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A B S T R A C T   

The lithium-ion battery (LIB) field is moving towards the direction of investigating spatially resolved physical 
phenomena in the 3D porous microstructure of electrodes. These pore-scale simulations give new insights into 
the local dynamics of lithiation/de-lithiation and charge transport. Nevertheless, the computational time of these 
simulations limits the integration of these models in optimization workflows of cycling conditions or electrode 
manufacturing processes. 

Machine learning models present a way of assessing in real-time the performance of materials. While several 
successful techniques for replicating simulations with machine learning have been proposed, this case study 
presents a more demanding problem, due to the necessity of understanding the behavior of heterogeneous 3D 
local data, as it evolves in time: this poses both a scientific and a technical challenge. 

To this end, we propose an autoregressive multiscale convolutional neural network model to predict relevant 
quantities at the pore-scale in the solid phase: the lithium concentration (in the active material) and potential (in 
the active material and carbon binder). These are ultimately used to reconstruct the battery discharge curve. 3D 
images of the electrode microstructures are the input to the network, trained with a dataset of finite element 
method simulations to predict the discharge behavior of the cathode side in lithium ion batteries. 

We propose this machine learning model as a proof-of-concept of the applicability of multiscale networks for 
time-dependent physics problems. The trained model exhibits very high accuracy (with errors lower than 2%) in 
forecasting the discharge behavior of new unseen cathodes.   

1. Introduction 

The study of lithium transport and charge dynamics in lithium-ion 
batteries (LIBs) is a research field of the utmost importance for battery 
development. The computational modeling of charge-discharge dy-
namics in LIBs is crucial to ensure their optimal usage in terms of safe 
charging and discharging cycles; beyond their use for the continuous 
improvement of battery management systems, these models are also 

essential in effective design of new battery chemistries and materials 
[1]. Accurate multiscale models can help researchers to understand the 
effect of operating conditions on the battery performance, as well as the 
impact of electrode properties, or the physics behind degradation phe-
nomena [2,3]. The main objective is to exploit models and experiments 
in synergy to speed up the discovery of new batteries and the under-
standing of the degradation phenomena impacting the life cycle of 
state-of-the-art batteries [4]. 
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In the last decades, modeling solutions have been proposed to pro-
vide researchers with reliable predictions of integral quantities of in-
terest. Pseudo 1D and 2D models [5–7] have been developed for the 
electrochemical modeling of batteries and can be easily employed since 
they can be run on conventional consumer-grade computers. Many 
open-source implementations exist [8], some of them employing the 
well-known Newman model [9]. Nevertheless, low-dimensionality 
models rely on integral descriptors of the electrodes geometries 
(porosity and tortuosity), as their 3D porous structure is not explicitly 
considered. However, since these porous structures are now becoming 
available from imaging techniques [4,10] it does make sense to repro-
duce them in silico [11–14] and exploit them in fully-resolved pore-scale 
simulations. The explicit consideration of these electrode microstruc-
tures in electrochemical models is important to understand the effect of 
manufacturing parameters and heterogeneities in 
lithiation/de-lithiation on the performance and aging [15]. Lu et al. [10] 
reported that complex physics interplay was found in different electrode 
designs. De Lauri et al. [16] investigated the relationship between heat 
generation and electrode microstructure. Parmananda et al. [17] found 
that the homogeneity of graphite particle morphology is important to 
the anode performance. Therefore, the technique shows great potential 
in further elevating the electrode performance to another level in 
various perspectives. 

Fully-resolved pore-scale models have been developed thanks to the 
increasing computational resources available nowadays: these 4D 
models (3D microscale geometry plus time dependency) do not rely on 
integral geometrical descriptors of the electrodes as inputs, since the 
charge and transport equations are solved imposing the boundary con-
ditions on the interfaces between the constituting materials and the 
pores [18–21]. The pore-scale results give an insight into the local dy-
namics of lithium and charge transport, beyond macroscale predictions 
which can be experimentally measured and validated. In literature both 
in-silico generated microstructures and digital images have been 
employed to this end [22]. Pore network modeling has also been 
employed recently for the simulation of charge/discharge in lithium-ion 
batteries as well [23]. In general, the insights given by this closer look at 
the transport processes happening at, and regulated by, the microscopic 
scale of the electrodes are essential for understanding the links between 
electrochemistry and transport processes. This better understanding can 
help at optimizing the electrodes. 

