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ABSTRACT Stanfordmemristor model is a widely usedmodel that accurately characterizes real non-volatile
metal-oxide resistive random access memory (RRAM) devices with bipolar switching characteristics. The
paper studies for the first time the dynamics and bifurcations in a class of nonlinear oscillators with real
non-volatile memristor devices obeying Stanford model. This is in contrast with papers in the literature
considering oscillators with ideal, abstract, or artificial memristormodels, that are unable to describe physical
memristors implemented in nanotechnology. One main new idea in the paper is to use the memristor as a
programmable nonlinear resistor. Namely, two principal modes of operation are considered. 1) Analogue
transient phase: the oscillator is designed so that in the transient oscillations the voltage on the memristor is
below threshold, hence the main memristor state variable, i.e., the gap of the insulating material, is almost
constant and the memristor behaves as a static nonlinear resistor. 2) Programming phase: the nonlinear
characteristic of the memristor, which depends on the gap, can be changed via the application of voltages
above threshold. The paper studies nonlinear oscillations in the transient phase for a fixed gap as well as the
bifurcations phenomena displayed when the gap is varied. The paper also discusses the differences between
the approach in the paper and those to design other memristor oscillators with non-volatile memristors.

INDEX TERMS Bifurcations, Chua’s circuit, complex dynamics, memristor, Stanford model.

I. INTRODUCTION
Oscillatory circuits with memristors have attracted a
widespread interest in recent years [1]–[12]. Due to the
rich dynamics guaranteed by the presence of memristors,
such circuits are considered more effective candidates than
traditional nonlinear RLC circuits to implement the core
dynamics of reservoir computing systems [13] or to obtain
sources of controllable chaotic behavior to incorporate into
neural-inspired future computational systems [8]. More
generally, memristor circuits lend themselves as a promising
tool to overcome some limitations of Von Neumann
computing systems via the implementation of new in-
memory, analogue and parallel (neuromorphic) computing
paradigms [14], [15].

The associate editor coordinating the review of this manuscript and

approving it for publication was Artur Antonyan .

When considering memristor oscillatory circuits, it is
of importance to distinguish between ideal memristors,
as those introduced in the original paper by Chua [16],
and generic or extended memristors introduced by Chua
and Kang in the seminal paper [17]. In the latter case,
an additional fundamental dichotomy to take into account
is between volatile and non-volatile memristor models [18].
Ideal memristors are mainly of theoretic interest. On the other
hand, the importance of generic and extended memristors
cannot be overemphasized, since they are used to model real
physical memristor devices implemented in nanotechnology
[16], [19]–[24].

Oscillatory circuits with ideal memristors have been
investigated in several works (see, e.g., [1]–[4], [25]–[30],
and references therein). The theory underlying the dynamic
behavior in the ideal case is nowadays quite well understood.
In fact, it has been shown in [9], [24], [31] that the state

13650
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-0013-9112
https://orcid.org/0000-0002-3970-7201
https://orcid.org/0000-0002-2110-826X
https://orcid.org/0000-0003-4431-5701
https://orcid.org/0000-0002-4192-5291


M. Di Marco et al.: Oscillatory Circuits With Real Non-Volatile Stanford Memristor Model

space of circuits with ideal memristors is foliated in a
continuum of invariant manifolds. On each manifold the
dynamics is equivalent to that of an oscillator where the
ideal memristor is replaced by a nonlinear resistor with
the same shape of the nonlinear characteristic and there is
also a constant forcing term depending on the manifold.
As an example, Chua’s circuit with an ideal memristor
[31], [32] is seen to embed infinitely many different forced
Chua’s circuits where an additional parameter depending
on the manifold can yield bifurcations even when the
circuit parameters are held fixed (bifurcations without
parameters).

The analysis of oscillatory circuits with real memristors
modeled by generic or extended memristors is instead still
in its infancy and it constitutes one of the major challenges
in the current research. In the volatile case, to obtain
oscillations, a passive memristor with an S-type locally active
quasi-static i − v characteristic is used. As in a typical
Pearson-Anson oscillator, the memristor is biased via a
suitable network in the locally-active region, i.e., in a branch
of the characteristic with a negative differential resistance
(NDR) [5], [6], [11], [12], [33]. It is worth to remark that
NDR is observed in thermistors and other specific types
of passive nanoscale devices, as NbOx , VO2, and TaOx
devices [34]. An interesting source of NDR is attributed to
electro-physical processes such as Mott transition dynamics,
see [8], [35], where it is used to obtain periodic oscillations,
beating oscillations, action potentials (burst and bursting phe-
nomena) and even chaos in a class of third-order memristor
circuits.

Let us now consider the class of oscillators with real
non-volatile memristors. It is known that in this case it
is no longer possible to consider the memristor quasi-
static characteristic and hence to rely on the concept
of NDR for designing an oscillator (see, e.g., [36]).
To the authors knowledge, only very few contributions on
oscillatory circuits with real non-volatile memristors are
available in the literature. As an example, [37] describes
a jerk circuit, which is able to display complex dynamics,
using a non-volatile Knowm memristor [7]. Similarly, [38]
investigated the nonlinear dynamics and bifurcations in a
modified Shinriki oscillatory circuit also using a Knowm
memristor. We also mention the article [39] that reports
on the design and experimental realization of a memristive
frequency generator with digital logic gates, a single-
supply voltage and a threshold-type non-volatile memristive
device.

