
Doctoral Dissertation

Doctoral Program in Computer Engineering (36thcycle)

Robust machine learning models for

high dimensional data interpretation

By

Manigrasso Francesco

Supervisor:

Prof. Fabrizio Lamberti

Referees:

Prof. Annette ten Teije, Vrije Universitat (Referee)

Prof. Luciano Serafini, Fondazione Bruno Kessler (Referee)

Prof. Francesco Setti, Università di Verona

Prof. Luca Bortolussi, Università di Trieste

Prof. Paolo Garza, Politecnico di Torino

Politecnico di Torino

2024

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my

own original work and does not compromise in any way the rights of third parties,

including those relating to the security of personal data.

Manigrasso Francesco

2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.

degree in the Graduate School of Politecnico di Torino (ScuDo).

My deepest and most sincere gratitude goes to my family, whose love,

encouragement, and unwavering support have been the foundation of this

achievement. Without them, this journey would not have been possible.

To my father: thank you for instilling in me a passion for knowledge and teaching

me the importance of determination and integrity. You believed in me when doubt

overshadowed certainty, and when no one—including myself—could see the

potential for this path. Much like a coach stepping aside to let the team savor the

glory of victory, I know you would humbly let the spotlight shine elsewhere today.

Yet, if I have reached this point, if I have become the person I am, it is also because

of the words you shared with me as a child, words that grew into the pillars I clung

to when there were no lights to guide my way. Your unwavering dedication to work

and family has been an inspiration, pushing me to strive for my best in every aspect

of life. This doctoral dissertation stands as a testament to your belief in me, your

endless love, and your sacrifices. From the depths of my heart, thank you.

To all those who have played a role in this story, my heartfelt thanks. These few

words cannot fully convey the esteem and gratitude I hold for each of you, but I will

do my best to express it. First and foremost, to Salvatore, my lifelong friend: you

have been a cornerstone of my journey and, perhaps, of my entire life. Despite the

miles that separate us, you remain the person I can always count on without

hesitation. The moments we have shared have enriched my life in immeasurable

ways. I am profoundly grateful to you for your steadfast friendship and for being an

extraordinary companion along the way. To Luciana, my dear friend and a key

figure in this chapter of my life: despite all the playful banter, you are one of the

strongest people I know. Your presence and encouragement have been a guiding

light in moments of doubt and difficulty. Thank you for your strength, your kindness,

and for always being there when it mattered most. To Valeria, Enrico, Giampaolo,

iv

Franco, Paolo, Antonio, Francesco G., and Roberto: each of you has left an

indelible mark on this journey. Your support, insights, and encouragement have

profoundly shaped my personal and professional growth. You have broadened my

horizons and enriched my perspective on life. I carry immense gratitude for each of

you, and I will always cherish the role you have played in this achievement.

Lastly, I would like to extend my heartfelt thanks to my Turin family. Each of you has

contributed to this journey in your own unique way, supporting me and shaping the

person I am today. Without your presence and guidance, this milestone would not

have been possible. A heartfelt thank you goes to Carla, who remembers even the

earring I was wearing the first day I set foot in this city. You are a special person

and a friend I know I can always count on. Thank you for being there and for your

support. Finally, to the newest additions to my life: Andrea, Goki, and Giorgina. I

could list the adventures we’ve shared, but if I did, they might revoke my doctoral

degree and hand me back a middle school diploma instead! Thank you for bringing

joy, laughter, and a touch of chaos to this journey. Your presence has made this path

all the more memorable.

To all of you, thank you from the bottom of my heart. This milestone is as much

yours as it is mine.

Acknowledgements

I wish to express my deepest gratitude to the distinguished professors who have

played a pivotal role in my academic journey and the completion of this doctoral

dissertation.

First and foremost, I am profoundly thankful to Professor Fabrizio Lamberti for

his expert guidance, unwavering support, and dedication to my success. His vast

knowledge and enthusiasm for research have significantly enhanced the quality of

this work.

I also extend my heartfelt thanks to Professor Lia Morra for her invaluable con-

tributions, wise counsel, and steadfast support throughout the research process. Her

experience and critical insights have enriched this dissertation and were instrumental

in its successful completion.

I am especially grateful to Professor Peter Bloem, who was a key figure during

my tenure at Vrije Universiteit Amsterdam. His continuous support made my

time abroad both memorable and impactful, serving as a source of knowledge and

inspiration in an unfamiliar and challenging environment.

Furthermore, I extend my appreciation to all the other professors and lecturers

from whom I have had the privilege to learn throughout my academic career. Your

lectures, support, and encouragement have greatly contributed to my education

and professional growth. Without your invaluable input and guidance, reaching

this significant milestone would not have been possible. I deeply appreciate your

commitment and dedication to educating and inspiring students.

Abstract

Deep neural networks (DNNs) are highly effective in modeling complex data, like

image pixels, by employing both linear and non-linear feature representations. Their

success is mainly due to the vast amounts of data available and the optimized

supervised learning algorithms. Nonetheless, DNNs lack essential qualities such as

robustness, control, and transparency, which are crucial for practical applications.

To overcome this limitation, researchers are increasingly exploring the integration

of knowledge representation and relational statistical reasoning strategies. While

statistical models have their drawbacks, symbolic knowledge representation offers

significant benefits in terms of transparency, inference and reasoning capabilities,

high-level concept representation, integration of prior knowledge, and modeling of

the external world.

Leveraging current advancements in neural-symbolic integration architectures,

this Ph.D. research seeks to explore methods to bridge the gap between symbolic

knowledge representation in multidimensional data analysis and deep representation

learning. The emphasis is on neurosymbolic integration, which enhances DNN

learning features by incorporating a priori information. This method allows symbolic

representation techniques, such as fuzzy logic, to be encoded as tensors in a neural

network.

To improve performance benchmarks, reduce the data required for model training,

and advance knowledge acquisition, this doctoral dissertation explores the develop-

ment of architectures for addressing image-based problems (e.g., object detection and

classification) using image representation features for logical reasoning. It aligns the

learning process with various inductive biases through practical implementations of

groundings, utilizing diverse datasets to make these theories applicable to real-world

scenarios.

Contents

List of Figures x

List of Tables xiii

1 Neural-symbolic architectures for high-dimensional data interpretation 1

1.1 Main research challenges . 4

1.1.1 Logical constraints to improve object detection frameworks 5

1.1.2 Neuro-Symbolic techniques for Zero-Shot Learning 6

1.2 Structure of the Document . 8

2 Learning with neuro-symbolic architectures 10

2.1 An overview of logic tensor networks 11

2.2 Learning a grounding function . 12

2.3 Fuzzy logic operators . 15

2.3.1 Propositional connectives 15

2.3.2 Aggregation operators . 18

3 Related work 21

3.1 Neuro-symbolic approaches for object detection 22

3.2 Introduction to Zero-Shot Learning 23

3.2.1 Prototypical networks for Zero-Shot Learning 25

viii Contents

4 Faster-LTN: neuro-symbolic object detection architecture 26

4.1 Architecture . 26

4.1.1 Faster R-CNN . 27

4.1.2 Logic tensor network for object detection 28

4.1.3 Faster-LTN . 30

4.2 Experimental setup . 33

4.3 Results . 34

4.4 Conclusion . 36

5 Proto-LTN a neuro symbolic architecture for zero-shot learning 38

5.1 Prototypical networks . 38

5.2 Architecture . 40

5.2.1 Grounding terms . 41

5.2.2 Grounding functions and predicates 42

5.2.3 Knowledge base . 44

5.2.4 Proto-LTN: the GZSL scenario 46

5.3 Experimental setup . 46

5.4 Results . 48

5.5 Conclusion . 49

6 Fuzzy logic visual network (FLVN) 51

6.1 Architecture . 51

6.1.1 Feature extraction . 52

6.1.2 Logic tensor network . 52

6.2 Experimental setup . 57

6.3 Results . 58

6.4 Conclusion . 60

Contents ix

7 Fuzzy logic prototypical network (FLPN) 61

7.1 Architecture . 62

7.1.1 The ZSL and GZSL settings 63

7.1.2 Image feature extraction 63

7.1.3 Prototypes for semantic mapping 65

7.1.4 Logic Tensor Network . 66

7.1.5 Knowledge base axioms 68

7.2 Experimental setup . 72

7.3 Results . 73

7.3.1 Ablation studies . 75

7.3.2 Class feature visualization using t-SNE 76

7.3.3 Visualization of attribute-level attention maps 76

7.3.4 Architecture comparison 78

7.4 Conclusion . 80

8 Concluding remarks 82

References 86

List of Figures

4.1 Faster-LTN architecture. It shares the first part of its architecture,

up to the RPN, with the Faster R-CNN network [1]. The backbone

extracts, concatenates, and inputs the feature maps linked to the

RPN proposals to the LTN, which consists of a set of predicates Pi,

each of which corresponds to a distinct class. At training time, a

partial theory Texpl is defined using a batch of labelled examples

from the training dataset. A positive or negative literal (L) for the

appropriate predicates relates to each positive or negative example.

The optimal grounding G∗ is found by maximizing the truth value

of the aggregated clauses (C). The truth value of the predicates Pi is

calculated at inference time. 31

4.2 Comparison of the t-SNE embeddings of the extracted features for

the whole testing set object classes. Features taken from Faster-LTN

with axiomatic restrictions (right) and conventional Faster R-CNN

(left). 36

5.1 Architecture of Proto-LTN for ZSL classification. An attribute en-

coder and a convolutional feature extractor constitute the architecture.

Semantic and visual information is mapped in an embedding space

shared by the two branches. Using affirmative and negative formulas

encoded in the knowledge base K, the isOfClass predicate seeks

to minimise the distance between instances (solid line circles) and

class prototypes (dashed line circles). The loss function maximises

the satisfiability of all formulas in K (truth value) at train time. . . . 41

5.2 Class prototypes visualised using t-SNE for the Awa2 dataset 49

List of Figures xi

6.1 A convolutional feature extractor and an attribute encoder are com-

bined in the FLVN architecture, which is intended for ZSL classifica-

tion, to efficiently transfer visual information to the attribute space.

Image features and class attributes are aligned by utilising predi-

cates like isOfClass, isOfClassmasked, and isOfMacro, while the

hasSameAttribute predicate measures the similarity between two

images. Since they are all included in the formulae of a knowledge

base called K, these predicates are all essential to the construction of

the architecture. The goal of the design of the loss function during

training is to maximize the satisfiability of each formula, or the truth

value, within K. 52

7.1 The design of FLPN consists of two main components: the feature

extractor and the prototype network. The feature extractor can be

either a CNN, such as ResNet-101 utilized in the trials, or a visual

transformer. The prototype network (ΠC
θ , Π

M
θ , Π

A
θ) integrates input

images with class (a), macroclass (amacro), and attribute (aeye) la-

bels into a unified embedding space, thereby grounding the symbols

within this space according to the LTN terminology. Various pred-

icates, such as isOfClass, isOfClassmasked, and isOfMacro, are

established as class membership functions based on this embedding

space. Moreover, the hasAttribute predicate identifies specific

attributes within images. These predicates form the foundation of

the knowledge base, denoted as K, of the LTN module. The training

objective (loss function) is designed to improve the satisfiability

or truth value of this K. The symbol · signifies element addition,

whereas » denotes element multiplication. 62

7.2 FLPN with ResNet-101 backbone trained with a KB composed by

φclass and φmasked: predictions of seen classes in GZSL setting . . . 77

7.3 FLPN with ResNet-101 backbone trained with a KB composed by

all axioms: predictions of seen classes in GZSL setting 77

7.4 FLPN with ResNet-101 backbone trained with a KB composed by

φclass and φmasked: predictions of unseen classes in GZSL setting . . 77

xii List of Figures

7.5 FLPN with ResNet-101 backbone trained with a KB composed by

all axioms: predictions of unseen classes in GZSL setting 77

7.6 FLPN with ViT backbone trained with a KB composed by φclass and

φmasked: predictions of seen classes in GZSL setting 77

7.7 FLPN with ViT backbone trained with a KB composed by all axioms:

predictions of seen classes in GZSL setting 77

7.8 FLPN with ViT backbone trained with a KB composed by φclass and

φmasked: predictions of unseen classes in GZSL setting 77

7.9 FLPN with ViT backbone trained with a KB composed by all axioms:

predictions of unseen classes in the GZSL setting 77

7.10 The class-level feature distribution for FLPN with the ResNet-101

(first row) and ViT (second row) backbones is represented using

t-SNE. The likelihood scores generated by the model for every class

were utilized to produce this representation. 77

7.11 FLPN with ViT-backbone attributes attention on Awa2 78

7.12 FLPN with ResNet-101-backbone attributes attention on Awa2 . . . 79

List of Tables

2.1 T-norms . 16

2.2 T-conorms . 17

2.3 Properties and implementations of various S-implications. The table

outlines different S-implications, their corresponding T-conorms,

and the specific logical properties that they satisfy. 18

2.4 Common aggregation operators . 20

4.1 Objects and their parts present in the PASCAL PART dataset 30

4.2 Results of the Faster R-CNN (FR-CNN), Faster R-CNN with focal

loss (FR-CNN FL), and Faster-LTN (F-LTN) on PASCAL VOC. . . 35

4.3 Comparison of Faster R-CNN and Faster-LTN (including mereologi-

cal constraints) on the PASCAL PART dataset. 36

5.1 For Proto-LTNm mean ± standard deviation and maximum (in paren-

theses) performance values are shown. TOP1ZSL (T1), TOP1GZSL_UNSEEN (U),

TOP1GZSL_SEEN (S), and HGZSL (H) are always obtained on the pro-

posed split (PS) of Awa2, CUB, aPY, and SUN classes, as described

in [2]. † assumes a transductive ZSL setting. Best performance

values are reported in bold. 48

xiv List of Tables

6.1 Performance on the test sets for Awa2, CUB, and SUN. The mean ±

standard deviation and maximum (in parenthesis) values for TOP1zsl

(T1), TOP1gzsl unseen (U), TOP1gzslseen (S), and Hgzsl(H) over

three runs are displayed for FLVN. A description of the metrics

can be found in [2]. The models in the table are divided into three

sections: generative models, attention-based models, and embedding-

based models. Bold face indicates the highest performing values. †

indicates techniques that make use of external information. 59

7.1 Comparison of connectives and aggregators in LTN (p g 1) 71

7.2 Comparing Awa2 for T, U, S, and H for GZSL e ZSL to the state

of the art at the moment. The methods are broken down into four

categories: embedding-based models, attention mechanism-based

models, transformer-based models and generative models. The best

results are in bold, while the second-best results are underlined. . . . 74

7.3 Ablation study at different level of knowledge base K based on

different backbones . 75

7.4 Comparison of the three NeSy architectures, with commonalities

and differences highlighted. 78

Chapter 1

Neural-symbolic architectures for

high-dimensional data interpretation

Over the past few decades, Artificial Intelligence (AI) has made significant progress

and gained popularity in both academic and business contexts, thanks to improve-

ments in hardware performance, increased resource availability, and optimization

approaches. Deep Learning (DL) researchers have achieved remarkable results,

enabling the application of these models in numerous sectors such as bioinformatics,

finance, healthcare, and autonomous driving [3–6].

However, growing concerns about the reliability, security, and accountability of

these systems highlight the need to integrate different methods of representation

and reasoning within data-driven systems, with the goal of alleviating these critical

issues. Knowledge representation and reasoning technique can provide a way to

process and leverage structured representations, essential for building robust and

transparent systems. Combining such techniques with data-driven machine learning

models into hybrid techniques can potentially lead to increased system reliability

and security. Using formal logic and knowledge representation, such hybrid systems

could yield clearer and more interpretable results, fostering user trust. Currently,

the primary goal of the research community is to approximate the human mind’s

ability to assess and process data. Through the incorporation of advanced methods of

representation and reasoning, progress is being made toward achieving this objective,

leading to the development of systems that are both powerful and trustworthy, as

well as understandable [7].

2 Neural-symbolic architectures for high-dimensional data interpretation

AI has historically been divided into two competing paradigms, leading to two

divergent interpretations: symbolic approaches and sub-symbolic (or connectionist)

approaches.

Symbolic approaches attempt to describe the universe through a system of sym-

bols, which may be thought of as the fundamental components of human intelligence

manipulated by cognitive and reasoning processes through a system of rules and

logical processes. Before the advent of deep learning, these systems were commonly

employed and offered several advantages, such as minimal data needs, declarative

language for knowledge representation, and the capability to explicitly manipulate

internal conceptual representations. These systems are inherently readable and

interpretable. However, they face bottlenecks such as the labor-intensive process

of knowledge acquisition based on human annotations, perform less effectively in

real-world scenarios, and are particularly intolerant to ambiguous data or noise [8].

Sub-symbolic or connectionist approaches include machine learning subfields

such as deep learning, which define systems capable of learning representations at

various levels of complexity. Nonlinear representations allow for the conversion of

input data to more abstract levels and simple compositions [9], enabling mastery

of incredibly complex functions with a wide range of applications. For example,

deep learning can be applied to tasks involving images, audio, text, speech recogni-

tion [10], object classification [11], image recognition [12], topic classification [13],

sentiment analysis [14], or language translation activities [15]. By learning through

weight adjustments, deep learning models minimize an error-derived cost function

from a training dataset using gradient backpropagation techniques [16]. These struc-

tures pose challenges such as the difficulty of translating model knowledge into

human-understandable concepts [17, 18], requiring large amounts of data for high

accuracy, and being significantly affected by the quantity and quality of available

annotations [19–21].

The two paradigms have complementary strengths and weaknesses. Deep learn-

ing models excel at handling large amounts of unstructured data and are resilient

to noise and inconsistencies, but they act as “black boxes”, making it difficult to

interpret their decision-making processes. In contrast, symbolic systems offer clear,

human-readable representations of knowledge and reasoning, but they struggle with

the unpredictability and variability of real-world data. By combining these ap-

3

proaches, researchers hope to leverage their strengths to create AI systems that are

both powerful and interpretable [22, 23].

The integration of symbolic reasoning with neural networks—referred to as

Neuro-Symbolic (NeSy) systems—has thus gained significant attention. The NeSy

field aims to bridge the gap between symbolic reasoning, which abstracts human cog-

nitive processes, and neural networks, which mirror the physiological mechanisms

of the brain [22]. This hybrid approach is viewed as a potential solution to some of

the long-standing challenges in AI, such as improving interpretability, generalization,

and robustness in complex real-world environments such as autonomous systems

and natural language understanding. A key advantage of NeSy methodologies is

their ability to reformulate the learning process, potentially reducing the reliance

on extensive labeled datasets. By leveraging symbolic knowledge as a form of

higher-level supervision, NeSy systems can narrow the “supervision gap”—the dif-

ference between the large amounts of annotated data typically required by neural

networks and the more limited data needed when symbolic guidance is employed.

This reduction in data demands is particularly beneficial in fields where annotated

data is scarce or costly to obtain.

