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Control of tumour growth distributions through kinetic

methods

Luigi Preziosi ∗ Giuseppe Toscani † Mattia Zanella ‡

Abstract

In this work we introduce a novel kinetic model for the study of tumour growths which
highlights the role of microscopic transitions in determining a variety of equilibrium distribu-
tions. Microscopic feedback control therapies are designed to influence the natural tumour
growth and to mitigate the risk factors involved in large cancer agglomerations. Several
numerical examples illustrate the effectiveness of the approach.
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1 Introduction

Since the early years of cancer research one of the basic questions addressed by scientist aimed
at the identification of the growth law followed by tumours. The natural related purpose was the
need of using it to model the effect of cancer treatment and optimize therapy.

Several ODE models, usually of first order, were proposed, named after Malthus (i.e., the
exponential growth law), Verhulst (i.e., logistic growth law), Gompertz, Richards, von Bertalanffy,
West, and so on. Most of these models are characterized by the presence of a carrying capacity,
reached with an exponential or power growth law at very early times followed by a sigmoidal
behaviour. So, generally speaking they all give rise to similar evolutions, as expected, of course,
because they need to fit the same experimental trends. The literature on the subject is huge. So,
for more information we refer to the recent review papers [15, 32, 34] and volumes [35, 44].
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The classical way to validate models and to identify their parameters is to get data of tumour
size and evaluate the evolution of the number of cells contained in the tumour. However, in this
process, many source of uncertainty arise at different level of observations. To name a few, the
first one consists in the fact that the evaluation of the number of cells in a tumour is obtained
using only partial information, e.g., approximating the tumour as an ellipsoid on the basis of the
maximum and the minimum dimension measured ex-vivo (the middle axis of the ellipsoid is then
approximated as the mean of the measurements above), or obtained by two-dimensional in-vivo
images assuming that the observed section is the one containing the longest and shortest axis of
the ellipsoid. The second one regards the presence within the same body of many metastasis of
different sizes growing in different environmental conditions. The third regards the fact that in a
cohort of individuals, from nude mice used in experiments up to humans, the evolution is not the
same because in each host the response of the body is different.

So, in spite of the apparent simplicity of the question, at present there is no general consensus
on the type of growth law that is better to be used to fit data, with stochasticity playing a role
that is often overwhelming with respect to the difference among the evolutions predicted by the
different models. On the other hand, regardless of the exact fitting of the growth law, as stated
for instance in [12], one of the therapeutic goals in oncology is to control tumour growth and to
reduce the probabilities of having tumours growing to sizes that are too large to be physiologically
or therapeutically controlled, or that are harmful to the human body.

In order to accomplish this task, rather than modelling the tumour with a stochastic adaptation
of the ODE growth models, we present here a novel kinetic approach describing the evolution of
a distribution function as a result of transitions occurring at the microscopic level that lead to
an increase or decrease in tumour size, related to growth and death processes. The notion of
growth in random environment has been formulated in the framework of stochastic birth and
death processes by several Authors (see, for instance, [26, 30, 38] and references therein) to take
into account of environmental fluctuations. In this framework, a stochastic model of tumour
growth was introduced by [1].

The approach proposed here is based on a Boltzmann-type model where the elementary vari-
ations describing the number of cancer cells are determined by a transition function which takes
environmental cues and random fluctuations into account. The microscopic variations are coherent
with the known growth models in suitable ranges of parameters. Recent advances in this direction
are related in the formation of lognormal distribution in collective phenomena [10, 11, 17, 18] and
inspired by early socio-economic considerations [23].

We will study how, in different regimes of parameters of the general transition law, the emerging
equilibrium distribution of the kinetic model shows a radically heterogeneous behavior in terms of
the decay of the tails. In details, the logistic-type growths are associated to a generalized Gamma
density function which is characterized by slim tail, i.e. by exponential decay. On the other
hand von Bertalanffy-type growths are associated to Amoroso-type distributions that are rather
characterized by fat tail, i.e. by polynomial decay. The border case between the two distributions
leads to lognormal-type equilibria which exhibits slim tail. From a statistical physics point of
view, it is worth to remark that in the context of tumour growth the dynamics leading to fat-
tailed distributions imply the formation of big sized tumours with high probability. Therefore, the
distributions with fat tails can be associate to an increased risk for the human body.

For this reason, once characterized the emerging distributions of the mentioned growth dy-
namics, we concentrate on implementable therapeutical control strategies to mitigate the risk of
having big tumours. The control of emerging phenomena described by kinetic models or mean field
theories is relatively recent [2, 3, 4, 6, 19, 20]. In particular, the proposed approach can be derived
from a model predictive control (MPC) strategy which is based on determining the control by
optimising a given cost functional over a finite time horizon which recedes as time evolves [8, 36].
Assuming that the the minimisation horizon coincides with the duration of a single transition,
we obtain a feedback solution to the control problem that can be implemented efficiently in the
Boltzmann-type kinetic model to observe its aggregate effects. It is well known that MPC leads
typically to suboptimal controls. Nevertheless, performance bounds are computable to guarantee
the consistency of the MPC approximation in a kinetic framework [16, 22].
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We will prove that the ultimate effect of therapeutical protocols, which we mimic through
control methods, relies on a strong modification of the emerging distribution for the tumour size.
In particular, the size distributions in presence of therapies manifest slim tails in all growth models,
which should mitigate the aforesaid risk factors.

In more detail, the paper is organised as follows. in Section 2 we review well-known microscopic
growth models and we obtain the corresponding Fokker-Planck models in order to follow the
dynamics of the statistical growth. The kinetic model for tumour growth is presented in Section 3
where we introduce elementary variations of the number of cancer cells depending on a transition
function determining the deterministic variations of the tumours’ size, and on random fluctuations.
In suitable regimes we will obtain a classification of equilibrium distributions corresponding to the
introduced growth models, some of them exhibiting fat tails. The controlled model is presented in
Section 4 and the emerging slim tailed distributions are computed for two possible therapeutical
strategies. Finally, we summarise the highlights of the work and draw some conclusions.

