
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 1

SEM-O-RAN: Semantic O-RAN Slicing for Mobile
Edge Offloading of Computer Vision Tasks

Corrado Puligheddu, Member, IEEE, Jonathan Ashdown, Senior Member, IEEE,
Carla Fabiana Chiasserini, Fellow, IEEE, and Francesco Restuccia, Senior Member, IEEE

Abstract—The next generation of mobile networks (NextG) will require careful resource management to support edge offloading of
resource-intensive deep learning (DL) tasks. Current slicing frameworks treat all DL tasks equally without adjusting to their high-level
objectives, resulting in sub-optimal performance. To overcome this, we propose SEM-O-RAN, a semantic and flexible slicing framework
for computer vision task offloading in NextG Open RANs. Our framework accounts for the semantic nature of object classes as well as
the level of data quality to optimally tailor data compression and minimize the usage of networking and computing resources. In fact,
we show that different object classes tolerate different levels of image compression while preserving detection accuracy. To address
the above issues, we first present the mathematical formulation of the Semantic Flexible Edge Slicing Problem (SF-ESP), which turns
out to be NP-hard. We thus define a greedy algorithm to solve it efficiently, which is also able to always select the resource allocation
that yields the best resource utilization, whenever multiple allocations satisfy the DL task requirements. We evaluate SEM-O-RAN’s
performance through extensive numerical analysis and real-world experiments on the Colosseum testbed, considering state-of-the-art
computer-vision tasks and DL models. The obtained results demonstrate that SEM-O-RAN allocates up to 169% more tasks and obtains
52% higher revenues than the state of the art.

Index Terms—network slicing, computation offloading, O-RAN, semantics, NextG, edge computing, resource allocation

✦

1 INTRODUCTION

CONNECTED mobile devices running computer vision
(CV)-based, mission-critical operations, such as au-

tonomous vehicles and drones, have to timely execute de-
manding processing tasks, which require as input high-
resolution images (e.g., video frames) or three-dimensional
LIDAR (Light Detection and Ranging) data [2]. Examples
of these tasks include multi-object classification and object
tracking – operations commonly required for autonomous
navigation and typically performed through deep learning
(DL) models [3]. Because of the often limited computing
power and energy budget of mobile devices, it may be
convenient or necessary to offload such tasks through the
Radio Access Network (RAN) to the network edge, where
they can be timely executed. However, computing resources
at the edge may be insufficient to run multiple tasks that
are offloaded concurrently, and the RAN itself may get
saturated, causing increased delays and, ultimately, compro-
mising the application performance.

To successfully offload CV tasks, mobile devices can ben-
efit from RAN slicing [4]–[9], which allows Virtual Network
Operators (VNOs) to use the virtualized and isolated RAN
computational and networking resources provided by Mo-
bile Network Operators (MNOs). It is noteworthy that the
recent Open RAN (O-RAN) architecture offers full support
for RAN slicing. This architecture, which disaggregates the
5G-and-beyond cellular networks (NextG) RAN hardware

• C. Puligheddu and C. F. Chiasserini are with the Department of Electron-
ics and Telecommunications, Politecnico di Torino, Italy.

• J. Ashdown is with Air Force Research Laboratory, United States.
• F. Restuccia is with the Institute for the Wireless Internet of Things,

Northeastern University, United States.

Approved for Public Release; Distribution Unlimited: AFRL-2022-1622.
This is an extended version of our IEEE INFOCOM 2023 paper [1].

from its software components, allows for advanced RAN
optimizations through fine-grained real-time control of the
RAN components [10]–[12].

Existing Issues. Currently, the state of the art defines
edge-assisted tasks in a rigid and fixed manner, and ignores
additional information that could be used to improve the
accuracy of the tasks and the efficiency of their execution
environment. We refer to this additional information as task
semantics. In this context, we define task semantics as the
meaning, context, and purpose of a task that deepen and
enrich its definition and that can be derived from the high-
level intent of the VNO issuing the task request. Ignoring
task semantics prevents further optimization, which leads
to sub-optimal performance and revenues. Moreover, many
state-of-the-art slicing frameworks are not compliant with
the O-RAN specifications; consequently, they are not able to
enforce granular RAN control for advanced optimizations.

To tackle these issues, we propose SEM-O-RAN, the first
semantic slicing framework for edge-assisted mobile appli-
cations based on O-RAN. SEM-O-RAN provides two core
innovations, as detailed below.

• Existing work considers rigid task definitions, with
pre-defined and fixed resource needs. Conversely,
SEM-O-RAN semantically considers a richer task
definition specified in terms of end-to-end latency
and per-class accuracy requirements peculiar to each
task, thus allowing for flexibility in the allocation of
edge resources. In particular, SEM-O-RAN considers
all combinations of resource allocations that satisfy
the task requirements, then selects the resource al-
location that leads to the best system performance.
Through flexible allocation, SEM-O-RAN can allocate

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 2

(a) Compression 0.87x, 103 KB (b) Compression 0.50x, 59 KB

Fig. 1: Stronger compression rates make some objects un-
detectable and/or harder to detect by computer vision DL-
based models.

(a) Compression 0.77x, snow (b) Compression 0.78x, noise

Fig. 2: External factors such as snow (a) or Gaussian noise
(b) can cause unintentional data quality degradation which
affects object detection accuracy.

9.1% more CV tasks than the state of the art.
• To further reduce network utilization, SEM-O-RAN

applies data compression according to the task se-
mantics, i.e., considering the target object classes,
prior data quality degradation, and the per-class
accuracy requirements. Our key intuition is that dif-
ferent object classes have different tolerances to data
compression, thus providing different optimization
margins. For example, in Fig. 1, where a state-of-
the-art object detection model is applied on a frame
captured by a smart city camera, the car and person
objects are correctly identified even when the image
is heavily compressed, as opposed to the bicycle,
which needs lower data compression. Similarly, in
Fig. 2, because of unintentional data quality degra-
dation affecting the picture quality, the same model
is not able to detect the bicycle object even with a
light compression factor. Thanks to semantic data
compression, SEM-O-RAN allocates 57% more tasks
than the state of the art.

By combining these two key concepts, SEM-O-RAN delivers
a performance improvement of up to 169% compared to [5].

Technical Challenges. The formulation of a mathemati-
cal slicing solution that accommodates flexible resource allo-
cation and semantic data compression in an O-RAN frame-
work is particularly challenging, since (i) the relationship
between the allocated resources, data compression, per-class
accuracy, and end-to-end latency cannot be easily expressed
in closed form, because of the high non-linearity of CV DL
models and the complex modeling of network communi-
cations, and (ii) the flexible resource allocation introduces
significant complexity in the optimization problem. To the
best of our knowledge, SEM-O-RAN is the first work to holistically
address these two challenges at the same time.

Novel Contributions. Our main contributions are sum-
marized as follows.

• We present our key ideas of semantics-based data
compression and flexible resource allocation and we
show that they can be used to optimize edge resource
consumption of offloaded CV tasks. Even though no
other existing work has considered yet such concepts
jointly to provide further network optimization at
the edge, our ideas are not exclusive to our work
and could be potentially integrated into existing so-
lutions.

• We design SEM-O-RAN, the first semantic and flexible
slicing framework to support edge-assisted DL task
offloading in NextG networks. SEM-O-RAN is fully
compliant with the O-RAN specifications, which al-
low for the near-real-time control of slices configu-
ration. To perform the actual slicing, we mathemat-
ically formulate the Semantic Flexible Edge Slicing
Problem (SF-ESP), which (i) maximizes the revenues
for the MNO, (ii) optimizes the number of DL com-
puter vision tasks executed at the RAN edge while
(iii) guaranteeing strict requirements satisfaction on
the DL task latency/accuracy and (iv) avoiding re-
source over-provisioning. The SF-ESP is fundamen-
tally different from existing formulations, since (i)
it incorporates highly non-linear relation between
slicing, compression, end-to-end latency, and classifi-
cation accuracy; (ii) it adopts flexible resource alloca-
tion to balance the consumption of the different types
of edge resources and avoid the premature depletion
of the most requested ones. We demonstrate that the
SF-ESP is NP-hard, and propose a greedy algorithm
to solve it efficiently;

• We evaluate SEM-O-RAN through extensive numer-
ical analysis and through a prototype implemented
on the Colosseum network emulator [13]. For evalu-
ation purposes, we consider two state-of-the-art CV
problems, i.e., multi-object detection and instance
segmentation. To address the former, we select the
state-of-the-art YOLOX model [14] trained on the
Common Objects in Context (COCO) dataset [15]; for
the latter, we use the BiSeNet v2 model [16] trained
on the Cityscapes dataset [17].
We compare SEM-O-RAN to 5 baselines, including the
state-of-the-art Sl-EDGE framework [5]. Our results
show that SEM-O-RAN improves the number of allo-
cated computer vision tasks by up to 169% and by
72% on average with respect to Sl-EDGE. To allow
for replicability and benchmarking, we have released
our MATLAB algorithm as open-source1.

Paper organization. The remainder of this paper is
organized as follows. Sec. 2 details the fundamental ideas
underpinning SEM-O-RAN, namely, the semantic compres-
sion and the flexible resource allocation. Sec. 3 presents the
design of our SEM-O-RAN framework, based on the O-RAN
architecture, which is briefly introduced in Sec. 3.1. We first
describe the architecture, functional blocks, and interfaces
of SEM-O-RAN (Sec. 3.2), then we provide an overview of

1. https://github.com/corrado113/Semoran

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 3

the system workflow (Sec. 3.3). Sec. 4 introduces the system
model (Sec. 4.1), the SF-ESP problem formulation (Sec. 4.2),
and the greedy heuristics able to solve it efficiently (Sec. 4.3).
Sec. 5 explains our testing methodology (Sec. 5.1), and it
shows both the numerical analysis of SEM-O-RAN and its
alternatives (Sec. 5.2), and the prototype implementation on
Colosseum (Sec. 5.3). Relevant related work is discussed in
Sec. 6, highlighting the differences between our approach
and the existing solutions. Finally, Sec. 7 concludes the paper
by wrapping up our contributions and providing directions
for future research.