Several approaches have been proposed to bridge this supervision gap and en-

hance the interaction between neural and symbolic components, including:

1. Augmenting neural network learning with symbolic systems, where logical

constraints are imposed to improve both interpretability and performance [24–

26];

2. Developing bidirectional architectures, where the outputs of neural networks

feed into symbolic components and vice versa, allowing for a more inter-

pretable and transparent reasoning process [27–29].

At the same time, although outside of the scope of this dissertation, the compu-

tational efficiency of symbolic reasoning can be improved by replacing symbolic

reasoning techniques with approximate algorithms based on neural networks to

reduce the search space; neural networks are also capable of abstracting and ex-

tracting symbolic representations from data, thereby facilitating reasoning [30–32].

Achieving an optimal balance and proper combination of sub-symbolic and symbolic

systems, which utilize distinct problem-solving strategies and data representations, is

4 Neural-symbolic architectures for high-dimensional data interpretation

essential for addressing specific problem requirements, yet integrating these systems

into a unified network presents considerable challenges.

1.1 Main research challenges

The increasing focus on developing NeSy architectures in computer vision, which

integrate neural networks with symbolic reasoning, is driven by key advantages

such as enhanced interpretability, improved robustness to noisy data, and reduced

dependence on large labeled datasets through the incorporation of external symbolic

knowledge, offering the potential to tackle critical challenges in modern AI by

combining data-driven learning with structured rule-based reasoning.

This doctoral dissertation focuses on NeSy architectures in computer vision tasks,

emphasizing the development of suitable knowledge bases to represent external

knowledge and logical constraints, the end-to-end training of the entire architecture,

and the creation of appropriate grounding for the symbolic component of the archi-

tecture. These aspects are evaluated and compared to conventional DL architectures,

demonstrating advantages in classic computer vision tasks while maintaining low

overhead in architectural complexity and training effort.

In particular, the dissertation focuses on the integration of a specific class of NeSy

techniques, denoted as Logic Tensor Networks (LTNs), in computer vision tasks and

benchmarks. LTNs have the ability to integrate background knowledge in the learning

task as differentiable logical axioms. They employ Real Logic, a differentiable

extension of first-order logic, interpreting predicates as continuous functions within

[0, 1]. This approach addresses uncertainty and soft constraints, solving AI tasks such

as clustering, classification, relational learning, query answering, semi-supervised

learning, regression, and embedding within a unified framework that seamlessly

integrates data learning and reasoning, as demonstrated in [33].

This dissertation aims to demonstrate how this NeSy technique can improve

machine learning models and facilitate the interpretation of multidimensional data,

especially images [34]. The research is divided into two core sections, each address-

ing a distinct but related research question. The first explores the embedding of

logical constraints in object detection frameworks to improve accuracy and inter-

pretability. The second investigates advances in NeSy architectures for Zero-Shot

1.1 Main research challenges 5

Learning (ZSL), a field where leveraging external knowledge can significantly en-

hance model performance in the absence of labeled examples.

1.1.1 Logical constraints to improve object detection frameworks

The architecture developed in this doctoral disertation, named Faster-LTN [35] and

discussed inChapter 4, merges a NeSy framework with the Faster R-CNN model to

improve object detection. This hybrid system integrates a convolutional backbone

with an LTN, creating an end-to-end trainable system. Faster-LTN aims to combine

the semantic knowledge representation and reasoning capabilities of LTNs with the

feature extraction and learning efficiency of convolutional neural networks (CNNs).

Specifically, the Faster-LTN architecture includes a Region Proposal Network

(RPN) and an LTN-based classification head, which are jointly trained to maximize

the satisfiability of a grounded theory that integrates labeled examples with logical

axioms. In the LTN framework, grounding refers to the process of interpreting First-

Order Logic (FOL) language as functions on real-valued vectors. The grounding

function G maps terms and formulas in the knowledge base K to real values, with

predicates interpreted as differentiable operations on real tensors. In Faster-LTN,

this framework is used to encode object detection tasks, defining predicates such

as isOfClass and isOfPart to represent object classes and their relationships.

The model enforces mutual exclusion and mereological constraints derived from

ontologies such as WordNet, ensuring logical consistency in object relationships.

Faster-LTN incorporates modifications aimed at enhancing scalability and ad-

dressing class imbalance by employing a focal log-product aggregation function,

which increases the influence of misclassified instances while adjusting for class

disparities. Experimental evaluations on the PASCAL VOC and PASCAL PART

datasets reveal that Faster-LTN achieves competitive performance when compared

to the conventional Faster R-CNN architecture; specifically, it enhances the mean

Average Precision (mAP) from 62.6 to 73.8 on the PASCAL VOC dataset, effectively

improving object detection and providing a more adaptable classification head, albeit

necessitating additional training epochs for convergence. Consequently, Faster-LTN

signifies a notable advancement in the integration of symbolic reasoning with deep

learning for object detection, showcasing the potential to incorporate high-level

logical constraints and background knowledge to develop more robust AI systems.

6 Neural-symbolic architectures for high-dimensional data interpretation

The implementation is available at https://gitlab.com/grains2/Faster-LTN.

1.1.2 Neuro-Symbolic techniques for Zero-Shot Learning

This dissertation also presents novel architectures PROTOtypical Logic Tensor Net-

works (Proto-LTN) [36], Fuzzy Logic Visual Network (FLVN) [37], and Fuzzy Logic

Prototypical Network (FLPN), which offer a cohesive and systematic investigation

of the integration of symbolic reasoning within deep learning architectures designed

for classification tasks under the ZSL setting. This research addresses key scien-

tific questions concerning the limitations of conventional ZSL approaches, focusing

on how symbolic knowledge can be effectively incorporated into neural network

architectures to improve both performance and generalization.

The initial investigation utilizing Proto-LTN centered on grounding abstract class

concepts within continuous embedding spaces by integrating NeSy architectures

with prototypical networks. Subsequently, FLVN introduced a novel method for

enhancing the integration of visual and semantic information, employing high-level

inductive biases and logical constraints to improve the robustness and interpretability

of ZSL models while mitigating premature overfitting to seen classes. The most

recent advancement, FLPN, builds upon previous approaches by incorporating at-

tention mechanisms and supporting both CNN and transformer backbones, thereby

enhancing model performance and generalization to unseen classes through the cre-

ation of a unified embedding space for visual features and class attributes, utilizing

logical axioms and refining prototype matching. Collectively, the Proto-LTN, FLVN,

and FLPN architectures represent significant advancements in the integration of sym-

bolic reasoning with deep learning for visual feature matching, not only improving

ZSL performance but also providing an extensible framework applicable to a variety

of NeSy tasks.

PROTOtypical Logic Tensor Network (Proto-LTN)

The architecture of the PROTOtypical Logic Tensor Network (Proto-LTN) [36] inte-

grates NeSy principles with prototypical networks to enhance ZSL. This framework

formulates the learning task by grounding abstract concepts as parameterized class

prototypes in a high-dimensional embedding space, while minimizing the number of

parameters needed to establish the knowledge base.

1.1 Main research challenges 7

Proto-LTN consists of a CNN that extracts visual features and an LTN that

formulates the learning objective as maximizing the satisfiability of a knowledge base

of logical axioms. This integration allows the model to represent class prototypes

as abstract concepts and assign new instances to the nearest class prototype in an

Euclidean distance.

In the context of ZSL, where the goal is to recognize objects from unseen classes,

Proto-LTN leverages logical axioms to encode relationships between classes and

their attributes, providing a robust framework for handling both seen and unseen

classes during training. The architecture optimizes the embedding space to ensure

that class prototypes and instances of the same class are close, while those of different

classes are distant.

Experimental results on Generalized Zero-Shot Learning (GZSL) benchmarks,

such as AWA2, CUB, aPY, and SUN, demonstrate that Proto-LTN achieves com-

petitive performance compared to traditional embedding-based approaches. The

architecture’s ability to integrate prior knowledge and logical constraints, including

information on unseen classes, proves advantageous.

The implementation is available at https://github.com/FrancescoManigrass/Proto-

LTN.git.

The Fuzzy Logic Visual Network (FLVN)

The Fuzzy Logic Visual Network (FLVN) architecture [37] integrates a NeSy frame-

work with LTNs to enhance ZSL by learning a visual-semantic embedding space

that incorporates background knowledge through logical axioms grounded in differ-

entiable operations. This approach leverages class hierarchies and inductive biases,

such as handling exceptions in class attributes and enforcing similarity between

images of the same class, to prevent overfitting to seen classes.

FLVN includes a CNN for feature extraction and an LTN that maximizes the

satisfiability of a knowledge base composed of First-Order Logic (FOL) axioms.

The architecture introduces novel predicates, such as isOfClass, isOfClassmasked,

and isOfMacro, to align visual features with semantic attributes, thus incorporating

symbolic knowledge into the learning process.

8 Neural-symbolic architectures for high-dimensional data interpretation

FLVN’s knowledge base includes both positive and negative examples, consider-

ing class hierarchies and macro-classes. This comprehensive approach enables better

generalization to unseen classes by grounding visual features in class attributes.

The implementation is available at https://gitlab.com/grains2/flvn.

Fuzzy Logic Prototypical Network (FLPN)

The Fuzzy Logic Prototypical Network (FLPN) architecture combines NeSy princi-

ples with Prototypical Networks to enhance ZSL by harnessing symbolic knowledge

representation along with the learning capabilities of deep neural networks. FLPN

formulates the classification task as prototype matching, where both class-level

and attribute-level prototypes are extracted through an attention mechanism. This

mechanism is specialized for CNN- and transformer-based backbones, allowing the

model to handle exceptions in class attributes and enforce similarity between images

of the same class.

The architecture utilizes a CNN or Visual Transformer (ViT) backbone for feature

extraction, while the prototype network generates class and attribute prototypes in a

unified embedding space. FLPN incorporates prior knowledge about class hierarchies

and inductive biases, improving its generalization to unseen classes.

Experimental results on GZSL benchmarks, such as AWA2, show that FLPN

achieves state-of-the-art performance, improving accuracy with less computational

overhead compared to recent ZSL methods.

1.2 Structure of the Document

This doctoral dissertation is organized into several key sections. In Chapter 2, an

overview of LTNs is presented. This section introduces the NeSy framework used to

integrate logical information into deep learning models, establishing the foundational

concepts necessary to understand how LTNs facilitate the incorporation of symbolic

knowledge into neural architectures.

Following this, Chapter 3 provides a review of the state of the art, offering a

brief survey of the relevant literature. This section situates the subsequent chapters

1.2 Structure of the Document 9

within the broader research landscape, contextualizing advancements in the field,

and identifying the gaps that this dissertation aims to address.

In Chapter 4, the application of NeSy networks for object detection tasks is

explored, with a particular focus on the Faster-LTN architecture. This chapter

compares traditional deep learning methods to NeSy networks, assessing the benefits

of integrating a logical knowledge base in terms of performance enhancement and

data efficiency.

Subsequently, Chapter 5, Chapter 6, and Chapter 7 examine three distinct NeSy

architectures developed for ZSL. Each chapter introduces a unique knowledge base

tailored to model the feature space and investigates the semantic relationships en-

coded within the classes. These sections provide a detailed analysis of the strengths

and limitations of each approach, supported by qualitative and quantitative evalua-

tions of the experimental results.

Finally, the dissertation concludes with Chapter 8, summarizing the key findings

and contributions of the research. This last chapter outlines potential directions for

future work, reflecting on insights gained throughout the study and proposing new

avenues for advancing NeSy integration in machine learning.

Chapter 2

Learning with neuro-symbolic

architectures

Integrating data-driven learning with preexisting background information, such as

relational knowledge or logical axioms, remains a significant challenge in Semantic

Image Interpretation (SII) and related tasks [38]. The purpose of NeSy integration is

to merge symbolic knowledge representation and learning with machine learning

techniques [39]. This strategy enables the incorporation of these new capabilities

into state-of-the-art deep neural networks, potentially improving their robustness,

explainability, and performance.

This section presents the LTN paradigm proposed by Serafini and d’Avila

Garcez [40, 41]. LTNs work by interpreting, or grounding, a FOL as functions

on real vectors. The satisfiability of a given theory can be maximized by training its

parameters via stochastic gradient descent. Examples of tasks successfully tackled

by LTNs include part-of-relationship detection [41] and visual relationship detec-

tion [42]. Previous studies have demonstrated how LTNs can use logical axioms

drawn from pre-existing knowledge bases to make up for the lack of supervision,

e.g., in Few-Shot Learning (FSL) settings.

2.1 An overview of logic tensor networks 11

2.1 An overview of logic tensor networks

LTNs are built on a foundation called Real Logic [43], which extends traditional

first-order logic (FOL) by introducing a continuous-valued interpretation of truth.

In a standard FOL framework, a logical language L consists of terms (which rep-

resent objects) and formulas (which represent assertions about these objects), con-

structed using symbols, variables, constants, and predicate functions. For example,

consider the constants Alice and Bob. A formula like friend_of(Alice,Bob)'

friend_of(Bob,Alice) can be used to assert that Alice and Bob are mutual friends.

In classical logic, this formula would evaluate to either true or false. However, in

Real Logic, the predicate friend_of can return a continuous truth value within

[0,1], expressing, for instance, that Alice and Bob are friends to a certain degree

(e.g., 0.8 or 0.9), rather than in an absolute sense.

Moreover, Real Logic allows for the formulation of general rules over entire

domains. Suppose that we define two variables, x and y, ranging over a set People.

We can then express a symmetric relationship between these variables using the

formula ∀x,y(friend_of(x,y) =⇒ friend_of(y,x)), which states that if x is a

friend of y, then y is a friend of x. In Real Logic, this rule holds with varying degrees

of truth, capturing the uncertainty or fuzziness inherent in social relationships.

The continuous nature of Real Logic enables LTNs to integrate symbolic reason-

ing with gradient-based learning, making it possible to apply logic-based reasoning

while simultaneously learning from data. This flexibility supports a range of AI

tasks, such as classification, relational learning, and query answering, all within a

unified framework.

The term grounding is employed to define an interpretation of FOL in a real

domain R
n. It enables the interpretation of these formulas, whether true or false,

in features with real value, associating the degree of truth with a scalar value in

the range (0,1),(1,0). The grounding of terms, in a more general sense, can be

composed of an embedding tensor containing features extracted from an object

through a neural network. For example, the term Alice can be a tensor containing

information extracted from a person’s facial image or other types of data such as

years, age, hair color, etc.

Real logic allows associating fuzzy truth values with propositions. LTNs, by

grounding a knowledge base in the form of logical axioms using real logic, allow the

12 Learning with neuro-symbolic architectures

creation of a unified learning process applicable to neural networks. The grounding

function, denoted as G, maps terms and functions to real values. Defining a complete

knowledge base K, it is possible to find the value Gθ as a trainable function with

parameters θ . This can be interpreted as an optimization problem for LTNs.

2.2 Learning a grounding function

Before defining terms and formulas, it is necessary to define the set of chosen objects,

i.e., the domain of membership. Referring to the example given in the previous

section, Alice and Bob were defined as belonging to the domain of People, but

alternatively it could be possible to define the domain of membership as Italians or

Dutch. A grounding function G expresses the interpretation in the language L; this

function must be defined for each sentence, as well as for the individual terms or

formulas present in the knowledge base K.

In the context of the initial example, each term could be associated with a tensor

extracted through a neural network. The grounding of Alice and Bob could be

defined as G(Alice) ∈ R
4 and G(Bob) ∈ R

4, while that of Italians and Dutch, to

which Alice and Bob respectively belong in the domain, could be G(Italians) ∈ R
4

and G(Dutch) ∈ R
4 or G(People) ∈ R

4.

To explain how LTNs can be combined with a neural network for an end-to-end

trainable system, it is possible to consider an example of binary classification into

two classes A and B, with training examples defined in a space R
5. It is possible

to define the domain of examples and the variables pA and pB, which represent

examples for classes A and B, respectively, as D(pA) =D(pB) =D(x) = examples.

Moreover, it is possible to define the labels for the classes A and B as lA and

lB, respectively, and the classification predicate as isOfClass(x, l). The predicate

Gθ (isOfClass) : x, l =⇒ [0,1], yields the likelihood that the example x belongs to

the class l. This makes it possible to learn a grounding function Gθ depending on the

parameters θ . Following the groundings of terms:

2.2 Learning a grounding function 13

Gθ (examples) = R
5, (2.1)

Gθ (labelsA) = [0,1], (2.2)

Gθ (labelsB) = [1,0], (2.3)

Gθ (xA) ∈ R
nA×5, (2.4)

Gθ (xB) ∈ R
nB×5, (2.5)

Gθ (x) = concat(Gθ (xA),Gθ (xB)), (2.6)

Gθ (lA) = [1,0]T , (2.7)

Gθ (lB) = [0,1]T , (2.8)

Gθ (isO fClass) : (x, l) 7→ lT · softmax(MLPθ (x)), (2.9)

where MLP is a possible example of a trainable classifier based on the parameters θ

that returns a scalar value in the range [0,1].

In conventional LTNs [35, 44, 45], predicates are typically defined as the gener-

alization of the neural tensor network:

G(P)(v) = σ
(

uT
P tanh

(

vTW
[1:k]
P v+VPv+bp

))

(2.10)

where σ is the sigmoid function, W [1 : k] ∈ R
k×mn×mn, Vp ∈ R

k×mn, up ∈ R
k, and

bp ∈ R are learnable tensors of parameters. In multi-class scenarios, the sigmoid

function can be replaced with a softmax layer to ensure mutual exclusivity [40].

Nonetheless, the LTN specification is independent of the specific implementation of

the predicates [40].

In this way, the problem reduces to an optimization problem, i.e., finding the

optimal parameters θ ∗ to satisfy the knowledge base K. A useful knowledge base

for the proposed classification example can be composed as follows:

φ1 = ∀xA∀lA(Diag(xA, lA) : lA == 1,isOfClass(xA, lA)), (2.11)

φ2 = ∀xB∀lB(Diag(xB, lB) : lB == 1,isOfClass(xB, lB)). (2.12)

where xA and lA represent labeled examples from set A, and similarly, xB and lB

denote labeled examples from set B.

14 Learning with neuro-symbolic architectures

Diagonal quantification (Diag) refers to a form of quantification where the

quantifier applies to a formula in such a way that the variable being quantified over

appears in both the domain of the quantification and the quantified formula itself.

This creates a self-referential or “diagonal” structure in the logical expression.

Guarded quantifiers (lA == 1, lB == 1) are a type of quantifier used in logical

formulas where the variables being quantified are restricted by a “guard” condition.

This guard is typically an atomic formula or a conjunction of atomic formulas

that restricts the range of variables. Guarded quantifiers help maintain desirable

properties like decidability and tractability in logical systems.