Even though these simulations are practicable for small campaigns, 
their computational cost is a limitation to integrate these models in 
optimization workflows [24], or as support in manufacturing labora-
tories as digital twins of the battery electrochemical behavior. As a 
promising alternative, surrogate models can be trained to learn from 
datasets of physics-based simulations, and the trained model can be used 
to predict outputs fast – in the order of seconds – on new (unseen) data. 
Neural networks are usually the models of choice since they can learn 
highly nonlinear correlations between inputs and outputs data with ease 
[3,25–27]. In particular, convolutional neural networks (CNN) have 
been widely used in porous media research since they are well-suited to 
work with image data as inputs and outputs. CNNs have been trained for 
segmentation tasks [28,29], for parameter estimation [30–32], and for 
field prediction [33,34]. Nevertheless, there is a tradeoff between the 
size of the input (and output) images and the number of trainable pa-
rameters of the network, due to the memory limitations of graphics 
processing units (GPU). 

The multiscale convolutional neural network (MSNet) [35] over-
comes this limitation since its parameters are distributed among 
different resolutions (scales) of the input images resulting in the capa-
bility of studying larger images with wider fields of vision. This model 
has been adapted for the steady-state prediction of flow fields [35], 
concentration fields [36], and electrical potentials [37,38] in porous 
media. 

We propose a novel autoregressive multiscale network to learn from 
a transient dataset of physics-based simulations. We focused on 

obtaining local predictions of lithium concentration and potential in the 
solid phase (active material in the former and both active material and 
carbon binder in the latter) in time over a discharge cycle, resulting in 
discharge curves. 

The dataset is generated using 4D finite element simulations of 
discharge in the cathode side (half-cell simulations) of LIB cells. The 
microscale simulations are solved by a finite element method employing 
in silico reproductions of cathode geometries, arising from their 
manufacturing simulations, and characterized by different proportions 
of active material (nickel manganese cobalt - NMC111), and by different 
calendering degrees [39]. Then, a workflow reproducing the 
manufacturing process of the electrodes based on coarse-grained mo-
lecular dynamics simulations and discrete element method is employed 
to create the electrode microstructures [40,41]. We compare the clas-
sical and autoregressive training strategies to show the best approach to 
obtain transient predictions. 

We present the governing equations as well as the computational 
details of the electrochemical simulations, the dataset employed for the 
training of the neural networks, and an overview on multiscale con-
volutional neural networks. Finally, the generalization capability of the 
trained MSNet on the prediction of discharge curves for new batteries is 
presented in the results section. 

2. Microstructurally resolved electrochemical model 

Electrodes can be modelled as porous media made by two solid 
phases immersed in the electrolyte. The first solid phase is the active 
material (AM), which takes part into the electrochemical reaction, the 
second solid phase is made by the carbon, which ensures electrical 
conduction throughout the electrode, and the binder, that binds the 
components together into a stable microstructure. The active material 
(granulometry ~1–10 μm characteristic size of AM particles) constitutes 
a phase easily distinguishable from the carbon (~50–150 nm) and the 
binder components, which instead for modeling purposes are repre-
sented by a single phase called carbon binder domain (CBD) [13]. 

In this work a dataset made by microscale simulations of half-cells 
(cathode side) has been employed for the training of machine learning 
models. In this section the transport equations numerically solved to this 
end are summarized. The equations of mass transport and charge bal-
ance must be solved in three domains: AM, CBD, and electrolyte. 

In the electrolyte the charge conservation reads as follows: 

∇⋅il = 0, (1.1)  

il = − σl∇ϕl +
2RTσl

F
(1 − t+)

(

1+
∂(lnf±)
∂(lncl)

)

∇ln(cl), (1.2)  

where il is the ionic flux in the electrolyte, σl is the electrical conduc-
tivity of the electrolyte, ϕl is the electric potential in the electrolyte, F is 
the Faraday constant, R is the perfect gas constant, t+ is the transport 
number of the lithium ions, f± is the mean molar activity coefficient, cl is 
the lithium ions concentration in the electrolyte. 