2 KEY CONCEPTS IN SEM-O-RAN

The first main concept driving the design of SEM-O-RAN is
the semantic-based slicing. In Fig. 1, we notice that different
target classes have different tolerances to image compres-
sion. Furthermore, Fig. 2 highlights that a similar tolerance
can be found also in case an image is captured in inclement
weather and, more in general, whenever the data quality de-
grades. Intuitively, some classes are semantically ”harder”
than others, especially in some circumstances. For example,
a person or a car can be more easily identified in a noisy
image as opposed to a bicycle or a backpack. In the left side
of Fig. 3, we quantitatively evaluate this behavior, showing
the mean Average Precision (mAP) values corresponding to
multi-object detection, which is one of the mobile sensing
applications we focus on in this work. The mAP is a metric
used to evaluate object detection models, defined as the
mean over all object classes of the area under the Precision-
Recall Curve. Fig. 4 shows the mAP that we measured
for the same mobile application in case the data quality
is affected by common atmospheric agents. Clearly, when
the corruption severity is maximum (Fig. 4b), the mAP
decreases significantly compared to the case in which the
severity is minimum (Fig. 4a). Interestingly, the different
object classes have different tolerances to corruption effects,
e.g., ”bags” really struggles when affected by motion blur
compared to other classes.

The takeaway point here is that there is a margin for sig-
nificant compression on the images sent to the edge for inference,
according to the condition in which the images have been captured
and the object classes we are interested in, while still obtaining
acceptable inference accuracy on average. This compression
margin ultimately constitutes the semantic information of a
task, encapsulating its meaning, context, and purpose. The
semantic knowledge allows for precise compression and
significant bandwidth saving, which consequently allows
SEM-O-RAN to offload more tasks.

The second concept in the design of SEM-O-RAN is
flexibility in task resource allocation. Indeed, a task requires
many different kinds of resources, from networking to com-
putation and storage. Therefore, the slicing algorithm can
allocate different amounts of resources in each category and
still meet performance requirements. To illustrate this point,
the right side of Fig. 3 shows experimental end-to-end task
latency results of inference on the state-of-the-art YOLOX
deep neural network (DNN) model for object detection [14]
computed using the Colosseum network emulator [13], as a
function of the allocated Resource Block Groups (RBGs) and
GPUs. In this plot, 10 images per second were generated

from a single User Equipment (UE), without employing
image compression.

0 0.2 0.4 0.6 0.8 1

Compression scaling factor

0

0.2

0.4

0.6

0.8

m
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

all urban

animals bags

2 4 6 8 10

RBGs

1

1.5

2

2.5

3

3.5

4

4.5

5

G
P
U
s

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

X 6.0625

Y 2.995

Level 0.356092

X 5.875

Y 2.0326

Level 0.483161

X 10

Y 2.0326

Level 0.364039

Fig. 3: (Left) Mean Average Precision (mAP) as a function
of the compression scaling factor for the application classes
defined in Tab. 2; (Right) Experimental latency as a function
of allocated Resource Block Groups (RBGs) and GPUs.

The key takeaway is that more than one combination of
RBG/GPU allocations can lead to the same latency performance
while allowing for more allocated tasks.

For example, let us assume that 25 RGBs and 4 GPUs are
the maximum radio and computational resources available
in the RAN, and that two tasks (say, τ1 and τ2) requiring
0.4 s of latency need to be allocated. According to Fig. 3,
two different RGB/GPU allocations meet the 0.4 s latency
requirement, namely, (6, 3) and (10, 2). Let us assume
τ1 is allocated (6, 3), which is the most resource-efficient
allocation. In this case, however, τ2 could not be allocated as
there would only be 1 GPU left. Instead, if (10, 2) is allocated
to τ1, τ2 can be allocated since 2 GPUs and 10 RBGs are still
available.

3 THE SEM-O-RAN FRAMEWORK

In this section, we first provide a brief overview of the O-
RAN logical architecture, then we introduce the architecture
of the proposed SEM-O-RAN framework motivating our
design choices; finally, we detail the functional flow of
SEM-O-RAN.

3.1 Background Notions on O-RAN
The core philosophy behind O-RAN is the clear separation
between the RAN software and hardware [18], by disag-
gregating the RAN into a Radio Unit (RU), Centralized
Unit (CU) and Distributed Unit (DU). The RU implements

0 2 4 6 8 10
fog frost gaussian noise motion blur snow

all animals bags urban
0

0.2

0.4

0.6

m
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

(a) Corruption severity 20%
all animals bags urban

0

0.2

0.4

0.6

m
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

(b) Corruption severity 100%

Fig. 4: mAP over different object classes in the COCO
dataset [15], with multiple corruption effects.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 4

Virtual Network Operator (VNO) Space

Non-Real-Time RIC

DL Models
and Datasets

Database

Mobile
Task 1

Mobile
Task 2

Mobile
Task N

...

Task Descriptor
DL Service
DL Model

DL Target Classes

Task Requirements
Latency & Accuracy

Number of UEs
Tasks per Second

O-RAN Slice Request (OSR)

Human-
Machine

Semantic
Deep Learning
Analyzer rApp

Centralized
Unit (CU)

DU/RU 1

Task Descriptor

Latency &
Accuracy
Functions

A1

Task
Requirements

Semantic
Edge Slicing

xApp

O1

Radio
Statistics

DU/RU M...

E2

Near-Real-Time RIC

Computation
Slicing

(GPU, RAM)

E2

Physical Radio and Edge Infrastructure

RAN Edge

Computation
Statistics

Radio
Slicing
(RBs)

EI E2

Task 1 Descriptor
Object Recognition
YOLOX DL Model
Person, Car, Bicycle

Task 1 Requirements
Less than 0.5s latency,

More than 85% accuracy,
100 UEs, 50 Tasks/s

Semantic
Deep Learning
Analyzer rApp

Latency/Accuracy
Functions

Semantic
Edge Slicing

xApp

COCO Dataset
CityScapes Dataset Radio Info:

SNR of
UE1 ... UE50

Data Info:
Quality: 10%

Edge Info:
Available
GPU: 50%

Task Requirements
Less than 0.1s latency,

More than 90% accuracy,
10 UEs, 30 Tasks/s

Task 2 Descriptor
Image Segmentation

MASK-R-CNN DL Model
N/A

YOLOX
MASK-R-CNN

RAN and Edge Slicing:
70% RBs, 40% GPU to Task 1, Compression: 50%
30% RBs, 60% GPU to Task 2, Compression: 40%

(1)

(3)

(2)

(4)

(5)

(6)

(7)

Compression
Level

Per Task

Data Quality
Degradation Module

Data Quality
Degradation Module

Fig. 5: Functional Blocks and O-RAN Interfaces used by SEM-O-RAN (Left); A Walk-through of SEM-O-RAN (Right).

extremely low-latency operations related to the lower Phys-
ical Layer (PHY). The DU, in turn, implements the upper
portion of the PHY, as well as the Medium Access Control
(MAC) and Radio Link Control (RLC). These are controlled
in a softwarized manner by a RAN Intelligent Controller
(RIC), which is further divided into a Non-real-time RIC,
handling high-level RAN orchestration and management,
and a Near-real-time RIC, implementing fine-grained con-
trol policies such as RAN slicing, scheduling, and load
balancing. Third-party applications called xApps and rApps
can be hosted in the Non-real-time RIC and Near-real-
time RIC, respectively. The former may implement data-
driven control loops or may be used for RAN-specific data
collection and analysis. On the other hand, rApps may im-
plement high-level policy guidance as well as application-
level interfaces. Please refer to [10] for more information
regarding O-RAN.

3.2 SEM-O-RAN: Functional Blocks and Interfaces

The design of the SEM-O-RAN framework is driven by the
required ability to dynamically allocate in near-real-time
edge resources for the offloaded tasks. The choice of the
tasks to be admitted and of the allocated resources depends
on the tasks semantics, i.e., the maximum tolerable data
compression, the current network state, and the available
resources. To achieve this, it is natural to leverage the O-
RAN architecture, which enables receiving network state
metrics and setting slice resources with applications running
in the RIC. Furthermore, its multi-timescale architecture is
well suited to accommodate a Near-RT xApp for resource
allocation, along with a Non-RT rApp for computing the
accuracy and latency functions necessary to calculate the
solution of the SF-ESP (introduced in Sec. 4).

Fig. 5 shows the functional blocks of SEM-O-RAN, as well
as how the blocks are mapped into the O-RAN modules
and interfaces. The core modules of SEM-O-RAN are the
Semantic Deep Learning Analyzer (SDLA) and the Semantic
Edge Slicing Module (SESM), which respectively reside in
the Non-real-time RIC and Near-real-time RIC portions of
the O-RAN as an rApp and an xApp.

SEM-O-RAN and the VNO communicate through a
human-machine interface [10]. Each VNO requires slices for
a given set of mobile tasks. Each mobile task corresponds
to an O-RAN Slice Request (OSR), which is composed of a
Task Description (TD) field and a Task Requirements (TR)
field. The TD is used to define the DL service requested,
the DL model to be used and the DL target classes, while
the TR specified the latency and accuracy requirements,
the number of UEs requested, and the number of jobs
(e.g., inference on an image) per second generated by the
UEs. As shown in Fig. 5-Right, a TD could be (”Object
Recognition”, ”YOLOX”, ”{Person, Car, Bicycle}”), with the
corresponding TR defined as (”0.5 s max latency”, ”0.85 min
accuracy”, ”100 UEs”, ”50 jobs/sec”).

The TD is submitted to the SDLA rApp, which is tasked
to compute the latency function lτ (·) and accuracy function
aτ (·), which output the latency and accuracy values associ-
ated to a given TD, a given level of task compression and
amount of edge resources (see Sec. 4.1 for a more formal
definition). The accuracy function is computed through
representative datasets, considering the data quality dete-
rioration caused by both the intentional data compression
and unintentional input quality degradation caused by ex-
ternal interference. The Data Quality Degratation Module
(DQDM) takes care of applying artificial data degradation
using image corruption libraries that emulate the effects
of real-world phenomena. The latency function can be pre-
computed through network emulation and then refined us-
ing real monitoring data. The latency and accuracy functions
are then shared with the SESM xApp running in the Near-
real-time RIC. These are ultimately used to solve the SF-ESP.

The output of the SF-ESP xApp is ultimately three-fold:
(i) select which tasks to admit; (ii) their compression level;
and (iii) the computational resources (GPU/RAM) and the
number of Physical Resource Blocks (PRBs) assigned to each
admitted task. Real-time information about the available
computational resources and the current radio-level statis-
tics are provided to the xApp through the E2 interface.
The former is used by the SF-ESP to properly account
for the resources that are actually available in the RAN

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 5

edge, which are shared through an Enriched Interface (EI)
to the RAN. The latter are used to select and update the
appropriate latency function from the SDLA according to
the radio channel status. The radio slicing and computation
slicing are respectively shared with the CU and the RAN
edge through the E2 interface. The CU then takes care of
propagating the slicing information to the appropriate DUs.
The compression level per task is fed back to the VNO,
which then communicates this information to the UEs. We
acknowledge that this is impractical at scale, however, as
of now, the O-RAN specifications do not allow for direct
communication between RIC apps and device applications.