Finding the solution to the optimization problem ideally involves perfectly satis-

fying the knowledge base K= φ1,φ2 based on the parameter θ :

Gθ (φ1) = Gθ (∀xA∀lA(Diag(xA, lA) : lA == 1,isOfClass(xA, lA) = 1)), (2.13)

Gθ (φ2) = Gθ (∀xB∀lB(Diag(xB, lB) : lB == 1,isOfClass(xB, lB) = 1)). (2.14)

The described system is ideal in theory and could be impossible in the case,

e.g., of noisy labels. Therefore, θ ∗ is defined as a reasonable satisfaction of the

knowledge base, i.e., the optimization problem is to find:

θ ∗ s.t. Gθ∗(φ)≈ 1 ∀φ ∈K. (2.15)

To obtain a single value to optimize, an aggregation functions that allow obtaining

a probability value of the overall knowledge base SatAgg : [0,1]∗ =⇒ [0,1] is

defined, solving the following equation:

max
θ∈θ

SatAggφ∈KGθ (φ). (2.16)

The best satisfiability problem, the optimization problem underlying LTNs,

consists of determining the values of θ ∗ that maximize the truth values of the

conjunction of all formulas φ ∈K:

θ ∗ = argmaxθ

Ĝθ

∧

φ∈K

φ

−λ ||θ ||22

 (2.17)

2.3 Fuzzy logic operators 15

where λ ||θ ||22 is a convenient regularization term.

2.3 Fuzzy logic operators

To facilitate the understanding of the following sections, essential background details

are provided. Relevant terminology is defined by drawing on established works in

the field, specifically those of Ying et al. [46], van Krieken et al. [47], and Calvo et

al [48].

2.3.1 Propositional connectives

Consider p1,, pn to be n propositional variables, all propositional formulas gener-

ated from p1,, pn are defined as follows:

• p1,, pn are propositional formulas;

• if φ ,µ are propositional formulas, then ¬φ ,φ 'µ , and φ (µ are also proposi-

tional formulas.

Therefore, P(p1, . . . , pn) is a composition of operators {¬,',(} generated with

p1, . . . , pn. The set of all propositional formulae formed from p1, . . . , pn is designated

as PL(p1, . . . , pn). Specifically, it may be observed that, in classical propositional

logic, propositional variables are interpreted in {0,1}; in fuzzy logic, they are

interpreted in the entire interval [0,1].

Fuzzy negation. A mapping of a function N from [0,1] to itself that satisfies

N(N(a)) = a for every a ∈ [0,1], where a f b, i.e., N(b) f N(a). This mapping

is known as a negation operator, the negation operator in fuzzy logic is a truth

function of negation where for each a ∈ [0,1], the negation operator is represented

as N(a) = 1−a, other definitions of negation are defined in [47].

Triangular norm and conorms. A binary operator in the range [0,1] that is

commutative, associative, non-decreasing, and has 1 (respectively, 0) as its identity

element is called a T-norm T (and, conversely, T-conorm C). In fuzzy logic, the terms

T-norm and T-conorm denote the truth functions for conjunction and disjunction,

respectively. Table 2.1 and Table 2.2 show the main operations that were used

16 Learning with neuro-symbolic architectures

for computing the T-norm and T-conorm functions, respectively, along with their

corresponding properties.

In particular, a T-norm must be:

1. Monotonic: For every a ∈ [0,1], T (a, ·) is increasing, i.e., if 0 f b1 f b2 f 1,

then T (a,b1)f T (a,b1)f T (a,b2).

2. Neutral: For every a ∈ [0,1], T (1,a) = a.

3. Left-continuous: A left-continuous T-norm is left-continuous in both argu-

ments.

4. Idempotent: An idempotent T-norm has the property that for every a ∈ [0,1],

T (a,a) = a.

5. Strictly monotonic: A strictly monotonic T-norm has the property that for every

a ∈ (0,1], T (a, ·) is strictly increasing.

Name T-norm Properties

Gödel

(minimum)
TG(a,b) = min(a,b)

idempotent,

continuous

Product TP(a,b) = a ·b strict

Łukasiewicz TLK(a,b) = max(a+b−1,0) continuous

Drastic

product
TD(a,b) =

{

min(a,b), if a = 1 or b = 1

0, otherwise

Nilpotent

minimum
TNM(a,b) =

{

0, if a+b f 1

min(a,b), otherwise

left-

continuous

Yager TY (a,b) = max
(

1− ((1−a)p +(1−b)p)
1
p ,0
)

, p g 1 continuous

Table 2.1 T-norms

A T-conorm must satisfy the properties of being commutative, associative, and:

1. Monotonic: For every a ∈ [0,1], the function T (a, ·) is non-decreasing. Specif-

ically, if 0 f b1 f b2 f 1, then T (a,b1)f T (a,b2) holds.

2. Neutral: For every a ∈ [0,1], the condition T (0,a) = a must be satisfied.

2.3 Fuzzy logic operators 17

Name T-conorm Properties

Gödel (maximum) SG(a,b) = max(a,b)
idempotent,

continuous

Product (probabilistic

sum)
SP(a,b) = a+b−a ·b strict

Łukasiewicz SLK(a,b) = min(a+b,1) continuous

Drastic sum SD(a,b) =

{

max(a,b), if a = 0 or b = 0

1, otherwise

Nilpotent maximum SNM(a,b) =

{

1, if a+b g 1

max(a,b), otherwise

right-

continuous

Yager SY (a,b) = min
(

(ap +bp)
1
p ,1
)

, p g 1 continuous

Table 2.2 T-conorms

The T-conorm is still based on the De Morgan laws of classical logic, which

assert that p(q = ¬(¬p'¬q). Specifically, if T is a T-norm, then the function S

can be expressed as S(a,b) = 1−T (1−a,1−b). However, for the case where the

neutral element of the T-conorm is 0, this relation still holds, but the neutral element

reflects that the disjunction operation has 0 as its identity.

Implications. A fuzzy implication is a function I : [0,1]2 → [0,1] with the

following properties: For any a,c ∈ [0,1], the function I(·,c) is decreasing with

respect to its first argument, and I(a, ·) is increasing with respect to its second

argument. Additionally, the fuzzy implication must satisfy the conditions: I(0,0) = 1,

I(1,1) = 1, and I(1,0) = 0. From these conditions, it can be deduced that I(0,1) = 1.

S-Implications. In classical logic, the implication is defined as follows: p =⇒

q = ¬p(q. The properties of left-neutrality, the exchange principle, and N-right-

contrapositive symmetry are satisfied by an implication. The implication is also

characterized as a strong implication and meets the property of N-contrapositive

symmetry if N is a strong negation. Furthermore, it fulfills N-left-contrapositive

symmetry if it is also strong. The attributes and potential methods of implementing

the implications are explicitly shown in Table 2.3.

18 Learning with neuro-symbolic architectures

Name T-conorm S-implication Properties

Kleene-Dienes SG IKD(a,c) = max(1−a,c) All but IP

Reichenbach SP IRC(a,c) = 1−a+a · c All but IP

Lukasiewicz SLK ILK(a,c) = min(1−a+ c,1) All

Dubouis-Prade SD IDp(a,c) =

c, if a = 1

1−a, if c = 0

1, otherwise

All

Fodor SNm IFD(a,c) =

{

1, if a f c

max(1−a,c), otherwise

Table 2.3 Properties and implementations of various S-implications. The table

outlines different S-implications, their corresponding T-conorms, and the specific

logical properties that they satisfy.

2.3.2 Aggregation operators

The functions that combine several inputs into one are called aggregation operators,

and are used to compute quantifiers such as ∀,∃.

An aggregation operator is a function A : ∪n∈N[0,1]
n → [0,1] that is nondecreas-

ing with respect to each argument, and for which A(0, . . . ,0) = 0 and A(1, . . . ,1) =

1. Table 2.4 shows some common aggregation operators that have been proposed

in the literature. Different aggregation operators exhibit distinct properties con-

cerning differentiability, which is crucial for gradient-based optimization methods

commonly employed in training neuro-symbolic models. For instance, as highlighted

by van Krieken et al. [47], some fuzzy implications, such as the Reichenbach and

Łukasiewicz implications, have derivatives that align well with gradient descent,

making them suitable for use in differentiable learning setting.

The ∀ quantifier is often interpreted as the conjunction over all arguments p.

Therefore, it is possible to extend a T-norm T from 2-dimensional inputs to n-

dimensional inputs as they are commutative and associative:

AT () = 0 (2.18)

AT (p1,x2, . . . , pn) = T (p1,AT (x2, . . . , pn)) (2.19)

2.3 Fuzzy logic operators 19

These operators are a straightforward choice for modeling the ∀ quantifier, as

they can be seen as a series of conjunctions. All operators constructed in this way

are symmetric aggregation operators for which the output value is the same for every

ordering of their arguments and have both commutative and associative properties.

Formally, given a fuzzy predicate PL(p), the fuzzy universal quantifier is defined

using a T-norm T (which generalizes the AND operation):

∀pPL(p) = inf
x∈X

PL(p) (2.20)

where inf (infimum) represents the greatest lower bound of PL(p) over the

domain P.

On the other hand, the aggregator ∃ is understood to represent a disjunction of its

parameters. The existential quantifier in fuzzy logic can be interpreted as the degree

to which there exists at least one element in the domain for which the property is true.

Formally, given a fuzzy predicate PL(p), the fuzzy existential quantifier is defined

using a T-conorm S (which generalizes the OR operation):

∃pPL(p) = sup
p∈P

PL(p)

where sup (supremum) represents the least upper bound of PL(p) over the domain

P.

The aggregation of truth values for fuzzy quantifiers is achieved through the use

of T-norms and T-conorms. For the universal quantifier (∀), the infimum of the truth

values of the fuzzy predicate over all elements in the domain is used. For example,

for a fuzzy predicate PL(p) over a domain P, ∀pPL(p) is the minimum of the values

PL(p) over P.

Similarly, for the existential quantifier (∃), the supremum of the truth values of

the fuzzy predicate over all elements in the domain is used. For example, for a fuzzy

predicate PL(p) over a domain P, ∃pPL(p) is the maximum of the values PL(p)

over P.

Two different aggregation functions are proposed by Badreddine et al. [40]:

the generalized mean ApM approximates the existential quantifier ∃, whereas the

20 Learning with neuro-symbolic architectures

generalized mean with respect to the error ApME approximates the universal quantifier

∀ [40, 49]. Considering n truth values in [0,1], such as a1, . . . ,an:

Name Generalizes Aggregation operator

Minimum TG ATG
(p1, . . . , pn) = min(p1, . . . , pn)

Product TP ATP
(p1, . . . , pn) = ∏

n
i=1 xi

Lukasiewicz TLK ATLK
(p1, . . . , pn) = max(∑n

i=1 xi − (n−1),0)
Maximum SG ESG

(p1, . . . , pn) = max(p1, . . . , pn)
Probabilistic sum SG ESP

(p1, . . . , pn) = 1−∏
n
i=1 (1− xi)

Bounded sum SLK ESLK
(p1, . . . , pn) = min(∑n

i=1 xi,1)

Table 2.4 Common aggregation operators

∃ : ApM (a1, . . . ,an) =

(

1

n

n

∑
i=1

a
p∃
i

) 1
p∃

p∃ ⩾ 1 (2.21)

∀ : ApME (a1, . . . ,an) = 1−

(

1

n

n

∑
i=1

(1−ai)
p∀

) 1
p∀

p∀ ⩾ 1 (2.22)

However, there are alternatives to these common operators. For example, in this

thesis, the log-product aggregator used in Faster-LTN [35] is defined as:

∀ : Alogproduct
(a1, . . . ,an) =

N

∑
i=0

αc(1−ai)
γ log(ai) (2.23)

where ai is the literal of the i-th class and αc is a class-dependent coefficient. Addi-

tionally, γ increases the contribution of literals with low truth value (e.g., misclassi-

fied examples).

By carefully selecting appropriate aggregation operators with desirable differen-

tiability characteristics, it is possible to enhance the training efficiency and perfor-

mance of neuro-symbolic systems, leveraging the strengths of both symbolic logic

and neural networks. This approach ensures that the learning process remains stable

and effective, even when integrating complex background knowledge [47].

Chapter 3

Related work

NeSy architectures, an emerging paradigm that synergizes the strengths of neural net-

works and symbolic reasoning, have shown remarkable potential in various domains

of artificial intelligence. By integrating the data-driven learning capabilities of neural

networks with the rule-based manipulation of symbolic systems, neurosymbolic

architectures aim to enhance generalization and reasoning in AI systems. This chap-

ter explores the integration of neuro-symbolic techniques for object detection and

the principles of zero-shot learning (ZSL), as these tasks were selected due to their

critical importance in advancing real-world applications and their unique challenges

in the field of computer vision. We will highlight the challenges and solutions in

training these models.

Object Detection is a computer vision task that involves identifying and local-

izing objects within an image. Traditional methods often rely on CNNs to extract

features from images, which are then processed to classify and delineate objects. Re-

cent advancements have incorporated symbolic reasoning to improve the robustness

of object detection systems.

Zero-Shot Learning is a machine learning approach where a model is trained

to recognize objects from unseen categories using semantic information that relates

seen and unseen classes. This allows the model to generalize to new categories

without explicit training examples, leveraging attributes or descriptions to bridge the

gap between known and unknown classes.

22 Related work

3.1 Neuro-symbolic approaches for object detection

A natural image, composed of scenes, objects, and parts interconnected by a com-

plex web of spatial and semantic relationships, necessitates the development of

semantic image interpretation components that recognize a hierarchy of elements

while incorporating enduring visual perception and the ability to encode and reason

about visual relationships. Various methods have been proposed to enhance CNNs

with capabilities for relationship representation and reasoning, including Relational

Networks [50], Graph Neural Networks [51], and NeSy techniques [41, 42, 52].

For a broader introduction to NeSy techniques it is possible to consult recent sur-

veys [53, 23].

Several recent methods employ CNNs to extract features, which are then pro-

cessed by a symbolic or neuro-symbolic module [41, 42, 54, 55]. For example,

Yuke Zhu et al. [54] utilize a Markov Logic Network (MLN) to manage textual data

along with corresponding visual features, using a knowledge base to represent the

relations between objects based on their visual, physical, and categorical properties.

Kenneth Marino et al. [56] integrate a Graph Search Neural Network (GSNN) with

a classification network. Donatello et al. [41] and Cewu Lu et al. [55] apply visual

features in training LTNs for detecting visual relationships in the form of subject-

verb-object triplets or part of relations. These studies illustrate how NeSy techniques

facilitate the formulation of logical axioms that act as high-level inductive biases,

guiding the network towards an optimal solution in harmony with these inductive

biases. However, in the aforementioned studies, feature extraction and classification

networks are trained independently, which prevents the CNNs from using these

supplementary inductive biases during training.

One of the significant challenges in object detection is dealing with data im-

balance, where the number of background examples far exceeds the number of

foreground objects. This imbalance can cause models to be biased towards predict-

ing the majority class (background), leading to suboptimal performance in detecting

objects. Traditional methods to address data imbalance include hard example mining

and re-sampling techniques, which focus on re-balancing the training dataset. Recent

advancements have introduced various loss functions designed to address the issue

of data imbalance in object detection. Focal loss reduces the loss of well-classified

examples, focusing on hard ones to prevent easy negatives from dominating the

detector, effective in models like RetinaNet [57]. Balanced cross entropy uses a

3.2 Introduction to Zero-Shot Learning 23

weighting factor to balance positive and negative examples, addressing class imbal-

ance by their frequencies [58]. Class-balanced loss adjusts the contribution based

on the number of samples per class, giving more weight to underrepresented classes

and addressing long-tailed distributions [59].

However, other practical obstacles in training NeSy architectures include the

well-known issue of scalability when managing large datasets, as highlighted in

symbolic AI literature [47]. Consequently, many NeSy architectures use a traditional

object detector to generate an initial set of candidate objects [41], thereby ignoring

the background effect and simplifying the problem’s scale. Another factor related

to scalability is the selection of aggregation functions and fuzzy logic operators.

Emile van Krieken et al. [47] and Samy Badreddine et al. [40] identified signifi-

cant differences among differential fuzzy logic operators regarding computational

efficiency, scalability, gradients, and their capability to handle exceptions, all of

which are important in a learning context. Their analysis provides a foundation

for the Faster-LTN (Chapter 4) architecture, which incorporates and improves the

log-product aggregator discussed in [47].

3.2 Introduction to Zero-Shot Learning

ZSL is a machine learning approach where a model is trained to identify and cat-

egorize objects from new, unseen categories by using additional information like

semantic attributes, which connect unseen categories with the seen categories from

training data. GZSL broadens the ZSL approach to identify and categorize objects

from both seen and unseen categories. Unlike ZSL, GZSL demands that the model

adeptly manage a more complex scenario by differentiating between seen and un-

seen classes within the same space. Several methods have been devised for ZSL,

including those founded on embeddings, end-to-end embeddings, generative models,

and transformer-based models.

Embedding-based. These techniques combine semantic attributes and visual

data by mapping them into a unified space. Some methods map images into the

attribute space via an embedding function, considering semantic attributes as the

shared space [60, 61]. On the other hand, other techniques use the image embedding

space as the common platform to solve the hubness issue [62, 63]. Additionally,

there are approaches [64–66] that create a distinct shared space that is separate from

24 Related work

both the image and attribute domains. To prevent overfitting to known categories,

these techniques often utilize pseudo-labeling methods or operate in a transduc-

tive manner [65], using unlabeled images from new categories during training. In

Chapter 5, Proto-LTN will be discussed, an architecture that builds upon this type

of approach, leveraging the embedding-based method to enhance performance and

address specific challenges in ZSL.

End-to-end embeddings. These approaches, based on embeddings, have been

employed to identify the crucial regions of an image for the purpose of class cat-

egorization and to improve the embedding space during training [60, 61, 67, 68].

Previous research has utilized attributes to create class-level representations through

regularization methods [60, 65] or contrastive techniques [61] to prevent overfitting

of seen classes. FLPN and FLVN belong to this category of work. Chapter 6 will

introduce FLVN, which translates images into attribute space, learning the represen-

tation of classes at the attribute level. This capability has been empirically shown

to boost classification accuracy. Building on past studies [69, 70], Chapter 7 will

present FLPN, an architecture that integrates attribute and class representations to

leverage the reasoning skills of a NeSy network, enhancing performance through

the use of semantic descriptions and an attention mechanism combined with a proto-

typical network. Specifically, by using semantic descriptions of classes, combined

effectively with an attention mechanism and a prototypical network, the framework

learns representations of classes and attributes efficiently, improving the model’s

ability to generalize. In addition, it introduces a symbolic prior that groups visually

and semantically similar features.

Generative methods. These methods employ auxiliary models, such as Gener-

ative Adversarial Networks (GANs), to produce synthetic examples that represent

unseen classes by learning the conditional probability distribution for each class [71–

74]. Recently, feature generation models have been integrated with embedding-based

models within a contrastive framework [75]. Generative approaches necessitate prior

knowledge of unseen classes to create training data.

Transformer-based models have been found to be particularly effective in

achieving outstanding results across a variety of natural language processing tasks [76].

These architectures demonstrate enhanced robustness compared to CNNs [77]. Du et

al. [69] suggested that it is possible to use global features for embedding spaces and

to apply ViT embedding patches as an attention mechanism to capture attribute-level

3.2 Introduction to Zero-Shot Learning 25

embedding features. Applying this approach in FLPN, advantages in a NeSy context

are highlighted.