The first term is the charge conservation equation, where ∇⋅il is null 
because of the cell neutrality. The current density is made by two terms: 
the migration contribution, that depends on the electrical conductivity 
of the electrolyte, and the diffusion contribution that depends on the 
concentration gradient related to the diffusion coefficient of the ions by 
the transfer number. The activity coefficient considers the interactions 
between ions in the solution, in fact, the concentration of the ions is not 
compatible with a dilute approach, thus the concentrated solution the-
ory applies [42]. 

The transport equation for the concentration of lithium ions within 
the electrolyte can be expressed as: 

∂cl

∂t
+∇⋅

(

− D l∇cl +
ilt+
F

)

= 0. (2) 
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In the AM portion of the electrode the charge conservation equation 
is Ohm’s law in steady state conditions: 

∇⋅
(
σs,AM∇ϕs

)
= 0, (3)  

where σs,AM is the electrical conductivity of AM, and ϕs is the potential of 
the AM. 

The mass balance inside the electrode can be modelled by Fick’s law, 
which describes the diffusion of lithium in the AM electrode: 

∂cs

∂t
+∇⋅(D s∇cs) = 0, (4)  

where cs is the lithium concentration in the AM and D s is the diffusion 
coefficient of lithium. 

The CBD is modeled as a homogeneous porous medium domain, so 
the transport equations are solved in the domain without considering its 
geometrical internal structure and by assuming the electrolyte fully 
infiltrating it. The transport properties are averaged over the entire 
domain, so the charge transport is modelled as follows: 

∇⋅
(
σs,CBD∇ϕs

)
= 0, (5)  

where σs,CBD is the electrical conductivity of the CBD and is expressed as 
a function of its porosity. 

The mass balance in the CBD is: 

∂εCBDcl

∂t
+∇⋅

(

− D l,eff∇cl +
ilt+
F

)

= 0, (6.1)  

il = − σl,eff∇ϕl +
2RTσl,eff

F
(1 − t+)

(

1+
∂(lnf±)
∂(lncl)

)

∇ln(cl), (6.2)  

where σl,eff and D l,eff are the effective electrical conductivity and 
lithium ions diffusivity in the CBD. 

They are defined as a fraction f of the electrolyte properties: 

D l,eff = f D l, σl,eff = f σl. (7) 

The electrochemical reaction is modeled at the interface by means of 
the Butler-Volmer equation: 

ise = Fkcαa
l cαc

s

(
cmax

s − cs
)αc

[

exp
(

αaFη
RT

)

− exp
(

−
αcFη
RT

)]

(8)  

where k is the reaction rate coefficient, αa and αc are the anodic and 
cathodic transfer coefficients, and η is the overpotential which is defined 
as: 

η = ϕs − ϕl − Eeq, (9)  

where Eeq is the electrode equilibrium potential. On the surface of Li 
metal which is the reference electrode, an extra contribution is added: 

η = ϕs − ϕl − RSEI i − Eeq 

where RSEI is the surface resistence due to solid electrolyte interface 
(SEI). 

3. Dataset 

The dataset employed for training the data-driven model was created 
using half-cell microscale simulations of the cathode side, whose ge-
ometries are reproduced in-silico. The physics-based digital twin 
workflow for the creation of the electrode structures mirrors the 
experimental steps of electrode manufacturing, as shown in Fig. 1A 
(more details can be found in [39]). The key steps of the fabrication 
process digitally reproduced are: (1) the preparation of the slurry with 
all the components, (2) the slurry casting on the current collector, (3) the 
solvent evaporation from the cast, (4) the calendering of the dried 
electrode. The resulting geometry is used to generate the computational 
grid employed for the electrochemical simulation. 

These geometries usually distinguish the solid in two regions: AM 
and CBD. The latter is constituted by the binder and the conductive 
carbon, which forms a single phase after the evaporation of the solvent. 
The in-silico reproduction of the electrode geometry (arising from 
manufacturing simulations) is preferred over direct imaging in the 
context of electrochemical simulations. This is because even though 3D 
images can be obtained using synchrotron X-ray tomographies [43], the 
segmentation of the three phases (AM, CBD, electrolyte) is not 
straightforward and is a topic of active research [44]. Being able to 
create new electrode geometries spanning a wide range of different 
formulations is essential to create large simulation datasets. 