A variety of real memristor models has been put forward in
the literature, depending on the realization, material and level
of accuracy which is needed in the applications [19], [22],
[23], [40]. One of the most popular models of real memristor
devices is described by the Stanford model [19], [41]–[43].
This is a physics-based compact model of non-volatile metal-
oxide resistive random access memory (RRAM) devices
with bipolar switching characteristics. Stanfordmodel, which
corresponds to an extended memristor, is able to explain the

dynamic resistive switching phenomena observed in a broad
range of devices and especially it can accurately capture
dynamic effects as the apparent threshold effect, the voltage
dependence of the switching time and the possibility to set
multi-level conductances. The model concerns filamentary-
type devices characterized by two state variables, i.e., the
length g of the gap of the insulating material, and the
temperature T of the filament tip. One main feature is the
existence of a voltage threshold such that g and the memduc-
tance have almost negligible variations below the threshold,
while the same quantities display very sharp variations above
threshold.

In this paper, we study for the first time a class of
memristor oscillators, obtained by a modification of Chua’s
circuit [44], where the memristor is a real non-volatile
extended memristor obeying Stanford model. The oscillators
are named Stanford memristor Chua’s circuits (SMCCs). One
main new idea in the paper is to design SMCC so that the
memristor behaves as a programmable nonlinear resistor.
Namely, we consider the behavior of SMCC under two main
operation modes.

1) Transient phase (sub-threshold behavior): We ensure
that during the transient oscillations the voltage on
the memristor stays below threshold and hence the
gap g remains almost constant and the memris-
tor behaves as a static nonlinear resistor with a
hyperbolic sine characteristic (see Section IV for the
details).

2) Programming phase (supra-threshold behavior): The
nonlinearmemristor characteristic depends upon g, that
can be suitably programmed using for instance voltage
pulses above threshold.

Goal of the paper is to study via analytic and numerical means
the nonlinear dynamics of SMCC during the transient phase
for fixed g and also the bifurcation scenario of SMCC when
g is varied due to programming.
The paper differs from existing papers in the literature

where the memristor oscillators use ideal, abstract, or arti-
ficial memristor models, that cannot accurately describe the
behavior of real memristor devices implemented in nanotech-
nology [24]. The approach in the manuscript to implement an
oscillator is also basically different from the quoted papers
in the literature [7], [37], [39] where the oscillations are
built upon the hysteresis loops displayed by the memristor
in the v − i plane. In that case, the memristor is not a
programmable nonlinear resistor, rather the state variable
undergoes wide variations during the transient oscillations.
Then, the same state variable cannot be used as a bifurcation
parameter and bifurcations are instead obtained via variations
of circuit parameters. It is also worth to remark that, while
in Chua’s circuit the bifurcations are due to variations of
a linear conductance [44], in SMCC we instead consider
bifurcations due to variations of the nonlinear memristor
characteristic.
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II. STANFORD MEMRISTOR MODEL
The equations describing Stanford model of RRAM devices
are given as follows [19], [41]–[43]

i = I0 exp
(
−
g
g0

)
sinh

(
v
V0

)
(1)

dg
dt
= −v0

[
exp

(
−
qEag
kT

)
exp

(qa0γ
`kT

v
)

− exp
(
−
qEar
kT

)
exp

(
−
qa0γ
`kT

v
) ]

(2)

dT
dt
=

vi
Cth
−
T − T0
τth

(3)

where i and v are the current and voltage in the memristor
device.

TABLE 1. Universal constants.

A detailed discussion on the physical quantities and
parameters involved in the model is available in [43] (see also
Tables 1, 2). Here, we only remark that the considered devices
have a typical structure with an oxide layer sandwiched
between the top electrode and the bottom electrode. The
switching mechanism is attributed to the formation/rupture of
conductive filaments which may consist of oxygen vacancies.
The SET process, i.e., the switching from the high-resistance
state (HRS) to the low-resistance state (LRS) when a positive
voltage is applied, is due to the dielectric soft breakdown
and creation of conductive filaments in the oxide, while
the RESET process during the application of a negative
voltage, i.e., the switching from LRS to HRS, is due to the
annihilation of the conductive filaments by Joule heating
dissolution or electrochemical reactions involving oxygen
ions or vacancies.

For simplicity, in the model, it is supposed that there
is a single dominant 1D conductive filament, so that the
internal state variable is the gap distance, g, defined as the
average distance between the top electrode and the tip of
the conductive filament. Actually, g has a lower and a upper
limit gmin and gmax, respectively, i.e.,

g ∈ [gmin, gmax]

where gmin is reached when the tip of the conductive filament
is nearly in contact with the top electrode during the SET,
while gmax is the residual conductive filament during the
RESET.

The current in the device is modeled using an electron
tunneling conduction and it has an exponential relationship
with respect to the tunneling distance, determined by g, and
field strength, resulting in the quasi-static Ohm’s law (1).

Quantity dg/dt is the gap growth/dissolution velocity
depending on the applied voltage v and the net difference
between the oxygen vacancy generation and recombination

rates. It is stressed that the role of temperature (T ) is
accounted for in the switching dynamics (cf. (2)). Again,
to simplify the model, a lumped model of heat conduction
based on Newton’s law of cooling is adopted (cf. (3)), where
τth denotes the effective thermal time constant and Cth the
effective thermal capacitance. Finally, γ is a g-dependent
local field enhancement factor, given by

γ = γ0 − β

(
g
gβ

)3

.