3.2.1 Prototypical networks for Zero-Shot Learning

Prototypical networks are increasingly popular in ZSL due to their ability to classify

both seen and unseen classes effectively. These networks represent each class

with a prototype in an embedding space, which is usually generated by averaging

the embeddings of the class’s training samples. To improve ZSL performance,

various studies suggest incorporating semantic similarities between classes. The

authors of [62] discuss utilizing deep neural networks to transform images into

embedding spaces. In [36] and [37], it is emphasized the role of semantic similarities

in enhancing classification accuracy. One of the challenges in applying prototypical

networks in ZSL is the hubness problem, where certain points in the feature space

(hubs) connect too closely with numerous other points, negatively impacting class

prototypes and hindering the model’s ability to generalize, as noted in [62]. Proto-

LTN addresses the hubness problem by using a shared embedding space for images,

which helps in distributing connections more evenly. Additionally, in FLPN, utilizing

prototypical networks with shared weights allows for the representation of both

individual attributes and classes.

Chapter 4

Faster-LTN: neuro-symbolic object

detection architecture

Work described in this chapter was originally presented in [35].

This chapter presents Faster-LTN, an object detector that combines Faster R-

CNN with an LTN, in contrast to other efforts that relied on pre-trained CNNs [42].

Notably, both the backbone and LTN undergo joint end-to-end training. The convo-

lutional layers are trained with the help of LTN-specific logical constraints, which

reduces the reliance on labeled data. Experiments conducted on the PASCAL VOC

and PASCAL PART datasets confirm the feasibility of Faster-LTN by demonstrat-

ing performance comparable to neural frameworks. Keras’s implementation of

Faster-LTN is available at https://gitlab.com/grains2/Faster-LTN. This chapter pro-

vides a detailed description of the Faster-LTN architecture and its training process

(Section 4.1), of the experiments conducted (Section 4.2) and finally the results

(Section 4.3) obtained.

4.1 Architecture

The architectures presented integrate a traditional Faster R-CNN object detection

model with an LTN. Faster R-CNN provides region proposals and feature extraction,

while the LTN applies logical constraints and relations to enhance object classifica-

4.1 Architecture 27

tion and bounding-box predictions, creating a robust, logic-guided object detection

framework.

4.1.1 Faster R-CNN

A Region Proposal Network (RPN) and a classification network with a shared

backbone constitute Faster R-CNN, a two-phase object detector [1]. A regression

layer calculates the bounding box coordinates, while the RPN produces a binary

classification label (background vs. foreground) for each anchor. The ROI Pooling

layer receives the Regions of Interest (ROIs) chosen by the RPN and uses them

to extract and resize the features of each proposal bounding box from the shared

backbone. The classifier receives feature maps of equal size. The classifier consists

of two convolutional heads: a regression layer with linear activation that computes

the bounding box and a classification layer with softmax activation that computes

the final object categorization.

The training process for the RPN and classifier heads is conducted alternately in

an end-to-end manner. Initially, the RPN is trained and updated with each forward

pass, during which all region proposals are extracted from the image. Following

this, the detector head is updated while the RPN weights are kept constant. For the

training of the classifier head, a specified number of positive (object) and negative

(background) instances are selected at each stage.

The loss function encompasses both regression and classification losses:

L(pi,bi) =
1

nc
∑

i

Lcls(pi, p′i)+λ
1

nr
∑

i

pi∗Lreg(bi,b
′
i) (4.1)

where the first part of the equation 1
nc

∑iLcls(pi, p′i) represents the classification loss

and the second part, λ 1
nr

∑i pi∗Lreg(bi,b
′
i) denotes the regression loss. In the Faster-

LTN, the RPN module remains unchanged, while the classifier head is replaced with

an LTN.

28 Faster-LTN: neuro-symbolic object detection architecture

4.1.2 Logic tensor network for object detection

A grounded theory for the detection of objects

Assuming a collection of bounding boxes b ∈B, where c ∈ C represents a recognized

class, the vector grounding an item with bounding box bn is:

vbn
=< zbn,bn > (4.2)

where zbn
= f (I,bn) is an embedding feature vector, calculated by a convolutional

neural network f , given an image I and the bounding box coordinates bn predicted by

the RPN layer. This makes it possible to successfully connect the convolutional layers

and the LTN, which is a departure from previous work [41], where the grounding of

a bounding box was specified by the probability vector predicted by a pre-trained

Faster R-CNN.

The isA predicate for class c ∈ C is defined as a real vector, defined as in

Equation 2.10 implementing a one-vs-all classifier.

Notably, unlike [41], the isA predicate takes only the real vectors zbn as input,

excluding the bounding box coordinates. This preserves a fundamental property

of convolutional object detectors such as equivariance to shifting. The grounding

f (I,bn) is defined as the result of the final fully connected layer of the classifier head.

Pairs of bounding boxes define the predicate partOf [41]. The vectors bm and bl ,

representing two generic bounding boxes, are grounded by:

vbm,l
=< zbm,bm,zbl,bl, irm,l > (4.3)

where irm,l is the inclusion ratio from Donadelloet al. [45] which express the over-

lapping between two bounding boxes, defined as:

irm,l =
Area(bm ∩bl)

Area(bm)
(4.4)

The grounding G(partOf)(vbm,l
) is a neural tensor network defined as in Equa-

tion 2.10.

4.1 Architecture 29

Constructing a theory from labeled examples

Herewith it is explored how a grounded theory is formulated to address the best

satisfiability problem outlined in Equation 2.17 for object detection. Following the

approach in [41], different grounded theories, Texpl and Tprior, are introduced.

In essence, the former, Texpl , replicates the traditional learning-by-example

setting by aggregating all the axioms obtained from the labeled training set. In

contrast, logical and mereological constraints are introduced by the theory Tprior,

which stands for previous knowledge or, more broadly, desirable qualities of the

ultimate solution.

In this chapter, two types of constraints are defined. The first type, mutual

exclusion , is captured by the following formula:

∀x(P1(x) =⇒ (¬P2(x)' ...'¬Pn(x))) (4.5)

To encode that an item belonging to class ci cannot belong to class c j, Equation 4.5

is translated into K(K − 1))/2 clauses, corresponding to all unordered class pairs

over K classes, e.g., Cat(x) =⇒ ¬Person(x).

Based on an existing ontology (e.g., Wordnet) that contains meronimy (i.e., part-

whole) relationships, mereological constraints are imposed on the partOf and isA

predicates. Specific axioms are introduced to indicate that each whole is typically

associated with a set of given parts, that a whole object cannot include another whole

object, and that a part cannot include another part. Examples of such axioms can be

seen in autorefeq:parts1 and Equation 4.7:

∀x,y(Cat(x)'partOf(y,x)→ Tail(y)(Head(y) ...(Eye(y)) (4.6)

to indicate that an object y that is part of cat x should be classified as a head, tail, or

eye.

Conversely, the following axiom indicate that a certain part (for instance, a tail)

must belong to a consistent object (in this case, an animal):

∀x,y(Tail(x)'partOf(y,x)→ Cat(y)(Dog(y) ...(Horse(y)) (4.7)

30 Faster-LTN: neuro-symbolic object detection architecture

Mereological limitations were imposed using the knowledge base created in [41]

shown in Table 4.1.

Objects Parts

Airplane body, engine, wing, tail, wheel

Bicycle wheel, handlebar, headlight, saddle

Bird beak, head, eye, foot, leg, wing, neck, tail, torso

Boat hull, deck, mast, sail, rudder

Bottle body, cap

Bus license plate, side, door, headlight, mirror, wheel, window

Car license plate, side, door, headlight, mirror, wheel, window

Cat head, leg, paw, ear, eye, neck, nose, tail, torso

Chair backrest, seat, legs, armrests

Cow head, leg, ear, eye, horn, muzzle, neck, tail, torso

Dining table tabletop, legs

Dog head, leg, ear, eye, neck, nose, tail, torso

Horse head, leg, ear, eye, mane, neck, tail, torso

Motorbike wheel, handlebar, headlight, saddle

Person hair, head, ear, eye, eyebrow, foot, hand, leg, arm, mouth, neck, nose, torso

Potted plant plant, pot

Sheep head, leg, ear, eye, horn, muzzle, neck, tail, torso

Sofa cushions, armrests, backrest

Train coach, locomotive, headlight

TV monitor screen, stand

Table 4.1 Objects and their parts present in the PASCAL PART dataset

4.1.3 Faster-LTN

Figure 4.1 presents an overview of the complete architecture. The whole structure

is an end-to-end system that connects an LTN and a Faster R-CNN. In particular,

the output of the traditional Faster R-CNN architecture is sent to the LTN, and the

softmax activation is removed from the classifier head. During training, a partial

grounded theory is built for each batch according to Table 4.1. The three additional

Predicate, Literal, and Clause layers are defined to implement the LTN.

A predicate in logic represents a property or relation among objects, mapping

them to a truth value in [0, 1] in fuzzy logic. Formally, a predicate PL is defined

as PL : p1 × p2 ×·· ·× pn → [0,1], with pi being domains of objects. A literal is an

atomic formula or its negation, reflecting the fuzzy complement in fuzzy logic. If

p is a predicate, p and ¬p are literals, with ¬p as the complement of p. In fuzzy

4.1 Architecture 31

Regression

Training
L1 C1

L2

L3

Ln

C2

C3

Cn

... ...

P1

P2

P3

Pn

...

Inference

CONV
Layers

Extract
Features

Feature
Maps

C
O

N
V Classification

Regression

Region
Proposal
Projection

RPN

Classification

Batch Aggregation

...

Fig. 4.1 Faster-LTN architecture. It shares the first part of its architecture, up to the

RPN, with the Faster R-CNN network [1]. The backbone extracts, concatenates, and

inputs the feature maps linked to the RPN proposals to the LTN, which consists of a

set of predicates Pi, each of which corresponds to a distinct class. At training time, a

partial theory Texpl is defined using a batch of labelled examples from the training

dataset. A positive or negative literal (L) for the appropriate predicates relates to each

positive or negative example. The optimal grounding G∗ is found by maximizing

the truth value of the aggregated clauses (C). The truth value of the predicates Pi is

calculated at inference time.

logic, a clause is a fuzzy disjunction of fuzzy literals, which can be represented as

C = L1 (L2 (·· ·(Lm where Li are literals. The matching literal calculates the truth

value of all positive (i.e., class c) and negative (i.e., non-class c) examples for each

class c. The clause layer uses the chosen aggregation function to aggregate all literals

for a specific class. Furthermore, clauses that accept multiple literals as input can

be defined (for example, for partOf predicates). Figure 4.1 only displays Texpl for

simplicity. The LTN’s complete loss can be calculated by adding the regression loss

to LLT N , much like the loss of the RPN layer.

Training

In order to address memory limitations, for every batch of instances, a partial Texpl

must be rebuilt. The LTN was trained using the predictions of a pre-trained object

detector in previous works [41], enabling a reasonably large batch size. In an

end-to-end training setup, where the memory required to store feature maps and

related gradients is much higher, a batch is created starting from a single image, and

including both background and foreground instances. The LTN is thus trained on all

proposals that are retrieved by the RPN. It is important to note that even in training

batches with an equal number of objects and background proposals, the one-vs-all

32 Faster-LTN: neuro-symbolic object detection architecture

classification exacerbates the data imbalance between positive and negative cases for

each class.

Aggregation function

The log-product is the selected aggregator function because it scales well with the

number of inputs, as demonstrated in [47], and because its formulation is equivalent

to the cross-entropy loss. Motivated by [78], the focal log-product aggregator is

introduced and detailed as follows:

LLT N =−
K

∑
j=0

N

∑
i=0

αc(1− xi, j)
γ log

(

xi, j

)

(4.8)

where xi, j is the literal of the i-th ROI in the j-th class, K is the number of classes,

and N is the batch size. Additionally, γ increases the contribution of literals with low

truth value (i.e., misclassified cases).

The focal loss was introduced to address the issue of class imbalance during

training, particularly in the context of object detection. The traditional cross-entropy

loss tends to be overwhelmed by the numerous easy, well-classified examples, which

can dominate the gradient and hinder the learning process for harder, misclassified

examples. The focal loss modifies the standard cross-entropy loss by adding a

modulating factor (1− pt)
γ , where pt is the predicted probability of the true class.

This factor reduces the loss contribution from well-classified examples, thereby

focusing more on hard examples. The parameter γ controls the rate at which easy

examples are down-weighted. When γ = 0, the focal loss is equivalent to the cross-

entropy loss. As γ increases, the effect of the modulating factor also increases,

allowing the model to focus more on difficult, misclassified examples. This approach

has been shown to improve the performance of object detectors, making them more

accurate and robust in the presence of class imbalance [57].

The number of background examples plus the positive examples that belong to

other classes determine the number of negative examples for each training batch

and each class c. This observation is all that is needed to determine the value of

αc. For positive and negative instances, the coefficients are set as αc =
1−β

1−β posc

and αc =
1−β

1−β negc , respectively. Let p(c) represent the proportion of the training

set bounding boxes that correspond to class c. Subsequently, posc =
N
2

p(c) and

4.2 Experimental setup 33

negc =
N
2
+ N

2
(1− p(c)) represent the proportion of positive and negative examples,

respectively, for a given batch.

The overall loss function for the Faster-LTN model is defined as the sum of the

regression loss and the LTN loss, i.e., L= Lreg +LLT N . This approach allows the

integration of logical constraints during training, thereby enhancing the model’s

ability to learn more complex relationships between classes.

4.2 Experimental setup

Dataset The PASCAL PART [79] and PASCAL VOC 2010 [80] benchmarks were

used for the experiments. 39 classes for pieces and 20 classes for entire objects for

the latter are chosen. Every experiment is run with an 80:20 split trainval partition.

Reducing the training set by 50% is tested by randomly selecting from the PASCAL

PART (10K images); as a result, there are approximately 8K images for PASCAL

PART and 4K images for PASCAL PART REDUCED.

The Faster R-CNN architecture closely resembles that of the original implemen-

tation [1]. With aspect ratios of 1:1, 1:2, and 2:1, the anchor scales were set at 1282,

2562, and 5122. The backbone architecture was ResNet50 pretrained on ImageNet.

There will be 300 RPN proposals overall. 128 bounding boxes with a 32:96 positive

and negative sample ratio for the PASCAL VOC dataset and 32 bounding boxes with

a 16:16 ratio for the PASCAL PART were selected at random to train the classifier

head. Using the Adam optimizer, the network was trained for 100 epochs. The

learning rate was initially set at 10−5 for the first 60 epochs and later lowered to

10−6. Data augmentation (horizontal flip) and weight decay (at a rate of 5×10−4)

were used to regularize the training process.

The Faster-LTN model shared the same architecture as Faster R-CNN, except

the LTN’s embedded classifier head. Equation 2.10 defines each predicate with

k = 6 kernels. The disjunction of the literals was encoded using Łukasiewicz’s

T-norm, the focal log-product with γ = 2 were chosen as the aggregation with

β = 0.999, both values obtained through experimental validation. For PASCAL

VOC, Tprior contained mutual exclusion constraints; for PASCAL PART experiments,

it contained mereological and mutual exclusion constraints. In the latter scenario, the

34 Faster-LTN: neuro-symbolic object detection architecture

LTN was extended to include partOf predicates; nevertheless, only object detection

performance was assessed to compare with Faster R-CNN.

Various experiments with modifications of the focal log-product aggregation

function were conducted on the PASCAL VOC dataset: with and without the addition

of an additional predicate bg to represent the background class, and with and without

class weights α . Faster-LTN, Faster-LTN α , Faster-LTN bg, and Faster-LTN bg+α

identify the different experimental settings. In PASCAL PART experiments, the

Faster-LTN bg configuration was used. Using the Adam optimizer for 150 epochs,

all networks were trained with random horizontal flip, L2 regularization (λ set to

5× 10−4) and weight decay (decay rate 5× 10−4). For the first 60 epochs, the

learning rate was set to 10−5; after that, it was lowered to 10−6.

Every experiment was run on the HPC@Polito cluster equipped with V100

NVIDIA GPUs. The mean Average Precision (MAP), as used in the PASCAL VOC

challenge 2010 [81], served as the performance metric.

4.3 Results

The results of the PASCAL VOC experiments, which are presented in Table 4.2,

demonstrate that Faster-LTN outperformed the standard Faster R-CNN architecture,

achieving an increase in mAP from 62.6 to 73.8. Mutual exclusivity is enforced

by including an axiomatic constraint in the LTN knowledge base (Equation 4.5).

From a quantitative viewpoint, Faster-LTN outperformed Faster R-CNN in terms of

average precision. This difference can be attributed to the use of the focal loss or the

different classification setting (K one-vs-all classifiers instead of a single multi-class

classifier), given that the log-product aggregation is mathematically equivalent to

the cross-entropy loss and the backbone is the same [78]. However, the performance

decreased from 62.6 to 59.2 when the focal loss was substituted for the Faster R-CNN

classifier head’s loss. As a consequence, the improved performance of Faster-LTN

can be credited to the added flexibility offered by a more complex classifier head

with additional parameters.

For the PASCAL PART experiments, new mereological axioms were inserted in

Tprior, as indicated in Table 4.3. Performance was able to increase from 35.1 to 41.2

as a result; the performance difference persisted from 28.5 to 32.8 when the size of

4.3 Results 35

Class FR-CNN FR-CNN FL F-LTN F-LTN α F-LTN bg F-LTN bg+α

aeroplane 66.5 56.9 87.1 85.1 87.8 85.2

bicycle 69.9 64.1 75.6 77.3 77.8 77.4

bird 70.8 68.4 84.9 87.8 87.2 87.1

boat 41.3 35.8 59.7 70.3 62.2 67.1

bottle 51.0 44.1 48.2 45.8 43.7 47.0

bus 75.8 71.3 79.1 79.0 79.8 78.6

car 59.0 53.1 60.0 58.7 62.9 60.1

cat 92.4 90.0 93.5 92.4 94.1 94.8

chair 32.1 32.7 53.4 42.8 53.4 42.9

cow 64.6 60.7 67.1 66.3 60.1 72.6

diningtable 57.2 51.1 74.2 77.0 71.3 77.1

dog 85.3 83.3 93.6 92.3 92.5 92.0

horse 61.1 62.3 82.2 80.4 85.4 85.0

motorbike 62.0 65.3 86.7 81.0 85.6 85.0

person 70.7 68.7 72.6 49.5 74.1 53.3

pottedplant 29.0 25.4 53.1 49.2 48.8 51.8

sheep 62.2 62.1 71.2 71.4 74.7 69.1

sofa 59.9 51.9 79.2 82.0 86.4 80.1

train 73.3 73.2 75.4 77.2 79.6 81.6

tvmonitor 68.7 63.3 78.5 76.6 77.1 76.6

mAP 62.6 59.2 73.8 72.1 73.3 73.25

Table 4.2 Results of the Faster R-CNN (FR-CNN), Faster R-CNN with focal loss

(FR-CNN FL), and Faster-LTN (F-LTN) on PASCAL VOC.

the training set was reduced in half. t-Distributed Stochastic Neighbor Embedding

(t-SNE) visualizations of the extracted features, which are shown in Figure 4.2,

provide additional evidence for the equivalent quality of the learned features.