2 Modelling tumour growth by ODEs and by Fokker-Planck
equations

In the biomathematical literature a variety of models for tumour growth have been proposed. The
list is quite long and the interested reader can have an almost complete picture about them by
reading some exhaustive review papers [27, 33, 31, 43, 41]. These essential growth models aim to
catch the main features of the dynamics, often allowing to determine an analytical expression of
the evolution of the total number of cells in a tumour.

In order to obtain a statistical description of these dynamics, in the following we will present
also a formal derivation of mean-field type equations. In this case the evolution of the distribution
of tumours with a certain size is based on microscopic dynamics ruling the drift. In order to draw
a comparison between the two approaches in the following we will briefly recall the main features
of a large class of models, for future reference.

Most of the well-know models present in the literature can be described in a unified version by
the class of first-order differential equations of Bernoulli type for the number x(t) of tumour cells

ẋ(t) =
α

δ
x(t)

(
1−

(
x

xL

)δ)
, (1)

parameterized by α > 0, −1 ≤ δ ∈ [−1, 1], and the carrying capacity xL of the system. If δ 6= 0,
(1) can be easily integrated to get the analytical solution

x(t) = xL

{[(
xL
x0

)δ
− 1

]
e−αt + 1

}−1/δ
. (2)

describing the evolution of tumour cells starting from their initial number x0 at time t = 0 toward
the stable equilibrium represented by the carrying capacity xL.

Equation (1) include the logistic, von Bertalanffy and Gompertz growths. In fact, the logistic
growth corresponds to fixing δ = 1 yielding

ẋ(t) = αx

(
1− x(t)

xL

)
, (3)

whose solution can be expressed in the form

x(t) =
xL

1 +KxLe−αt
,

with K = 1/x0 − 1/xL. This growth model converges exponentially at the rate α towards the
carrying capacity of the system xL, and it has been fruitfully employed in many applications
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Figure 1: Evolution of the three presented growth models in the case xL = 1, and α = 0.2. We
assumed x0 = 10−2, and for the von Bertalanffy model q = p = 1, and a = 1− α.

in population dynamics. Other logistic-type growth models correspond to the positive values of
δ ∈ (0, 1).

In the context of biological processes other models seem to furnish a better explanation about
real data of tumour growth [21]. These growth models belong to the class (1), and are characterized
by negative values of the constant δ. The most known model in this range of the parameter is due
to von Bertalanffy, and it is usually written in the form

ẋ(t) = px(t)a − qx(t), (4)

where 0 ≤ a < 1, and p, q > 0 are the rates of growth and size-proportional catabolism, respect-

ively. This model corresponds to the choice δ = a− 1 < 0, α = q(1− a) and xL = (p/q)
1/(1−a)

in
(1). Substituting these values into (2), its solution

x(t) = xL

[
1−

(
1− p

q
x0

1−a
)
e−q(1−a)t

] 1
1−a

,

converges exponentially fast at a rate q towards xL.
Finally, the limit case δ → 0 in (1) corresponds to Gompertz growth. This growth is given as

the solution of the differential equation

ẋ(t) = −αx(t) log

(
x(t)

xL

)
, (5)

In (5) the constant α > 0 denotes the growth rate related to the proliferative ability of cells. The
exact solution of the Gompertz growth model can be easily found to be

x(t) = xL exp

{
e−αt log

x0
xL

}
.

As in the previous cases limt→+∞ x(t) = xL exponentially.
In Figure 2 we compared the evolution presented models over the time interval [0, 50] for the

regime α = 0.2 and a fixed carrying capacity xL = 1. We further assumed that for the von
Bertalanffy model p = q = 1 and 1− a = α.

Before entering into the kinetic description of the tumour growth, we briefly introduce some
of the previous approaches, which led to consider Fokker–Planck type equations to follow the
dynamics of the statistical growth in a selected group of patients. This will help to clarify the
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main novelties of the kinetic approach, and the consequences on the possible strategies to attack
the tumour growth in an optimal way.

The deterministic dynamics of growth driven by equation (1) is the starting point to obtain
partial differential equations able to describe the evolution of the density function f(x, t) which,
at a certain time t = t0 measures the statistics of the size x ≥ 0 of tumours which are growing
according to (1) in a certain group of observed patients. Let X(t), denote the process which gives
the statistical distribution of the sizes of tumours in the group at time t ≥ 0, and let F (x, t) denote
its distribution, defined by

F (x, t) = P (X(t) ≤ x), x ≥ 0.

The classical way to recover the evolution of F (x, t) consequent to a growth driven by equation
(1) is to remark that, if x(t) denotes the solution (2) to equation (1) departing from the value x0
at time t = 0, then

P (X(t) ≤ x(t)) = P (X(t = 0) ≤ x0),

or, what is the same
F (x(t), t) = F (x0, t = 0) = const. (6)

Hence, taking the time derivative on both sides of (6) we obtain

d

dt
F (x(t), t) =

∂F (x, t)

∂t
+ ẋ(t)

∂F (x, t)

∂x

∣∣∣∣
x=x(t)

= 0. (7)

Using (1)into (7) one shows that F (x, t) satisfies the conservation law

∂F (x, t)

∂t
+
α

δ
x

(
1−

(
x

xL

)δ)
∂F (x, t)

∂x
= 0. (8)

Let us suppose that F (x, t) is regular with respect to x, and let f(x, t) denote the probability
density of the process X(t). In terms of the probability density f(x, t) the conservation law is
rewritten as

∂f(x, t)

∂t
+
α

δ

∂

∂x

[
x

(
1−

(
x

xL

)δ)
f(x, t)

]
= 0, (9)

which is obtained from (8) simply by differentiation with respect to x. The complete description of
the dynamics of growth is then obtained by taking into account that growth can also be subject to
random fluctuations, which is reasonable to assume proportional to the sizeX(t). This is classically
obtained by introducing the multiplicative action on X(t) of a standard Brownian motion of width
σ, independent of X(t) (cf. [1] and the references therein), which leads to adding a second-order
term into (9). Thus, the resulting model is the Fokker–Planck type equation