To this end the processes at points (2), (3), (4), are modelled by using 
the molecular dynamics code LAMMPS [45], as detailed in [39,46]. 
First, given the granulometry of the AM and of the CBD before the 
evaporation, a random configuration of particles is produced. Then, the 

Fig. 1. (A) The physics-based digital twin process replicates the experimental production of electrodes which are then used in the electrochemical simulations to 
create a dataset. The digital twin results are then used to train the machine learning surrogate model (B) for the prediction of new 3D time-changing fields in 
new geometries. 
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slurry is equilibrated at constant pressure and temperature imposing 
Lennard-Jones and Granular Hertzian potentials between particles. 
After that, the evaporation of the solvent is modelled imposing the 
shrinkage of the CBD particles until a set value is reached. Finally, the 
calendering of the electrode is simulated imposing a compression on the 
dried virtual electrode. The computational details of this workflow can 
be found in other previous publications, see for instance [15,39,41,46]. 

The electrochemical simulations have been performed by using the 
finite element method implemented in COMSOL. In particular, the 
partial differential equations of charge and mass balance reported in the 
previous section are solved in the AM, CBD, and electrolyte phases. The 
values of the parameters in Eqs. (4)–(12) are reported in Table 1. 

The starting point for building the dataset used for the training of the 
neural networks is choosing a set of different electrode geometries, 
varying in terms of AM/CBD proportions and calendering degree. Each 
geometry is then employed for simulations at different discharge rates, i. 
e., the C rate. These values are also summarized in Table 2; all the 
possible combinations of those parameters have been simulated to 
create the dataset, thus a total of 27 transient simulations. The dataset 
was previously validated by experimental results. Thus, the approach 
presented in this work does not need further validation and can be 
considered a self-consistent defined workflow. 

Since the simulations have been solved by a finite element method, 
the computational grids are unstructured. This is not a compatible input 
for a convolutional neural network, which requires a matricial data 
shape, so the results have been interpolated into a structured grid, in 
order to be conveyed to the network as a 3D image. The interpolation 
consists, at first, in the creation of the Cartesian grid by means of a 
voxelization algorithm, in the grid ‘1′ is assigned to the phase to be 
interpolated and ‘0′ elsewhere. Then the fields are interpolated from the 
unstructured grid to the structured one by means of a Gaussian kernel 
interpolator [47]. The size of the Cartesian grid cells is 0.5 μm, which is 
the resolution of the elements in the original unstructured grid [39]. 

The dataset is made by 27 samples which are defined for a transient 
problem as the collection of all the timeframes available from a simu-
lation of a given electrode geometry and undergoing a certain discharge 
rate, so its dimensions are: (time, x, y, z). The time required for a 
discharge cycle depends on the C rate: if the C rate is doubled, the time 
required to completely discharge the battery is halved. In the dataset the 
timeframes have been saved according to the C rate, thus resulting in 
samples with the same number of timeframes. It is important to un-
derline that the timeframes are not saved at each time-step of the 
transient simulation, because the memory load necessary to save them 
would have been prohibitory. 25 timeframes are then available for each 
sample, for 2C discharge the time interval between two timeframes is 50 

s, for 1C discharge rate 100 s, for 0.5C discharge rate 200 s. While the 
range of discharge rates (C-rates) explorable with this methodology is 
larger, the chosen C-rates stand in the middle of the significant range for 
practical battery cell operation relevance. The number of timeframes 
employed for each simulation is an hyperparameter for the data-driven 
model, in the case of this work 25 timeframes is a good tradeoff between 
an accurate description of the discharge dynamics, the computational 
cost of the training procedure, and the hardware constraints on the GPU. 
In this work we will refer to the timeframes as a multiple of Δt∗. 

The number of timeframes, to extract from the simulations and 
employ in the training, is surely a hyperparameter to be further inves-
tigated to evaluate its impact on the accuracy of the predictions. 

4. Machine learning architecture 

4.1. Convolutional neural networks 

Convolutional neural networks are deep learning models that work 
with images. In the context of this work, we utilize 3D voxelized do-
mains as inputs. 

The basic layer of these models is the convolutional layer which 
performs the convolution operation (∗): 

xout = f

(
∑F

i=1
xin ∗ ki + bi

)

(10)  

where f is a pixel-wise non-linear function, xin is the input 3D image, ki is 
the kernel, F is the total number of kernels, bi is a bias term, xout is the 3D 
output of the operation. The kernel is a 3D operator whose parameters 
are optimized during the training procedure; for an accurate overview of 
these operations the reader is referred to [54]. CNN are equivariant to 
translation, so the network learns how to detect geometric features 
across the domain, which is fundamental when dealing with porous 
structures. 