3.3 A Walk-through of SEM-O-RAN.

We provide a simplified walk-through of an actual slicing re-
quest and enforcement operation in SEM-O-RAN on the right
side of Fig. 5. First, TDs are sent to the SDLA rApp (Step 1).
If latency/accuracy functions are not already present, they
are computed by using the appropriate datasets/models
and stored in the Non-real-time RIC. To consider possible
data quality degradation, according to the task application
class, the dataset images are also artificially degraded by
the DQDM to different levels of quality to obtain more
robust accuracy functions. (Step 2). In case latency/accuracy
functions are ready, they are sent to the SESM xApp (Step
3), which receives the TRs (Step 4) and the current status of
the radio channel, data quality, and edge resources (Step
5), which are used used to produce the RAN and edge
slicing (Step 6). The data quality can be directly estimated
by the mobile device sensors or inferred indirectly by the
system, e.g., using smart weather stations. Finally, the cur-
rent radio/edge status may be shared with the SDLA rApp
for refinement of the latency functions (Step 7) to be used
for future slicing decisions. If slice requests change, e.g.,
because a new task is created, a new slicing allocation is
computed. Note that new and already running tasks are
equally considered, thus it may happen that previously run-
ning tasks are no longer admitted and must be terminated.

4 SEMANTIC FLEXIBLE EDGE SLICING (SF-ESP)
In this section, we introduce the system model in Sec. 4.1.
Then, we formalize the SF-ESP and prove its NP-hardness
in Sec. 4.2. We propose a greedy algorithm in Sec. 4.3.

4.1 System Model

We define an application class as a high-level objective that
has to be achieved through the execution of one or more
DL tasks with certain requirements. Every application class
specifies the DL service, the classes of objects over which
the DL service is supposed to be applied to, and the require-
ments for maximum delay and minimum expected accuracy
that a device running that application must satisfy. For
example, a monitoring application class could require the
detection and tracking of person and vehicle objects located
in the proximity of a road intersection with a minimum
expected accuracy of 0.50 mAP and maximum end-to-end
delay of 800 ms. Fig 6 shows an example with 3 application
classes.

Fig. 6: System model example with C = 3 application
classes, each of which is run by |Dc| = 2,∀c ∈ C devices.
Each device requests |Tcd| = 2,∀c, d tasks to be offloaded
to the Edge infrastructure, thus requiring the concurrent
allocation of m = 5 types of radio and compute resources.

Let C = {1, . . . , C} be the set containing the application
classes. The set of devices running an application class c ∈ C
is Dc. A device d ∈ Dc, according to its application class c,
submits a set of tasks Tcd to be offloaded onto the RAN
edge using its wireless link. A task, uniquely identified
at the system level by the tuple (c, d, t), is the periodic
execution at the edge of a DL service over certain classes
of objects, which is applied over a stream of inference
data sent by the device, and whose results are then sent
back to the requesting device, for a period of time not
known a priori. To make the notation clearer, let us define
τ = (c, d, t) ∈ T as a generic task. The offer Oτ indicates
the economic value associated with the execution of task τ ,
assuming that it is executed according to the performance
requirements defined subsequently. A task that is executed
violating the performance requirements does not yield any
revenue. Given τ , we define the compression scaling factor
as zτ ∈ (0, 1] = {x ∈ R|0 < x ≤ 1} such that the bitrate
of the inference data stream is scaled by that factor, i.e.,
bzτ = zτ bτ , where bzτ is the compressed stream and bτ is the
original stream without any applied compression. A higher
scaling factor implies higher inference accuracy. A lower
scaling factor sacrifices the data quality to decrease the file
size, thus requiring lower network bandwidth and improv-
ing latency. In our model, we assume that the inference
data original stream size is constant and depends on the
application class. Furthermore, we assume the compression
latency as constant for different scaling factors.

Given the type of edge resource k ∈ K = {1, . . . ,m}, we
denote with sτk the amount of resource of type k assigned
to each task τ ∈ T. Resource types can be networking, e.g.,
Physical Resource Blocks (PRBs), as well as computational,
e.g., GPU time and memory needed to run the DL models
in the RAN edge. Since edge resources are limited, the
total amount of assigned resources of type k cannot exceed
the capacity, Sk,∀k. Further, to account for the cost of the
resources, for each resource type, we define the resource
price pk, that is the price charged to utilize a unit of
resource of type k. The execution of a task τ is economically
convenient only if it yields a profit, defined as the difference
between the offer (bid) and the resource cost (ask), i.e., if
Oτ >

∑m
k pksτk. Thus, careful resource allocation is needed

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 6

to avoid over-provisioning and make the offloading service
economically sustainable.

The performance requirements are imposed by the re-
lated application class. Such requirements are defined in
terms of (i) minimum expected prediction accuracy Ac on
the selected object classes, and (ii) maximum expected end-
to-end latency Lc for each of the applications running on
the mobile devices belonging to class c. By defining aτ (zτ)
and lτ (zτ , sτ) as, respectively, the accuracy and latency
functions of task τ , an allocation solution is acceptable only
if aτ ≥ Ac and lτ ≤ Lc, ∀τ = (c, d, t) ∈ T. The knowledge
of the dependency of the compression factor and resource
allocation on the accuracy and latency functions, and how
to tune these parameters to satisfy task requirements, consti-
tute the task semantics, which is ultimately the information
that enables the SEM-O-RAN framework. Notice that the
accuracy and latency are not trivial functions of the slice
allocation and compression factor. Specifically, the accuracy
depends on the highly nonlinear output of a DNN, while
the latency has a strong dependency on the radio technology
and channel conditions between the RU and the UE, even
when the slice allocation and the compression factor are
given. For this reason, integrating a complex mathematical
model to account for all of the great numbers of factors
involved (e.g., Signal-to-Noise-Ratio (SNR), Modulation and
Coding Scheme (MCS), carrier(s) frequency, to name a few)
would be impractical. Instead, we consider a data-driven
approach where the accuracy and latency functions can
be constructed through a regression model, keeping the
explicit dependencies of the accuracy aτ (z) : (0, 1] → R+

and latency lτ (z, s) : (0, 1] × R+m → R+ functions on
the compression scaling factor and resource allocation, and
assuming that those are given as part of the problem input.
In our performance evaluation, we consider latency and
accuracy as piecewise functions defined only for the discrete
solution values allowed in our experiments.

TABLE 1: Table of Symbols

Symbol Description
C Set of all application classes
c Application class index
d Mobile device index running an application
t Task index requested by a device

(c, d, t) t-th task requested by device d belonging to class c
τ Generic task identified by the triplet (c, d, t)
T Set of all tasks τ of all devices from all classes
K Set of all Edge resource types
k Edge resource type index
m Total number of resource types
pk Price of the resource type k
xτ Admission of task τ
sτk Slice allocation of resource type k for τ
sτ Slice allocation vector (sτ1, ..., sτm) for τ
aτ Expected inference accuracy for task τ
lτ Expected E2E latency for task τ
Ac Minimum accuracy tolerable for class c tasks
Lc Maximum latency tolerable for class c tasks
zτ Compression scaling factor for task τ
Sk Total capacity of type k resource

4.2 SF-ESP Problem Formulation

We consider the decision variables to be as follows:

• x = [xτ], defined as the task admission vector where
the generic element, xτ , is a binary variable indicat-
ing whether task τ is offloaded to the edge or not;

• s = [sτ] = [(sτ1, ..., sτm)], i.e., the resource allocation
matrix;

• z = [zτ] defined as the compression scaling factor
vector.

Note that the data quality is maximum when zτ = 1 and
decreases for lower values of zτ . Consequently, the expected
inference accuracy aτ (z) is directly derived from zτ , as it
has no dependency on the resource allocation, while the
expected latency lτ (z, s) is a result of the choice of both
zτ and {sτk}∀k. The problem formalization according to the
system constraints and definitions is given by:

Semantic Flexible Edge Slicing Problem (SF-ESP)

max
x, s, z

∑
τ∈T

(Oτ −
m∑
k

pksτk)xτ (1a)

s.t.
∑
τ∈T

sτkxτ ≤ Sk, k = 1, . . . ,m, (1b)

zτ ∈ (0, 1], ∀τ ∈ T, (1c)
aτ (zτ) ≥ Acxτ ,∀τ ∈ T, c ∈ C, (1d)

lτ (zτ , sτ)xτ ≤ Lc, ∀τ ∈ T, c ∈ C, (1e)
xτ ∈ {0, 1},∀τ ∈ T. (1f)

The objective function (1a) maximizes the profit associ-
ated with allocated tasks xτ , by considering task offer Oτ ,
which constitutes the revenue for the task, and the cost of
the task determined by summing the product of the price
and the amount of allocated resources for the task, pksτk,
for each resource type.

Notice that the SF-ESP includes both integer and contin-
uous variables, thus it belongs to the class of mixed integer
nonlinear problems (MINLP). Proposition 1 below proves
that the problem is NP-hard.

Proposition 1. The SF-ESP is NP-hard.

Proof. We prove the result by showing that the binary
multidimensional Knapsack problem (0/1 d-KP), which is
NP-hard [19], can be reduced to an instance of the SF-ESP
in polynomial time. Let us assume that the compression
factor is fixed to zτ = 1,∀τ , and the slice allocation sτk
is given for every task and resource type. Then let us ignore
the constraints on performance by making them always
satisfied, i.e., by setting A1 = 0 and L1 = inf . The problem
now has only x as the decision variable and the value and
weight of each task are known and constant. The problem
thus is an instance of the 0/1 d-KP, whose statement is
the following: given a set of items (tasks), each with a
multidimensional weight (resource allocation) and a value
(unused resources by their price), determine which items to
include in a collection so that the total weight is less than
or equal to a given limit (total resources) and the total value
is maximized. We observe that the SF-ESP is a reduction of
0/1 d-KP that can be built in polynomial time. ■

The above proof also suggests that SF-ESP is a harder
problem than 0/1 d-KP, as it is a combination of the 0/1 d-
KP, and a variant of the strongly correlated knapsack with

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 7

variable weights and non-linear constraints. Even though an
algorithm with (1−ϵ)-approximation ratio exists for the 0/1
d-KP [20], for the strongly correlated knapsack with variable
weights an algorithm with an acceptable approximation
ratio is available only for the simpler case where constraints
are linear [21, KLC2]. Thus, we provide a greedy heuristic
algorithm for which, however, the existing results do not
permit to obtain a non-trivial approximation ratio.