∂f(x, t)

∂t
=
σ

2

∂2

∂x2
(
x2f(x, t)

)
− α

δ

∂

∂x

[
x

(
1−

(
x

xL

)δ)
f(x, t)

]
,

As an example, the Gompertz growth case δ → 0 considered in [1] is described by

∂f(x, t)

∂t
=
σ

2

∂2

∂x2
(
x2f(x, t)

)
+ α

∂

∂x

(
x log

x

xL
f(x, t)

)
. (10)

Once the growth model has been formalized, the effects of a given therapy is included in the
model by assuming that the growth parameters in equation (1) are time-dependent functions [1].
In this way, the study of the growth in presence of a treatment can be approached by studying
the modifications induced in time by these functions. Clearly, the knowledge of the action of these
functions should allow to evaluate the effectiveness of the therapy on time, and in addition to
better establish treatment schedules. In the notations used in [1], the parameters α and xL in the
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drift term of the Fokker–Planck equation (10) have been considered as functions of time with the
following dependence

α(t) = ᾱ−D(t), xL(t) = xL exp

{
− C(t)

ᾱ−D(t)

}
. (11)

where C(t) and D(t) (the therapy) have to be estimated to diminish at best the size of the tumour
in time. Then, the strategy consists in performing experimental studies to test the effectiveness of
the therapeutic treatment including a control (untreated) group and one (or more) treated groups,
where the growth in time of the control group follows the dynamics of the Fokker–Planck equation
(10), while the treated groups are described by the modified Fokker–Planck equation (10) in which
the coefficients of the drift term are modified according to (11). The comparison allows to estimate
the unknown functions C(t) and D(t).

While this procedure helps to shed a light into the problem of finding the effects of the therapy,
the choice of acting on growth in terms of the functions C(t) and D(t), which in the original
formulation in [1] is additive, is largely arbitrary, and in any case does not help to find the best
way to act on the growth to obtain regression, nor to understand the statistical variations on the
resulting final distribution of the treated group with respect to the one of the untreated group.

3 Kinetic modeling of tumour growth

3.1 Value functions and elementary growth

The goal of this Section is to model the statistical growth of metastatic tumours in a population
of patients by means of the methods of statistical physics, resorting in particular to the approach
of kinetic theory of multi-agent systems [29]. The leading idea of kinetic theory is to express the
dynamics of the distribution of a certain phenomenon in terms of the microscopic process ruling its
elementary changes. In the case under investigation, the phenomenon to be studied is the growth
process of cancer cells, which we assume to be measured by a variable x (the number of diseased
cells) which varies with continuity in R+. To fix ideas, the number x will be measured in terms of
some unit, say [θ], which can help to translate the value x into a volume size.

Following well-consolidated approaches developed in the context of interacting systems de-
veloped in last decade [13, 25, 29], the statistical description of the size variable can be described
by resorting to a linear Boltzmann-type equation in which the unknown is the density f = f(x, t)
of tumours with a number of cancer cells equal to x at time t ≥ 0. Without loss of generality, we
assume that the density function is normalized to one∫

R+

f(x, t) dx = 1.

Then, for a given interval A ⊂ R+, the quantity∫
A

f(x, t) dx.

will denote the percentage of cancers with a number of cells, x ∈ A.
In agreement with the classical kinetic theory of rarefied gases, which aims at describing the

dynamics of a huge number of particles, we assume that the variation in time of the density f is
governed by microscopic interactions. At variance with the notation of Section 2, let xL denote the
mean number of cells that can be reached with nutrients in the type of tumour under consideration.

We model the elementary variation x→ x′ of the number x of cancer cells as follows

x′ = x+ Φε(x/xL)x+ xηε. (12)

Thus, in a single transition the tumour’s size x can be modified by two different mechanisms,
expressed in mathematical terms by two multiplicative terms, both parameterized by a small
positive parameter ε� 1:
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Figure 2: Transition function Φεδ in (13) for case of δ = ±1 and ε = 1. In both cases we considered
the choice µ = λ = 1

2 .

i) the transition function Φε(·) characterizes the deterministic variations of the tumours’ size
as a function of the quotient x/xL due to environmental cues.

ii) random fluctuations due to unknown factors are expressed by ηε. The usual choice is to
consider that the random variable ηε is of zero mean and bounded variance, given by 〈ηε〉 = 0,
〈η2ε 〉 = εσ2.

The choice of the transition function Φε can be motivated by some recent work devoted to un-
derstand the reasons behind the formation of certain statistical distributions in human phenomena.
In particular, inspired by the prospect theory of Kahneman and Twersky [23], the function (16)
has been introduced in [17] as value function in the problem of determining the statistical distribu-
tion of the length of service times in a call center, which was previously noticed to be distributed
according to a lognormal density [7]. The same value function was subsequently shown to be
suitable to describe various phenomena related to human behavior in which a certain asymmetry
around the reference value is present [18].

In (12) we model Φε(·) as follows

Φε(s) = Φεδ(s) = µ
1− eε(sδ−1)/δ

(1 + λ)eε(sδ−1)/δ + 1− λ
. (13)

In (13) the constant −1 ≤ δ ≤ 1, while 0 < µ < 1, and 0 ≤ λ < 1. It can be easily verified that,
for every value of the parameters δ, λ, and µ, the function Φε(s) is decreasing in s, equal to zero
at the reference point s = 1, where x = xL, and satisfies the bounds

− µ

1 + λ
≤ Φεδ(s) ≤ µ

1− e−ε/δ

(1 + λ)e−ε/δ + 1− λ
, if δ > 0, (14)

while

µ
1− e−ε/δ

(1 + λ)e−ε/δ + 1− λ
≤ Φεδ(s) ≤

µ

1− λ
, if δ < 0.