Unlike the original work [42], Faster-LTN enables the sharing of knowledge

between the logic module and the convolutional architecture. In previous work, fixed

features that had been extracted from a convolutional model were used to train LTN.

Although the classifier’s performance improved, it was still constrained by the input

features, which did not benefit from the logical constraints that LTNs brought about.

By enabling end-to-end training in Faster-LTN, it is possible to increase the quality

of the features obtained at the input of the logic module by overriding this restriction.

The final aggregator chosen and the isA predicate’s input represent an additional

difference. Instead of the classification scores as in [42], the predicate in this setting

receives the features extracted from the RPN as input. In this instance, the final

aggregator is a log-product aggregator, while in the prior study, it was created from a

mean aggregator.

36 Faster-LTN: neuro-symbolic object detection architecture

The current architecture’s complexity increases with the complexity of the un-

derlying knowledge base. Future research may explore new grounding techniques

to streamline this complexity with efficient representations and relations. Upcom-

ing studies will use measured predicates to quantify the distance between features

and prototypes, allowing insights into simplifying the architecture while enhancing

functionality. These advancements will be detailed in subsequent sections of this

dissertation, supported by recent research such as [82].

Dataset Metric FR-CNN F-LTN Tprior

PASCAL PART mAP 35.1 41.2

PASCAL PART REDUCED mAP 28.5 32.8

Table 4.3 Comparison of Faster R-CNN and Faster-LTN (including mereological

constraints) on the PASCAL PART dataset.

60 40 20 0 20 40 60
tsne-2d-one

60

40

20

0

20

40

60

ts
ne

-2
d-
tw
o

class
Car
Person
Dog
Bus
Cat
Horse
Boat
Tvmonitor
Pottedplant
Bird
Train
Aeroplane
Sofa
Cow
Chair
Motorbike
Bicycle
Bottle
Sheep
Diningtable

80 60 40 20 0 20 40 60
tsne-2d-one

60

40

20

0

20

40

60

80

ts
ne

-2
d-
tw
o class

Car
Person
Dog
Bus
Cat
Horse
Boat
Tvmonitor
Sofa
Pottedplant
Bird
Train
Aeroplane
Cow
Chair
Motorbike
Bicycle
Bottle
Sheep
Diningtable

Fig. 4.2 Comparison of the t-SNE embeddings of the extracted features for the whole

testing set object classes. Features taken from Faster-LTN with axiomatic restrictions

(right) and conventional Faster R-CNN (left).

4.4 Conclusion

One of the main obstacles to deep learning applications is the lack of high-quality

large-scale labeled datasets. Emerging NeSy approaches allow a deeper integration

between perception and reasoning, complementing learning by example with the

incorporation of axiomatic background information.

The Faster-LTN architecture, an end-to-end object detector comprising an RPN

(based on the Faster R-CNN architecture) and an LTN module, was presented.

This detector is trained in an end-to-end manner by optimizing the satisfiability

4.4 Conclusion 37

of a grounded theory that combines sentences formed from labeled examples with

axiomatic constraints.

The objective was to determine the efficacy of this strategy and the results

indicate that Faster-LTN can perform at the same level or better than the Faster

R-CNN baseline. More research is needed to evaluate whether this method can be

scaled to larger training sets and other object detectors, such as single-stage detectors.

The goal is to provide a baseline architecture for further experiments and applica-

tions using the Faster-LTN model, which is accessible at https://gitlab.com/grains2/

Faster-LTN.

Chapter 5

Proto-LTN a neuro symbolic

architecture for zero-shot learning

Work described in this chapter was originally presented in [36].

This chapter delineates Proto-LTN, a framework that integrates a NeSy paradigm

with Prototypical Networks (PNs) to enhance ZSL performance [36]. Proto-LTN

employs a CNN to extract salient visual features and an LTN to optimize the satisfia-

bility of a knowledge base expressed in first order logic statements. This integration

facilitates the representation of class prototypes as abstract concepts, enabling the

assignment of novel instances based on the Euclidean distance. Empirical evaluations

on GZSL benchmarks demonstrate Proto-LTN’s superior performance relative to

conventional embedding-based methodologies. The details of the implementation are

accessible at https://github.com/FrancescoManigrass/Proto-LTN.git. This chapter

is organized as follows:Section 5.1 provides an overview of PNs in the context of

FSL and GZSL, whileSection 5.2 describes the development of Proto-LTN for FSL

and GZSL applications,Section 5.3 details the experimental setup, andSection 5.4

presents the results of the conducted experiments.

5.1 Prototypical networks

PNs offer a unified approach to handle scenarios where only a few examples are

available for each class (FSL) or when recognizing unseen classes (ZSL and GZSL).

5.1 Prototypical networks 39

These networks create prototypes for each class based on available examples and

use these prototypes to classify new instances.

Prototypical networks: the FSL setting

In an N-way-K-shot FSL scenario, a classifier must identify the correct class among

N options, with K examples available per class for observation [83–85]. Labeled ex-

amples are called support examples, while unlabeled ones are called query examples.

The fundamental assumption is that there exists an embedding space where elements

of different classes are well-separated, which can be mathematically represented by

an embedding function fθ with parameter θ to be inferred, serving as a mapping:

fθ : RD → R
M. (5.1)

In Equation 5.1, D represents the dimension of the input space, while M denotes

the dimension of the embedding space. Therefore, for a given example x, fθ (x)

corresponds to its embedding. In FSL, a prototype for class n is obtained as the mean

embedding of the K support examples of class n at train time:

pn =
1

K
∑

(x,y)∈S

fθ (x) (5.2)

Class prototypes must reside in the embedding space since they capture the

average characteristics common to the elements of the class they symbolize. During

training, θ is adjusted to minimize the distance between each prototype and its

corresponding class elements while maximizing the distance between different

prototypes. Ultimately, classification during testing involves assigning each query

sample to the closest prototype.

During the testing phase, a support set containing NS labeled examples S =

{(xS
1,y

S
1), ...,(x

S
NS
,yS

NS
)} is assumed to be available, where each xS

i ∈ R
D represents

the feature vector of an example, and yS
i ∈C ¢ N is the corresponding label. In an

N-way-K-shot scenario, exactly K support examples are provided for each of the

N classes. In addition, a query set Q = {x
Q
1 , ...,x

Q
NQ
} consisting of NQ unlabeled

examples is given, and the goal is to accurately classify these examples into their

40 Proto-LTN a neuro symbolic architecture for zero-shot learning

respective classes. The elements of the query set Q originate from the same domain

as those of the support set S.

During training, it might be impossible to predict which classes will appear in the

testing phase. This means that a support set S cannot be predetermined. To address

this, a training set T = {(xT
1 ,y

T
1), ...,(x

T
NT
,yT

NT
)} is selected to best represent the prior

knowledge about the testing scenario. The labels yT
i ∈CT ¢N and |CT |= NT classes

may coincide with or exceed the number of testing classes (NT g N). In other words,

there may be overlap between C and CT , but this cannot be known beforehand.

Consequently, artificial support and query sets S ¢ T and Q̃ ¢ T are generated to

simulate the testing scenario and guide the model’s learning process.

Prototypical networks: the GZSL setting

In ZSL, labeled examples for all classes are not available. Instead, it is assumed

that N abstract vectors, represented as {a(1),a(2), ...,a(N)} with a(n) ∈ R
A, capture

the characteristics of all N classes. Similarly to FSL, during training, a set T =

{(xT
1 ,y

T
1), ...,(x

T
NT
,yT

NT
)} of labeled examples from classes yT

i ∈CT ¢ N is utilized,

where ideally |CT |= NT g N = |C|. The training process remains the same in the

ZSL scenario, but class prototypes are defined differently:

• the embedding of a query instance xQ is still derived as fθ (x
Q), where fθ :

R
D → R

M;

• the prototype for class n ∈ C is obtained as pn = gθ (a
(n)) using a distinct

embedding function gθ : RA → R
M, which translates the semantic attribute

space into the shared embedding space.

5.2 Architecture

The complete architecture of Proto-LTN, adapted for the ZSL context, is depicted

in Figure 5.1. The image embeddings are derived from a CNN, and the attribute

vectors are projected into the embedding space using an embedding function. This

section elaborates on the grounding definitions for constants, variables, functions, and

predicates. Subsequently, the knowledge base K, which encapsulates the learning

problem, is defined.

5.2 Architecture 41

Leopard

Embedding
Function

FC

R
ELU
FC

R
ELU

Attribute
Matrix GetPrototype

Fig. 5.1 Architecture of Proto-LTN for ZSL classification. An attribute encoder and

a convolutional feature extractor constitute the architecture. Semantic and visual

information is mapped in an embedding space shared by the two branches. Using

affirmative and negative formulas encoded in the knowledge base K, the isOfClass

predicate seeks to minimise the distance between instances (solid line circles) and

class prototypes (dashed line circles). The loss function maximises the satisfiability

of all formulas in K (truth value) at train time.

5.2.1 Grounding terms

A batch of training samples in the form of query sets Q̃ and fake support S̃ is chosen

within a single training episode. The definition of groundings for variables and their

domain D (not learnable) is as follows:

G(q) = ïxQ̃
1 , . . . ,x

Q̃
NQ̃
ð , (5.3)

G(ql) = ïyQ̃
1 , . . . ,y

Q̃
NQ̃
ð , (5.4)

G(qe) = G(getEmbedding(q)) (5.5)

= ï fθ (x
Q̃
1), . . . , fθ (x

Q̃
NQ̃
)ð , (5.6)

G(s) = ïxS̃
1, . . . ,x

S̃
NS
ð , (5.7)

G(sl) = ïyS̃
1, . . . ,y

S̃
NS
ð , (5.8)

G(p),G(pl) = G(getPrototypes(s,sl)) (5.9)

= Πθ (G(s,sl)) (5.10)

= Πθ (ï(x
S̃
1,y

S̃
1), . . . ,(x

S̃
NS
,yS̃

NS
)ð) (5.11)

where the labels are ql (D(ql) = labels), the query examples are q (D(q) =

features), and the embeddings are qe (D(qe) = embeddings). In contrast, the

42 Proto-LTN a neuro symbolic architecture for zero-shot learning

samples in the support set (D(s) = features) are denoted by s, and their labels are

sl . Finally, D(p) = embeddings and D(pl) = labels represent the prototypes and

their labels, respectively, p and pl .

5.2.2 Grounding functions and predicates

The foundation of Proto-LTNs consists of the predicate isOfClass and two functions

embeddingFunction= fθ and getPrototype= Πθ , respectively.

The getPrototypes function accepts a support set of labeled examples as

input and generates labeled prototypes. The input and output dimensions are speci-

fied as Din(getPrototypes) = features×labels and Dout(getPrototypes) =

embeddings×labels, respectively. Equation 5.2 defines the support set of a class,

which is what each prototype is dependent on. Thus, a new grounding for generalized

LTN functions is suggested.

To get the reason behind the necessity for a generalized function, it is worth

recalling that LTN variables are grounded onto the set of their instantiations. It can

be assumed that s is a variable associated to support points, or:

G(s) = ïxS̃
1, ...,x

S̃
NS
ð . (5.12)

If h is an LTN function that is compatible with variable s, or Din(f) = D(s) =R
D,

the grounding for h(s) is

G(h(s)) = ïG(h)(xS̃
1), ...,G(h)(x

S̃
NS
)ð . (5.13)

This means that G(h) only takes as input a single element of RD. Unfortunately, a

conventional LTN function such as h cannot help with prototypes, as their definition

for a class n ∈ C̃, given in Equation 5.2, is:

pn =
1

K
∑

(xS̃,yS̃)∈S̃

s.t. yS̃=n

fθ (x
S̃) = pn(x

S̃
1, ...,x

S̃
NS
). (5.14)

5.2 Architecture 43

In real terms, each prototype depends on every support point within the same

class. The embedding function fθ : RD → R
M remains the same as in the FSL

framework, whereas

Πθ :

∞
⋃

l=1

ll
m=1R

D ×N→
∞
⋃

l=1

l
m=1R

M ×N (5.15)

is designed for computational simplicity (e.g., implementable via a neural net-

work) and is capable of generalizing to an N-way-K-shot scenario, even when NS

and Ñ are not fixed. Specifically, Πθ operates as follows:

1. Take as input:

(a) a support set S̃ = {(xS̃
1,y

S̃
1), ...,(x

S̃
NS
,yS̃

NS
)} ∈ (RD ×N)NS of labelled ex-

amples, with xS̃
i ∈ R

D and yS̃
i ∈ N;

(b) the parameter θ or, for the sake of clarity, the embedding function fθ :

R
D → R

M.

2. Extract the classes contained in S̃ by applying:

p(labels) = Unique(yS̃), (5.16)

where a vector’s unique elements are retrieved via the “Unique” function.

Since this variable will be linked to prototype labels named it p(labels). The

number of items in p(labels) is defined as Ñ.

3. Let L ∈ {0,1}Ñ×NS be defined as a sparse “labels” matrix whose i, j-th entry

is equal to 1 if support item i is of class p
(labels)
j , and 0 otherwise. Calculate

the tensor p ∈ R
Ñ×M of the prototypes as

p = Diag(L1NS
)−1 L fθ (x

S̃), (5.17)

where

1NS
= [1,1, ...,1]T ∈ R

NS (5.18)

44 Proto-LTN a neuro symbolic architecture for zero-shot learning

is a vector of NS ones, and

fθ (x
S̃) = [fθ (x

S̃
1), fθ (x

S̃
2), ..., fθ (x

S̃
NS
)]T ∈ R

NS×M (5.19)

is the way that fθ is applied piece-by-piece to the elements in xS̃, while “Diag”

calculates the Diagonal matrix that is connected to a vector. Equation 5.2

accomplishes the same task as this expression, but is more general because

it takes into account unbalanced support sets. For balanced support sets,

where Diag(L1NS
)−1 = 1

K
I, where I is the identity matrix and θ corresponds

to the learnable parameters of the system. This is equivalent to a perfect

N-way-K-shot scenario.

4. Return p and p(labels).

The isOfClass predicate for class n ∈C is grounded as:

G(isOfClass) = e−α d(·,·)2

, (5.20)

where α is a hyperparameter and d is a measure of distance. G(isOfClass) :

R
M ×R

M → [0,1]; G(isOfClass) takes the value of 1 when the distance from the

class prototype d(·, ·) is 0. In the devised formulation the squared Euclidean distance

is used, as in DEM [62].

5.2.3 Knowledge base

Every training episode updates K, which is the formulation of the given learning task

based on the current support set. Each query item in K= {φaff,φneg} is a positive

example for its class and a negative example for all other classes, according to two

aggregations of formulas:

φaff = ∀Diag(qe,ql)(∀Diag(p, pl) : ql = pl(isOfClass(qe, p))), (5.21)

φneg = ∀Diag(qe,ql)(∀Diag(p, pl) : ql ̸= pl(¬isOfClass(qe, p))). (5.22)

The formal definitions of both diagonal quantification and guarded quantifiers

are described in Chapter 2.

5.2 Architecture 45

Proto-LTN is trained by maximizing the satisfiability

Lep = 1−

∧

φ∈K

φ

=−G(φaff)−wnG(φneg), (5.23)

with wn representing the assumption that negations are less impactful than affirma-

tions for classification. The value of wn was set to 0, focusing solely on φaff, and

defer examination of this hyper-parameter to subsequent research.

By introducing an aggregation function [40, 49], one obtains:

Lep =

(

− log(G(φaff))
1

pagg +wn(1−G(φn))
1

pagg

)pagg

(5.24)

where G(φaff) is implemented through the generalized product p-mean operator and

G(φneg) with the generalized mean operator ApM:

ApPR(τ1, ...,τn) =

(

n

∏
i=1

τi

) 1
p∀
,

ApM(τ1, ...,τn) =

(

1

n

n

∑
i=1

τ
p
i

) 1
p∀
.

(5.25)

It should be noted that the selection of pagg does not have to match that of

p∀ for quantification purposes, and both hyper-parameters require experimental

tuning. When optimizing a positive metric, a common approach involves optimizing

its logarithm: the product of similarities becomes more favourable when ApPR is

employed as the aggregation operator for ∀. Regrettably, this does not yield an

equally attractive expression for φneg.

If a squared Euclidean distance is used as similarity measure and the negation

weight wn is set to 0, one obtains the same formulation of the loss function of DEM

46 Proto-LTN a neuro symbolic architecture for zero-shot learning

[62], up to a scaling constant:

Lep =− log

(

e

− α
p∀
(∑n∈C̃ ∑

(xQ̃,yQ̃)∈Q̃

s.t. yQ̃ ̸=n

d(fθ (x
Q̃),pn)

2))

=
α

p∀

(

∑
n∈C̃

∑
(xQ̃,yQ̃)∈Q̃

s.t. yQ̃ ̸=n

d(fθ (x
Q̃), pn)

2
)

. (5.26)

5.2.4 Proto-LTN: the GZSL scenario

The primary distinction between the GZSL and FSL settings is in the definition and

computation of prototypes. For the GZSL example, no generalized LTN functions

are required. In Algorithm 1, computations are provided for a training epoch.

The prototypes and elements of the support set correspond one to one because

each class n has only one semantic vector a(n) provided. The semantic embed-

ding function gθ : RA → R
D represents the latter, yielding the common embedding

space as the feature space. Simply put, getPrototypes reduces to a standard LTN

function, with G(getPrototypes) = gθ . On the other hand, given the query map,

getEmbedding is unchanged.

5.3 Experimental setup

In the benchmarks Awa2 (Animals with Attributes) [2], CUB [86], aPY (Attribute

Pascal and Yahoo) [87], and SUN (Scene Understanding) [88], experiments were

carried out in both ZSL and GZSL settings. The image encodings, features and splits

were obtained from the original reference [2] for all datasets.

