, Formal analysis,
ata curation, Conceptualization. Tommaso Fulcini: Writing – re-

view & editing, Investigation, Data curation. Luca Ardito: Writing
– review & editing, Writing – original draft, Validation, Supervision.
Marco Torchiano: Writing – review & editing, Writing – original draft,
Visualization, Validation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

All data used is provided as replication package.

References

Ait, A., Izquierdo, J.L.C., Cabot, J., 2022. An empirical study on the survival rate of
GitHub projects. In: Proceedings of the 19th International Conference on Mining
Software Repositories. pp. 365–375.

Akhin, M., Belyaev, M., 2021. Kotlin language specification. Kotlin Lang. Specif..
Andrä, L.-M., Taufner, B., Schefer-Wenzl, S., Miladinovic, I., 2020. Maintainability

metrics for Android applications in kotlin: An evaluation of tools. In: Proceedings
of the 2020 European Symposium on Software Engineering. pp. 1–5.

Anon., 2022. From zero to 10 million lines of Kotlin. https://engineering.fb.com/2022/
10/24/android/android-java-kotlin-migration/. (Accessed 30 September 2023).

Anon., 2023. Kotlin for Android. https://kotlinlang.org/docs/android-overview.html.
Ardito, L., Barbato, L., Castelluccio, M., Coppola, R., Denizet, C., Ledru, S., Valsesia, M.,

2020a. Rust-code-analysis: A rust library to analyze and extract maintainability
information from source codes. SoftwareX 12, 100635.

Ardito, L., Barbato, L., Coppola, R., Valsesia, M., 2021. Evaluation of rust code
verbosity, understandability and complexity. PeerJ Comput. Sci. 7, e406.

Ardito, L., Coppola, R., Barbato, L., Verga, D., 2020b. A tool-based perspective on
software code maintainability metrics: A systematic literature review. Sci. Program.
2020, 1–26.

Ardito, L., Coppola, R., Malnati, G., Torchiano, M., 2020c. Effectiveness of Kotlin vs.
Java in android app development tasks. Inf. Softw. Technol. 127, 106374. http:
//dx.doi.org/10.1016/j.infsof.2020.106374, URL https://www.sciencedirect.com/
science/article/pii/S0950584920301439.

Bose, S., Mukherjee, M., Kundu, A., Banerjee, M., 2018. A comparative study: Java vs
kotlin programming in android application development. Int. J. Adv. Res. Comput.
Sci. 9 (3), 41–45.

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20 (6), 476–493. http://dx.doi.org/10.1109/32.295895.

Coelho, J., Valente, M.T., Milen, L., Silva, L.L., 2020. Is this GitHub project maintained?
Measuring the level of maintenance activity of open-source projects. Inf. Softw.
Technol. 122, 106274.

Coppola, R., Ardito, L., Torchiano, M., 2019. Characterizing the transition to kotlin of
android apps: A study on f-droid, play store, and github. In: Proceedings of the
3rd ACM SIGSOFT International Workshop on App Market Analytics. pp. 8–14.

Dorofeev, K., Wenger, M., 2019. Evaluating skill-based control architecture for flexible
automation systems. In: 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation. ETFA, pp. 1077–1084. http://dx.doi.org/
10.1109/ETFA.2019.8869050.

Ebert, C., Cain, J., Antoniol, G., Counsell, S., Laplante, P., 2016. Cyclomatic complexity.
IEEE Softw. 33 (6), 27–29. http://dx.doi.org/10.1109/MS.2016.147.

Flauzino, M., Veríssimo, J., Terra, R., Cirilo, E., Durelli, V.H.S., Durelli, R.S., 2018.
Are you still smelling it? A comparative study between Java and kotlin lan-
guage. In: Proceedings of the VII Brazilian Symposium on Software Components,
Architectures, and Reuse. pp. 23–32.

Frakes, J., 1996. First contact. Paramount Pictures.
Fu, X., Lee, D., Jung, C., 2018. nAdroid: Statically detecting ordering violations in

Android applications. In: Proceedings of the 2018 International Symposium on Code
Generation and Optimization. pp. 62–74.