4.3 Greedy Algorithm for the SF-ESP

Given the NP-hardness of the SF-ESP, we propose a greedy
heuristic to find a sub-optimal solution with low compu-
tational complexity, which is based on the primal effective
gradient method of [22] for solving the 0/1 d-KP. The key
idea of this method is to admit the tasks that have the high-
est effective gradient, a measure of the task’s relative value
according to a penalty vector that prioritizes the allocation
of unused resources. By defining the occupied resources of
type k as ok =

∑
τ∈T sτkxτ , the effective gradient (EG) can

be calculated as follows:

EG(sτ) =

(Oτ −
∑m

k pksτk)
√
m

(
∑m

k sτk/Sk)
, if

m∑
k

ok = 0

(Oτ −
∑m

k pksτk)
√∑m

k o2k

(
∑m

k sτkok/Sk)
, otherwise .

(2)
Nevertheless, to calculate the gradient of a task and apply
this method, we need to first fix the resource allocation of the
tasks sτk. To this end, we consider that the latency function
lτ (zτ , sτ) is monotonically increasing over the compression
factor zτ , and we derive the optimal task compression factor
z∗τ as the minimum that satisfies the accuracy requirement
Ac from (1d):

z∗τ = min
zτ

zτ s.t. aτ (zτ) ≥ Ac (3)

Then, given z∗τ , sτ could be found by applying the same
idea to (1e), i.e., by deriving the resource allocation that
minimizes the resource cost for all tasks τ :

s∗τ = argmin
sτ

m∑
k

pksτk s.t. lτ (z
∗
τ , sτ) ≤ Lc (4)

However, using Eq. 4 and admitting tasks in ascending
order of their resource allocation may yield a non-optimal
resource allocation, thus preventing the admission of a
larger number of tasks. Indeed, a task may satisfy latency
and accuracy constraints through several combinations of
resource allocation, with the best being not the minimum,
but the one that best balances the consumption of different
types of resources, according to their current availability.
As an example, if radio resources are scarce, we allocate
fewer of them and compensate for the increased network
latency by lowering the processing delay through increased
compute resources.

Thus, SEM-O-RAN identifies the optimal resource allo-
cation as the one that best balances the utilization of the
different types of resources according to their availability,

by maximizing, for every task τ , the EG function in [22]
over the possible values of sτ :

s∗τ = argmax
sτ

EG(sτ)

s.t. lτ (z
∗
τ , sτ) ≤ Lc, sτk ≤ Sk −

(∑
τ∈T

sτkxτ

)
,∀k

(5)

To efficiently find a solution to (3) and (5), which depend
on the definition of the accuracy and latency functions, it
would be necessary to know the properties of such func-
tions (e.g., monotonicity, convexity). Since we assume that
accuracy and latency are generic functions, we solve the
above equations through the enumeration of the resource
allocation solution space. Once s∗τ has been determined for
any task τ , we can compute EG(s∗τ), use this value to order
the tasks, and select the task associated with the highest
value of the effective gradient.

Algorithm 1 Greedy Algorithm for the SF-ESP

1: Tc ← T ▷ consider all tasks candidate for admission
2: for all τ ∈ T do
3: Gτ ← 0, xτ ← 0, sτ ← (0, ..., 0), zτ ← 1
4: if ∃ z∗τ then ▷ if minimum accuracy can be met
5: zτ ← z∗τ ▷ save the optimal compression factor
6: else
7: Tc ← Tc \ τ
8: repeat
9: for k ← 1,m do

10: ok ←
∑

τ∈T sτkxτ ▷ occupied resources

11: for all τ ∈ Tc do
12: if ∃Gk ← maxsτk

EG(sτ) s.t. sτk ≤ Sk − ok,∀k
then

13: sτ ← argmaxsτ EG(sτ) s.t. sτk ≤ Sk − ok
14: else
15: Tc ← Tc \ τ
16: τ ← τ | Gτ = max{Gτ}∀τ
17: xτ ← 1 ▷ admit task whose gradient is maximum
18: Tc ← Tc \ τ
19: until Tc = ∅
20: return (xτ , sτ , zτ)∀τ∈T
21: function EG(sτ) ▷ calculate effective gradient
22: if ok = 0,∀k then ▷ penalize resource usage equally
23: return (Oτ−

∑m
k pksτk)m

1
2 /(

∑m
k sτk

Sk
)

24: else ▷ penalize resource usage as per availability
25: return (Oτ−

∑m
k pksτk)(

∑m
k o2k)

1
2 /(

∑m
k sτkok
Sk

)

The preliminary step of the greedy algorithm (Alg. 1) is
to (i) include all submitted tasks in the candidate task set
(ln. 1), which contains the tasks that are considered feasible
and worth of admission, and (ii) initialize the solution by
setting the task admission vector and resource allocation
matrix to zero, and the compression scaling factor to the uni-
tary vector (ln. 3). Then, for each task, the optimal compres-
sion factor z∗ is calculated according to its target accuracy
(ln. 5), as per Eq. 3. An initial pruning of the candidate task
set is performed by removing tasks whose target accuracy
cannot be met for any compression factor (ln. 7).

The main loop of the algorithm (lines 8-19) examines the
tasks in the candidate task set to find the most convenient

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 8

one to admit, based on the current resource occupation
and until the set empties. First, the current resource occu-
pation vector is updated (ln. 10). After that, the maximum
effective gradient of each task in the candidate task set
is calculated by exploring the feasible resource allocations
(line 12), following Eq. 5. The effective gradient is calculated
according to the function, defined in lines 21-25, in which
the return value is computed differently whether resources
are currently free (ln. 23) or not (25). If the maximum gra-
dient is found, then the corresponding resource allocation
for the examined task is saved (ln. 13), otherwise the task
is discarded (line 15). Then, the task with the maximum
value of maximum effective gradient is found (ln. 16), ad-
mitted by setting to one its corresponding value of the task
admission vector (ln. 17) and therefore removed from the
candidate task set (ln. 18). Finally, after the loop ends, the
task admission vector, the resource allocation matrix, and
the scaling factor vector are returned as the solution of the
SF-ESP (line 20).

Defining T = |T| as the input size of the problem, we
derive that the time complexity of Alg. 1 is O(T 2rm), where
the parameters r and m are the resource resolution, i.e., the
number of discrete values allowed for the resource alloca-
tion, and the number of resource types, respectively. Instead,
a brute-force search has exponential time complexity equal
to O(2T rm). The greedy algorithm, which has been coded in
MATLAB and open-sourced to the research community, for
a problem instance with T = 50, r = 8,m = 2, on average
runs in 0.70 s on our test machine (see Sec. 5.1 for the
technical specifications), using a single MATLAB worker.

5 PERFORMANCE EVALUATION

In this section, after describing the setup of the experiments
(Sec. 5.1), we evaluate the performance of SEM-O-RAN
through extensive numerical analysis (Sec. 5.2) and practical
experiments on the Colosseum network emulator (Sec. 5.3).

5.1 Experiments Setup

Applications and datasets. As far as the DL services are
concerned, we consider object detection and instance seg-
mentation, which are state-of-the-art problems in computer
vision. For the former, we consider (i) the widely-known
COCO as dataset, which is a large-scale image database con-
taining more than 200K labeled examples across 80 object
classes [15]; (ii) the YOLOX classifier, which is based on the
Modified CSP v5 as the backbone and has 54.2M parameters
[14]. For the latter, we selected (i) the Cityscapes dataset,
which contains pixel-level annotated video sequences of
street scenes recorded in 50 different cities [17]; (ii) the
BiSeNet v2 real-time classifier, which is based on a bilateral
segmentation backbone network and has 14.8M parameters
[16]. For performance evaluation purposes, we define a set
of 10 computer vision tasks in Tab. 2.

Data degradation. In this work, we consider inten-
tional data degradation, namely image compression, ap-
plied to save network bandwidth, and unintentional prior
data degradation, such as the one caused by poor weather
or illumination conditions. To apply compression, we use
the Pillow python imaging library, which allows for the

TABLE 2: Multi-object detection (COCO) and instance seg-
mentation (Cityscapes) applications

Application Target Classes
COCO All Entire set of classes (80) of COCO
COCO Urban Bicycle, car, motorcycle, bus, truck, traffic

light, stop sign, person
COCO Bags Handbag, backpack, suitcase
COCO Animals Bird, cat, dog, horse, sheep, cow, ele-

phant, bear, zebra, giraffe
COCO Person Person
Cityscapes All All evaluation classes (19) of Cityscapes
Cityscapes
Vehicles

Car, truck, bus, train, motorcycle, bicycle

Cityscapes
Objects

Pole, traffic light, traffic sign

Cityscapes Flat Road, sidewalk
Cityscapes Person Person

compression of an image by decreasing its resolution and
saving it in JPEG format (JPEG quality: 75). To emulate
the image quality degradation, we use the imagecorruptions
python package, which provides a set of corruption effects
at 5 different severity levels that can be applied to test the
robustness of computer vision applications to unseen per-
turbations [23]. Of the several corruption effects available,
for our experiments, we selected those in Tab. 3, for which
an example is provided in Fig. 7.

TABLE 3: Selected corruption effects and the motivation for
which they have been chosen

Corruption Motivation
Fog Common weather during cooler months
Frost Occasional winter weather
Gaussian noise Digital images acquired with poor illumination
Motion blur Movement/vibration during image acquisition
Snow Common winter weather

To calculate the accuracy functions to be provided to the
SF-ESP solver and the baselines, for each original dataset,
we created a new dataset where all combinations of com-
pression and corruptions are applied and tested. Starting
from the original data size of 64 GB (52 GB COCO, 12 GB
Cityscapes), a total of 332 GB has been used to store the
augmented datasets.

Baselines. For comparison purposes, we consider the
following baselines.

1) Sl-EDGE [5], the state-of-the-art algorithm for RAN
edge slicing. We implement the Sl-EDGE algorithm
as a multidimensional binary knapsack solver and
we provide as input each task set to the opti-
mal compression factor considering all the object
classes, instead of just the classes specified by the
application class, and the resource requirements as
the minimum that allow for the satisfaction of the
performance requirements (as for Eq. 4).