The overall architecture consists of two separate components: the semantic

encoder and the visual image encoder. The embedding function fθ converts an image

I into a vector x ∈ R
M, with M = 2048, by means of a ResNet101 [89] embedding

model, which has been pretrained on ImageNet [90] and remains fixed. This setup is

used in all datasets for each experiment. A function gθ , which comprises two fully

connected layers (FC) with ReLU activation function and is initialized by a truncated

5.3 Experimental setup 47

Algorithm 1 Proto-LTN GZSL - Epoch

function TRAIN

Input : q Training Images

Input : ql Training label

Input : a Semantic attribute set

Input : al Semantic attribute label

for i in NTrainingSteps do

qei
: getEmbedding(q)

ai, ali : getAttributes(a)

pi, pli : getPrototypes(ai, ali)

φaff = ∀Diag(qei
,qli)(∀Diag(pi, pli) : qli = pli (isOfClass(qei

, pi)))
φn = ∀Diag(qi,qli)(∀Diag(pi, pli) : qli ̸= pli (¬isOfClass(qei

, pi)))

Lep =
(

− log
(

(G(φaff))
1

pagg

)

+wn (1−G(φn))
1

pagg

)pagg

computeGradient(Lep)
updateGradient

end for

end function

function TEST

Input : q Test Images

Input : a Semantic attribute set

qe : getEmbedding(q)

a,al : getAttributes(a)

p, pl: getPrototypes(a,al)

for i in len(qe) do

for j in len(p) do

predictioni : isOfClass(qei
, p j)

end for

end for

end function

48 Proto-LTN a neuro symbolic architecture for zero-shot learning

Method
Awa2 CUB APY SUN

T1 U S H T1 U S H T1 U S H T1 U S H

SYNC (2016) [92] 46.6 10.0 90.5 18.0 55.6 11.5 70.9 19.8 - - - - 56.3 7.9 43.3 13.4
Relation Net (2017) [93] 64.2 30.0 93.4 45.3 55.6 38.1 61.1 47 - - - - - - - -

PrEN† (2019) [94] 74.1 32.4 88.6 47.4 66.4 35.2 55.8 43.1 - - - - 62.9 35.4 27.2 30.8

VSE (2019) [63] 84.4 45.6 88.7 60.2 71.9 39.5 68.9 50.2 65.4 43.6 78.7 56.2 - - - -

DEM (2017) [62] 67.1 30.5 86.4 45.1 51.7 19.6 57.9 29.2 35.0 11.1 75.1 19.4 61.9 20.5 34.3 25.6
Proto-LTN 67.6 32.0 83.7 46.2 48.8 20.8 54.3 30.0 35.0 17.1 66.2 27.21 60.4 20.4 36.8 26.2

±1.1 ±1.3 ±0.3 ±1.3 ±1.2 ±2.6 ±1.1 ±3.0 ±3.1 ±2.0 ±5.1 ±2.9 ±2.5 ±1.0 ±4.4 ±1.9
(70.8) (34.8) (84.3) (49.1) (50.3) (23.4) (55.7) (33.0) (38.6) (19.4) (70.7) (30.0) (62.1) (22.15) (39.9) (28.0)

Table 5.1 For Proto-LTNm mean ± standard deviation and maximum (in paren-

theses) performance values are shown. TOP1ZSL (T1), TOP1GZSL_UNSEEN (U),

TOP1GZSL_SEEN (S), and HGZSL (H) are always obtained on the proposed split (PS)

of Awa2, CUB, aPY, and SUN classes, as described in [2]. † assumes a transductive

ZSL setting. Best performance values are reported in bold.

normal distribution function, encodes semantic vectors in the embedding space. The

hyper-parameters pagg = 1 and p∀ = 2 are based on preliminary tests on Awa2 [2].

Based on the LTN package, the framework was implemented in Tensorflow [40,

91]. The workstation used for the experiments had an RTX2080 TI GPU and an

Intel® CoreTM i7-10700K CPU. Using a batch size of 64 and the Adam optimizer,

all networks were trained for 30 epochs. For every dataset, the hyper-parameters

(learning rate, α , and regularisation term, λ) underwent separate optimisation. Perfor-

mance metrics for GZSL were the standard ones, as specified in [2]. Each experiment

was run three times to calculate the mean and standard deviation.

5.4 Results

Table 5.1 presents the Proto-LTN results as well as those for similar embedding-based

techniques. Class prototypes are marked to show the embedding space in Figure 5.2.

Because most embedding-based techniques, including DEM [62] and Relation

Net [93], rely on identical assumptions and use the same input as the present imple-

mentation of Proto-LTN, the experimental performance is competitive, as expected

on the basis of this analytical study. As demonstrated insubsection 5.2.3, the Proto-

LTN loss is comparable to the DEM loss under some circumstances, up to a scaling

constant, but with distinct regularisation terms. For all experimental benchmarks,

DEM is outperformed on unseen classes, suggesting that the suggested formulation

is a solid foundation for a novel, NeSy solution to the GZSL challenge.

5.5 Conclusion 49

VSE performs better than Proto-LTN because it uses a different approach to

generate visual feature embeddings, aligning the embedding space with part-feature

concepts given by a semantic oracle. The latter comprises concepts outside the given

semantic vector {a(1),a(2), ...,a(N)} because it depends on an external knowledge

base. This is particularly useful for noisy and visually non-informative benchmarks

such as aPY [63]. This is not a feature of Proto-LTNs; rather, it is a limitation of this

specific formulation that will be addressed in the following chapters.

antelope

grizzly+b.

killer+w.beaver

dalmatian

persian+c.

horse

german+s.

blue+w.siamese+c.

skunk

mole

tiger
hippopotamus

leopard

moose

spider+m.

humpback+w.

elephant

gorilla

ox

fox

sheep

seal

chimpanzee

hamster

squirrel

rhinoceros

rabbit

bat

giraffe

wolf

chihuahua

rat

weasel

otter

buffalozebra

giant+p.

deer

bobcat

pig
lion

mouse

polar+b.

collie

walrus
raccoon

cow

dolphin

Fig. 5.2 Class prototypes visualised using t-SNE for the Awa2 dataset

5.5 Conclusion

A novel NeSy architecture, Proto-LTN, was introduced, which extends the classical

formulation of LTNs by incorporating embedding-based techniques. Following the

strategy of PNs, the focus is exclusively on learning embedding functions (such

as fθ and gθ), where class prototypes are derived ex-post based on a support set.

These methods have demonstrated robustness to noise, which is essential in few-shot

learning (FSL), and offer a framework for embedding both examples (images) and

class prototypes within the same metric space. This characteristic in the LTN context

enables different levels of abstraction, allowing for statements about individual

examples or entire classes, as prototypes can serve as parameterized class labels.

The feasibility of this approach has been validated in generalized zero-shot learning

(GZSL), with plans to extend it by introducing the concept of extracted attributes

and macroclasses.

50 Proto-LTN a neuro symbolic architecture for zero-shot learning

Although the experimental results are promising, the strength of this formulation

lies in its generality, with the full potential of Proto-LTN yet to be realized. Future

research can pursue two complementary directions. First, alternative formulations

of the isOfClass relationship could be explored by varying the distance metric

and/or the prototype encoding. Mapping class prototypes back to the input space, as

suggested in [95], could enhance explainability.

Second, as done in Chapter 6, knowledge K can be extended to take advantage

of prior information from external knowledge bases, to improve generalization to

unseen classes. Experiments should include both inductive and transductive settings.

The assumption that information about attributes and relationships of unseen classes

is available at training or test time (e.g., from WordNet) is less restrictive than

assuming that actual examples, albeit unlabeled, are available.

Chapter 6

Fuzzy logic visual network (FLVN)

Work described in this chapter was originally presented in [37].

This chapter introduces FLVN, a more advanced framework that further integrates

the LTN paradigm with CNNs to improve ZSL [37]. Specifically, FLVN uses a

CNN as a feature extractor to convert images into the attribute space, and the LTN

knowledge base is extended to introduce the concept of macroclasses. Additionally,

for each class, the model considers cases where an image may not contain all

visible attributes. The organization of this chapter is as follows. InSection 6.1, the

development of FLVN is thoroughly examined.Section 6.2 outlines the experimental

setup. The results obtained from these experiments are discussed inSection 6.3.

Finally,Section 6.4 concludes the chapter with a summary of the findings.

6.1 Architecture

The FLVN architecture is built on two fundamental components: a convolutional

feature extractor and an LTN. The convolutional feature extractor is responsible for

processing the raw input data, converting it into a set of meaningful features, while

the LTN leverages these features to reason over structured knowledge using formal

logic. These two components work together to facilitate alignment between visual

data and semantic attributes, enabling the model to perform tasks such as ZSL. The

overall architecture is depicted inFigure 6.1, which illustrates how these components

interact to transform visual information into a space where logical reasoning can be

applied.

52 Fuzzy logic visual network (FLVN)

Average
Pooling

Semantic Attributes of
classes

Semantic Attributes of
macroclasses

Masked-Semantic Attributes of
classes

Resnet101

Predicted
Class Label

Predicted
Macroclass Label

Predicted Masked
Class Label

Resnet101

Resnet101

Resnet101

Fig. 6.1 A convolutional feature extractor and an attribute encoder are combined in

the FLVN architecture, which is intended for ZSL classification, to efficiently transfer

visual information to the attribute space. Image features and class attributes are

aligned by utilising predicates like isOfClass, isOfClassmasked, and isOfMacro,

while the hasSameAttribute predicate measures the similarity between two images.

Since they are all included in the formulae of a knowledge base called K, these

predicates are all essential to the construction of the architecture. The goal of the

design of the loss function during training is to maximize the satisfiability of each

formula, or the truth value, within K.

6.1.1 Feature extraction

The CNN that performs feature extraction (embedding) translates the input x into

a feature space fθ (x) ∈ R
H×W×B, where H, W , and B represent the height, width

and number of channels of the feature map, respectively. The global discriminative

characteristics gθ (x) ∈ R
B×1 are derived by mean pooling over H and W . A linear

projection is used to translate these global characteristics into a semantic space

denoted by V ∈ R
B×M, where B is the dimension of the vector space of features and

M is the length of the attribute vector [60].

6.1.2 Logic tensor network

The learning objective in the LTN framework is to maximize the satisfiability of

a knowledge base K. For each training batch, the knowledge base is updated by

incorporating axioms that represent labeled examples (φclass) as well as prior knowl-

edge (φmacro,φs−attr,φd−attr,φe−attr,φmasked). Subsequently, the overall satisfiability

is evaluated by aggregating these axioms, enabling the model to effectively align its

predictions with the available information.

6.1 Architecture 53

This section first defines the variables, predicates, and domain that form the FOL

language, followed by the definition of the knowledge base K.

Groundings

The variables and their domains are grounded as follows:

G(l) ∈ N
C,G(q) ∈ N

Q (6.1)

G(a) = G(amask) ∈ R
M×C (6.2)

G(amacro) ∈ R
M×Q (6.3)

G(x) = gθ (fθ (G(images))) ∈ R
M (6.4)

Each class and macroclass are defined by a set of non-binary semantic attributes,

denoted as a and amacro, respectively. Labels are organized hierarchically into

classes and macroclasses, with macroclasses serving as high-level categories that

group multiple classes based on shared visual properties. To efficiently manage this

variability and address cases where images of a specific class may be missing certain

attributes, the attribute mask amask ∈M
C×A is introduced. This mask mirrors a but

with k elements randomly set to 0. The variables l and q denote the class labels for

the sets of classes C and Q, respectively, as well as the macroclass labels. The final

representation G(x) is achieved by embedding images into the attribute space using

the functions fθ and gθ .

In the FOL language, four primary predicates are defined: a picture x is clas-

sified into class l using isOfClass(x, l) and isOfClassmasked(x, l). Likewise,

isOfMacro(x,q) signifies that an image x is a member of macroclass q, and

hasSameAttribute(x1,x2) denotes that two images share identical attributes.

The similarity between the respective class attribute vectors and the input image

serves as the foundation for the G(isOfClass) predicate. Firstly, the scaled product

of the global features mapped in the attribute space with the semantic vectors to

compute the similarity between the picture x and a class lc is used:

p(x, l) =
exp
(

xTVal

)

∑
S
s=1 exp(xTVas)

(6.5)

54 Fuzzy logic visual network (FLVN)

the semantic attribute vector connected to class l is represented by ay. In order to

derive a prediction score for an example x, the dot product of the one-hot encoding

lT
c for class c ∈C and the output of p (Equation 7.10) are computed as follows:

G(isOfClass) : x, lc → lc
T p(G(x), lc) (6.6)

G(isOfClassmasked) and G(isOfMacro) are defined as follows. A trainable

attribute vector amacro
m for macro-class qm is built to compute G(isOfMacro), since

the attributes for macro-classes are unknown. For class lc, G(isOfClassmasked)

employs the masked attribute vector amasked
c , in which the remaining attributes of ac

are preserved. Lastly, grounding of hasSameAttribute is as follows:

G(hasSameAttribute) : x1,x2 → sigmoid(αd(G(x1),G(x2))) (6.7)

where d is the cosine similarity, α a scale factor, and G(x1), G(x2) correspond to the

embeddings of the two images.

Learning from labeled examples

Incorporating labelled examples is achieved by introducing an axiom φclass, which

stipulates that all facts concerning labelled instances must be true, meaning that all

labelled samples must be correctly classified:

φclass = ∀Diag(x, lc)(isOfClass(x, lc)) (6.8)

To account for the class hierarchy, an axiomatic statement φmacro is introduced to

indicate that “if an image contains a zebra”, then “the image belongs to the family of

ungulates”:

φmacro = ∀Diag(x, lc,qm)(isOfClass(x, lc) =⇒ isOfMacro(x,qm)) (6.9)

6.1 Architecture 55

Acquiring stronger feature representations

The following axiom encodes the assumption that features extracted from two images

of the same class should possess the same attributes:

φs-attr = ∀Diag(x1, lc1
)

(

∀Diag(x2, lc2
) : c1 = c2 hasSameAttribute(x1,x2)

)

(6.10)

Likewise, images from different classes should possess different attributes:

φd-attr = ∀Diag(x1, lc1
)

(

∀Diag(x2, lc2
) : c1!= c2 ¬hasSameAttribute(x1,x2)

)

(6.11)

To further emphasize the similarity between visual attributes and semantic vec-

tors, the following axiom enforces the similarity between image embeddings and

attribute vectors of the same class:

φe-attr = ∀Diag(x, lc)

(

∀Diag(a, la) : c == a hasSameAttribute(x,a)

)

(6.12)

Acquiring knowledge through disagreement

In traditional ZSL benchmarks like Awa2, a crisp or fuzzy matrix is used to correlate

properties with class labels. However, this association does not guarantee that all

instances of a class have exactly the same features since some of them may be

obscured or expressed by a subset of different training samples. The existential

assertion φmasked denotes the possibility that some class attributes might not be

present for all samples. The isOfClassmasked predicate that eliminates randomly

chosen attributes to simulate image-level attributes that are not available is defined

as:

φmasked = ∀lseen(∃x,isOfClassmasked(x, l
seen)) (6.13)

where lseen denotes the list of seen classes.

56 Fuzzy logic visual network (FLVN)

Logic connectives and aggregators grounded

Each training phase updates the collection of formulas that makes up the knowledge

base K. The Reichenbach implication →: IR(a,b) = 1− a+ ab and the standard

negation ¬ : NS(a)= 1−a are defined to adopt the symmetric configuration from [40]

given two truth values a and b in [0,1].

The generalized mean ApM, discussed in Equation 6.14, was used to approximate

the existential quantifier ∃, whereas the generalized mean w.r.t. the error ApME was

used to approximate the universal quantifier ∀ [40, 49].

∀ : ApME (a1, . . . ,an) = 1−

(

1

n

n

∑
i=1

(1−ai)
p∀

) 1
p∀

p∀ ⩾ 1 (6.14)

The measure ApME indicates the average deviation of truth values ai from the

true value of 1.

Querying the knowledge base

At inference time, the class with the highest score is selected as the predicted class:

ŷ = argmax
ỹ∈YU

(g(x)TVaỹ) (6.15)

FVLN was assessed in GZSL and ZSL configurations. While the model is

evaluated on both seen and unseen classes in the GZSL setting, only unseen photos

are assumed to be present at test time in the ZSL setting. This setting creates a bias

in favour of seen classes. In order to address this, the Calibrated Stacking technique

is used, which was introduced in [96, 97], to reduce the classification score of the

observed classes. Thus, ŷ is used to calculate the class score:

ŷ = argmax
ỹ∈YU∪Y S

(

g(x)TVaỹ − γI
[

ỹ ∈ YS
])

(6.16)

where γ is a calibration coefficient tuned on a validation set, YS are the labels of seen

classes, and I= 1 if ỹ is from a seen class and zero otherwise.

6.2 Experimental setup 57

Building the training batch

For a positive input image xi, a collection of positive examples x+ and K negative

examples x−1 , ...,x
−
K is chosen, in accordance with the methodology in [61]. Negative

examples are chosen at random from the remaining classes, and positive examples

are chosen from the same category as xi.

6.2 Experimental setup

This section focuses on the datasets used, the list of hyperparameters selected, and

the knowledge base used for each dataset.

Dataset. The Awa2 [2], CUB [86], and SUN [88] benchmarks were used for the

experiments. The standards outlined in earlier research [2] served as the basis for

the GZSL evaluation metrics. Constructing a semantic hierarchy, the classes from

the Awa2 and CUB datasets are organized into a total of 9 and 49 macroclasses,

respectively, according to a similar methodology described in [98].

Knowledge base. Classes from the Awa2 and CUB datasets are mapped to

match synsets in WordNet, using the methodology of Sikka et al. to construct a

class hierarchy [98]. Each dataset’s macroclasses were defined by first identifying

the synset root whose subtree included classes from the chosen dataset, and then

classifying its immediate offspring as classes using WordNet. As classes in the SUN

dataset [88] did not have a semantic structure, the knowledge base did not have

axioms pertaining to macroclasses.

In the predicate isOfClassmasked, k = 15 characteristics were omitted at random

for each trial. For the Awa2 dataset, the α parameter in Equation 6.7 was set to

0.01, and for the CUB and SUN, to 1. The parameters of the aggregation function

(specified in Equation 2.21 and Equation 6.14) are initially set to p∃ = 2 and p∀ = 2

in order to account for the presence of outliers in the knowledge base. For the Awa2

and CUB datasets, both parameters were increased by 2 every 4 epochs, where for

SUN, they were increased at specified epochs (2, 4, 24, and 32), until p∃ = 6 and

p∀ = 6, in accordance with the schedule recommended in [40].

Hyperparameter selection. Based on an ImageNet pre-trained ResNet101

model, the embedding function fθ transforms the 224× 224 image into a vector

58 Fuzzy logic visual network (FLVN)

x ∈ R
H×W×B, where B = 2048 and H and W represent the height and width of the

extracted features, respectively. These features are then transformed into the attribute

space using the function gθ , which translates them into a dimensionally consistent

with the dataset.

First, the head is trained while the backbone is kept frozen, and then the entire

network is fine-tuned, to reduce overfitting. For the pre-training stage of Awa2, CUB,

and SUN, the Adam optimizer is employed with a learning rate of 1e−4 and 5e-4,

respectively. Subsequently, in the fine-tuning phase, the learning rate was reduced to

1e−6α for CUB and SUN and 1e−7α for Awa2, where α = 0.8epoch//10 and epoch

is the current epoch out of a total of 300 epochs. L2 norm regularization coefficient

is set to 5e-4 for Awa2, 5e-6 for CUB, and 1e-3 for SUN.

For the Awa2, CUB and SUN data sets, the ratio of positive to negative samples

in the training batches was 12 to 12. The scaling factor γ is set to 0.4 for SUN

and 0.7 for Awa2 and CUB at inference time to modify the scores obtained for the

viewed classes. For data augmentation, random flip with 0.5 chance and random crop

are used in each experiment. Using the LTNtorch library [99], the architecture is

developed in PyTorch and trained on a single GPU, a Nvidia 2080 Ti. For the purpose

of determining the mean and standard deviation, each experiment was conducted

three times.