The previous bounds clarify the meaning of the parameters λ and µ, which determine the maximal
amounts of the deterministic variations of the number x in a single interaction. In particular, it
can be argued that, for any value of δ

− µ

1 + λ
≤ Φεδ(s) ≤

µ

1− λ
, (15)

condition that guarantees that the deterministic part of the post-interaction value remains positive,
since µ/(1 + λ) < 1.
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The limit case δ → 0 in (13) corresponds to the function

Φε0(s) =
1− sε

(1 + λ)sε + 1− λ
, (16)

that still satisfies the bounds (15).
It is worth to mention that the case corresponding to values δ > 0 was introduced in [10] to

characterize the statistical distribution of alcohol consumption, and, more in general, the statistical
distribution of addiction phenomena [40]. The case δ < 0 was recently considered in [11] to
understand the formation of a social elite in consequence of the social climbing activity.

For small values of the parameter ε, namely for small variations of the number of cells in a
single interaction, the value functions (12) can be put in close relation with the class of growth
equations (1). Indeed, as ε� 1

Φεδ

(
x

xL

)
≈ ε µ

2δ

(
1−

(
x

xL

)δ)
(17)

Consequently, the positive values of δ are related to generalized logistic growth, while the negative
ones to von Bertalanffy growth. Furthermore, in the limit case δ → 0 and ε� 1 the value function
(13) is related to Gompertz growth, since from (16) we have

Φε0

(
x

xL

)
≈ −ε µ

2
log

x

xL
.

From a simple inspection of the deterministic coefficient Φε in the elementary interaction (12)
we argue that, in absence of fluctuations, there is a growth of the value of x when x < xL. However,
in terms of δ, the value functions (13) do not behave in the same way in the region x < xL, that
corresponds to the interval 0 ≤ s ≤ 1. As remarked in [18] the value functions (13) with index
δ > 0 are increasing and convex for s ≤ 1, while the value functions with index δ < 0 are concave
in an interval [0, s̄), with s̄ < 1, and then convex, see Figure 2. Hence, in a certain sub-interval
of [0, s̄) the growth induced by the value functions with δ < 0 is lower than the growth induced
by the value functions with δ > 0. For this reason, the value functions with index δ < 0 seem
more adapted to describe the growth of cancer cells, since the presence of the inflection point in
the region x < xL reflects the tendency of the body to react to the growth of cancer cells at least
when their number is below a certain value.

A second fact which leads to prefer the mechanism of growth corresponding to a value function
with δ < 0 is related to the behavior of Φεδ(s) in the interval s > 1, namely in the interval where
the number of cancer cells is above the reference value xL. In this interval the value functions are
positive and satisfy the lower bound

Φεδ(s) ≥ µ
1− e−ε/δ

(1 + λ)e−ε/δ + 1− λ
,

Hence, in the interval x > xL, the value functions with δ < 0 take values in a small interval of
size approximately ε/|δ|, which corresponds, since ε � 1, to an almost negligible variation of the
deterministic part of the size, and consequently to an effective stabilization of the size around the
value xL. Clearly, this property does not hold when δ > 0, since in this case the lower bound in (14)
does not depend on ε. Once the deterministic mechanism of growth has been quantified in terms
of the value functions (13), the upper bound in (15) allows to compute the lower bound relative
to the random fluctuations which can be consistently inserted into the elementary interaction (12)
to preserve the positivity of the variable x. Indeed x′ ≥ 0 independently of ε if

ηε ≥ −1 +
µ

1 + λ
. (18)
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3.2 The kinetic model and its grazing limit

In view of the previous remarks, while for any choice of the function Φε in the class (13), transition
laws of the type described in (12) represent reasonable models to describe growth processes, for
the growth of cancer cells the case δ < 0 seems more appropriate.

Nevertheless, we will consider in the following the full class of value functions, to enlighten the
differences at the level of emerging equilibrium distributions. Starting from the definition (12) of
the elementary transition processes, the study of the time-evolution of the statistical distribution
of the number of cancer cells follows by resorting to kinetic models [9, 29]. For any given value
of the small parameter ε, the variation of the density f(x, t) obeys to a linear Boltzmann-like
equation, fruitfully written in weak form. The weak form corresponds to say that the solution
f(x, t) satisfies, for all smooth functions ϕ(x)

d

dt

∫
R+

ϕ(x)f(x, t)dx =

〈∫
R+

χ

(
x

[m]

)
(ϕ(x′)− ϕ(x))f(x, t)dx

〉
, (19)

where with 〈·〉 we denoted the expectation with respect to the random parameter ηε introduced in
(12). In (19) the constant quantity [m] is the unit measure we use to count the number of cancer
cells, while the positive function χ(·) is a kernel characterizing the frequency of the elementary
growth transitions in presence of x tumour cells.

The right-hand side of equation (19) represents the variation in density from x to x′ (loss term
with negative sign) of tumours that change their value from x′ to x (gain term with positive sign).

Due to the nonlinearity in x of the elementary transitions (12), it is easily seen that (19)
conserves only the total mass, which is verified by taking ϕ(x) = 1. The precise computations
of the evolution of higher moments appears cumbersome, and in any case impossible to express
analytically. For this reason, it is fruitful to apply to the integral transition operator in (19)
some simplifications which consist first in considering a Maxwellian kernel [9], and second in
considering a suitable asymptotics similar to the grazing collision limit [29, 39, 42]. The Maxwellian
simplification corresponds to assume a constant kernel, namely to fix χ( x

[m] ) = const. While this

simplification is not fully justified from the modeling point of view, it does not modify the shape
of the equilibrium configuration [14]. Second, the grazing collision regime allows to substitute the
kinetic equation of Boltzmann type with a partial differential equation of Fokker–Planck type,
that, for δ = 0 in (12), coincides with the Fokker–Planck type equation considered in [1], and
allows a precise comparison of their results with the one we will obtain in Section 4.

