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Abstract—This paper presents an analog circuit for calibration-
free event-driven myoelectric control of sEMG-based applica-
tions. The proposed solution is to be installed downstream of the
conditioning chain of an sEMG sensor and consists of a Sallen-
Key filter, acting as a differentiator in the main sEMG frequency
band, and a voltage comparator. The output of the circuit is a
quasi-digital signal, in which the muscle activity is mapped onto
the time distribution of digital events. The design phase focused
on noise robustness, and a prototype was tested during in-vivo
experiments on both upper and lower limbs. Among the obtained
results, besides a current consumption of only 12.92 µA, a median
increase in the number of events of more than 25 % was achieved
by varying the exerted muscle force in steps of 20 % MVC.

Index Terms—Surface electromyography, Myoelectric control,
Event-driven, Low-power, Bio-inspired electronics

I. INTRODUCTION

The use of surface ElectroMyoGraphy (sEMG) to control
Human-Machine Interfaces (HMIs) has grown significantly in
recent decades, leading to increasingly compact solutions [1]–
[4]. Major applications include post-stroke rehabilitation sup-
port [5], [6] and prosthetic control [7], [8], where sEMG
is the most widely adopted biosignal for interpreting users’
movements intentions, either alone or in combination with
other non-invasive techniques through sensor fusion strate-
gies [9], [10]. For these applications, full sEMG morphology
information is often unnecessary, so signals are synthesized
into simpler forms such as their envelope [11], [12], and the
need for low-power low-latency wearable devices has paved
the way for event-driven approaches such as neuromorphic
edge computing [13] or level-crossing ADC-based acquisition
systems [14]. On this front, our research group developed a
wearable device for myoelectric control leveraging the event-
based Average Threshold Crossing (ATC) technique, whose
reference implementation and performance comparison with
state-of-the-art sEMG sensors can be found in [15].

Essentially, ATC consists of hardware thresholding of the
analog conditioned sEMG signal using a hysteresis voltage
comparator, which generates the Threshold Crossing (TC)
quasi-digital signal, whose information content lies in the time
distance between the events generated each time the sEMG
crosses the threshold. The threshold value, as implemented
in [15], is not fixed but calibrated by the microcontroller of the
sEMG sensor. Its embedded algorithm, while the subject holds
the resting position for a few seconds, optimizes the threshold
level against the environmental noise to trigger the generation
of TC events only in the presence of muscle activation. The
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Fig. 1. (a) The circuit proposed in this work is to be installed downstream of
the sEMG amplification and filtering chain, and the generated events can be
counted and transmitted by the microcontroller used by the sEMG sensor [15];
(b) the developed prototype, with its two circuitry areas highlighted, positioned
on a biceps brachii; (c) the circuit schematic and its components.

counting of events within time windows (e.g., 130 ms) results
in the ATC feature, which showed a high correlation with the
exerted muscle force [15]. Among its key applications, the
ATC feature proved effective for both HMIs control using a
custom-developed armband [16] and for Functional Electrical
Stimulation (FES) modulation in rehabilitation scenarios [17].

In this work, to increase the versatility of the ATC technique
and ease its adoption for standard acquisition and processing
sEMG systems, we designed a low-power low-complexity
circuit to enable sEMG-to-events conversion without the need
for threshold calibration. Thus, this new implementation of
ATC no longer requires either the presence of a DAC to
generate the threshold or a dedicated algorithm executed by a
microcontroller. The developed circuit, as shown in Fig. 1, is to
be installed downstream of the sEMG-conditioning chain and
comprises only a Sallen-Key filter and a voltage comparator.



All the experimental tests involving human subjects (healthy
volunteers) have been authorized by the Comitato Bioetico di
Ateneo of University of Turin, experimental code 445154.

II. METHODS

The core idea is to apply a threshold to the derivative of
the sEMG to generate events with respect to a variation in the
signal from its previous state rather than in absolute terms as
for standard ATC, with the main purpose of no longer needing
a threshold calibration. As shown in Fig. 1, the designed circuit
is made up of two stages: a Sallen-Key filter and a hysteresis
voltage comparator. The first one has a two-fold role: first, to
behave as a differentiator in the frequency range where most
of the information content of the sEMG is, taking advantage of
the transition band of a first-order high-pass filter, and second,
to filter out the frequency components above the upper limit of
the mentioned band. The two purposes can thus be achieved
with just one second-order band-pass filter, with Q = 0.707,
centered at a common cutoff frequency f0. The second stage
is then in charge of generating events by comparing the filter
output with the threshold Vt using the hysteresis Vh. The
generated events, after being counted within time windows,
result in the differentiated ATC feature, henceforth referred to
as dATC. We emphasize that the use of the proposed circuit is
generalizable to any sEMG sensor as long as the design phase
of the circuit is adapted to the device voltage dynamics.