2) MinRes-SEM, an algorithm that considers the task
semantics to set the optimal task compression factor
but, instead of flexibly allocating resources, it allo-
cates the minimum resources for each task, similarly
to Sl-EDGE.

3) FlexRes-N-SEM, which implements flexible re-
source allocation according to Eq. 5 but does not

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 9

(a) Fog (b) Frost (c) Gaussian noise (d) Motion blur (e) Snow

Fig. 7: The selected corruption effects are applied on the same test image using the minimum severity (0).

account for the semantics, thus setting the compres-
sion factor considering all the object classes.

4) HighComp, which sets the compression factor of
each task to 10%, so as to reach mAP of about 0.25
in the COCO dataset. This is a baseline that tries to
compress tasks aggressively to minimize resource
allocation.

5) HighRes, which statically allocates tasks 20% of
the total resource capacity. This is a baseline that
attempts to maximize the probability that admitted
tasks will meet application constraints.

Numerical experiments configuration. To investigate
the impact of our approach, we consider (i) different num-
bers (2 and 4) of edge/network resources (e.g., CPUs, GPUs,
PRBs, etc.); (ii) different thresholds of accuracy (“low”,
“medium” and “high”) and latency (“low”, “high”). We
define the accuracy thresholds Ac as 0.20, 0.35, and 0.55
mAP for object detection tasks, and 0.35, 0.50, and 0.70
mean Intersection over Union (mIoU) for instance segmen-
tation tasks, while for latency threshold Lc we choose 0.2 s
and 0.7 s. Tasks are equally distributed across the applica-
tions defined in Tab. 2. We empirically formulate a latency
function lτ that expresses the computational and network
latency as a function of compression factor, resource allo-
cation, and task generation rate. All numerical results are
derived by repeating the experiments 64 times to obtain
statistically meaningful results. Unless otherwise specified,
all tasks have the same offer value, Oτ =

∑m
k Sk, and

all resources have the same price, pk = 1/Sk. To derive
the numerical results, we used a 2x 32-cores AMD EPYC
7601 machine with 256 GB of DDR4 memory. The MATLAB
SF-ESP heuristics has been executed in MATLAB R2022a
leveraging the Parallel Toolbox with 64 parallel workers.

Prototype on Colosseum. We designed and developed
a proof of concept of SEM-O-RAN on the Colosseum wire-
less network emulator [13], which emulates radio scenarios
with up to 128 Standard Radio Nodes (SRNs). The channel
between the SRNs is emulated through the Massive Channel
Emulator (MCHEM), which processes radio signals through
a series of Finite Impulse Response (FIR) filters. We used the
open-source SCOPE framework [24], based on srsRAN [25],
as a prototyping platform for NextG systems. Since SCOPE
did not support slicing of uplink resources, we extended
SCOPE to implement uplink slicing as well 2.

Fig. 8 shows a high-level overview of the SEM-O-RAN
prototype. We reserve a set of 20 SRNs to implement the
O-RAN network, with 1 SRN used to process received jobs
of admitted tasks and to implement the base station using

2. https://github.com/corrado113/colosseum-
scope/tree/ul slicing

DU/
CU/RU

...

Radio
Intelligent
Controller

(RIC)

Massive Channel Emulator
(MCHEM)

GPUs
(1 per SRN,

20 total)

Task 1: “Bags”
6 SRNs

Latency: 0.31s
mAP: 0.18

Task 2: “Animal”
6 SRNs

Latency: 0.31s
mAP: 0.50

DNN
Models

... ...

Task 3: “Flat”
6 SRNs

Latency: 0.5s
mIoU: 0.50

Uplink
Streaming

Traffic
(1 SRN)

Fig. 8: Experimental setup on Colosseum.

srsRAN DU/CU/RU and the RIC, where we run the slice
admission system and the solvers of the SF-ESP, imple-
mented in MATLAB. Out of the remaining 19 SRNs, to emu-
late traffic separated from the mobile applications requiring
RAN slices, we use one SRN to generate uplink streaming
traffic with the iperf tool. The other 18 SRNs run the mobile
terminals that run srsRAN User Equipment (srsUE) applica-
tion to connect to the RAN and continuously send CV tasks
according to the application classes in Fig. 8. The UEs belong
to one of three VNOs, each with its own dedicated slice. As
for the PHY, we utilize the standard SCOPE parameters, i.e.,
10 MHz of bandwidth corresponding to 50 PRBs in total
grouped in 17 RBGs. We assign the uplink streaming traffic
2 RBGs, thus, 15 RBGs are available for slicing as radio
resources. Regarding computing resources, each of the 20
reserved SRNs is provided with 2x 12-cores Intel Xeon E5-
2650 v4, 128 GB of DDR4 memory, and a Tesla K40m GPU.
Thus, up to 20 GPUs can be utilized to accelerate the DNNs
execution through the CUDA-compatible version of the
Torch Python package. To simplify the scenario complexity,
only GPUs and RBGs are considered limited and allocable
by SEM-O-RAN. Conversely, the CPU time, memory, and
disk space are assumed to be unlimited resources; it follows
that we have m=2. To run the DL model inference on
user images, we configure each UE to send CV tasks to
the base station as periodic HTTP POST requests using the
cURL client. The input images, fetched from the Colosseum
Network Attached Storage (NAS) accessible by all the SRNs,
are selected according to the compression factors decided
by SEM-O-RAN and sent as multipart/form-data. To use all
of the allocated GPUs in the slice, each SRN, besides run-
ning srsUE and sending tasks to the base station, executes
an instance of the YOLOX and the BiSeNet v2 classifiers

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 10

embedded in a Flask HTTP server. To access the classifiers
pool, the requests are first sent by the UEs to an Nginx server
running at the base station through the RAN. Nginx acts as
a frontend round-robin load balancer, so it forwards the re-
quests to the backend classifiers to the other SRNs using the
10 GE Colosseum collaboration network. After an inference
is completed, the classification result is returned traversing
back the Nginx proxy through the collaboration network
and to the requesting UE through the RAN. In this way, a
task can effectively run on multiple GPUs by distributing
inference frames according to the slicing decision.

5.2 Numerical Results

Task allocation results. Fig. 9 shows the number of allocated
tasks by SEM-O-RAN and the baseline algorithms, as a func-
tion of the number of requested tasks when 2 and 4 types of
edge/network resources are available. Fig. 9(a) shows that,
in general, the performance of SEM-O-RAN is similar to that
given by MinRes-SEM. Even when the requirements are
medium accuracy and high latency, SEM-O-RAN allocates
20% more tasks than Sl-EDGE and FleRes-N-SEM, and 402%
more tasks than HighRes, when 50 tasks are generated.
On the other hand, when the accuracy requirements de-
viate from medium, we notice that SEM-O-RAN delivers
significantly better performance than Sl-EDGE. Specifically,
we notice that when high mAP/mIoU is required, only
SEM-O-RAN and MinRes-SEM are able to allocate tasks
that meet the requirements. Sl-EDGE does not allocate
tasks since Sl-EDGE considers all the tasks as belonging to
the ”All” application, which can never reach the required
mAP/mIoU of 0.55/0.70 (see the left side of Fig. 3). While
HighComp and HighRes do allocate tasks, they will not
meet the requirements. The reason is that HighComp and
HighRes allocate tasks while being agnostic of the target
latency and accuracy. The effect of joint semantic slicing
and flexible resource allocation is even more evident in
Fig. 9(b), where more types of edge/network resources are
considered. In this case, SEM-O-RAN outperforms all the
other schemes in all of the considered scenarios, especially
when the number of tasks increases and the requirements
become more stringent. Here, FlexRes-N-SEM, as opposed
to Fig. 9(a), outperforms Sl-EDGE, proving the benefit of
flexible resource allocation with more resource types.

Overall, SEM-O-RAN allocates a maximum of 169% and
an average of 72.0% more tasks than the existing state-of-
the-art Sl-EDGE algorithm. Compared to Sl-EDGE, MinRes-
SEM and FlexRes-N-SEM allocate an average of 57.2% and
9.1% more tasks respectively, thus suggesting that semantic
data compression provides better performance gains than
flexible resource allocation, particularly with few resource
types, and that jointly applying the two SEM-O-RAN’s key
innovations provides better performance gains (+5,7%) than
the sum of the individual gains contributions.

Data quality robustness. To make SEM-O-RAN robust
to perturbation in the image quality, SEM-O-RAN’s DQDM
artificially corrupts datasets’ images to learn the tolerable
compression according to the application class. Here, we
evaluate the importance of anticipating perturbations in the
image quality, by testing SEM-O-RAN performance when
tasks input data is degraded by artificial image corruption

effects. Tab. 4 shows the comparison between SEM-O-RAN
and Sl-EDGE, with and without the DQDM, which adds
robustness to perturbations in the image quality in the pres-
ence of image degradation at different severity levels. The
reported values are calculated by considering 50 requested
tasks, which are affected by data degradation caused by
an effect randomly selected from those in Tab. 3. Then,
the results are averaged over the values collected from the
experiments conducted using the parameters described in
Sec. 5.1

SEM-O-RAN is always able to successfully execute all the
allocated tasks, whose number decreases with the increase
of the severity. Of the 19.43 average tasks successfully
executed when no degradation is applied, only 8.60 are
accepted and successfully executed when the degradation
is maximum. If the DQDM is deactivated, SEM-O-RAN is
no longer able to guarantee the successful execution of all
the admitted tasks. Furthermore, the selected compression
is often too aggressive, which causes a minimum of 0.27
successful tasks when the maximum degradation is applied.
Sl-EDGE, when integrated with the DQDM, can accept a fair
number of tasks. However, as seen in the task allocation re-
sults, it delivers worse results than SEM-O-RAN, since it does
not consider the individual object classes: only 3.95 tasks
are successfully executed at 100% severity. For the same
reason, when the DQDM is disabled, Sl-EDGE is always able
to successfully execute more tasks than SEM-O-RAN for all
non-zero severity levels. To conclude, as SEM-O-RAN’s capa-
bility of successfully meeting tasks’ accuracy requirements
is strongly affected by the fidelity of the accuracy function
when working with real data, the DQDM is fundamental
in a real-world scenario when tasks’ input data may be
affected by disturbances. On the contrary, the state-of-the-
art Sl-EDGE, unaware of the semantics of the task, even with
the DQDM, is not able to execute successfully the admitted
tasks, thus leading to poor QoS and wasted edge resources.