The first group of parameters a0,Ear,Eag, `,T0,Rth and
Cth are the so called ‘process parameters’ since they are
dictated by the fabrication aspects, as device structure and
material properties, and measurement setup. The second
group I0, g0,V0, v0, gβ , γ0, β and α are named ‘switching
parameters’ since they describe the filament evolution.
Especially, I0,V0 and g0 dominate the nonlinear resistor v− i
curves, whereas v0, γ0, gβ , β and α describe the process of
gap growth or dissolution, i.e., when the resistance starts
to change. A general procedure to extract these parameters
in order that the model behavior fits the experimentally
observed v − i curves and hysteresis loops is discussed
in [43], [45].

Actually, RRAMs are naturally subject to a certain amount
of variability which are due to the stochastic nature of
formation and rupture of the conductive filament and gap size
of multiple filaments. A feature of the Stanford model is the
possibility to account for the intrinsic variability observed
in resistive-switching devices (cycle-to-cycle and device-to-
device) via the addition of suitable terms in the model.
A technique to introduce and fit with the experiments an
amount of variability in Stanford model is presented in [46].

For simplicity, in this first study, unless stated otherwise,
we will not take into account parameter variations. In partic-
ular, we will refer to the numerical values of parameters in
Table 2, that were obtained from experimental data of a set of
HfOx-based RRAMdevices [43]. The treatment can of course
be extended to other devices with similar characteristics but
with a different set of parameters.

It is worth remarking that from a circuit theory viewpoint
the Stanford model is developed in the framework of
memristor devices. In particular, it corresponds to a second-
order extended memristor [18] where the first equation is
the quasi-static Ohm’s conduction law and the two additional
dynamic equations involve the internal state variables g and
T . Henceforth, we will refer to the devices as memristors
instead of using the name RRAMs.

A. HYSTERESIS LOOP AND APPARENT THRESHOLD
A standard configuration with a 1 transistor and 1 resistor
(1T1R) can be used for the SET and RESET operation of the
memristor [43]. The transistor is used to enforce a suitable
value of the current compliance for electrical stress protection
of the memristor. As discussed next, the compliance can also
be used for continuous programming purposes.
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TABLE 2. Model parameters.

FIGURE 1. Hysteresis loop displayed by a 1T1R structure subject to a
zero-mean triangular waveform with rate 4 V/s and peak voltage 2 V. The
compliance current is ±20 µA.

Figure 1 illustrates a typical hysteresis loop when the 1T1R
structure is subject to a zero-mean triangular waveform with
rate 4 V/s and peak voltage 2 V and the compliance is set to
±20 µA. It is seen that there is an apparent threshold voltage
related to the resistance switching. Below threshold, which in
this case amounts to about 1.5V, smooth changes in resistance
are observed and the gap g is seen to remain almost constant,
whereas when the voltage threshold is reached, very sharp
gap and resistance changes occur. The threshold is related to
the exponential dependence of the growth rate of g on applied
voltage (cf. (2)) and the nonlinear tunneling effect.

B. MULTILEVEL CAPABILITY AND CONTINUOUS
PROGRAMMING
The article [47] thoroughly explores the potential use
of the memristor modeled as in (1)-(3) as an analogue
memory which has multiple resistance states in between
HRS and LRS. Intermediate values of the resistance can
be programmed using a dc sweep and a 1T1R structure.
In this case, the continuous SET is obtained with the
application of a fixed positive voltage over the threshold and

a consecutive increase of the compliance. A continuous reset
can be instead achieved with a consecutive increase of the
magnitude of the reset stop voltage without using a negative
compliance. Continuous programming can be also obtained
via the application of short positive (or negative) pulses with
duration of some tens of nanoseconds. In that case, due to the
low energies of the pulses, the compliance is not necessarily
needed for memristor protection.

C. MEMRISTOR AS A PROGRAMMABLE NONLINEAR
RESISTOR
The existence of a voltage threshold and the possibility to set
intermediate values of resistances allow to use a memristor
as a programmable nonlinear resistor in a given range of the
electric quantities involved. We discuss this possibility with
the next experiment.
Example 1: Consider a memristor obeying model (1)-(3)

and having the same parameters as in Table 1 and Table 2.
Recall that g ∈ [gmin, gmax], where gmin = 0.1 × 10−9 m
and gmax = 1.7 × 10−9 m. Let gmin < ga = 0.8 × 10−9 <
gb = 1.2 × 10−9 < gmax and choose three different initial
gaps at t = 0, namely, g1 = ga, g2 = 1.0 × 10−9 nm
and g3 = gb, and apply in each case a triangular voltage
waveformwith zero mean, rate 20 V/s and peak voltage equal
to 1 V, which is below the threshold voltage. Figures 2(a), (b),
respectively, report the gap g and the relative variations of the
gap 1g = 100 × (g(t) − gi)/gi %, i = 1, 2, 3, as a function
of time obtained via simulation of (1)-(3). It is seen that in
each case the gap remains almost constant in the time interval
[0, 3] s. The maximum relative error, which occurs for g1,
is lower than 0.2 %. Figure 2(c) depicts the corresponding
v − i curves obtained in the simulations. Since the gap is
almost constant, as expected, the memristor behaves with
very good approximation as a static nonlinear resistor with
voltage-current characteristic

i = îj(v; gj)
.
= I0 exp

(
−
gj
g0

)
sinh

(
v
V0

)
, j = 1, 2, 3.

(4)
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FIGURE 2. (a) Gap as a function of time when a zero-mean triangular
waveform with peak voltage 1 V and rate 20 V/s is applied; (b) relative
error in the gap; (c) curves in the v − i plane and (d) relative error in the
memristor current. Green: case g = 1.2 nm; red: case g = 1 nm and blue:
case g = 0.8 nm.