6.3 Results

The experimental results, which can be seen in Table 6.1, demonstrate how the

suggested FLVN architecture outperforms alternative embedding-based techniques,

specifically CC-ZSL [61] and APN [60]. FVLN achieves strong performance on two

out of the three benchmark datasets, generally outperforming other models in terms

of harmonic mean (H) and demonstrating a stronger capacity to recognise both seen

and unseen classes. Specifically, FLVN increases H and the accuracy of the unseen

class by 1. 3% and 0. 89%, respectively, in Awa2; moreover, it increases H and the

accuracy of the seen class by 12% and 3%, respectively, in CUB.

The results presented here imply that the suggested design can distinguish be-

tween seen and unseen data more consistently than Proto-LTN, resulting in fewer

classification errors. On SUN, FLVN achieves performance close to the state of

6.3 Results 59

Awa2 CUB SUN

Model T1 U S H T1 U S H T1 U S H

Proto-LTN [36] 67.6 32.0 83.7 46.2 48.8 20.8 54.3 30.0 60.4 20.4 36.8 26.2

DEM [62] 67.1 30.5 86.4 45.1 51.7 19.6 57.9 29.2 61.9 20.5 34.3 25.6

VSE [63] 84.4 45.6 88.7 60.2 71.9 39.5 68.9 50.2 - - - -

TCN [66] 71.2 61.2 65.8 63.4 59.5 52.6 52.0 52.3 61.5 31.2 37.3 34.0

CSNL [98] † 61.0 - - 0.0 32.5 - - 0.7 - - - -

AREN [68] 67.9 54.7 79.1 64.7 71.8 63.2 69.0 66.0 60.6 40.3 32.3 35.9

APN [60] 68.4 56.5 78.0 65.5 72.0 65.3 69.3 67.2 61.6 41.9 34.0 37.6

AMGML [67] 71.7 56.0 74.6 64.0 70.0 58.2 55.7 56.9 59.7 42.0 35.1 38.3

CC-ZSL [61] 68.8 62.2 83.1 71.1 74.3 66.1 73.2 69.5 62.4 44.4 36.9 40.3

Cycle-CLSWGAN [74] - - - - 58.4 45.7 61.0 52.3 60.0 49.4 33.6 40.0

LisGan [73] - - - - 58.8 46.5 57.9 51.6 60.0 42.9 37.8 40.2

E-PGN [71] 73.4 52.6 83.5 64.6 72.4 52.0 61.1 56.2 - - - -

TGMZ [72] 78.4 64.1 77.3 70.1 66.1 60.3 56.8 58.5 - - - -

CEGZSL [75] 70.4 63.1 78.6 70.0 77.5 63.9 66.8 65.3 63.3 48.8 38.6 43.1

DFCA-GZSL [100] 74.7 66.5 81.5 73.3 80.0 70.9 63.1 66.8 62.6 48.9 38.8 43.3

FLVN † 69.8 65.8 82.3 73.1 71.2 62.6 83.1 71.5 61.7 48.4 32.7 39.0

±0.8 ±0.9 ±0.3 ±0.6 ±0.2 ±0.5 ±0.3 ±0.2 ±0.18 ±0.57 ±0.2 ±0.1

(71.0) (67.1) (82.8) (74.1) (71.4) (63.2) (83.4) (71.7) (61.9) (48.9) (32.9) (39.1)

Table 6.1 Performance on the test sets for Awa2, CUB, and SUN. The mean ±

standard deviation and maximum (in parenthesis) values for TOP1zsl (T1), TOP1gzsl

unseen (U), TOP1gzslseen (S), and Hgzsl(H) over three runs are displayed for FLVN.

A description of the metrics can be found in [2]. The models in the table are divided

into three sections: generative models, attention-based models, and embedding-based

models. Bold face indicates the highest performing values. † indicates techniques

that make use of external information.

the art; nevertheless, it should be noted that since axioms on macro classes are not

presented in this scenario, FLVN is unable to take advantage of outside semantic

information.

In terms of performance, the suggested approach has a reasonably simple design

compared to the closest methods. In contrast to APN, FVLN does not need extra

regularization terms or weights for each attribute to build the loss function. Compared

to the teacher-student framework [61], which achieves closer performance, FLVN

only needs one backbone replica as opposed to two in CC-ZSL. Compared to

generative techniques, FLVN does not need to create more training samples or make

predictions about classes that have not been observed yet during training.

Qualitative observations from these experiments suggest that the axioms incor-

porated into the knowledge base can have a significantly varied impact on overall

performance. Chapter 7 provides further experiments to evaluate this phenomenon

in detail.

As can be seen from the distribution of the feature space (Figure 5.2) previously

published in earlier work (Proto-LTN [36]), similar classes seem to naturally cluster

in feature space during training. However, the isOfClassmasked predicate provided

60 Fuzzy logic visual network (FLVN)

significant advantages, accounting for errors in the semantic annotation of classes

or qualities (e.g., “All zebras are agile”) that exist at the class level but are not

readily apparent or deducible from a single image. Lastly, axioms based on the

hasSameAttribute predicate increased performance, especially on datasets that

require more effort to extract fine-grained image-level characteristics, such as CUB

(fine-grained bird recognition) and SUN (scene recognition).

6.4 Conclusion

Building on principles from the recent ZSL literature [60] and incorporating them

within a NeSy framework [36], a novel NeSy architecture named FLVN is intro-

duced for ZSL and GZSL tasks. FLVN incorporates axioms that combine prior

class-specific knowledge (e.g., class hierarchies) with high-level inductive biases to

handle exceptions within the dataset (e.g., “there exists a zebra that is not agile”)

and establish relationships between images (e.g., “if two images belong to the same

class, they must be similar”). These axioms act as semantic priors and compensate

for the lack of annotations, thereby providing a solid NeSy foundation for GZSL

tasks. FLVN does not require multiple backbones and maintains roughly the same

parameter count as standard embedding-based methods. The proposed approach can

also be incorporated into other architectures, for example, by changing the grounding

of the predicates. Experimental results demonstrate that FLVN achieves performance

comparable to or exceeding that of the current literature on common GZSL bench-

marks. Different formulations of the isOfClass predicate or the introduction of

a hasSameAttribute predicate to predict image-level attributes could incorporate

attention to discriminative regions within the image: these aspects are expanded

upon inChapter 7.

Chapter 7

Fuzzy logic prototypical network

(FLPN)

In this chapter, FLPN is introduced. As in previous architectures presented in Chap-

ter 5 and Chapter 6, it is designed to integrate a series of class prototypes in the image

space and trained them via the LTN framework. The learning process occurs within

the embedding space, where class prototypes are derived from a set of attributes

to develop abstractions for classes that are unseen during training. Although the

problem formulation resembles that of previous approaches such as Proto-LTN, this

model incorporates a more sophisticated knowledge base, building on FLVN [37],

within a single system trained in an end-to-end manner.

FLVN also enables learning not only class prototypes but also prototypical repre-

sentations of attributes within a unified space. A novel grounding for representing

concepts at both the class and macroclass levels is demonstrated, allowing for the

representation of semantically related concepts within a single space. Furthermore,

by introducing attribute prototypes, the research reports an attention mechanism

capable of identifying which attributes best characterize a given sample at the image

level, thereby addressing the issue of insufficient attribute-level annotations for each

sample.

Finally, the application of two distinct backbones to tackle the designated task is

examined, highlighting the advantages and disadvantages by comparing the devel-

oped architecture with other state-of-the-art methods.

62 Fuzzy logic prototypical network (FLPN)

...

...

FC

AVG FC

Softmax

Resnet101

outputs
...

conv conv

C1 C4

MaxPOOL

MaxPOOLconv

Feature extraction from ViT

Feature extraction from Resnet101

Patch
Embeddings

Softmax

ViT Attribute space

Feature space

Prototype Network Logic Tensor Network

...

Batch
Aggregation

1

1

1

Fig. 7.1 The design of FLPN consists of two main components: the feature extractor

and the prototype network. The feature extractor can be either a CNN, such as

ResNet-101 utilized in the trials, or a visual transformer. The prototype network

(ΠC
θ , ΠM

θ , ΠA
θ) integrates input images with class (a), macroclass (amacro), and

attribute (aeye) labels into a unified embedding space, thereby grounding the symbols

within this space according to the LTN terminology. Various predicates, such as

isOfClass, isOfClassmasked, and isOfMacro, are established as class membership

functions based on this embedding space. Moreover, the hasAttribute predicate

identifies specific attributes within images. These predicates form the foundation

of the knowledge base, denoted as K, of the LTN module. The training objective

(loss function) is designed to improve the satisfiability or truth value of this K. The

symbol · signifies element addition, whereas » denotes element multiplication.

The structure of this chapter is detailed as follows: Section 7.1 provides an in-

depth analysis of FLVN development. Section 7.2 describes the experimental setup

used in the study. The results of these experiments are reviewed in Section 7.3.

Lastly, Section 7.4 wraps up the chapter with a summary of the key findings.

7.1 Architecture

The structure of the FLPN architecture is illustrated in Figure 7.1, highlighting

its main components. The backbone, detailed in subsection 7.1.2, is responsible

for the extraction of image features. The prototype network, described in subsec-

tion 7.1.3, generates prototypes for various classes, macroclasses, and attributes. The

architecture was assessed using two distinct backbones: a CNN and a transformer.

7.1 Architecture 63

Furthermore, subsection 7.1.4 outlines the integration of prototypes and images

into a unified embedding space, which constitutes the core of the knowledge base K,

continuously refined during the training phase [101].

7.1.1 The ZSL and GZSL settings

In alignment with previous approaches [36, 62, 69], an embedding space is defined

to map the input images and the attribute matrix into a shared space:

• a transformation function, as described in subsection 7.1.2, translates images

from their initial domain into a common embedding space R
A×M.

• a collection of functions, referenced in subsection 7.1.3, projects attribute

vectors into prototypes within the shared embedding space R
A×M.

7.1.2 Image feature extraction

As mentioned, two distinct techniques were developed for feature extraction, employ-

ing a CNN (ResNet-101) or transformer (ViT). These architectures extract detailed

image information, producing feature embeddings at the class, macroclass, and

attribute levels to minimize the distances to the representative prototypes.

Global features representation

Following the methodology outlined by [36], a specialized function has been devised

to map images to their corresponding class embedding spaces, including macro-

classes that share the same embedding space:

fθ : RCh×W×H → R
M (7.1)

Here, D =Ch×W ×H represents the input image domain, with Ch referring to the

number of channels, W indicating the width, and H denoting the height. The feature

space has a dimensionality of M, and θ denotes the model trainable parameters.

CNN-based. The final layer of the ResNet-101 backbone is utilized to extract

global features directly.

64 Fuzzy logic prototypical network (FLPN)

ViT-based. The images are divided into square patches that are then processed

by the transformer encoder to derive feature tensors. In contrast to CNNs, the class-

level feature is encapsulated by integrating a learnable classification token [CLS], as

described in [69].

Attribute features representation

An additional embedding function is utilized to convert each image into appropriate

attribute embeddings through an attention mechanism:

gθ : RCh×W×H → R
A×M (7.2)

where D = Ch×W ×H signifies the input image dimensions, M represents the

dimensionality of the shared feature space, A indicates the number of attributes, and

θ is the set of trainable parameters.

Drawing inspiration from [69], gθ integrates an attention mechanism atop the

shared feature extraction module employed by fθ , thus sharing the backbone param-

eters between the two functions.

After each stage, four convolutional layers are incorporated to generate feature

tensors. These tensors are combined to form an attention map, which is normalized

using the Softmax function. Within this attention map, each feature map functions

as a soft mask to highlight probable attribute sites. Attribute-specific features are

extracted by performing bilinear pooling between the attention map and the image

feature tensor, involving pixel-wise multiplication and average pooling to identify

attributes, as detailed in [69].

ViT-based module. An attention mechanism-based method for attribute local-

ization, analogous to the CNN-based framework, is developed. The features derived

from the backbone are passed through a convolutional layer to produce the attended

feature tensor. Max-pooling is employed to create a soft mask for each attribute

localization. Ultimately, each attribute feature is bi-linearly combined with the image

feature to extract the attribute-level feature.

7.1 Architecture 65

Attribute features weight

The concept of Attribute Weight (Wa), represented as a vector (Wa ∈ R
A), is intro-

duced as a data-driven gating mechanism to compute image-level attention. In the

contexts of GZSL and ZSL, attributes are generally defined at the class level without

individual annotations for each image. The purpose of the vector Wa is to identify

class-associated attributes that are not visually detectable by applying a threshold

thatt on the activation. Although Wa may seem theoretically redundant, it notably

reduces the computational burden required to calculate K. Further details on this

efficiency enhancement will be elaborated later in the chapter.

7.1.3 Prototypes for semantic mapping

Within the shared embedding space of dimension M, each entity, whether a class,

macroclass, or attribute, is represented by a prototype embedding. These prototypes

act as reference points for classifying input images through comparison with their

corresponding embeddings.

Prototype functions

Various functions, collectively represented as Πθ (where θ indicates the parameters),

are used to learn prototypes for categories, macrocategories, and attributes.

• Class Prototypes: The attribute matrix a (dimensions C×A) is mapped to

Class Prototypes in the shared space M using the function denoted as ΠC
θ .

Here, C denotes the number of classes, and A denotes the number of attributes.

• MacroClass Prototypes: Analogously to class prototypes, the attribute matrix

amacro (dimensions Cmacro ×A, where Cmacro signifies the number of macro-

classes) is transformed into MacroClass Prototypes within the shared space M

using a function symbolized as ΠM
θ . These prototypes consolidate the C classes

into a reduced set of Cmacro macroclasses based on attribute similarities. A

trainable matrix amacro ∈R
Cmacro×A is utilized to identify the attributes relevant

to each macroclass that are absent from the ground truth.

66 Fuzzy logic prototypical network (FLPN)

• Attribute Prototypes: Individual attributes are projected in a common space

using a mapping function ΠM
θ that takes the identity matrix as input, represent-

ing the one-hot encoded attribute labels.

It should be noted that the initial layers of the network modules implementing all

three prototype functions (ΠC
θ , ΠM

θ , and ΠA
θ) share the same weights.

7.1.4 Logic Tensor Network

Within the framework of the LTN, the learning process is redefined to identify the

weights that enhance the satisfiability of a knowledge base, denoted as K. For

each training batch, K is assembled from axioms derived from both labeled train-

ing instances (φclass) and existing domain knowledge (φmacro,φmasked,φattr,φ5,φ6).

Further elaboration on these components will be provided in later sections of this

chapter.

Variables

The following variables are defined:

G(x) = R
Ch×H×W (7.3)

G(l) = N
C (7.4)

G(lm) = N
Cmacro (7.5)

G(la) = N
C×A (7.6)

G(wa) ∈ R
A (7.7)

G(a) = G(amask) = R
C×A (7.8)

G(amacro) = R
Cmacro×A (7.9)

where x denotes an RGB image with dimensions Ch×H ×W , l refers to class labels,

lm represents macroclass labels, la signifies attribute labels, C indicates the total

number of classes, Cmacro represents the total count of macroclasses, A represents

the entire count of attributes, and M denotes the dimensions of the embedding space.

7.1 Architecture 67

Predicates and functions

This section discusses the predicates used for image classification within the FLPN

framework. In addition, it explains the feature extraction functions outlined in sub-

section 7.1.2, where f and g represent the functions that generate class and attribute

embeddings. In addition, class-specific semantic prototypes are obtained through the

functions ΠC
θ , ΠM

θ , and ΠA
θ , as detailed in subsection 7.1.3.

Four primary predicates are identified. The isOfClass(x, l) predicate evaluates

the probability that an image x belongs to class l. This probability is determined by

calculating the cosine similarity between the global features of the image, extracted

by f , and the prototype class represented by ΠC
θ (al), where al indicates the attribute

vector for class l. This probability is then calculated using the Softmax function, as

shown in Equation 7.10.

p(x, l) =
exp
(

δ cos(fθ (x
T),ΠC

θ (al))
)

∑
S
s=1 exp

(

δ cos(fθ (xT),ΠC
θ (as))

) (7.10)

The score indicating whether a data point x belongs to class c (denoting the truth

value of the predicate isOfClass for input x and class c) is calculated by finding the

dot product of the transposed one-hot encoded class label lT
c and the result of the

function p as shown in Equation 7.10:

G(isOfClass)(x, lc) = lT
c p(x, lc) (7.11)

A masked variant, denoted as isOfClassmasked, is introduced. The grounding

function G(isOfClass)(x, lc) is similar to that of the predicate isOfClass but

utilizes a masked attribute vector, amasked
c . Following the methodology outlined in

FLVN, this predicate is designed to mitigate potential discrepancies between image-

level and class-level attributes. To effectively manage this variability and represent

images that may not present certain class attributes, the masked attribute vector

amask ∈ R
C×A is used. This vector originates in the same domain as the attribute

vector ac, with k elements randomly set to 0. Unlike FLVN, FLPN removes only the

attributes in ac with scores below the class average, as these attributes are observed

less frequently in the class.

68 Fuzzy logic prototypical network (FLPN)

The function isOfMacro(x, lm) calculates the probability that an image x belongs

to the macroclass m. It is determined based on the distance between the embedding

of the image x and the prototype embedding representing the macroclass lm:

G(isOfMacro) : x, lm → e−α+α·d(fθ (x),Π
M
θ (am)) (7.12)

where x is an input image, lm is the macroclass label, am is the attribute matrix, and

d(·, ·) is a distance metric. In the studies conducted, d(·, ·) is defined as the cosine

distance, which differs from the methods used in PROTO-LTN [36] and DEM [62].

G(isOfMacro) reaches a value of 1 when the distance to the macroclass prototype is

zero.

The hasAttribute predicate determines the probability that an image x pos-

sesses the attribute la. It is calculated as a function of the cosine distance between an

embedding and an attribute prototype:

G(hasAttribute) : x, la → e−α+α·d(gθ (x),Π
A
θ (aeye)) (7.13)

Experimentally, improved results were observed when using different distance

metrics for the predicates isOfClass, isOfMacro, and hasAttribute. It is hy-

pothesized that the improved efficacy of isOfClass grounding (Equation 7.11)

arises from fostering class exclusivity. In contrast, the grounding of isOfMacro

and hasAttribute encourages the overlap of class attributes, thereby improving

performance.

7.1.5 Knowledge base axioms

Following the introduction of variables and predicates in the FOL language, this

section defines the knowledge base K utilized for FLPN training.

Learning from labeled examples

The formula φclass encourages the predictions to align with the provided data labels

(e.g., “This image is a zebra”).

7.1 Architecture 69

φclass = ∀Diag(x, lc)(isOfClass(x, lc))
1 (7.14)

To incorporate prior knowledge regarding class hierarchies, the axiom φmacro is

introduced to assert that any image classified under a specific class should also be

classified under the corresponding macroclass (e.g., “zebras are part of the ungulate

class”):

φmacro = ∀Diag(x, lc, l
c
macro) (isOfClass(x, lc)

=⇒ isOfMacro(x, lc
macro))

(7.15)

where lc
macro denotes the macroclass associated with class c.