Profits analysis. We now evaluate the impact of tasks’
offers on the number of accepted tasks and the resulting
profit. The revenue for the MNO is calculated as the dif-
ference between the profit obtained when tasks are exe-
cuted within constraints and costs of the resources needed
to accommodate the tasks, even when the tasks are not
executed successfully. To do so, we compare SEM-O-RAN
and Sl-EDGE in a for-profit configuration, where tasks’
offer is not constant, and in a non-profit configuration, as
they have been considered up to this moment. In the for-
profit configuration, tasks’ offers are chosen by randomly
sampling from a discrete uniform distribution in the interval
[0, 2

∑m
k Sk] such that tasks submitted for offloading have

the same average offer in both configurations. The results
are generated using the same configuration used for task
allocation results to allow for a direct comparison. Then
the resulting values are further averaged over the different
numbers of edge resources, the thresholds of accuracy and
latency, and the numbers of requested tasks, thus averaging
over a total of 3,840 values.

We show in Tab. 5 that SEM-O-RAN for-profit, although
accepting 12% fewer tasks, can increase profits by 13% over
SEM-O-RAN non-profit, considering tasks with the same
average offer. Sl-EDGE is worse than SEM-O-RAN in both
of its configurations. Sl-EDGE for-profit only achieves 66%

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 11

(a) Numerical results with 2 types of edge/network resources (b) Numerical results with 4 types of edge/network resources

Fig. 9: Numerical results: comparison between SEM-O-RAN and baselines.

TABLE 4: Data quality impact on admitted and successful tasks according to varying degradation severity levels

Tasks Admitted Successful

Solution
Severity 0% 20% 60% 100% 0% 20% 60% 100%

SEM-O-RAN 19.43 16.02 11.54 8.60 19.43 16.02 11.53 8.60
SEM-O-RAN w/o DQDM 19.43 19.45 19.47 19.44 19.43 4.18 0.71 0.27
Sl-EDGE w/ DQDM 15.64 12.63 8.52 5.69 11.17 9.21 6.11 3.95
Sl-EDGE w/o DQDM 15.64 15.74 15.70 15.66 11.17 8.36 4.72 2.92

TABLE 5: Successful tasks and profits of SEM-O-RAN and
Sl-EDGE, in their for- and non-profit configurations

Solution Successful Profit Relative
tasks profit

SEM-O-RAN for-profit 11.31 46.37 152%
SEM-O-RAN non-profit 12.90 40.84 134%
Sl-EDGE for-profit 7.28 30.52 100%
Sl-EDGE non-profit 8.27 25.25 83%

of SEM-O-RAN for-profit profits, and this value decreases
to 55% for Sl-EDGE non-profit. This difference is caused
by the lower number of tasks executed successfully. Even
when Sl-EDGE tries to maximize profits, it shows inferior
performance than the non-profit version of SEM-O-RAN,
proving again the valuable contributions of its key features.
These results clearly demonstrate that the performance that
our proposal offers is reflected in real economic value.

5.3 Experimental Results
Comparison of SEM-O-RAN and baselines. Fig. 10 shows
our experimental results on Colosseum, in which we change
the VNO slice requirements by updating the number of
frames (i.e., jobs) per second (fps) that will be generated
by each UE every 25 seconds, while latency and accuracy
constraints are kept constant (values in Fig. 8). Whenever
the requirements are updated, the SESM computes a new
solution and enforces new slice configurations. Thus, we
report the experimental end-to-end latency for each slice
as a function of time, as well as the end-to-end latency

threshold requirement for each task. To further investigate
the advantage of flexible allocation and semantic slicing,
we compare SEM-O-RAN to MinRes-SEM, FlexRes-N-SEM,
and Sl-EDGE. Accordingly, we show the related output of
the slicing algorithm in terms of RBGs (radio resources)
and GPUs (computing resources). Notice that since FlexRes-
N-SEM and Sl-EDGE take the same admission, resource
allocation, and compression decisions, for them both we
show only a single set of plots (Figs. 10(c),(f),(i)).

We see that SEM-O-RAN successfully allocates ”Bags”,
”Animals”, and ”Flat”. Interestingly, RBG allocation de-
creases as the fps request decreases because, for lower
values of fps, the experienced latency increases as some time
is spent for LTE uplink scheduling requests from the UEs
[26]. With higher fps, the UE is able to use RBGs granted by
the eNB to exchange traffic pertaining to multiple frames,
thus leading to lower latency even if network utilization is
higher. In the third and fourth periods, all three tasks are
allocated by SEM-O-RAN. The impact of flexible resources is
demonstrated in (e) where we see that MinRes-SEM does
not allocate ”Animals” in the first period. The reason is
that SEM-O-RAN is balancing RBGs with GPUs, requesting
6 RBGs and 5 GPUs during the first period. Since MinRes-
SEM would have requested 8 RBGs and 1 GPU, this would
have led to 16 RBGs in total, which exceed the system ca-
pacity. Finally, from Figures 10(c), (f), and (i), it emerges that
both FlexRes-N-SEM and Sl-EDGE, by not considering the
semantics, perform worse than the former two approaches.
By keeping in mind that the non-semantic solvers assume

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Measured end-to-end latency Mean end-to-end latency threshold Allocated RBGs Allocated GPUs

0.28

0.3

0.32

0.34

0.36

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(a) SEM-O-RAN, ”Bags”, z = 0.28

0.28

0.3

0.32

0.34

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(b) MinRes SEM, ”Bags”, z = 0.28

-0.5

0

0.5

1

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(c) FlexRes-N-SEM & Sl-EDGE, ”Bags”,
z = 0.14

0.28

0.3

0.32

0.34

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(d) SEM-O-RAN, ”Animals”, z = 0.28

0.28

0.3

0.32

0.34

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(e) MinRes-SEM, ”Animals”, z = 0.28

-0.5

0

0.5

1

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(f) FlexRes-N-SEM & Sl-EDGE, ”Ani-
mals”, z > 1

0.4

0.5

0.6

0.7

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(g) SEM-O-RAN, ”Flat”, z = 0.08

0.4

0.5

0.6

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(h) MinRes-SEM, ”Flat”, z = 0.08

0.4

0.5

0.6

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(i) FlexRes-N-SEM & Sl-EDGE, ”Flat”, z =
0.18

Fig. 10: Experimental results obtained through Colosseum, where we report the end-to-end latency as a function of time,
as well as the end-to-end latency threshold requirement. We change the slice requirements by updating the number of
generated frames per second (fps) by each UE every period of 25 seconds, and show the related output of the slicing
algorithm in terms of RBGs (radio resources) and GPUs (computing resources). Below each plot, we report the chosen
compression rate: note that in (c) z = 0.14 is a too aggressive compression factor, while in (f) z > 1 represents the case
where an infeasible compression factor would be required.

that every task is of type ”All”, they will compress the
tasks in ”Bags” to 14% of their original size to maximize
the number of tasks allocated. Conversely, SEM-O-RAN and
MinRes-SEM compress ”Bags” to 28%, which leads to suc-
cessful allocation since the mAP constraint will be met. Even
worse, FlexRes-N-SEM and Sl-EDGE will allocate resources
for ”Bags” but the tasks will fail because they will not meet
the required mAP. Thus, even if these solvers save resources
by compressing more, excessive compression prevents the
achievement of the required mAP. As shown in Fig. 10(f),
the ”Animals” task is never admitted by FlexRes-N-SEM
and Sl-EDGE, as they assume that an mAP of 0.5 can
never be reached by ”All”, while SEM-O-RAN and MinRes-
SEM, by accounting for the semantics, compress the tasks
to the optimal level and can successfully admit it. As for
”Flat”, FlexRes-N-SEM and Sl-EDGE can always allocate it
successfully but, by assuming the type as the more complex
”All”, they do not select the same aggressive compression

TABLE 6: Task configurations for SEM-O-RAN evaluation
with devices experiencing variable radio channel quality

Task Oτ Ac Lc FPS Object class Allowed actions
τ1 20 0.2 0.6 20 Urban z: [1, 0.28, 0.08]

RBG: [1..6,8,10]
GPU: [1..5]

τ2 20 0.5 0.4 10 Urban
τ3 5 0.6 0.4 3 Person
τ4 5 0.6 0.4 3 Person

factor that instead is chosen by SEM-O-RAN and MinRes-
SEM (18% vs. 8%), at the cost of higher RBGs consumption
in the latest period in Fig. 10(i). Finally, it is worth men-
tioning that the reason why FlexRes-N-Sem and Sl-EDGE
show the same behavior, even if better performance would
be expected thanks to flexible resource allocation, is that the
limited amount of resource types is not sufficient to get any
performance gain over the minimum resource allocation of
Sl-EDGE.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Uplink SNR Measured end-to-end latency Mean end-to-end latency threshold Allocated RBGs Allocated GPUs

15

20

SNR [dB]

0.4

0.6

0.8

Lat [s]

20 40 60 80 100

Time [s]

2

4
RBGs

GPUs

(a) Task τ1, z = 0.08

15

20

SNR [dB]

0.34
0.36
0.38

0.4
0.42

Lat [s]

20 40 60 80 100

Time [s]

2

4
RBGs

GPUs

(b) Task τ2, z = 1

15

20

SNR [dB]

0.36

0.38

0.4

Lat [s]

20 40 60 80 100

Time [s]

2

4
RBGs

GPUs

(c) Task τ3, z = 1

15

20

SNR [dB]

0.36

0.38

0.4

Lat [s]

20 40 60 80 100

Time [s]

2

4
RBGs

GPUs

(d) Task τ4, z = 1

Fig. 11: Experimental results obtained in Colosseum showing the latency achieved by admitted tasks according to their
allocated radio and edge resources. Devices offloading the tasks experience variable channel quality, which affects the
resources required to meet the latency constraints.

Radio channel quality impact on SEM-O-RAN. In a real-
world scenario, mobile devices experience different channel
conditions. To show how SEM-O-RAN behaves in this situa-
tion, we use Colosseum to emulate a radio scenario where
the devices’ radio channels experience varying values of
SNR, and then we feed SEM-O-RAN with task latency func-
tions formulated according to the radio channel status of the
requesting device. Specifically, the radio scenarios emulated
by the MCHEM are configured to apply a variable path
loss to uplink and downlink RF signals between the base
station and the UEs. Limiting the total available resources
to 10 GPUs and 12 RBGs, we consider 4 object detection
tasks whose characteristics are summarized in Tab. 6, where
also the available actions are listed. Tasks configurations are
chosen to achieve a good balance between required accuracy
and fps. Moreover, τ1 and τ2, which are those with the
highest offer, experience an SNR that varies each 20 s period,
while τ3 and τ4 are offloaded over a stable radio link.