To further confirm these results, in Fig. 2(d) we report the
relative error in the memristor current 1i = 100 × (i(t) −
îj(v(t); gj))/îj(v(t); gj) %, j = 1, 2, 3. Note that the maximum
error, occurring for g1, is lower than 0.55 %.
Similar results are obtained if we repeat the experiment for

any other value of the initial gap in the interval [g1, g3] and
for any voltage sweep with a larger rate and/or a peak voltage
less than or equal to 1 V (the simulations are not reported here
for the sake of brevity).

These properties may no longer hold if we apply a
waveform with a larger peak voltage approaching the
threshold. As an example, Figs. 3(a), (b), report the results of
an experiment analogous to that in Fig. 2(b), (c), respectively,
the only difference being that a larger peak voltage of 1.1 V
is now applied and the rate is 22 V/s. In this case, we have a
more pronounced variation of the gap g1, that in turn implies
that in the v− i plane we no longer see a single-valued curve
but rather a multiple-valued hysteretic curve. An analogous
situation is observed if we consider extremely low rates, see
as an example Figs. 4(a), (b) in the case where the peak
voltage is 1 V and the rate is 1 V/s. �
Remarks:
1) In the paper we will use the memristor within an

analogue circuit, namely, a modified memristor Chua’s
circuit (SMCC), with the goal to obtain oscillations
and complex dynamics. In particular, we will choose
suitable initial gaps, and we will guarantee that SMCC
operates in a range of voltages below threshold such
that, for the frequencies of the analogue transient,
and in the considered time intervals, the memristor
behaves with a good approximation as a programmable
nonlinear resistor.

FIGURE 3. (a) Curves in the v − i plane and (b) relative error in the gap
when a zero-mean triangular waveform with peak voltage 1.1 V and
rate 22 V/s is applied. Green: case g = 1.2 nm; red: case g = 1 nm and
blue: case g = 0.8 nm.

FIGURE 4. (a) Curves in the v − i plane and (b) relative error in the gap
when a zero-mean triangular waveform with peak voltage 1 V and
rate 1 V/s is applied. Green: case g = 1.2 nm; red: case g = 1 nm and
blue: case g = 0.8 nm.

2) We have seen in the simulations that in the voltage
range [−1, 1] V the variations of g are negligible. Yet,
in the same range the memristor characteristics (4)
deviate significantly from linear functions. This is an
important aspect, since in the SMCC the memristor
is the only nonlinear element that we will use for
generating oscillations.

3) We have performed simulations of memristor behavior
when considering variations of parameters with respect
to those in Table 2. In particular, we considered ±10%
variations of γ0 (cf. [43, Sect. IIb]), a parameter
that mainly influences the value of memristor thresh-
old [45], while the other parameters are kept fixed.
By repeating an experiment as in Fig. 2, we found that
there are not appreciable changes in the v − i curves
for the initial gaps {0.8, 1, 1.2} nm due to the varied
γ0. We will further investigate on the aspects related to
parameter variations in subsequent work.

III. MEMRISTOR CHUA CIRCUIT
Let us consider the circuit in Fig. 5, which is obtained by
replacing the active nonlinearity in Chua’s circuit (Chua’s
diode) [44] with a memristor M in parallel to a negative
linear conductance −Ga < 0. We suppose the memristor
is passive and obeys Stanford model (1)-(3). As usual, the
negative conductance may be implemented using a negative
impedance converter (NIC) [48, p. 192].
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FIGURE 5. Memristor Chua’s circuit given by the connection of a
two-terminal linear element L and a nonlinear element N with a
memristor and a linear conductance.

It can be readily verified that the Stanford memristor Chua
circuit (SMCC) satisfies the fifth-order system of differential
equations in the state variables v1, v2, iL , g and T

C1
dv1
dt
= Gav1 − G(v1 − v2)− I0 exp

(
−
g
g0

)
sinh

(
v1
V0

)
C2
dv2
dt
= −G(v2 − v1)+ iL

L
diL
dt
= −v2

dg
dt
= −v0

[
exp

(
−
qEag
kT

)
exp

(qa0γ
`kT

v1
)

− exp
(
−
qEar
kT

)
exp

(
−
qa0γ
`kT

v1
) ]

dT
dt
=

v1I0
Cth

exp
(
−
g
g0

)
sinh

(
v1
V0

)
−
T − T0
τth

(5)

where γ = γ0 − β(
g
gβ
)3 and g ∈ [gmin, gmax].

The remaining part of the paper is devoted to study the
dynamics and bifurcations of (5). To this end we find it
convenient to preliminarily analyze a reduced-order system
associated with (5). More precisely, in Section IV we assume
that g is constant during the transient and the memristor
behaves as a programmable nonlinear resistor. In such a
case SMCC satisfies a reduced third-order system in the
state variables v1, v2 and iL . We show in the same section
that we can design the reduced-order system in a way that
there is a wide range of gaps g such that, on the attractors,
which are studied in detail in Section V, the voltage on
the memristor stays below the memristor threshold. Then,
according to the discussion in Sect. II-C, we expect that g
is almost constant also on the attractors of the fifth-order
system (5). In Section VI, we verify that there is indeed a
wide range of initial gaps for which the reduced-order model
and (5) display a similar dynamic behavior for the state
variables v1, v2 and iL .