Góis Mateus, B., Martinez, M., 2019. An empirical study on quality of Android
applications written in kotlin language. Empir. Softw. Eng. 24, 3356–3393.

Govil, N., 2020. Applying halstead software science on different programming languages
for analyzing software complexity. In: 2020 4th International Conference on Trends
in Electronics and Informatics. ICOEI (48184), IEEE, pp. 939–943.

http://refhub.elsevier.com/S0164-1212(25)00014-7/sb1
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb1
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb1
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb1
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb1
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb2
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb3
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb3
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb3
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb3
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb3
https://engineering.fb.com/2022/10/24/android/android-java-kotlin-migration/
https://engineering.fb.com/2022/10/24/android/android-java-kotlin-migration/
https://engineering.fb.com/2022/10/24/android/android-java-kotlin-migration/
https://kotlinlang.org/docs/android-overview.html
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb6
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb6
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb6
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb6
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb6
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb7
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb7
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb7
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb8
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb8
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb8
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb8
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb8
http://dx.doi.org/10.1016/j.infsof.2020.106374
http://dx.doi.org/10.1016/j.infsof.2020.106374
http://dx.doi.org/10.1016/j.infsof.2020.106374
https://www.sciencedirect.com/science/article/pii/S0950584920301439
https://www.sciencedirect.com/science/article/pii/S0950584920301439
https://www.sciencedirect.com/science/article/pii/S0950584920301439
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb10
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb10
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb10
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb10
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb10
http://dx.doi.org/10.1109/32.295895
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb12
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb12
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb12
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb12
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb12
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb13
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb13
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb13
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb13
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb13
http://dx.doi.org/10.1109/ETFA.2019.8869050
http://dx.doi.org/10.1109/ETFA.2019.8869050
http://dx.doi.org/10.1109/ETFA.2019.8869050
http://dx.doi.org/10.1109/MS.2016.147
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb16
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb16
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb16
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb16
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb16
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb16
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb16
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb17
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb18
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb18
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb18
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb18
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb18
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb19
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb19
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb19
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb20
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb20
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb20
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb20
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb20

The Journal of Systems & Software 222 (2025) 112346R. Coppola et al.
Grano, G., Di Sorbo, A., Mercaldo, F., Visaggio, C.A., Canfora, G., Panichella, S., 2017.
Android apps and user feedback: A dataset for software evolution and quality
improvement. In: Proceedings of the 2nd ACM SIGSOFT International Workshop
on App Market Analytics. pp. 8–11.

Hariprasad, T., Vidhyagaran, G., Seenu, K., Thirumalai, C., 2017. Software complexity
analysis using halstead metrics. In: 2017 International Conference on Trends in
Electronics and Informatics. ICEI, pp. 1109–1113. http://dx.doi.org/10.1109/ICOEI.
2017.8300883.

Hecht, G., Bergel, A., 2021. Quantifying the adoption of kotlin on Android stores:
Insight from the bytecode. In: 2021 IEEE/ACM 8th International Conference on
Mobile Software Engineering and Systems, MobileSoft. IEEE, pp. 94–98.

Hellbrück, S., 2019. A Data Mining Approach to Compare Java with Kotlin. (Bachelor’s
thesis). Metropolia Ammattikorkeakoulu.

IEEE, 1990. IEEE standard glossary of software engineering terminology.
Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D., 2014.

The promises and perils of mining github. In: Proceedings of the 11th Working
Conference on Mining Software Repositories. pp. 92–101.

Li, W., 1998. Another metric suite for object-oriented programming. J. Syst. Softw.
44 (2), 155–162. http://dx.doi.org/10.1016/S0164-1212(98)10052-3, URL https:
//www.sciencedirect.com/science/article/pii/S0164121298100523.

Martinez, M., Mateus, B.G., 2020. How and why did developers migrate Android
applications from Java to kotlin? A study based on code analysis and interviews
with developers. arXiv preprint arXiv:2003.12730.
12
Martinez, M., Mateus, B.G., 2021. Why did developers migrate android applications
from java to kotlin? IEEE Trans. Softw. Eng. 48 (11), 4521–4534.