Some examples of widely used CNN architectures are U-Net [55] and 
Res-Net [55]. However, when dealing with 3D images the memory re-
quirements are large, making the use of these standard architectures 

Table 1 
Parameters of the charge and mass balance equations.  

Parameter Value/Reference 

Porosity of CBD εCBD 0.27 [48] 
Maximum Li concentration of NMC Cmax

s (mol/m3) 48,207 
Initial degree of lithiation (DOL) of NMC 0.45925 
Reaction rate coefficient of NMC k (m2.5/(s mol0.5)) 4.38 10− 11 [49–51] 
Reference concentration cref (mol/m3) 1000 
Ionic conductivity of electrolyte σl (S/m) 0.04(cl/cref )

5
− 0.4071(cl/cref )

4
+ 1.7131(cl/cref )

3
− 3.6247(cl/cref )

2
+ 3.3222(cl /cref ) + 0.016 [52] at 20 ◦C 

Electrical conductivity of NMC σs,AM (S/m) 0.01 
Electrical conductivity of CBD σs,CBD (S/cm) − 173.967ϵ + 0.1593 
Deformation of the CBD phase because of calendering ϵ [37] Table S3 
Factor for effective transport correction in CBD f 0.05 
Diffusion coefficient of Li+ D l m2/s − 6e − 12(cl/cref )

3
+ 6e − 11(cl/cref )

2
− 3e − 10(cl /cref ) + 5e − 10 [52] at 20 ◦C 

Diffusion coefficient of Li in NMC D s m2/s 1e − 14(cl/cref )
3
+ 3e − 14(cl/cref )

2
− 1e − 13(cl /cref ) + 6e − 14 [53] 

Transport number of Li+t+ 0.0015(cl/cref )
3
+ 0.0434(cl/cref )

2
− 0.287(cl /cref ) + 0.5222 [52] at 20 ◦C 

Activity dependence of Li+
(

1 +
∂(lnf±)
∂(lnCl)

)
0.1138(cl/cref )

3
+ 0.0944(cl/cref )

2
+ 0.6692(cl /cref ) + 0.1778 [52] at 20 ◦C 

Anodic transfer coefficient αa 0.5 
Cathodic transfer coefficient αc 0.5 
SEI film resistance RSEI Ω m2 0.001  

Table 2 
Parameters explored for the creation of the dataset.  

Parameter Set 

AM (%wt) 85–90–95 
Calendering degree 0–10–20 
C rate 0.5C-1C-2C  
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unfeasible. It is possible to overcome this limitation by reducing the size 
of the images or optimizing the architectural design. Reducing the size of 
the input images size can be an issue when studying porous media 
structures since most of the applications need representative elementary 
volumes as computational domains. Multiscale neural networks 
(MSNet) have been demonstrated to be an excellent alternative to the 
previous architectures since its design allows it to process bigger images 
with a fixed number of trainable parameters [35] compared to the 
above-mentioned architectures [33]. 

For this application, we have verified this by building a PoreFlowNet 
[33] model, which merges the most effective features of both U-Nets and 
Res-Nets. We have chosen the same number of parameters as the MSNet 
that we eventually have used for the final training process (i.e.: 
approximately three million). The higher memory efficiency of MSNet 
was immediately proven as it was possible to fit only three frames of the 
time-series in this PoreFlowNet, out of the 25 composing the full tran-
sient evolution of the phenomenon. 

4.2. Autoregressive MSNet 

MSNet is composed by several branches (scales) which are fully 
convolutional neural networks, each branch gets the same set of input 
features at different resolution thanks to coarsening operations, then 
each branch predicts the output field at the corresponding resolution 
and contributes to the final prediction thanks to refinement operations, 
the MSNet architecture is shown in Fig. 2. 