IV. REDUCED-ORDER MODEL
Let us choose g ∈ [ga, gb], where gmin < ga < gb < gmax.
We assume in this section that the gap g is constant, hence the
memristor behaves as a nonlinear resistor

i = î(v; g) .= I0 exp
(
−
g
g0

)
sinh

(
v
V0

)
. (6)

Under this assumption, SMCC satisfies the third-order sys-
tem of differential equations in the state variables v1, v2 and
iL

C1
dv1
dt
= Gav1 − G(v1 − v2)− I0 exp

(
−
g
g0

)
sinh

(
v1
V0

)
C2
dv2
dt
= −G(v2 − v1)+ iL

L
diL
dt
= −v2. (7)

This is analogous to Chua’s circuit, the main difference being
that in (7) there is a hyperbolic sine nonlinearity (6), while
in Chua’s circuit we have a piecewise linear [44] or a cubic
nonlinearity [49]. Moreover, nonlinearity (6) depends on the
value g of the programmable gap distance. In Section V we
will study the bifurcations of (7) obtained by varying g and
hence thememristor nonlinearity. Again, this is different from
Chua’s circuit where bifurcations are obtained by varying the
linear conductance G.
The equilibrium points (EPs) of (7) are obtained by letting

dv1/dt = 0, dv2/dt = 0 and diL/dt = 0. These yield the set
of three static relations v2 = 0, iL = −Gv1 and

(Ga − G)v1 = I0 exp
(
−
g
g0

)
sinh

(
v1
V0

)
. (8)

The origin (v1, v2, iL) = (0, 0, 0) is always an EP. Moreover,
it can be easily checked that there are two additional EPs
P+ 6= 0 and P− = −P+, symmetric with respect to the
origin, when the following condition is satisfied

Ga > G+
I0
V0

exp
(
−
g
g0

)
. (9)

If (9) is not met, then the origin is the only EP of (7).
Under the assumption of a constant g, SMCC is the

interconnection of a linear two-terminal elementL containing
C1,C2,L and G and a static nonlinearity N given by the
parallel of the passive memristor nonlinearity (6) and the
negative linear conductance −Ga (Fig. 5). In the following,
we first select suitable circuit values for L. Then, we address
the design of N. Note that once the memristor parameters
in Table 2 are considered, and the gap g is constant, the
memristor has a fixed nonlinearity (6). Thus, the design of
N only amounts to select a suitable value for Ga.

A. LINEAR TWO-TERMINAL ELEMENT L

Henceforth, we refer to a typical set of circuit parameters for
L as in Chua’s circuit introduced in [50]. Namely, we choose
C1 = 4.7 nF, C2 = 47 nF, L = 18 mH and R =

1600 Ohm. We then use an impedance scaling technique and
let C = C/η, L = Lη, G = 1/R = 1/(Rη), where
η > 0 is a suitable parameter to be chosen at a later point
(cf. Sect. IV-C).

B. NONLINEARITY N

In order to select a value for Ga, we find it convenient to first
choose a gap quantity, denoted by g̃, which is in a one-to-
one correspondence with Ga. Starting with the choice of g̃ is
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advantageous since we know a priori the gap interval where
g̃ should belong.

To proceed, fix a gap g̃ ∈ (ga, gb). The value of Ga is
chosen in a way that when g = g̃ the Jacobian J (0; g̃) of
the vector field defining (7) at the EP in the origin has a null
trace. We have

J (0; g̃)

=



1
C1

(
Ga − G−

I0
V0

exp
(
−
g̃
g0

))
G
C1

0

G
C2

−
G
C2

1
C2

0 −
1
L

0


and

tr(J (0; g̃)) =
1
C1

(
Ga − G−

I0
V0

exp
(
−
g̃
g0

))
−

G
C2
.

Hence, tr(J (0; g̃)) = 0 yields the condition

Ga =
I0
V0

exp
(
−
g̃
g0

)
+

(
1+

C1

C2

)
G. (10)

Clearly, the EP at the origin is unstable when g = g̃.
Moreover, since (10) implies (9), it turns out that SMCC has
three EPs. Indeed, by substituting in (9) the expression of Ga
in (10), it follows that (7) has three EPs for all g such that

g > ĝ .= g0 ln
1

exp
(
−

g̃
g0

)
+

V0
I0

C1
C2
G
. (11)

Moreover, it can be shown that for all g satisfying (11) the EP
at the origin has a unique unstable eigenvalue (see Appendix).
This implies that for each fixed gap g̃ ∈ (ga, gb), and hence
for the value of Ga given by (10), there exists a range of g
defined by condition (11) where SMCC possesses three EPs
and the EP at the origin has a unique unstable eigenvalue.
It is worth to remark that this scenario is quite similar to that
displayed by the double-scroll family [44].

C. IMPEDANCE SCALING
To guarantee that v1 does not exceed the memristor threshold
during the transient we need that (7) has attractors with
amplitude smaller than the memristor threshold. In general,
it is difficult to precisely estimate such an amplitude for a
chaotic circuit. In the paper we rely on an approximate yet
effective technique where the attractors amplitude is kept
small by reducing the magnitude of coordinates ±v̄1 of EPs
P+ and P−.
First of all, we find an approximate expression for the

EPs. Suppose to replace the hyperbolic sine sinh(v1/V0) with
its third-order Taylor expansion v1/V0 + v31/(6V

3
0 ). Then,

when (9) holds, (8) has two non-zero solutions ±v̄1 where

v̄1 =

√
6G

C1

C2

V 3
0

I0
exp

(
g
g0

)
=

√
6
G
η

C1
C2
V 3
0

I0
exp

(
g
g0

)
.