Fig. 11 shows the task latency and assigned resources
when the tasks are admitted and, consequently, executed.
Initially, all tasks are admitted except for task τ2, even if
it offers the highest value, because no resource allocation
(among the allowed ones) can satisfy the latency require-
ment when the SNR is as low as 15 dB. During the second
period, the SNR measured by the device requesting task τ2
rises to 20 dB, which allows for the admission of the task
with a large resource allocation. Because of this, task τ4 can
no longer be admitted and, hence, it is stopped. During the
third period, the SNR relative to τ2 rises to 25 dB, which
allows SEM-O-RAN to respect the latency requirement with
a smaller resource allocation. The freed resources can now
be used by the resumed τ4. The fourth period is similar
to the second one, except now τ1 is executed with a lower
SNR, which, however, does not require more resources to
be allocated. This does not hold in the last period, where
more resources are needed to execute τ1. Coincidentally, the
larger allocation required by τ1 is balanced by the smaller
one required by τ2, thus there is no need to stop τ3 to
free resources for higher offering tasks. The only difference

between τ3 and τ4 is the higher SNR of the former, which
allows for a lower resource allocation ((3,1) vs. (4,2)) and
thus, as we have seen, a lower probability of being stopped
to yield to higher offering tasks.

6 RELATED WORK

RAN slicing has attracted significant attention over the
last years [5], [6], [8]. Moreover, as the RAN gets soft-
warized, mobile edge computing (MEC) becomes crucial
to address the ever-stringent latency demands of mobile
applications [27], [28]. We refer the interested reader to the
surveys [29], [30].

Specific to the slicing of edge resources, Van Huynh et
al. [31] present a mechanism for slicing of computation,
networking, and storage through a deep dueling neural
network that provides slices admission while avoiding over-
provisioning and maximizing the VNO’s reward. However,
the authors in [31] do not focus on how to partition the MEC
resources and only focus on admission control. Conversely,
Ndikumana et al. [32] consider the allocation of hetero-
geneous resources for MEC task offloading, while in [33]
Liu et al. propose a framework for MEC-enabled wireless
networks called DIRECT, which however does not consider
the case when MEC and networking resources are on the
same edge node. Moreover, these frameworks are not O-
RAN compatible, which is instead one of the primary goals
of this paper.

Closely related to network slicing research, several stud-
ies on Service Function Chaining (SFC) have proposed solu-
tions to the Virtual Network Function (VNF) placement and
Network Function Virtualization (NFV) resource allocation
problems. Early works focused mainly on Telecom Service
Provider’s and optical networks, whereas 5G and wireless
networks have received more attention lately [34]. In [35],
the authors formalize a wireless VNF placement problem
and propose a heuristic algorithm to solve it considering the
function requirements of wireless network bandwidth and
computing resources. Although flexible resource allocation
has been considered in the context of VNF [36]–[38], existing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 14

formulations do not consider application semantics, and,
in general, cannot be easily applied to address edge task
offloading problems.

So far, most of the research focus in O-RAN has been
on designing algorithms for RAN control and optimization.
Bonati et al. [12] have developed an xApp running deep
reinforcement learning (DRL) agents to select the best-
performing scheduling policy for each RAN slice. In our
work, we do not select scheduling policies but instead focus
on RAN slicing. D’Oro et al. [11] propose an orchestration
mechanism to select the optimal DL models and execution
location for each model complying with timescale require-
ments, resource, and data availability. Conversely, we focus
on properly slicing MEC resources for timely execution of
CV-based DL models under strict accuracy constraints.

Task offloading at the edge has been considered in sev-
eral recent works. In [39], the correlation between statistical
QoS requirements, i.e., the completion of a task within
the deadline with a certain probability and task offloading
strategies, is quantified. In our work, we consider the av-
erage latency to derive the latency functions but, because
of the general definition, other measures (e.g., maximum
or percentiles) can be used as well to satisfy statistical
requirements. Focusing more on task offloading revenue,
the authors of [40] propose a minimum-cost-maximum-
flow graph algorithm to minimize edge power consump-
tion while maximizing offloaded task rewards. In [41], an
alternative approach to MNOs revenues maximization is
proposed through a pricing model designed for balancing
the prices of required edge resources and task arrival rate.
Adaptive quality optimization of CV tasks is considered
in [42], which however focuses on the compression factor
selection and task placement problem ignoring the resource
capacity constraints of the computing platforms.

The closest work to ours is Sl-EDGE [5], a MEC slicing
framework that allows network operators to instantiate
heterogeneous edge slices. The key limitation of Sl-EDGE is
that it considers neither DL semantics nor flexible resource
allocation, which are instead the core advantages of our
approach. Indeed, we show that our solution schedules up
to 169% more tasks than Sl-EDGE and 52% higher profits.

Finally, we mention that a preliminary version of this
work can be found in [1], where we propose a simpler
SEM-O-RAN framework architecture and objective function;
we present a minimal numerical analysis, not considering
the effects of prior data degradation and the economic
aspect of our proposal, and a limited experimental perfor-
mance evaluation, which disregards radio channel effects on
the communications of mobile devices.

7 CONCLUSIONS

Our paper proposes SEM-O-RAN, the first semantic slic-
ing framework for task edge offloading in NextG O-
RAN mobile networks. SEM-O-RAN achieves great per-
formance by optimizing network usage through semantic
adaptive compression. Furthermore, unlike existing meth-
ods, SEM-O-RAN does not treat tasks as monolithic entities,
but rather allocates radio and computational resources in
a flexible manner to maximize the number of admitted

tasks. Considering these two key concepts, we mathemat-
ically formulated the SF-ESP, which we proved to be NP-
hard. In light of the problem complexity, we proposed an
efficient greedy heuristic algorithm to solve it. To evaluate
the performance of SEM-O-RAN, we conducted extensive
numerical analyses and compared it to several baseline algo-
rithms, including the state-of-the-art scheme [5]. Our results
demonstrate that SEM-O-RAN can improve the number of
allocated tasks by up to 169%, while still satisfying accu-
racy and delay constraints. Additionally, we implemented
a prototype of SEM-O-RAN using the Colosseum network
emulator and the SCOPE framework for NextG RAN [24],
showing the feasibility of our proposal and demonstrat-
ing that SEM-O-RAN can be seamlessly integrated into a
NextG system. We demonstrated the economic value of
our approach showing that SEM-O-RAN can improve the
revenues of MNOs by 52% compared to the state of the
art. We believe that our semantics-based approach can serve
as a foundation for future research on the utilization of
application-level features in the design and optimization
of wireless networks, beyond the results presented in this
paper.

ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER

This work is funded in part by the National Science
Foundation (NSF) grant CNS-2134973, CNS-2120447 and
ECCS-2229472, by the Air Force Office of Scientific Re-
search under contract number FA9550-23-1-0261, by the
Office of Naval Research under award number N00014-
23-1-2221, by an effort sponsored by the U.S. Govern-
ment under Other Transaction number FA8750-21-9-9000
between SOSSEC, Inc. and the Government, by the Eu-
ropean Union’s NextGenerationEU instrument, under the
Italian National Recovery and Resilience Plan (NRRP), Mis-
sion 4 Component 2 Investment 1.3, enlarged partnership
“Telecommunications of the Future” (PE00000001), program
“RESTART”, and by the European Commission through
Grant No. 101095890 (Horizon Europe SNS JU PREDICT-6G
project) and Grant No. 101095363 (Horizon Europe SNS JU
ADROIT6G project).

The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or im-
plied, of the NSF, the Air Force Research Laboratory, the
U.S. Government, or SOSSEC, Inc.

REFERENCES

[1] C. Puligheddu, J. Ashdown, C. F. Chiasserini, and F. Restuccia,
“SEM-O-RAN: Semantic and Flexible O-RAN Slicing for NextG
Edge-Assisted Mobile Systems,” in Proc. of IEEE Conference on
Computer Communications (INFOCOM), 2023.

[2] H. Ye, L. Liang, G. Ye Li, J. Kim, L. Lu, and M. Wu, “Machine
Learning for Vehicular Networks: Recent Advances and Applica-
tion Examples,” IEEE Vehicular Technology Magazine, vol. 13, no. 2,
pp. 94–101, 2018.

[3] R. Ravindran, M. J. Santora, and M. M. Jamali, “Multi-object
Detection and Tracking, based on DNN, for Autonomous Vehicles:
A Review,” IEEE Sensors Journal, vol. 21, no. 5, pp. 5668–5677, 2020.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 15

[4] X. Li, A. Garcia-Saavedra, X. Costa-Perez, C. J. Bernardos,
C. Guimarães, K. Antevski, J. Mangues-Bafalluy, J. Baranda,
E. Zeydan, D. Corujo, et al., “5Growth: An End-to-End Service
Platform for Automated Deployment and Management of Verti-
cal Services over 5G Networks,” IEEE Communications Magazine,
vol. 59, no. 3, pp. 84–90, 2021.

[5] S. D’Oro, L. Bonati, F. Restuccia, M. Polese, M. Zorzi, and T. Melo-
dia, “Sl-EDGE: Network Slicing at the Edge,” in Proceedings of the
Twenty-First International Symposium on Theory, Algorithmic Founda-
tions, and Protocol Design for Mobile Networks and Mobile Computing,
pp. 1–10, 2020.

[6] S. Mandelli, M. Andrews, S. Borst, and S. Klein, “Satisfying
Network Slicing Constraints via 5G MAC Scheduling,” in Proceed-
ings of IEEE International Conference on Computer Communications
(INFOCOM), pp. 2332–2340, IEEE, 2019.

[7] V. Mancuso, P. Castagno, M. Sereno, and M. A. Marsan, “Slicing
Cell Resources: The Case of HTC and MTC Coexistence,” in
Proceedings of IEEE International Conference on Computer Commu-
nications (INFOCOM), pp. 667–675, IEEE, 2019.

[8] S. D’Oro, F. Restuccia, A. Talamonti, and T. Melodia, “The Slice
is Served: Enforcing Radio Access Network Slicing in Virtualized
5G Systems,” in Proc. of IEEE International Conference on Computer
Communications (INFOCOM), pp. 442–450, IEEE, 2019.