The process of reducing the resolution of both input and output 
fields, known as coarsening, is achieved via nearest neighbor averaging. 
This means that the collective value of every set of 23 pixels is averaged 
and then depicted as one pixel. Conversely, the refinement operation 
employs a masked nearest-neighbors re-scaling. This method works to 
retain the geometric form of the solid part. The operations of coarsening 
and refinement are designed to preserve the spatial average, 

consequently, when a refined image undergoes coarsening, it reverts to 
its initial state. The study of the images at different resolutions makes 
MSNet capable of grasping short-range and long-range correlations in 
multiscale three-dimensional phenomena. For transient problems, more 
appropriate architectures and training strategies must be chosen. 
Recurrent neural networks, such as long-short term memory networks 
[56], have been widely employed in data science, but may not be the 
most appropriate structure for a Markovian problem. 

In this work MSNet has been modified in order to deal with a tran-
sient dataset, and to predict a sequence of fields starting from the initial 
conditions. The most intuitive way to approach this problem is to 
consider the problem as a Markovian process: the result at a certain 
time-step depends just on the previous one, as it is in the solution of a 
transient physics-based simulation. Therefore, the network should take 
as input the geometrical descriptors and the operating conditions, 
together with a temporal feature, which is: the initial condition for the 
prediction of the first timeframe, or the previous timeframe for the 
prediction of the following ones. 

Given this premise the easiest solution to perform the training is to 
concatenate the input features with the previous timeframe field (the 
true field from the simulations) and train the network as the standard 
MSNet. This is what will be called the “classic” approach. In this way the 
training is carried out on shuffled timeframes, so the transient problem is 
decomposed as single frame samples. Nevertheless, for testing purposes 
the first prediction is carried on concatenating the input features with 
the initial condition, then the first output is concatenated with the other 
features for the prediction of the second timeframe, so on and so forth 
until the last prediction. This is necessary since in the test mode the 
intermediate timeframes are not available, thus the network predictions 
have to be employed as input for the following timeframes. 

Another training solution is to mimic the testing process, so that 
during the training the input features are concatenated with the previ-
ous timeframe network prediction, and not the true field of the physics- 

Fig. 2. Workflow of the MSNet architecture. Each scale takes as input the same set of features, at different resolutions, thanks to coarsening operations (only the 
binary geometry feature is shown). The convolutional layers (blue blocks) have an increasing number of filters for increasing scales to optimize the tradeoff between 
the total number of trainable parameters and the memory requirements during training. 
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based simulation. By using this approach, the transient nature of the 
dataset is preserved, since MSNet is provided with the samples (each one 
with the timeframes from the initial condition to the final timeframe) at 
each epoch. This autoregressive training approach, shown in Fig. 3, can 
be summarized as follows: 

ŷ(0,1) = MSNet(X0,Xinitial), (11)  

ŷ(0,2) = MSNet
(

X0, ŷ(0,1)

)
, (12)  

ŷ(0,T) = MSNet
(

X0, ŷ(0,t− 1)

)
, (13)  

where ŷ(0,T) is the predicted output at scale 0 and for the last timeframe 
T, X0 is the set of input features. For a generic timeframe t, MSNet 
performs the following operations: 

ŷ(0,t) = CNN0

(
X0, ŷ(0,t− 1),R

(
ŷ(1,t)

))
+ R

(
ŷ(1,t)

)
, (14)  

ŷ(1,t) = CNN1

(
X1, ŷ(1,t− 1),R

(
ŷ(2,t)

))
+ R

(
ŷ(2,t)

)
, (15)  

ŷ(2,t) = CNN2

(
X2, ŷ(2,t− 1)

)
, (16)  

where R() is the refinement operation, CNNN is the fully convolutional 
neural network for scale N. 

In this work we have trained a 3-scale MSNet (indices from 0 to 2). 
This was done to ensure a good field of vision [35] for our samples size 
which is (72,72,244). 

The loss function of a single timeframe, L t, is calculated as the sum 
of the mean squared errors for each scale (N), the global loss function 
(minimized during training) is the sum of the loss functions of the single 
timeframes normalized by the number of timeframes: 

L t =
∑2

N=0

(
y(N,t) − ŷ(N,t)

)2
, (17)  

L =
1
T
∑T

t=0
L t, (18) 

The input features to the network, X0, are geometrical descriptors 
and operating conditions. The Euclidean distance transform, the AM- 
CBD-electrolyte repartition, and the distance between current collector 
and separator have been employed as geometry features, respectively A, 
B, C of Fig. 4. In particular the feature A represents the solid phase 
diffusion distance: in fact it has been employed as an effective feature in 
informing the network about the characteristic length of a transport 

diffusion process [36]. Feature C is useful to give information about the 
directionality of the charge and mass transport processes, happening 
between the collector and the separator. The C rate value has been 
provided as operating condition input. Both input and output features 
have been scaled in order to range between 0 and 1, so MSNet predicts 
normalized concentration and potential fields. 