Then, |v̄1| decreases when g decreases or if we increase
the scaling factor η. Another possibility is to increase the
ratio C2/C1.
It is worth to remark that parameters α = C2/C1 and

β = R2/(C2L), used when writing Chua’s circuit equations
in adimensional form [50], are not affected by the impedance
scaling.
Example 2: Let ga = 0.8 nm, gb = 1.2 nm and fix

g̃ = 1 nm. From (10) we have Ga = 3.8137× 10−5 Ohm−1.
The EP of (7) for g = g̃ and η = 5 nm are {0,P+ =
(1.45, 0,−0.00018),−P+}. Note that v̄1 = 1.45 is quite
close to the memristor threshold. If instead we choose a
higher value η = 20, the EPs for g = g̃ are {0,P+ =
(0.87, 0,−0.000027)),−P+}. Now v̄1 = 0.87 is quite below
the memristor threshold. �
Example 3: Consider once more the case g̃ = 1 nm and

η = 20. Table 3 reports the number of asymptot-
ically stable and unstable EPs of (7) and the eigen-
values of the Jacobian at the EPs for some values
of the gap g ∈ [0.8, 1.2] nm. From (11) we have
ĝ = 0.83 nm, hence (7) has three EPs when
g > 0.83 nm and only one EP when g ≤ 0.83 nm.We remark
that when g = 1 nm and g = 0.925 nm there are three
unstable EPs {0,P+,P−} and their structure is analogous
to that of Chua’s circuit [51, Sect. II]. Namely, J (0; 0.925)
has a real positive eigenvalue and two complex conjugate
eigenvalues with negative real part, while J (P+; 0.925)
and J (P−; 0.925) have a real eigenvalue and two complex
conjugate eigenvalues with positive real part. Instead, when
g = 0.85 nm there three EPs but two of them are
asymptotically stable. When g = 0.8 nm the origin is the
only asymptotically stable EP. �

V. REDUCED-ORDER MODEL: COMPLEX DYNAMICS AND
BIFURCATIONS
In this section we report on numerical simulations using
MATLAB of SMCC assuming g is constant during the
transient, hence SMCC satisfies the reduced third-order
system (7).

We refer to the memristor parameters in Table 2 and
circuit parameters as in Section III. Let ga = 0.8 nm
and gb = 1.2 nm. In the first set of simulations we have
chosen g̃ = 1 nm, so that from (10) we obtainGa = 3.8137×
10−5 Ohm−1. Moreover, for the impedance scaling we let
η = 20.

Figure 6 reports the bifurcation diagram of (7) using g as
a parameter that is varied in [0.8, 1.2] nm. The vertical axis
shows the voltage v1 on the memristor. Note that for g ≥
0.92 nm (7) displays either complex dynamics or periodic
windows. Especially, we can observe quite a wide periodic
window with a period-5 cycle for g ∈ [0.951, 0.962] nm.
When g is decreased below 0.92 nm there is a sequence
of inverse period-doubling bifurcations causing the death of
the complex attractor. In particular, we find that there in
an inverse period-doubling bifurcation at g = 0.905 nm,
an inverse Hopf bifurcation at g = 0.864 nm and an
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TABLE 3. Number of asymptotically stable and unstable EPs of (7) and eigenvalues of the Jacobian at the EPs for various values of g. We have g̃ = 1 nm
and η = 20.

FIGURE 6. Bifurcation diagram of (7) for g̃ = 1 nm and η = 20.

inverse Pitchfork bifurcation at g = ĝ = 0.83 nm
(cf. Example 3) [52]. It is worth to observe that, in accordance
with the considerations in Section IV-C, higher values of g
correspond to higher values of the positive peak of voltage
v1 on the attractors.

Figure 7 shows the projection onto the v1 − v2 plane of
the attractors of (7) for specific values of the bifurcation
parameter g. It is seen that for g = 1 nm (7) displays a double-
scroll attractor that is remarkably similar to that displayed
by Chua’s circuit with a piecewise nonlinearity [50]. This
behavior is consistent with the fact that for g = 1 nm (7)
has a structure of EPs similar to that of Chua’s circuit
(cf. Example 3). The peak positive amplitude on the double-
scroll attractor is v1 = 1.1 V, which is below the memristor
threshold of about 1.5 V observed in Section II. From
simulations we observe a double-scroll attractor also when
g = 1.04 nm and g = 1.18 nm. In particular, we note once
more that the positive peak amplitude v1 increases when g
increases. For instance, when g = 1.04 nm the peak ampli-
tude is about 1.26 V and it approaches the threshold, while
when g = 1.18 nm the peak amplitude is about 1.9 V
and is beyond the memristor threshold. Finally, when g =
0.85 nm we have convergence to a stable EP at P+ =
(0.76, 0, 0.0000083) (simulation not shown in the figure).
See also Example 3.

FIGURE 7. Attractors of (7) (projection onto the v1 − v2 plane) for specific
values of the bifurcation parameter g. Horizontal axis: v1 [V]; vertical axis:
v2 [V]. We have g̃ = 1 nm and η = 20. (a), (b), (c) Double-scroll attractor
for g = 1.18 nm, g = 1.04 nm and g = 1 nm, respectively; (d) period-5
cycle (g = 0.953 nm); (e) single-scroll attractor (g = 0.94 nm); (f) period-4
cycle (g = 0.917 nm); (g) period-2 cycle (g = 0.91 nm); (h) limit cycle
(g = 0.88 nm).

We have done simulations analogous to those presented
before also for g̃ ∈ {1.1, 1.05, 1., 0.95, 0.9}. These simula-
tions, not reported here, have led to a scenario quite similar
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FIGURE 8. Attractor of (7) (projection onto the v1 − v2 plane) when
g = g̃ = 1 nm and η = 5. Horizontal axis: v1 [V]; vertical axis: v2 [V].