Referring to Fig. 1-c, we selected the LPV821 [18] as U1
and the TLV3691 [19] as U2 for the Sallen-Key and voltage
comparator, respectively, because of their low-power features,
and the single-supply voltage Vcc was set to 1.8 V as in the
main upstream conditioning circuit [15]. The design phase
then focused on identifying the best (f0, Vt, Vh) combina-
tion through LTspice® simulations with sEMG data as input,
aiming for a noise-robust solution, thus choosing the values
of resistors and capacitors to be used to build the prototype.

The sEMG data needed for the design phase were acquired
from the biceps brachii of 3 volunteers using one of our sEMG
sensors [15]. For each acquisition, each subject was asked to
perform 5 elbow flexion repetitions, using a load equal to 70 %
of the Maximal Voluntary Contraction (MVC) measured at the
beginning of the experiment, alternating 10 s of contraction
(holding the load with elbow at 90°) with 30 s of rest. Next,
we artificially added white noise to the recorded sEMG data
in order to obtain Signal-to-Noise Ratio (SNR) levels equal to
3 dB, 6 dB, 9 dB, and 12 dB; the resulting signals, as well as
the original ones (whose average SNR is 19 dB), were used
as input in the simulations. Considering that the sEMG signal
bandwidth is up to 500 Hz with little energy contribution above
400 Hz [20] and dominant contribution in the 50 Hz–150 Hz
range [21], the filter was tested in the condition of f0 = 400 Hz,
and f0 = 200 Hz, to reduce the lower frequencies attenuation
compared to f0 = 400 Hz while preserving the differentiator
behavior for the dominant band. Thus, a total of 30 simulations
were run: 3 acquisitions × 5 SNR levels × 2 f0 alternatives.

Each simulation output was finally processed in MATLAB®,
where ATC and dATC features were computed and compared

for each ATC window (i.e., 130 ms). To compute the ATC, the
embedded threshold calibration algorithm of our sEMG sensor
was reproduced, and its hysteresis value equal to 30 mV was
set [15]. On the other hand, to extract the dATC feature, for
which we recall no calibration but a fixed threshold is used,
the 0.8 V–1 V range in 10 mV steps was explored for Vt, and
the 20 mV–200 mV range in steps of 10 mV for Vh. We also
added 17 mV as the lowest value of Vh because this is the
internal hysteresis of the TLV3691 [19], which would allow
resistors R7 and R8 not to be used (see Fig. 1-c).

To compare the dATC feature with ATC for each parameters
combination, we defined an index of Dynamics Increase (DI),
which corresponds to a three-dimensional matrix in which the
rows and columns are Vt and Vh, respectively, and f0 is the
third dimension. Each element of DI is defined as in (1).

DIf0(Vt, Vh) = median(∆f0(Vt, Vh)|load) +
− median(∆f0(Vt, Vh)|rest)

∆f0(Vt, Vh) = dATCf0(Vt, Vh)−ATCf0(Vt, Vh)

(1)

DIf0(Vt, Vh) is rewarded if dATC is higher than ATC during
the load phase, and penalized if dATC is higher than ATC
while the subject is resting. Therefore, this scoring allowed us
to evaluate which set of parameters results in the widest range
of variation for dATC while dealing with noise robustness.
To combine the outcomes among the different subjects, the
DI matrices obtained from the three volunteers were summed
together for each SNR level. Then, the resulting five matrices
were further summed to each other by proportionally weight-
ing their contribution, specifically by doubling the weight at
each successive level (e.g., the matrix related to SNR equal to
9 dB is weighted twice more than the matrix related to 6 dB).

After the design phase was completed, a prototype featuring
the best (f0, Vt, Vh) combination previously identified was
built, and one of our sEMG sensors was equipped with it
(see Fig. 1-b). To count and transmit the number of generated
events, in the same way as [15], the output of the circuit
was connected to a free GPIO of the microcontroller whose
firmware was modified to wireless transmit both the ATC
and dATC features in order to compare them at the same
time windows. The evaluation of the developed circuit was
then carried out by acquiring ATC and dATC data from 5
additional volunteers while performing the same task described
previously, but with three different load levels: 30 %, 50 %,
and 70 % of the MVC measured at the beginning of the
experiment, to test how dATC varies as the exerted muscle
force changes. Moreover, to test whether this implementation
could also be used for applications concerning lower limbs,
such as the control of FES or exoskeletons for walking support,
3 subjects were asked to walk and run while recording data
from the gastrocnemius lateralis. During these tests, threshold
calibration for ATC was performed prior to the beginning of
each acquisition.