The architecture details and the training parameters are summarized 
in Table 3. 

5. Results and discussion 

The main prediction objective of this study is the reconstruction of 
the discharge curves, which describe the potential decay as a function of 
the degree of lithiation of the cathode. So MSNet was employed for the 
prediction of the lithium concentration field in the AM phase, and the 
potential field in the solid phase (AM + CBD) of the electrode. From 
these predicted fields it is possible to integrate their quantities over the 
phases and obtain the desired discharge curves. First the two training 
approaches proposed in the previous section are compared for the pre-
diction of the concentration field, then the best approach among the two 
is employed for the prediction of the potential field, required for the 
reproduction of the discharge curves. 

The comparison is based on the prediction of the lithium concen-
tration on three test samples: with C rates 0.5C, 1C, 2C, all with AM 
weight percentage equal to 90 and calendering degree equal to 10. In 
general the choice of the training strategy (in the sense of its impact on 
the statistical significance of the resulting trained model) is very 
important, and on a dataset with such a limited size even more so. While 
techniques based on repeated trainings with varying training subsets 
(such as k-fold cross-validation) serve the purpose of providing a better 
estimate of the potential performance of the model at generalization 
tasks, they are in this case quite costly, and as such we have opted for a 
physical-based heuristic procedure in which, as mentioned above, the 
samples sharing the same geometry would be kept out from the training, 
so to have the network perform its testing on three samples differing 
from the training set in their most important (read, most defining) 
feature: the geometry of the computational domain, thus providing for a 
reasonably testing ground for comparing the classic and autoregressive 
approach even in generalization. 

In the first approach the training inputs are the geometrical de-
scriptors, the C rate, and the previous timeframe field (from the physics- 
based simulation). In the second approach the training inputs are the 
geometrical descriptors, the C rate, and the previous network-predicted 
timeframe field. In Fig. 5 the relative error between true and predicted 
average lithium concentration is reported for the different C rates along 
subsequent timeframes. It is evident that by using the first approach the 
error increases with time, while this does not happen with the second 

Fig. 3. Classic and autoregressive approaches for the training of MSNet for the prediction of time-dependent fields.  
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approach. In Fig. 6 three timeframes for the test sample at discharge 1C 
are compared for the two approaches. For each timeframe, the true 
(from the finite elements simulations) and predicted local concentration 
fields are displayed for a slice of the 3D domain, and the pixel-wise error 
is reported on the right. It is possible to see that using a “classical” (not 
autoregressive) approach even the local prediction deteriorates in time, 

in fact, the radial profile of the lithium concentration is lost in time 
becoming a random noisy concentration field. 

The different behavior in generalization is due to the error propa-
gation in time. When MSNet is trained with the true fields as input, the 
network is not trained to deal with slight (but cumulating) fluctuations 
of prediction errors as input fields, thus it is not trained to dampen these 
fluctuations, on the contrary it magnifies the errors in the predictions 
leading to a big propagation of the error. In the second approach, during 
the training the network learns how to dampen fluctuations in the input 
resulting in much better generalization. 

Given these results, the autoregressive MSNet was employed for the 
prediction of the transient concentration and potential fields. The pre-
dictions of the potential fields over time are summarized in Fig. 7 for 
each timeframe: there, the true field from the COMSOL simulations is 
reported, then the predicted field, and the local relative error. The 
average quantities are needed to obtain the predicted discharge curves 
of Fig. 8. In these charts the potential is expressed as a function of the 
lithium concentration in the active material for the different C rates. In 
order to give a more intuitive representation of the evolution in time of 
these quantities and how the autoregressive MSNet predictions compare 
to the simulations ground truth, a video is provided with this paper, in 
the form of Supplementary Material. 

6. Conclusions 

In this work we have decided to focus on a single, but central, aspect 
of the field of computer-aided battery research: the problem of facili-
tating the optimization processes needed in the design of battery elec-
trodes and cells. In the fast-moving landscape of modern battery design, 
with its demand for ever growing performance in multiple application 
domains, this means computational loads that workflows based on 
traditional modeling cannot bear. A wide variety of low-order, data- 
driven, and in general surrogate models are thus being studied and 
employed to aid in this prospect. 