The main idea behind the grazing limit is to consider, for a given choice of ε � 1 in (12) the
value of the frequency (the value of the constant kernel) to balance the smallness of the single
transition and to obtain a visible variation of the density even in the limit ε → 0. As shown
in [13], where the computations are presented in full details, the right correction for the kernel
is to multiply it for 1/ε. An analogous effect is obtained by changing the time scale. Since the
contribution of the single transition is small, we need to wait enough time to observe changes as
ε→ 0.

Let us consider hence χ = 1/ε. Therefore, f solves the following equation

d

dt

∫
R+

ϕ(x)f(x, t)dx =
1

ε

〈∫
R+

(ϕ(x′)− ϕ(x))f(x, t)dx

〉
. (20)

Since if ε� 1 the difference x′−x is small, assuming ϕ sufficiently smooth and at least ϕ ∈ C30(R+)
we can perform the following Taylor expansion

ϕ(x′)− ϕ(x) = (x′ − x)∂xϕ(x) +
1

2
(x′ − x)2∂2xϕ(x) +

1

6
(x′ − x)3∂3xϕ(x̄),

being x̄ ∈ (min{x, x′},max{x, x′}). Writing x′−x = Φε(x/xL)x+xηε from (12) and plugging the
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above expansion in (20) we have

d

dt

∫
R+

ϕ(x)f(x, t)dx

=
1

ε

[∫
R+

Φε(x/xL)x∂xϕ(x)f(x, t)dx+
σ2

2

∫
R+

∂2xϕ(x)x2f(x, t)dx

]
+Rϕ(f)(x, t),

where Rϕ(f) is the remainder

Rϕ(f)(x, t) =
1

2ε

∫
R+

∂2xϕ(x) (Φε(x/xL))
2
x2f(x, t) dx

+
1

6ε

〈∫
R+

∂3xϕ(x̄) (Φε(x/xL)x+ xηε)
3
f(x, t)dx

〉
.

Thanks to the assumed smoothness we argue that ϕ and its derivatives are bounded in R+.
Further, if ηε has bounded moment of order three, namely 〈|η|3〉 < +∞, and observing that for
ε� 1 the value function Φε behaves like in (17), we can easily argue that in the limit ε→ 0+ we
have

|Rϕ(f)| → 0,

Hence, in the limit ε→ 0+ equation (20) converges to

d

dt

∫
R+

ϕ(x)f(x, t)dx =

∫
R+

µ

2δ

(
1−

(
x

xL

)δ)
xf(x, t)∂xϕ(x)dx+

σ2

2

∫
R+

x2f(x, t)∂2xϕ(x)dx.

Next, integrating back by parts we conclude that the limit density f = f(x, t) is solution of the
following Fokker-Planck equation (in divergence form)

∂tf(x, t) = ∂x

[
µ

2δ

((
x

xL

)δ
− 1

)
xf(x, t) +

σ2

2
∂x(x2f(x, t))

]
. (21)

Clearly, integration by parts is justified provided the following boundary conditions are satisfied
for all t > 0

µ

2δ

((
x

xL

)δ
− 1

)
xf(x, t) +

σ2

2
∂x(x2f(x, t))

∣∣∣∣∣
x=0

= 0

x2f(x, t)

∣∣∣∣∣
x=0

= 0.

The Fokker–Planck equation (21) retains memory of the kinetic description through the relevant
parameters of the value function (13), namely the parameters δ and µ, and through the drift term.
However, the parameter λ is lost in the limit. Also, the details of the variable ηε are lost in the
limit passage, so that the role of fluctuations is taken into account only through their variance,
parameterized by σ. As we shall see, at difference with the others, the value of the parameter δ
fully characterizes the shape of the steady state of equation (21).

A distinguished case is obtained by taking δ → 0 in Eq. (21). The resulting Fokker–Planck
equation in this case is given by

∂tf(x, t) = ∂x

[
µ

2
log

x

xL
xf(x, t) +

σ2

2
∂x(x2f(x, t))

]
,

which is the equation considered in [1].
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Figure 3: Comparison of the analytical steady states f∞ (full and dashed curves) given in (23)-
(24)-(26) (from top to bottom) with the numerical solution of the Boltzmann-type equation (19)
for large times in the quasi-invariant regime for ε� 1 (marked curves). We considered δ = 1 (top
row), δ ≈ 0 (middle row), and δ = −1 (bottom row). It is easily observed how we consistently
catch the obtained equilibrium distribution in all regimes. In the figures on the right we highlight
the tail behavior plotting the distribution in loglog scale for all the considered regimes. In all the
reported numerical results we considered λ = µ = 0.1, 0.9, xL = 1, and σ2 = 0.2.
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3.3 Steady states

Let γ = µ/σ2, and suppose that γ > δ. Note that this condition is restrictive only when δ > 0.
Then, the asymptotic distribution f∞(x) then satisfies the first order differential equation

∂x(x2f(x, t)) +
γ

δ

((
x

xL

)δ
− 1

)
xf(x, t) = 0,

whose solution is given by

f∞(x) = f∞(xL)

(
x

xL

)γ/δ−2
exp

{
− γ

δ2

((
x

xL

)δ
− 1

)}
, (22)

see also [10]. It seems worthwhile to remark that the obtained equilibrium distribution (22) lies
on wider classes of probability distributions depending on the sign of the parameter δ.

The case δ > 0. Let us fix the mass of the steady state (22) equal to one. If δ > 0, the
consequent probability density is a generalized Gamma. These distributions are characterized in
terms of a shape κ > 0, a scale parameter θ > 0, and the exponent δ > 0. Therefore (22) can be
parametrized in terms of the introduced parameters as follows

fκ,δ,θ∞ (x) =
δ

θκΓ (κ/δ)
xκ−1 exp

{
−
(x
θ

)δ}
, (23)

where shape and the scale parameter of the equilibrium state are given by

κ =
γ

δ
− 1, θ = xL

(
δ2

γ

)1/δ

.

We point the interested reader to [24, 37] for further details.