McCabe, T.J., 1976. A complexity measure. IEEE Trans. Softw. Eng. SE-2 (4), 308–320.
http://dx.doi.org/10.1109/TSE.1976.233837.

Mohsen, F., Oosterhaven, L., Turkmen, F., 2021. KotlinDetector: Towards understanding
the implications of using kotlin in Android applications. In: 2021 IEEE/ACM 8th
International Conference on Mobile Software Engineering and Systems, MobileSoft.
IEEE, pp. 84–93.

Oliveira, V., Teixeira, L., Ebert, F., 2020. On the adoption of kotlin on android
development: A triangulation study. In: 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering. SANER, IEEE, pp. 206–216.

Peters, M., Scoccia, G.L., Malavolta, I., 2021. How does migrating to kotlin impact
the run-time efficiency of android apps? In: 2021 IEEE 21st International Working
Conference on Source Code Analysis and Manipulation. SCAM, IEEE, pp. 36–46.

Schwermer, P., 2018. Performance evaluation of kotlin and java on android runtime.
Shao, J., Wang, Y., 2003. A new measure of software complexity based on cognitive

weights. Can. J. Electr. Comput. Eng. 28 (2), 69–74.
Shepperd, M., 1992. Products, processes and metrics. Inf. Softw. Technol. 34 (10),

674–680.
Vasa, R., Schneider, J.-G., 2003. Evolution of cyclomatic complexity in object oriented

software. In: Proceedings of 7th ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering. QAOOSE’03, Darmstadt, Germany, pp. 1–5.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012.
Experimentation in Software Engineering. Springer.

Zeng, Y., Chen, J., Shang, W., Chen, T.-H., 2019. Studying the characteristics of
logging practices in mobile apps: A case study on f-droid. Empir. Softw. Eng. 24,
3394–3434.

http://refhub.elsevier.com/S0164-1212(25)00014-7/sb21
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb21
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb21
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb21
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb21
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb21
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb21
http://dx.doi.org/10.1109/ICOEI.2017.8300883
http://dx.doi.org/10.1109/ICOEI.2017.8300883
http://dx.doi.org/10.1109/ICOEI.2017.8300883
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb24
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb24
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb24
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb25
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb26
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb26
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb26
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb26
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb26
http://dx.doi.org/10.1016/S0164-1212(98)10052-3
https://www.sciencedirect.com/science/article/pii/S0164121298100523
https://www.sciencedirect.com/science/article/pii/S0164121298100523
https://www.sciencedirect.com/science/article/pii/S0164121298100523
http://arxiv.org/abs/2003.12730
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb29
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb29
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb29
http://dx.doi.org/10.1109/TSE.1976.233837
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb31
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb31
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb31
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb31
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb31
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb31
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb31
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb32
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb32
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb32
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb32
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb32
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb33
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb33
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb33
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb33
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb33
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb34
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb35
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb35
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb35
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb36
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb36
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb36
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb37
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb37
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb37
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb37
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb37
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb38
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb38
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb38
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb39
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb39
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb39
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb39
http://refhub.elsevier.com/S0164-1212(25)00014-7/sb39

	Kotlin assimilating the Android ecosystem: An appraisal of diffusion and impact on maintainability
	Introduction
	Background
	The Kotlin Language
	Maintainability Metrics
	Related work

	Research Method
	Research Questions
	Selection of Software Objects
	Analysis Procedure
	Diffusion Analysis (RQ1)
	Evolution Analysis (RQ2)
	Collection of Popularity Metrics (RQ3)
	Computation of Maintainability Metrics (RQ4)
	Statistical Analysis (RQ3, RQ4)

	Results
	Diffusion (RQ1)
	Evolution (RQ2)
	Popularity (RQ3)
	Maintainability (RQ4)

	Discussion
	Summary of Findings
	Comparison with related work
	Threats to Validity

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