Our tools of choice for this effort are neural networks, and especially 
convolutional neural networks. The effectiveness of this kind of machine 
learning technique is apparent (and was again shown here) when 
dealing with the interpretation of transport phenomena which are 
influenced by the geometric structure characterizing the system, as is the 
case for porous media in general and clearly for heterogeneous micro-
structure of lithium-ion battery electrodes. 

Starting from an innovative multi-scale convolutional network ar-
chitecture, proven to accurately reproduce results of detailed steady- 

Fig. 4. Geometrical descriptors employed as input to MSNet (cathode: 85% AM, calendering: 0). Plot A: inverted Euclidean distance, plot B: AM/CBD/electrolyte 
repartition, C: current collector separator distance. 

Table 3 
Architecture details and chosen hyperparameters.  

Parameter Value 

Number of scales (N) 3 
Number of convolutional layers per scale 5 
Number of filters (F) at the finest scale (0) 10 
Number of filters (F) at scale n 104n+1 

Kernel size of the convolutional layers (3,3,3) 
Learning rate 10− 4 

Batch size 1 
Activation function CELU [57] 
Training/test split 24/3 
Input size (x,y,z) (72,72,244)  

Fig. 5. Error on the prediction of the average concentration along the time-
frames and the different C rates. Classic (MSNet in red) and autoregressive (AR- 
MSNet in black) approaches are compared; squares: 0.5C, circles: 1C, di-
amonds: 2C. 
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state physics-based simulations, we have developed an improvement to 
obtain a data-driven model able to also explore variations in time and in 
space of properties of interest. 

Two connected takeaways result from the work shown here. First, as 
mentioned, the results confirm the great flexibility of convolutional 
neural networks as algorithms for the treatment of physics-based 
simulation data, and that they are able (with appropriate 

modifications) to also be effectively used to treat time-varying se-
quences of three-dimensional data. This was not granted, as this kind of 
application lies outside of the applications for which convolutional 
neural networks are now solidly a standard, namely image analysis. 
Secondly, the process we presented shows how this extension is not 
trivial, as a “classic” sequential approach to the neural network training 
would fail by means of error accumulation in time. Thus, an 

Fig. 6. Local true and predicted concentration fields for three timeframes of a slice of the 3D sample (1C). For each timeframe: concentration field from the physics- 
based simulation, prediction by the classical MSNet, relative error between true and classical approach, prediction by the autoregressive MSNet, relative error 
between true and autoregressive MSNet. 
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autoregressive approach was needed, meaning that both a suitable ar-
chitecture had to be developed and appropriate loss functions were 
formulated in order to properly teach the network how to interpret the 
data coming from physics-based simulations, and how to learn to make 

comparably good predictions, even when moving beyond the cases on 
which it was trained. 

Being this work a proof-of-concept of the applicability of this 
approach, there is significant room for improvement. The dataset 

Fig. 7. Local true and predicted potential fields for three timeframes of a slice of the 3D sample (1C). For each timeframe: concentration field from the physics-based 
simulation, prediction by the autoregressive MSNet, relative error between true and autoregressive MSNet. 
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employed for this work is limited to NMC cathodes of Lithium-ion bat-
teries, this means that the trained network cannot generalize to different 
materials and cells. In the future developments of this work it would be 
interesting to train the network on a diverse dataset of cells and mate-
rials, and test the inference capabilities of the method in predicting the 
discharge behavior of a wider set of cells and materials. 

In conclusion, we consider this to be a successful proof of concept for 
fast, reliable, and full-order surrogation of accurate numerical simula-
tions. Fast surrogate models are essential to deal with the wide param-
eter space intrinsic in contemporary battery design and optimization 
[24]: the results of this work aim to show how such surrogates can not 
only predict single key metrics but are also able to disclose the full dy-
namics of battery systems as they evolve in time. 

The major opportunity of the approach we propose is that we pave 
the way towards computational high-throughput screening of 3D- 
resolved heterogeneous electrode operation as a function of 
manufacturing parameters, and therefore towards computational opti-
mization of the electrodes [24]. 
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