Remark 3.1. The logistic growth (3) corresponds to the value δ = 1. In this case, the steady
state of the corresponding Fokker–Planck equation is a Gamma density function, with exponent
κ = γ − 1 and scale parameter θ = xL/γ. The condition κ > 0 is satisfied if µ > σ2, that is
when the elementary transition (12) is characterized by random fluctuations that are small with
respect to the deterministic part. The values of δ < 1 correspond to generalized logistic growth
laws, as given by (1). In all cases, the consequent generalized Gamma densities decay to zero
exponentially.

The case δ < 0. Let us fix the mass of the steady state (22) equal to one. In the case of negative
δ’s, corresponding to the introduced von Bertalanffy growth (4), we notice a different behavior for
large values of x. Indeed, the equilibrium distribution (22) is an Amoroso-type distribution [5]

fκ,|δ|,θ∞ (x) =
|δ|

Γ (κ/|δ|)
θκ

xκ+1
exp

{
−
(
θ

x

)|δ|}
, (24)

which is characterized by a polynomial decay. The shape and the scale parameter of the equilibrium
state (22) are given by

κ =
γ

|δ|
+ 1, θ = xL

( γ
δ2

)1/|δ|
. (25)

In reason of the polynomial decay of (24), the equilibrium density has moments bounded only
of order p < κ. The case δ = −1 corresponds to the inverse Gamma distribution. It is worth
to remark that this type of steady state are prototypical in many observable behavioural phe-
nomena, for example in the realm of socio-economic dynamics and are generally associated to the
formation of inequalities in market economies [29]. In the present context, these distributions are
characterized by polynomially-decaying tails, which indicates higher probabilities of measuring
tumours with a big size. Therefore, the paramount need of identifying therapeutical protocols
aimed at reducing the probability of having big tumours translates from a statistical point of view
in dampening the mass of the tails.

12



The case δ → 0. The limit case δ → 0 corresponds to Gompertz growth (5). The equilibrium
density is easily seen to be the lognormal equilibrium

f∞(x) =
1√

2πγx
exp

{
− (log x− κ)2

2γ

}
, (26)

where κ = log xL − γ. This border case still corresponds to a density function with slim tails.

In Figure 3 we represent the numerical approximation of the Boltzmann-type model (19) in
the quasi-invariant regime through Direct Stochastic Monte Carlo (DSMC) methods, see [28, 29]
for an introduction. In details, we considered the initial distribution

f(x, 0) =

{
1 x ∈ [1, 2]

0 elsewhere,
(27)

and N = 105 particles. Furthermore, we considered the following choice of parameters µ = 0.1, 0.9,
xL = 1 and σ2 = 0.2. It can be easily observed how the reconstructed large time distribution from
the Boltzmann model can be approximated with the steady state of the Fokker-Planck models,
producing therefore the correct tails of the various equilibrium distribution.

4 The controlled model

In Section 3 we discussed a variety of kinetic models, suitable to describe tumour growth. The main
brick of this construction was the choice of the class of value functions (13) entering the elementary
interaction (12), and characterizing the growth in terms of the parameter δ ranging from −1 to
+1. In particular, it was shown that, for negative values of the parameter δ, corresponding to von
Bertalanffy growth (4), the resulting equilibrium in the limit of grazing interactions is given by
a probability density with polynomial tails, in the form of Amoroso distribution (24). In details,
we studied how, for some values of the parameter δ, the kinetic modeling of Section 3 allows to
obtain Fokker–Planck type equations previously considered in the literature, even if derived in a
different way. In this direction we mention the limit δ → 0 in the introduced kinetic modeling,
corresponding to Gompertz growth [1], which exhibits lognormal equilibria (26).

The new kinetic description allows to enlighten the effects of therapies by acting on the ele-
mentary responses to environmental cues directly, to show how these therapies act on the resulting
Fokker–Planck equations, and ultimately to compare the results in [1] with the present ones. In
this direction, we will consider a therapy like a control acting on the elementary transitions to
minimize the growth.

To study the effect of therapies on the growth process we consider a constrained version of the
transition model (12) which depends on a control u representing the instantaneous correction in
the factor growth due to an external action. This control can be additive

x′ = x+ Φε(x/xL)x+ εx u+ xηε, (28)

and in this case the effect of u is to modify at best the growth in an additive way, or multiplicative

x′ = x+ uΦε(x/xL)x+ xηε, (29)

which implies a direct action on the value function. The former will be discussed in Section 4.1
and the latter in Section 4.2.

In both cases the control variable is given by a multiplicative coefficient of the variable x,
meaning that the control acts similarly on single cells, so that the eventual control is proportional
to tumour size. Furthermore, we observe that a control of the form (28) induces an external
modification of the death rate. On the other hand the multiplicative control of the form (29)
modifies directly the dynamics acting on the balance between death and birth. Moreover, in the
additive control, the size of the controlled variable is tuned by the small parameter ε� 1.

13



The optimal control u∗ is determined as the minimizer of a cost functional

u∗ = arg min
u∈U

1

2
J(x′, u), (30)

subject to the constraint (28). In (30) the minimum is taken on the space U of all admissible
controls. In the following we will consider a quadratic cost functional in the form

J(x′, u) =
1

2

〈
(x′ − xd)2 + νεu

2
〉
, (31)

being νε > 0 a penalization coefficient and xd > 0 is the desired tumours’ size that one would like
to reach. This could be different than zero allowing the existence of tumours with a controlled size.
The presence in (31) of the mean operator 〈·〉 permits to obtain a control which do not depend on
the presence of the random fluctuations.

The goal of the quadratic cost (31) is to obtain a control which minimizes the distance with
respect to the desired size xd ∈ R+. The minimization of (30) can be classically done resorting to
a Lagrange multiplier approach.