[9] G. Garcia-Aviles, M. Gramaglia, P. Serrano, and A. Banchs,
“POSENS: A Practical Open Source Solution for End-to-End Net-
work Slicing,” IEEE Wireless Communications, vol. 25, no. 5, pp. 30–
37, 2018.

[10] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Under-
standing O-RAN: Architecture, Interfaces, Algorithms, Security,
and Research Challenges,” arXiv preprint arXiv:2202.01032, 2022.

[11] S. D’Oro, L. Bonati, M. Polese, and T. Melodia, “OrchestRAN:
Network Automation through Orchestrated Intelligence in the
Open RAN,” in Proc. of IEEE International Conference on Computer
Communications (INFOCOM), May 2022.

[12] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intel-
ligence and Learning in O-RAN for Data-driven NextG Cellular
Networks,” IEEE Communications Magazine, vol. 59, pp. 21–27,
October 2021.

[13] L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-
Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder, et al., “Colos-
seum: Large-Scale Wireless Experimentation Through Hardware-
in-the-Loop Network Emulation,” in 2021 IEEE International Sym-
posium on Dynamic Spectrum Access Networks (DySPAN), pp. 105–
113, IEEE, 2021.

[14] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
Series in 2021,” arXiv preprint arXiv:2107.08430, 2021.

[15] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common Objects in
Context,” in Proceedings of European Conference on Computer Vision
(ECCV), pp. 740–755, Springer, 2014.

[16] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, “BiSeNet
V2: Bilateral Network with Guided Aggregation for Real-Time
Semantic Segmentation,” International Journal of Computer Vision,
vol. 129, pp. 3051–3068, Nov 2021.

[17] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset
for Semantic Urban Scene Understanding,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[18] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
Programmable, and Virtualized 5G Networks: State-of-the-Art
and the Road Ahead,” Computer Networks, vol. 182, pp. 1–28,
December 2020.

[19] H. Kellerer, U. Pferschy, and D. Pisinger, Multidimensional Knapsack
Problems, pp. 235–283. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2004.

[20] A. Frieze and M. Clarke, “Approximation Algorithms for the m-
Dimensional 0–1 Knapsack Problem: Worst-Case and Probabilistic
Analyses,” European Journal of Operational Research, vol. 15, no. 1,
pp. 100–109, 1984.

[21] K. Nip, Z. Wang, and Z. Wang, “Knapsack with Variable Weights
Satisfying Linear Constraints,” vol. 69, p. 713–725, nov 2017.

[22] Y. Toyoda, “A Simplified Algorithm for Obtaining Approximate
Solutions to Zero-One Programming Problems,” Management Sci-
ence, vol. 21, no. 12, pp. 1417–1427, 1975.

[23] C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bringmann, A. S.
Ecker, M. Bethge, and W. Brendel, “Benchmarking Robustness in

Object Detection: Autonomous Driving when Winter is Coming,”
arXiv preprint arXiv:1907.07484, 2019.

[24] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “SCOPE: An
Open and Softwarized Prototyping Platform for NextG Systems,”
in Proceedings of the International Conference on Mobile Systems,
Applications, and Services (MobiSys), pp. 415–426, 2021.

[25] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “SrsLTE: An Open-Source Platform for
LTE Evolution and Experimentation,” in Proceedings of the Tenth
ACM International Workshop on Wireless Network Testbeds, Exper-
imental Evaluation, and Characterization, WiNTECH ’16, p. 25–32,
2016.

[26] G. Pocovi, I. Thibault, T. Kolding, M. Lauridsen, R. Canolli,
N. Edwards, and D. Lister, “On the Suitability of LTE Air Interface
for Reliable Low-Latency Applications,” in 2019 IEEE Wireless
Communications and Networking Conference (WCNC), pp. 1–6, 2019.

[27] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas,
“Computation Offloading in Multi-Access Edge Computing Using
a Deep Sequential Model Based on Reinforcement Learning,” IEEE
Communications Magazine, vol. 57, pp. 64–69, May 2019.

[28] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task Offloading in Vehicu-
lar Edge Computing Networks: A Load-Balancing Solution,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 2, pp. 2092–2104,
2019.

[29] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck,
“Network Slicing and Softwarization: A Survey on Principles, En-
abling Technologies, and Solutions,” IEEE Communications Surveys
& Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018.

[30] S. Wijethilaka and M. Liyanage, “Survey on Network Slicing for
Internet of Things Realization in 5G Networks,” IEEE Communica-
tions Surveys & Tutorials, vol. 23, no. 2, pp. 957–994, 2021.

[31] N. Van Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz,
“Optimal and Fast Real-Time Resource Slicing with Deep Dueling
Neural Networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 37, no. 6, pp. 1455–1470, 2019.

[32] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato,
and C. S. Hong, “Joint Communication, Computation, Caching,
and Control in Big Data Multi-Access Edge Computing,” IEEE
Transactions on Mobile Computing, vol. 19, no. 6, pp. 1359–1374,
2019.

[33] Q. Liu and T. Han, “DIRECT: Distributed Cross-Domain Resource
Orchestration in Cellular Edge Computing,” in Proceedings of ACM
International Symposium on Mobile Ad Hoc Networking and Comput-
ing (MobiHoc), pp. 181–190, ACM, 2019.

[34] J. Gil Herrera and J. F. Botero, “Resource Allocation in NFV: A
Comprehensive Survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[35] R. Riggio, A. Bradai, D. Harutyunyan, T. Rasheed, and T. Ahmed,
“Scheduling Wireless Virtual Networks Functions,” IEEE Transac-
tions on Network and Service Management, vol. 13, no. 2, pp. 240–252,
2016.

[36] M. Golkarifard, C. F. Chiasserini, F. Malandrino, and A. Movaghar,
“Dynamic VNF Placement, Resource Allocation and Traffic Rout-
ing in 5G,” Computer Networks, vol. 188, p. 107830, 2021.

[37] J. Martı́n-Pérez, F. Malandrino, C. F. Chiasserini, M. Groshev, and
C. J. Bernardos, “KPI Guarantees in Network Slicing,” IEEE/ACM
Transactions on Networking, vol. 30, no. 2, pp. 655–668, 2021.

[38] A. Pentelas, G. Papathanail, I. Fotoglou, and P. Papadimitriou,
“Network Service Embedding Across Multiple Resource Dimen-
sions,” IEEE Transactions on Network and Service Management,
vol. 18, no. 1, pp. 209–223, 2021.

[39] Q. Li, S. Wang, A. Zhou, X. Ma, F. Yang, and A. X. Liu, “QoS
Driven Task Offloading With Statistical Guarantee in Mobile Edge
Computing,” IEEE Transactions on Mobile Computing, vol. 21, no. 1,
pp. 278–290, 2022.

[40] M. Song, Y. Lee, and K. Kim, “Reward-Oriented Task Offloading
Under Limited Edge Server Power for Multiaccess Edge Comput-
ing,” IEEE Internet of Things Journal, vol. 8, no. 17, pp. 13425–13438,
2021.

[41] M. Mukherjee, V. Kumar, Q. Zhang, C. X. Mavromoustakis,
and R. Matam, “Optimal Pricing for Offloaded Hard- and Soft-
Deadline Tasks in Edge Computing,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 23, no. 7, pp. 9829–9839, 2022.

[42] A. Toma, J. Wenner, J. E. Lenssen, and J.-J. Chen, “Adaptive quality
optimization of computer vision tasks in resource-constrained
devices using edge computing,” in 2019 19th IEEE/ACM Interna-

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH 20ZZ 16

tional Symposium on Cluster, Cloud and Grid Computing (CCGRID),
pp. 469–477, 2019.

Corrado Puligheddu [M’20] is an Assistant
Professor at Politecnico di Torino, Turin, Italy,
since 2023. His research interests include 5G
networks, Open RAN and Machine Learning.
Puligheddu received his Ph.D. in Electrical, Elec-
tronics and Communication Engineering from
Politecnico di Torino in 2022. He obtained the
B.S and M.S. in Computer Engineering from the
same institution in 2017 and 2019 respectively.

Jonathan Ashdown [M’13, SM’21] received the
B.S., M.S., and Ph.D. degrees from Rensselaer
Polytechnic Institute, Troy, NY, USA, in 2006,
2008, and 2012, respectively, all in electrical
engineering. He received the Best Unclassified
Paper Award at the IEEE Military Communica-
tions Conference in 2012. From 2012 to 2015,
he worked as an electronics engineer with the
Department of Defense (DoD), Naval Informa-
tion Warfare Center (NIWC) Atlantic, Charleston,
SC, USA where he was involved in several basic

and applied research projects for the U.S. Navy, mainly in the area
of software defined radio. In 2015, he transferred within DoD to the
Information Directorate of the Air Force Research Laboratory (AFRL),
Rome, NY, USA, where he serves as a senior electronics engineer
and is involved in the research and development of advanced emerging
communications and networking technologies for the U.S. Air Force.

Carla Fabiana Chiasserini [F’18] is a Professor
at Politecnico di Torino, Italy. She worked as a
visiting scholar and researcher at UCSD from
1998 till 2003. She was also a Visiting Professor
at the Monash University (Australia) in 2012 and
2016, and at the Technical University in Berlin
(Germany) in 2021 and 2022. Carla serves as
EiC of Computer Communications, and as Asso-
ciate EiC for the IEEE Transactions on Network
Science and Engineering.

Francesco Restuccia [M’16, SM’21] is an As-
sistant Professor in the Department of Electri-
cal and Computer Engineering at Northeastern
University. He received his Ph.D. in Computer
Science from Missouri University of Science and
Technology in 2016, and his B.S. and M.S.
in Computer Engineering with highest honors
from the University of Pisa, Italy in 2009 and
2011, respectively. His research interests lie in
the design and experimental evaluation of next-
generation edge-assisted data-driven wireless

systems. Prof. Restuccia’s research is funded by several grants from
the US National Science Foundation and the Department of Defense.
He received the Office of Naval Research Young Investigator Award, the
Air Force Office of Scientific Research Young Investigator Award and the
Mario Gerla Award in Computer Science, as well as best paper awards
at IEEE INFOCOM and IEEE WOWMOM. Prof. Restuccia has published
over 60 papers in top-tier venues in computer networking, as well as
co-authoring 16+ U.S. patents and three book chapters. He regularly
serves as a TPC member and reviewer for several top-tier ACM and
IEEE conferences and journals.