FIGURE 9. Bifurcation diagram of (5) for g̃ = 1 nm and η = 20.

to that in Figs. 6, 7. On the contrary, by changing η we
obtain significant variations in the amplitude of attractors.
As an example, Fig. 8 depicts the double-scroll attractor for
η = 5 and g = g̃ = 1 nm. The maximum amplitude is about
1.8 V and exceeds the memristor threshold. We recall that in
the case η = 20 and g = g̃ = 1 nm such an amplitude was
about 1.1 V.

VI. COMPLETE MODEL: COMPLEX DYNAMICS AND
BIFURCATIONS
In this sectionwe consider for SMCC the complete fifth-order
model (5). Our goal is to verify via simulations that there is
quite a wide range of initial conditions g(0) for the gap such
that we have g(t) ' g(0) during the transient evolution of (5).
In turn, due to such negligible variations of g, the dynamic
behavior of (5) is almost coincident with that of the reduced-
order system (7) as long as the state variables v1, v2 and iL
are concerned.

Let g̃ = 1 nm and η = 20 and also assume the memristor
and circuit parameters are as in Section V. Figure 9 reports
the bifurcation diagram of (5) with respect to parameter
g(0) varying in [0.8, 1.2] nm. Such diagram is seen to be

FIGURE 10. Attractors of (5) (projection onto the v1 − v2 plane) for
specific values of the bifurcation parameter g(0). Horizontal axis: v1 [V];
vertical axis: v2 [V]. We have g̃ = 1 nm and η = 20. (a) Asymptotically
stable EP with (g(0) = 1.18); a trajectory converging toward the EP is also
shown; (b), (c) double-scroll attractor for g(0) = 1.04 nm and g(0) = 1 nm,
respectively; (d) period-5 cycle (g(0) = 0.953 nm); (e) single-scroll
attractor (g(0) = 0.925 nm); (f) period-4 cycle (g(0) = 0.917 nm);
(g) period-2 cycle (g(0) = 0.91 nm); (h) limit cycle (g(0) = 0.88 nm).

qualitatively similar to that of the reduced-system (7), given
in Fig. 6, except for large values of g(0), namely g(0) >
1.05 nm. In particular, it is worth to stress that for g ∈
[0.8, 0.92] nm system (5) closely reproduces the sequence of
period-doubling, Hopf and Pitchfork bifurcations displayed
by (7). When g(0) > 1.05 nm, the behavior of (5) is quite
different from that of (7). In fact, there are values of g(0) such
that (5) displays complex attractors with reduced amplitude
with respect to those of (7) for g = g(0). Moreover, there are
values of g(0) such that (5) is convergent to some stable EP
while, for g = g(0), (7) is not convergent.
These differences are further discussed with the aid of

Fig. 10, that depicts the attractors of (5) (projections onto
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FIGURE 11. (a) Time-domain behavior of the gap. Horizontal axis: time t
[s]; vertical axis: g(t) [nm]. (b) Behavior of temperature. Horizontal axis:
time t [s]; vertical axis: T (t) [K]. Case g(0) = 1 nm.

FIGURE 12. (a) Time-domain behavior of the gap. Horizontal axis: time t
[s]; vertical axis: g(t) [nm]. (b) Behavior of temperature. Horizontal axis:
time t [s]; vertical axis: T (t) [K]. Case g(0) = 0.925 nm.

the v1 − v2-plane) for some specific values of g(0). When
g(0) = 1 nm we observe for (5) a double-scroll attractor very
similar to that of (7). We can easily justify this behavior by
noting that the amplitude v1 stays quite below the memristor
threshold. As depicted in Fig. 11, g has almost negligible
random variations around g(0) during the transient. In the
same figure we also report for completeness the behavior of
T , that undergoes as expected only small variations above the
ambient temperature.

In the case g(0) = 0.925 nm, we again observe for (5) a
single scroll attractor similar to that of (7). Actually, also in
this case v1 stays below the memristor threshold during the
transient. One difference is that now v1 oscillates around the
value 0.63 of the second coordinate of the EP P+ (cf. Table 3)
and then it has non-zero mean. As a consequence, g shows
a small unidirectional drift (Fig. 12). Variations of g are
however extremely small and g remains almost constant in
a practical time interval up to 1 s. The behavior of (5) in
the cases g(0) ∈ {0.925, 0.918, 0.917, 0.91, 0.88} can be
explained in a similar way.

Consider the case g(0) = 1.04 nm. The behaviors of g and
T are reported in Fig. 13. Now, v1 approaches the memristor
threshold during the initial part of the transient and g has some
significant variations. However, the double-scroll attractor is
quite robust and is again similar to that displayed by (7) when
g = 1.04 nm.

Finally, consider the case g(0) = 1.18 nm. The behaviors
of g and T are depicted in Fig. 14. Now, v1 exceeds the
memristor threshold during the transient. Note that g displays

FIGURE 13. (a) Time-domain behavior of the gap. Horizontal axis: time t
[s]; vertical axis: g(t) [nm]. (b) Behavior of temperature. Horizontal axis:
time t [s]; vertical axis: T (t) [K]. Case g(0) = 1.04 nm.

FIGURE 14. (a) Time-domain behavior of the gap. Horizontal axis: time t
[s]; vertical axis: g(t) [nm]. (b) Behavior of temperature. Horizontal axis:
time t [s]; vertical axis: T (t) [K]. Case g(0) = 1.18 nm.