4.1 Additive control and equilibrium distribution

We concentrate first on a dynamics embedded with an additive control strategy (28) seeking to
minimize the cost functional (30). Hence, we consider the Lagrangian

L(u, x′) = J(x′, u) + α 〈x′ − x− Φε(x/xL)x− ε xu− xηε〉 ,

where α ∈ R is the Lagrange multiplier associated to the constraint (28). The optimality conditions
read {

∂uL(x′, u) = νεu− αε x = 0

∂x′L(x′, u) = 〈x′ − xd〉+ α = 0.

Eliminating the Lagrange multiplier yields the optimal value

u∗ = − ε x

νε + ε2x2
(x− xd + Φε(x/xL)x) . (32)

Plugging the optimal value (32) into (28) gives the following optimal constrained interaction

x′∗ = x+
νε

νε + ε2x2
Φε(x/xL)x− ε2x2

νε + ε2x2
(x− xd) + xηε. (33)

Note that for x ≤ xL the value function Φε is nonnegative, so that the post-interaction value x′∗
is nonnegative if the fluctuation variable ηε satisfies the condition

ηε ≥ −1 +
ε2x2L

νε + ε2x2L
.

In view of condition (18), this condition is satisfied for ε sufficiently small.
In presence of the controlled interaction (33), one can consider as before the limit of grazing

interactions, provided all quantities in (33) scale in the right way with respect to ε. To this extent,
it is enough to perform the following scaling of the penalization νε = εν, where ν > 0, to get

νε
νε + ε2x2

=
ν

ν + εx2
,

ε2x2

νε + ε2x2
= ε

x2

ν + εx2
. (34)

At this point, proceeding as in Section 3.2 with the new elementary interaction (33) we obtain
that the controlled kinetic model converges, in the grazing limit ε → 0 to a Fokker–Planck type
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Figure 4: Comparison of the analytical steady states (37) with the numerical large time solution
of the Boltzmann-type equation with additive constrained interaction (28) in the quasi-invariant
regime for ε = 10−2 and ν = 10−1, 1 in the case λ = µ = 0.1 (top tow) and λ = µ = 0.9 (bottom
row). We considered xL = 1 and target state xd = 0.5. In the right column we report the obtained
distributions in loglog scale to highlight the behavior of the tails. In red dotted we report the
equilibrium distribution of the unconstrained case for µ = 0.1 (top row) and µ = 0.9 (bottom
row).

equation with a modified drift term, that takes into account the presence of the control. In terms
of the controlled density fa(x, t), this equation reads

∂tfa(x, t) = ∂x

{[
µ

2δ

((
x

xL

)δ
− 1

)
x+

x2

ν
(x− xd)

]
fa(x, t) +

σ

2
∂x(x2fa(x, t))

}
.

We will refer here to the case in which δ < 0, which in the uncontrolled case leads to steady states
with polynomial tails. Then, in presence of the additive control, the asymptotic distribution
fa,∞(x) satisfies the first order differential equation

∂x(x2fa,∞(x, t)) +

[
γ

|δ|

(
1−

(xL
x

)|δ|)
x+

2x2

σν
(x− xd)

]
fa,∞(x, t) = 0,

where γ = µ/σ. The solution is given by

fa,∞(x) = C(xL, xd)
(xL
x

)γ/|δ|+2

exp

{
− γ

δ2

((xL
x

)|δ|
− 1

)}
exp

{
− (x− xd)2

σν

}
. (35)

In (35) the constant C(xL, xd) is chosen such as the mass of the density function equal to one.
The steady state (35) can be rewritten as the product of two probability densities. The first

one is the solution of the uncontrolled Fokker–Planck equation (21), given by the Amoroso type
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density (24), with parameters κ and θ in (25). The second term has the form of the Gaussian
density

N (xd, σν/2) =
1√
πσν

exp

{
− (x− xd)2

σν

}
, (36)

of mean value xd and variance σν/2. Clearly, since x in (36) ranges on the whole real line R,
identity holds provided the product of the densities is multiplied by the characteristic function of
the set x ≥ 0, we denote by I(x ≥ 0). Finally

fa,∞(x) = C̃(xL, xd, σ, ν) fκ,|δ|,θ∞ (x)N (xd, σν/2)I(x ≥ 0). (37)

In (37) the constant C̃(xL, xd, σ, ν) > 0 is such that the density fa,∞ is normalized to one. It is
remarkable that, at variance with the uncontrolled case, the presence of the Gaussian density is
such that the controlled distribution possesses exponentially decaying tails at infinity. Moreover,
for small values of the penalization variable ν, the mean value of the controlled case is close to the
target value xd, and the equilibrium solution has a small variance. In other words, the controlled
case is such that the target value xd can substantially be reached.

In Figure 4 we compare the numerical solution of the Boltzmann-type model (20) for large
times with additive constrained transitions (33) in the case ε = 10−2. In details, we considered
the case δ = −1, the initial distribution (27) and the scaled penalization ν = 10−1, 100. Here,
we supposed that the target size is xd = 1

2 whereas xL = 1. We can observe how the numerical
large time distribution is consistently described by the derived equilibrium distribution of the
Fokker-Planck model (35) for sufficiently small ε � 1. It is easily observed how for decreasing
penalizations the equilibrium distribution fa,∞ tends to concentrate around the target size xd with
decreasing variance coherently with what we obtained in (37). The effect of the control on the
tails of the distribution is highlighted by direct comparison with the equilibrium distribution of
the unconstrained case of the form (24).

Remark 4.1. We can observe how the introduced control needs to modify the growth term to
influence the behavior of the tails of the emerging equilibrium distribution. Indeed, if we consider
a control that minimizes the cost (30)-(31) subject to the following dynamics

x′ = x+ Φε(x/xL)x+ εu+ xη,

performing similar computations explained before, we obtain the following binary constrained
transition

x′ = x+
νε

ε2 + νε
Φε(x/xL)x− ε2

ε2 + νε
(x− xd) + xη.