III. RESULTS AND DISCUSSION

The results of the design phase are reported in Fig. 2,
showing the DI index as each circuit parameter varies in the



exploration space. The elements of the matrix are normalized
according to the maximum and minimum values of DI
obtained and the red circles indicate the best combination
of Vt and Vh for the two different f0 under investigation.
Of course, to reduce the number of events due to noise and
maximize those related to muscle activity, the closer Vt is to
the signal baseline, the larger Vh must be used, and vice versa,
as Vt increases, Vh should be lower. The best outcomes were
achieved with f0 = 200 Hz, Vt = 0.93 V, and Vh = 17 mV.
On the other hand, if only the originally acquired signals, i.e.,
those not artificially corrupted by white noise, were taken into
account, the combination of parameters with the highest DI
would have been f0 = 400 Hz, Vt = 0.91 V, and Vh = 17 mV,
but the implementation would have been less robust to noise.

Following the prototype assembly (see Fig. 1) after the
design phase, the current consumption of the developed cir-
cuit was measured using a DMM7510 multimeter [22]. The
resulted value, equal to 12.92 µA, proves that the proposed
circuit is a suitable equipment for low-power sensors, such as
ours, whose total current consumption (including both analog
and digital parts) is 480 µA when used in ATC mode [15].

The results of the in-vivo experiments are reported in Fig. 3.
In particular, Fig. 3-a and 3-c refer to the tests carried out on
5 subjects performing elbow flexion movements at different
percentage levels of MVC, while Fig. 3-b and 3-d refer to the
walking and running tasks executed by 3 subjects. To generate
the boxplots of Fig. 3-a and 3-b, all ATC windows related to
muscle activity were considered, without distinction between
subjects, and since both the dATC and ATC features were
available for each window, they were ratioed (i.e., dATC/ATC)
in order to investigate the dynamics of the new implementation
compared to that of the calibrated one. On the other hand,
the boxplots of Fig. 3-c and 3-d, in which the normalized
dATC feature is reported, show how dATC varies according
to the exerted muscle effort. The reason for normalization was
to combine data belonging to different subjects, and it was
computed by dividing, for each subject, the dATC values by
the median value resulted from the task at higher effort (i.e.,
70 % MVC for Fig. 3-c, and running for 3-d). No boxplots
related to the ATC windows under resting conditions were
reported because both the ATC and dATC features, thanks to
their noise robustness, did not exhibit activations (i.e., their
values were zeros) while subjects were not moving.

As can be seen from Fig. 3-a and 3-b, dATC is typically
greater than ATC, thus allowing for better resolution in iden-
tifying muscle activity. Specifically, the medians of boxplots
in Fig. 3-a are 1, 1.13, and 1.21 for 30 %, 50 %, and 70 %
MVC respectively, while the medians of boxplots in 3-b are
1.44 and 1.2 for walking and running exercises. Actually, this
increase in dynamics has not always a positive effect. In fact,
since during walking the dynamics of dATC was greater than
that of ATC more than during running, this results in a smaller
difference between the two tasks, thus moving the medians of
the boxplots of Fig. 3-d closer together. In the case of ATC,
the lower number of events detected during walking, whose
median value is 0.62, would indeed facilitate its discrimination
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Fig. 3. In-vivo experimental phase results. In (a), the ratio between dATC and
ATC for each ATC window in load condition during elbow flexion movements
is summarized, while the behavior of dATC as the muscle effort increases is
reported in (c). In (b) and (d), parallel to (a) and (c) respectively, the obtained
results during walking and running tasks are reported.

from running. Nevertheless, both Fig. 3-c and 3-d boxplots
show an increasing trend of activity as load increases. In
particular, the results obtained in the case of elbow flexion
show how the normalized median increase of dATC is equal
to 29 % when the load varies from 30 % to 50 % MVC, and
to 25 % when varying from 50 % to 70 % MVC.

IV. CONCLUSION

In this paper we presented a low-complexity analog circuit
for sEMG-to-events conversion, which does not require cali-
bration routines and could be adopted by any sEMG sensor for
which full sEMG morphology is not required and low-power
features are prioritized.

Compared to our previous event-based technique, whose
usability for the control of HMIs or FES has been already
validated, this new implementation showed wider dynamics,
e.g., when performing elbow flexion at 70 % MVC loading
conditions, the number of detected events was 21 % higher.

The preliminary outcomes described in this paper are pos-
itive and encouraging, and the next step will be to test this
implementation for the above-mentioned applications such as
hand gestures recognition and FES modulation.
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