FIGURE 15. (a) Trajectory of (5) (projection onto the v1 − v2 plane)
converging to a cycle when g(0) = g̃ = 1 nm and η = 5. Horizontal axis: v1
[V]; vertical axis: v2 [V]. (b) Time-domain behavior of the gap. Horizontal
axis: time t [s]; vertical axis: gap g(t) [nm].

rapid and big variations and eventually achieves the limiting
value g = gmax = 1.7 nm (cf. Section II). Meanwhile,
after an oscillatory transient, T reaches a steady-state value
of 326 K. Once g has reached gmax, we observe convergence
of the trajectory to the EP P− with v1 = −2.39 V, a behavior
that is drastically different from (7), that instead displays a
double-scroll attractor when g = 1.18 nm.
We simulated the behavior of (5) for several other values

of g̃, g(0) and η. As an example, Fig. 15(a) depicts the
time-domain behavior of (5) when g(0) = g̃ = 1 nm and
η = 5. Note that we have convergence to a limit cycle, which
is different from the double-scroll attractor displayed by (7)
for the same values of g = g(0), g̃ and η (Fig. 8). Figure 15(b)
depicts the corresponding behavior of the gap. This different
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behavior can be explained with analogous considerations as
in the case g̃ = 1 nm, g(0) = 1.2 nm and η = 20.

VII. DISCUSSION AND CONCLUSION
The paper has studied the nonlinear dynamics and bifurca-
tions in a class of Chua’s circuits with a real non-volatile
memristor obeying Stanford model. The key feature is that
the memristor is used as a programmable nonlinear resistor.
Namely, the memristor Chua’s circuit (SMCC) is designed
in order that during the transient oscillations the memristor
voltage stays below threshold, its main state variable (i.e.,
the gap g) is almost constant, and the memristor behaves
as a static nonlinear resistor. We stress that the memristor
nonlinearity is the only one used in SMCC to generate
oscillations and complex dynamics. This is possible since
there is a voltage range below memristor threshold where the
memristor characteristic deviates significantly from a linear
function while dg/dt turns out to be negligible. On the other
hand, g and the nonlinear memristor characteristic can be
varied during the programming phase, using for instance
voltage pulses above threshold, thus causing bifurcation
phenomena.

The approach in the paper differs from previous ones
on oscillators with real non-volatile memristors where the
oscillations are due to wide changes that the memristor
state variable undergoes along the hysteresis loops, while
bifurcations are generated via variations in the circuit
parameters. It is also remarked that using a memristor as a
programmable nonlinear element is different from its use as
a synapse [53], [54], since in the latter case the nonlinearity
of the memristor is an undesirable feature. We refer the
reader to [54, Sect. V-A] where a bridge configuration is
employed to compensate for memristor nonlinearities in
the implementation of programmable synapses. Analogous
considerations hold if we compare the approach in this paper
with that in [55], where again the memristor is used as a
programmable linear conductance in some analogue circuits
applications.

In the paper we have been mainly interested in cases where
the behavior of SMCC is analogous to that of a reduced
third-order system obtained by assuming g is constant during
the transient. Instead, if we allow the memristor voltage to
reach or exceed the memristor threshold, then g can undergo
to large changes. In such cases we have observed a very
rich dynamic scenario for the fifth-order system describing
SMCC. We believe this is an interesting aspect to be further
explored in future research of SMCC.

Nowadays, real memristor devices obeying Stanford
model, as those considered in [43], begin to be com-
mercially available, as for instance at foundries Taiwan
Semiconductor Manufacturing Company Limited (TSMC)
or United Microelectronics Corp (UMC). The ultimate goal
of this research shall be to verify the phenomena observed
through simulations via the implementation of actual circuit
prototypes of SMCC when real devices will be at our
disposal.

APPENDIX
We want to show that for all g satisfying (11) the EP at the
origin of (7) has a unique unstable eigenvalue. First, we recall
that g satisfies (11) if and only (9) holds and, hence, if and
only if we have

1−
Ga
G
+

I0
GV0

exp
(
−
g
g0

)
< 0

whereGa is given by (10). Now, we observe that the Jacobian
J (0; g) of the vector field defining (7) at the origin can be
written as 

−
G
C1
ρ

G
C1

0

G
C2

−
G
C2

1
C2

0 −
1
L

0


.
= Jρ

where the scalar quantity ρ is defined as

ρ
.
= 1−

Ga
G
+

I0
GV0

exp
(
−
g
g0

)
.

Hence, we have to show that Jρ has a unique positive real
eigenvalue for all ρ < 0. To proceed, we compute the
characteristic polynomial of Jρ obtaining

det(sI − Jρ) = s3 +
(
G
C1
ρ +

G
C2

)
s2

+

(
1
LC2
+

G2

C1C2
(ρ − 1)

)
s+

G
LC1C2

ρ

where s denotes the complex variable and I3 is the third-
order identity matrix. From the Routh-Hurwitz criterion
it follows that Jρ has a unique positive real eigenvalue
if and only if the sequence {1, c1, c2, c3} of the leading
coefficients of the Routh-Hurwitz table has a unique sign
variation [56]. Straightforward computations lead to the
following expressions

c1 =
G
C1
ρ +

G
C2

c2 =
G2

C1C2
(ρ − 1)+

1
c1

G

LC2
2

c3 =
G

LC1C2
ρ.

Note that c3 has the same sign of ρ, thus the sequence
{1, c1, c2, c3} has at least a sign variation for all ρ < 0.
To prove that there is a unique sign variation in the sequence,
it is enough to show that there does not exist any ρ < 0 such
that c1 < 0 and c2 > 0. This can be readily verified since
c1 < 0 implies that c2 < 0. Finally, we observe that the
continuity of the roots of the characteristic polynomial with
respect to ρ can be used to complete the proof for the isolated
negative values of ρ where c1 and c2 vanish.
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