Hence, we may proceed as explained in Section (3.2) to obtain in the regime ε� 1 and under the
scaling (34) the Fokker-Planck equation

∂tf̃a(x, t) = ∂x

{[
µ

2δ

((
x

xL

)δ
− 1

)
x+

x− xd
ν

]
f̃a(x, t) +

σ

2
∂x(x2f̃a(x, t))

}
whose equilibrium distribution, in the case δ < 0 is given by

f̃a,∞(x) = C(xL, xd, σ, ν)
(xL
x

)γ/|δ|+2

exp

{
− γ

δ2

((xL
x

)|δ|
− 1

)}
exp

{
−x− xd

σν

}
.

Therefore, we may observe that action of the control is not capable to modify the tails of the
distribution.

4.2 Multiplicative control and equilibrium distribution

The multiplicative case (29) can be treated likewise. The Lagrangian is now

L(u, x′) = J(x′, u) + α 〈x′ − x− uΦε(x/xL)x− xηε〉 ,
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with α the Lagrange multiplier. The optimality conditions in this case read{
∂uL(x′, u) = νεu− αΦε(x/xL)x = 0

∂x′L(x′, u) = 〈x′ − xd〉+ α = 0.

These conditions yield the optimal control

u∗ = − Φε(x/xL)x

νε + (Φε(x/xL)x)2
(x− xd). (38)

Now, plugging (38) into (29) we obtain the following optimal constrained microscopic interac-
tion model

x′∗ = x− (Φε(x/xL)x)2

νε + (Φε(x/xL)x)2
(x− xd) + xηε. (39)

Note that, at variance with the additive control case, in which the constrained interaction (33) is
a balance between a growth term and a decrease term, the action of the control is such that only
a decrease is possible, apart from random fluctuations. We may consider, as in Section 4.1 , the
limit of grazing interactions, by choosing νε = εν, where ν > 0. Using (17) we obtain

(Φε(x/xL)x)2

νε+ (Φε(x/xL)x)2
≈ x2

ν

[
µ

2δ

((
x

xL

)δ
− 1

)]2
Hence, in the limit ε→ 0+ we obtain the Fokker-Planck equation for the controlled density fm(x, t)
in presence of a multiplicative control

∂tfm(x, t) = ∂x

x2ν
[
µ

2δ

((
x

xL

)δ
− 1

)]2
(x− xd)fm(x, t) +

σ

2
∂x(x2fm(x, t))

 .

whose equilibrium distribution takes the form for δ 6= −1 or δ 6= −1/2

fm,∞(x) = C(xL, xd, σ, ν) x−2 exp

{
− 2

σν

( µ
2δ

)2
Aδ(x)

}
.

where

Aδ(x) = x

((
x

2δ + 2
− xd

2δ + 1

)(
x

xL

)2δ

+

(
2xd
δ + 1

− 2x

δ + 2

)(
x

xL

)δ
+
x

2
− xd

)
,

and C(xL, xd, σ, ν) > 0 is a normalization constant. It is worth to observe that in the case δ = −1
we obtain the following equilibrium distribution

fm,∞(x) = C(xL, xd, σ, ν)x−2−α exp

{
− µ2

2σν

[
−(2xL + xd)x+

x2

2
+
x2Lxd
x

]}
,

with α =
µ2

2σν
(x2L + 2xL xd), which can be rewritten as follows

fm,∞(x) = C(xL, xd, σ, ν)x−2−αN
(

2xL + xd,
2σν

µ2

)
χ(x ≥ 0)×

× exp

{
− µ2

2σν

[
− (2x2L + xd)

2

2
+
x2Lxd
x

]}
,

which exhibits therefore slim tails.
In the top row of Figure 5 we compare the numerical solution of the Boltzmann-type model

(20) for large times with multiplicative control (29) in the quasi-invariant regime ε = 10−2 and
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Figure 5: Top row: comparison of the analytical steady states (37) with the numerical solution of
the Boltzmann-type equation for large times with multiplicative constrained interaction (39) in the
quasi-invariant regime for ε = 10−2 in the cases ν = 10−1, 10−3. Bottom row: evolution of U(t),
V (t) defined in (40) for several values of the penalization coefficient. We considered λ = µ = 0.1,
σ = 0.2, xL = 1 and target state xd = 0.5. In red dotted we report the equilibrium distribution of
the unconstrained case.
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δ = −1, µ = 0.1. We considered several values of the penalization ν = 10−1, 10−2 and a target
size xd = 1

2 whereas xL = 1. As before, the large time distribution of the Boltzmann model
is consistently approximates by the ones of the Fokker-Planck regime for ε � 1. The action of
the control is capable to modify the tails of the emerging distribution as highlighted by direct
comparison with the unconstrained case.

In order to better understand the effects of the introduced control we can look at the evolution
of the mean size and of its variance, i.e. to the quantities

U(t) =

∫ +∞

0

xf(x, t)dx, V (t) =

∫ +∞

0

(x− U(t))2f(x, t)dx. (40)

In the bottom row of Figure 5 we report the evolution of U(t) and V (t) for several choices of
ν > 0. We can observe how the control is capable to drive the expected size towards xd and to
reduce the variance for small values of the penalization.

Conclusion

In this paper we started by presenting a kinetic model for the distribution of tumor size and
the related Fokker-Planck equation that yields under suitable ranges of parameters the most
common growth laws used to characterize tumor growth. We then showed that the emerging
equilibrium distributions of the kinetic model show radically heterogeneous behaviors in terms of
the decay of the tails according to the parameters of the model giving rise to the different growth
laws. For instance, logistic-type growths are associated to a generalized Gamma density function
characterized by slim tail with exponential decay. Gompertzian growth is associates to lognormal-
type equilibria which exibit slim tails as well. On the other hand, von Bertalanffy-type growths
are associated to Amoroso-type distributions characterized by fat tail with polynomial decay.

Now, from the pathological point of view fat-tailed distributions are related to a higher prob-
ability of finding large tumours with respect to thin-tailed distributions. So, from a therapeutical
point of view it would be desirable to control at least the distribution tails. In this respect we
proved that otpimal controls proportional to the tumor size acting either in an additive way or in
a multiplicative way on the size transition function Φε are able to do that.
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