Learning with refutation

The formula φmasked encapsulates the idea that class attributes are not universally

present in every instance (e.g., “there exists a zebra that is not agile”). To address

this discrepancy, a method is proposed that randomly obscures k attributes per class

during the computation of class prototypes. This involves averaging the nonzero

elements of the attribute vector ac for each class and then masking the k attributes

that fall below this average. Alternative approaches, such as arbitrary selection

regardless of the attribute matrix a, were tested, but empirically found to be less

effective. The axiom is framed using the isOfClassmasked predicate:

φmasked = ∀lseen(∃x isOfClassmasked(x, l
seen)) (7.16)

where lseen represents the list of observed classes.

Learning with attention

An additional axiom is integrated into the knowledge base, promoting proximity of

images with similar attributes in the embedding space, independent of their respective

classes:

1Diagonal Quantification quantifies over pairs of instances, such as images and their labels. A

more detailed definition is available in [40].

70 Fuzzy logic prototypical network (FLPN)

φattr = ∀Diag(x,wa, l
c
a)
(

wa[l
c
a]> thatt hasAttribute(x, l

c
a)
)

(7.17)

In this context, x denotes an input image, lc
a signifies class-related attributes, and

wa represents the attribute weight vector. For increased computational efficiency,

attention is focused on attributes la that are relevant to the class (as indicated by the

attribute matrix a) and likely present in the image x, considering only those attributes

l with weights wl
a above a threshold thatt . Practically, since the knowledge base K is

refreshed with each training batch, the prevailing attention values are used to enforce

this criterion.

Learning better feature representation

Classes are generally characterized by a collection of attributes. To group similar

image representations within the same class, the axiom φ5 is introduced.

φsimil = ∀lseen,∀x,∀y : cos(fθ (x), fθ (y))> thsg :

isOfClass(x, lseen)ô isOfClass(y, lseen) (7.18)

Equation 7.18 encapsulates the notion that if two images, x and y, share the same

class label (lseen), they should be classified together based on their embeddings. To

maintain a manageable size for the knowledge base K, this axiom is applied only

to pair of images (x,y) with a cosine similarity cos between their embeddings that

exceeds a specified threshold thsg.

In contrast, axiom φ6 is introduced to ensure that images with different em-

beddings are not classified into the same class. This is expressed by the axiom

φ6:

φdissimil = ∀lseen,∀x,∀y : cos(fθ (x), fθ (y))< thsl :

¬(isOfClass(x, lseen)'isOfClass(y, lseen)) (7.19)

7.1 Architecture 71

In this context, fθ (x) and fθ (y) denote visual embeddings of different images.

Similarly to the criteria defined in the axiom φsimil (Equation 7.18), only image

pairs with cosine similarity cos below a threshold thsl are considered. These axioms

(φsimil and φdissimil) promote a distribution of image embeddings in which similar

representations are grouped within the same classes while maintaining distinct

separations between different classes. This strategy prevents excessive reliance on

prior knowledge from the attribute matrix.

Grounding logical connectives and aggregators

Different operator semantics were investigated, identified here as LTN [40]. LTN

operates within the probability space. Table 7.1 presents a comparative summary

of the main differences between logical connectives and aggregation operators

implemented in the conventional LTN framework.

Connective LTN

¬ 1−a

' ab

(a+b−ab

→ 1−a+ab

∀ 1−
(

1
n ∑

n
i=1 (1−ai)

p
)

1
p

∃
(

1
n ∑

n
i=1 a

p
i

)
1
p

Table 7.1 Comparison of connectives and aggregators in LTN (p g 1)

Querying the knowledge base

During the inference phase, the predicted class is identified as the one with the

highest score:

ŷ = argmax
ỹ∈YU

(

δ cos(xT,C fθ (aỹ))
)

(7.20)

To mitigate this bias between seen and unseen images, the calibrated stacking

method was used (as in FLVNEquation 6.16).

72 Fuzzy logic prototypical network (FLPN)

7.2 Experimental setup

This section details the datasets used in the experiments, the corresponding knowl-

edge bases used for each dataset, and the specified list of hyperparameters.

Dataset. The experiments utilized the Awa2 dataset, with GZSL evaluation

metrics aligned with standards established in previous studies. Following the method-

ology described in [98], a semantic hierarchy was constructed by organizing the

classes from the Awa2 dataset into 9 macro-classes.

Hyperparameter selection. The embedding function fθ utilizes an ImageNet

pre-trained ResNet101 model to transform a 224× 224 image into a vector x ∈

R
H×W×B, where B = 2048, and H and W denote the height and width of the ex-

tracted features. The function gθ then projects these features in the attribute space,

maintaining dimensional consistency with the dataset.

For the ViT backbone, the head is initially trained with the frozen backbone

(warmup), followed by fine-tuning of the entire network to mitigate overfitting.

During the pre-training phase, the Adam optimizer is used with a learning rate of

1e−4. In the fine-tuning phase, the learning rate progressively decreases to 1e−7α ,

where α = 0.8epoch//10, over a total of 300 epochs.

For the architecture with the ResNet-101 backbone, an initial learning rate of

1e−3 is applied, with the model being trained end-to-end using the SGD optimizer.

The learning rate is subsequently reduced to 1e−7α , where α = 0.8epoch//10, similar

to ViT training, for a total of 5 epochs. In both scenarios, regularization is enhanced

by doubling the L2 norm with a scaling factor of 5e−4.

When training the ResNet-101 backbone, batches of 64 samples are randomly

selected, while for ViT, training batches comprise an equal ratio of 12 positive and

12 negative Awa2 instances. The scaling factor γ is set to 0.7 during inference to

adjust the scores for the seen classes. For data augmentation, random flipping with a

probability of 0.5 and random cropping are employed in each experiment. Using the

LTNtorch library [99], the architectures are implemented in PyTorch and trained on

a single Nvidia 3090 Ti GPU. Each experiment is carried out three times to report

the mean and standard deviation.

7.3 Results 73

7.3 Results

This section presents a comparative analysis of the architecture developed in the

zero-shot learning challenge against state-of-the-art models. Specifically, the mod-

els are compared with multiple methods: Embedding based methods(PROTO-

LTN [36], DEM [62], VSE [63], TCN [66], CSNL [98]), Attention-based tech-

niques (AREN [68], APN [60], AMGML [67], CC-ZSL [61], CoAR-ZSL [69],

FLVN [37]), Generative techniques (Cycle-CLSWGAN [74], LisGan [73], E-

PGN [71], TGMZ [72], CEGZSL [75], DFCA-GZSL [100]) and lastly Tranformer-

based architectures (COAR [69]).

The experimental results are reported in Table 7.2, which shows how FLPN is

competitive with the state-of-the-art. Specifically, the devised architecture achieves

better results in terms of H both for CNN-based and transformer-based architectures,

demonstrating better results on classes not observed in both a ZSL and GZSL settings,

as well as on classes observed in a GZSL setting.

Compared to the state of the art, the CNN-based approach performs better on

unseen classes. FLPN outperforms FLVN [37] by 4.0 and 3.1 points, respectively,

obtaining a value of 73.8 for unseen classification in ZSL (T1) and an H value of

75.3. The best performing method in ZSL [72] (T1 = 78.4), does not perform as well

in the GSZL scenario (77.3 accuracy on seen classes and 64.1 on unseen ones). This

demonstrates how the introduced axioms provide additional information that allows

the architecture to represent features that identify unseen classes, without losing

much information about the seen classes. Unlike generative models, and like FLVN

and Proto-LTN, the approach does not require the generation of synthetic images.

Moreover, FLPN converged relatively fast in roughly 5 training epochs, in contrast

to other comparable works in terms of backbone [61, 69] and/or neurosymbolic

approaches [36, 37].

With a transformer-based backbone, FLPN still achieves competitive results with

respect to the state-of-the-art. In particular, the H value for the Awa2 dataset increases

by nearly 2.9 percentage points, from 82.0 to 84.9, over the closest comparator.

74 Fuzzy logic prototypical network (FLPN)

Model T1 U S H

Embedding-based

PROTO-LTN [36] 67.6 32.0 83.7 46.2

DEM [62] 67.1 30.5 86.4 45.1

VSE [63] 84.4 45.6 88.7 60.2

TCN [66] 71.2 61.2 65.8 63.4

CSNL [98] † 61.0 - - 0.0

Attention-based

AREN [68] 67.9 54.7 79.1 64.7

APN [60] 68.4 56.5 78.0 65.5

AMGML [67] 71.7 56.0 74.6 64.0

CC-ZSL [61] 68.8 62.2 83.1 71.1

CoAR-ZSL(Resnet-101) [69] 74.1 68.1 79.1 73.2

FLVN (Resnet-101) † 69.8 65.8 82.3 73.1

Generative-based

Cycle-CLSWGAN [74] - - - -

LisGan [73] - - - -

E-PGN [71] 73.4 52.6 83.5 64.6

TGMZ [72] 78.4 64.1 77.3 70.1

CEGZSL [75] 70.4 63.1 78.6 70.0

DFCA-GZSL [100] 74.7 66.5 81.5 73.3

FLPN (ViT) † 73.8 71.2 79.9 75.3

±1.0 ±0.9 ±1.1 ±0.7

(74.8) (72.1) (81.0) (76.0)

Transformer-based

CoAR-ZSL(ViT) [69] 78.7 76.5 88.2 82.0

FLPN (ViT) † 80.2 79.7 88.2 83.7

±2.0 ±1.9 ±0.8 ±1.0

(82.2) (81.6) (89.9) (84.7)

Table 7.2 Comparing Awa2 for T, U, S, and H for GZSL e ZSL to the state of the

art at the moment. The methods are broken down into four categories: embedding-

based models, attention mechanism-based models, transformer-based models and

generative models. The best results are in bold, while the second-best results are

underlined.

7.3 Results 75

7.3.1 Ablation studies

Ablation studies in Table 7.3 were conducted to clarify the contribution of each

axiom.

KB Awa2

Model φclass φmacro φmasked φattr φsimil φdissimil T1 U S H

FLPN(Resnet-101) ✓ - ✓ - - - 66.3 62.2 84.7 71.7

FLPN(Resnet-101) ✓ - ✓ ✓ - - 69.8 66.4 80.2 72.7

FLPN(Resnet-101) ✓ ✓ ✓ ✓ - - 70.9 67.7 79.3 73.1

FLPN(Resnet-101) ✓ ✓ ✓ ✓ ✓ ✓ 72.9 71.0 78.4 74.5

FLPN(ViT) ✓ - ✓ - - - 79.8 78.9 89.6 83.9

FLPN(ViT) ✓ - ✓ ✓ - - 80.9 80.3 89.2 84.5

FLPN(ViT) ✓ ✓ ✓ ✓ - - 83.1 82.6 85.2 83.9

FLPN(ViT) ✓ ✓ ✓ ✓ ✓ ✓ 83.0 82.4 87.6 84.9

Table 7.3 Ablation study at different level of knowledge base K based on different

backbones

Role of φclass and φmasked . The foundational architecture incorporates axioms

aimed at learning from annotated instances, while handling anomalies by intermit-

tently masking attributes (axiom φmasked(Equation 7.16)). Consequently, it empha-

sizes observed classes (S=84.7 in Table 7.3). Each class possesses intrinsic traits

that persistently manifest; for example, a zebra will invariably have stripes, even in a

cropped image. Initial experimental results indicate that the axiom φmasked proves

particularly effective when the k elements are selected from attributes with values

below the class average.

Role of φattr. Based on the matrix of attributes present for a certain class and

an attribute weight wa, which denotes the presence of the attribute in the particular

image, a similarity between the attributes present in the image is used using φattr

(Equation 7.13). The knowledge base implements constraints that allow the network

to focus on different parts of the image. Table 7.3 shows an improvement in the

classification of unseen classes of 3.5 and 4.2 points, respectively, in both the ZSL

and GZSL (T1 and U) settings.

Role of φmacro. After introducing the axiom φmacro, the harmonic mean slightly

improves from 72.7 to 73.1, indicating that including semantically relevant restric-

tions with macroclasses has a relatively minor impact on the results. In Figure 5.2,

PROTO-LTN (Chapter Chapter 5) shows that the model inherently learns to cluster

prototypes within the feature space, even in the absence of explicit hierarchical

constraints. This is evident from the t-SNE plot presented in Figure 7.10. Despite

76 Fuzzy logic prototypical network (FLPN)

similar overall results (as demonstrated by H), there is an improvement in the per-

formance on unseen classes, both in the ZSL (T1) and GZSL (U) settings, and with

both backbones. Aggregating classes in a smaller feature space that benefits unseen

samples may be responsible for the phenomenon.

Role of φsimil and φdissimil . These two axioms deal with the relationship between

images without taking into account the class to which they belong. The classification

of unseen classes (T) improves by about 2-3 percentage points in all settings when

using a CNN backbone.

7.3.2 Class feature visualization using t-SNE

t-SNE visualizations are used in Figure 7.10 to illustrate how the classes are divided

in the feature space. In particular, the results of the experiments conducted using

two different knowledge bases are compared: the one composed by axioms φ1 and

φmasked , and the one with all the axioms presented in this study. Specifically, the

embedding space in a GZSL scenario using test images is examined, taking into

account the seen and unseen classes independently. Only 500 samples per class are

included, each of which is represented by a distinct color, for a better visualization.

Reducing the number of overlapping examples also improves classification, as

previously demonstrated in Table 7.2. Figure 7.3 and Figure 7.7 demonstrate that

the introduction of more specific axioms for the classification of classes seen in a

GZSL setting allows, for both ResNet-101 and even more so for ViT, to obtain a

more separate representation of the classes.

In Figure 7.10, with regard to the classification of classes not seen in a GZSL

context, it is observed that there is initially some overlap between some of the archi-

tectures, which is more pronounced than the classes seen. Figure 7.5 and Figure 7.9

illustrate how the additional axioms of the knowledge base have reduced this initial

overlap for several of the observed classes.

7.3.3 Visualization of attribute-level attention maps

Table 7.2 shows that with the hasAttribute predicate it is possible to achieve better

overall classification results. In this subsection, attention is shown to help localize

specific attributes for both the CNN- and transformer-based architectures shown

7.3 Results 77

Fig. 7.2 FLPN with

ResNet-101 back-

bone trained with a

KB composed by

φclass and φmasked:

predictions of seen

classes in GZSL

setting

Fig. 7.3 FLPN with

ResNet-101 back-

bone trained with a

KB composed by all

axioms: predictions

of seen classes in

GZSL setting

Fig. 7.4 FLPN

with ResNet-101

backbone trained

with a KB com-

posed by φclass and

φmasked: predictions

of unseen classes in

GZSL setting

Fig. 7.5 FLPN with

ResNet-101 back-

bone trained with a

KB composed by all

axioms: predictions

of unseen classes in

GZSL setting

Fig. 7.6 FLPN

with ViT backbone

trained with a

KB composed by

φclass and φmasked:

predictions of seen

classes in GZSL

setting

Fig. 7.7 FLPN

with ViT backbone

trained with a KB

composed by all

axioms: predictions

of seen classes in

GZSL setting

Fig. 7.8 FLPN

with ViT backbone

trained with a KB

composed by φclass

and φmasked: pre-

dictions of unseen

classes in GZSL

setting

Fig. 7.9 FLPN

with ViT backbone

trained with a KB

composed by all

axioms: predictions

of unseen classes in

the GZSL setting

Fig. 7.10 The class-level feature distribution for FLPN with the ResNet-101 (first row)

and ViT (second row) backbones is represented using t-SNE. The likelihood scores

generated by the model for every class were utilized to produce this representation.

in Figure 7.12 and Figure 7.11. It is evident from both examples that the architec-

ture accurately pinpoints the regions of the picture that possess a certain property.

Qualitatively, the CNN-based architecture is less accurate than the transformer-based

architecture. As noted in a previous work [69], there is significant noise in both

scenarios, since each sample lacks an annotation at the attribute level.

78 Fuzzy logic prototypical network (FLPN)

(a) has tail (b) can fly (c) has longleg

(d) has longneck (e) has flippers (f) has flippers

Fig. 7.11 FLPN with ViT-backbone attributes attention on Awa2

7.3.4 Architecture comparison

The proposed architecture represents an advancement and enhancement of the earlier

models, Proto-LTN [36] and FLVN [37], both of which are founded on similar NeSy

principles. Table 7.4 outlines the distinctions among the three architectures in terms

of the knowledge base K utilized for model training, the embedding space employed

to measure similarity between image embeddings and class prototypes, the grounding

of the isOfClass predicate, the construction of the Batch for the training set, the

Aggregator that merges all axioms to determine final satisfiability, and the backbone.

Model KB Common Space End-to-End Training isOfClass Batch Aggregator Backbone

PROTO-LTN [36] {φclass} Image Space - Euclidean distance random sampler logProduct ResNet-101

FLVN [37] {φclass,φmacro,φmasked,φsimil,φdissimil} Attribute Space ✓ dot product Shots=12, Ways=8 Mean-Error ResNet-101

FLPN(Resnet-101) {φclass,φmacro,φmasked,φattr,φsimil,φdissimil} Attribute Space ✓ dot product random sampler Mean-Error ResNet-101

FLPN(ViT) {φclass,φmacro,φmasked,φattr,φsimil,φdissimil} Attribute Space ✓ dot product Shots=12, Ways=8 Mean-Error ViT

Table 7.4 Comparison of the three NeSy architectures, with commonalities and

differences highlighted.

Proto-LTN vs FLPN While Proto-LTN [36] is substantially different from

FLPN, it is nonetheless built on a similar assumption. Although there are some

7.3 Results 79

(a) is quadrapedal (b) has tail (c) can fly

(d) has tail (e) has longleg (f) has flippers

Fig. 7.12 FLPN with ResNet-101-backbone attributes attention on Awa2

differences in the final aggregator, the adoption of a new knowledge base and

the way the isOfClass predicate is implemented are the key distinctions. Proto-

LTN employs Euclidean distance to increase the similarity between images and

prototypes that belong to the same class in a case where the backbone is frozen and

training is restricted to the prototype network. By applying a multiplication between

image and prototype features using a softmax activation function, FLPN, in contrast,

uses a different similarity metric, that encourages mutual exclusiViTy between

different classes. Since only positive examples are used for classes during training,

encouraging mutual exclusivity compensates for the lack of negative examples and

allows the network to be trained end-to-end. Experimentally, Proto-LTN tends to

overfit to seen classes when the backbone is not kept frozen.

FLVN vs FLPN. If the embedding space and ViT backbone are ignored, FLVN

and FLPN may be regarded as similar designs. However, because of the way FLVN

is constructed, it cannot compute prototype vectors for attributes such as APθ).

Although FLVN does not explicitly compute prototype vectors for classes, it does

provide a multiplication of the image features (appropriately converted into the

80 Fuzzy logic prototypical network (FLPN)

attribute space) with the semantic matrix of the attributes. Therefore, the architecture

may include the introduction of a prototype network for the attributes but without

sharing the same structure of the classes (it is worth recalling that in FLPN, the

prototype networks share the initial layers). Another significant distinction is the

amount of time needed for training; FLVN needed about 300 epochs to train, while

FLPN only needed about 5.

Adopting a network based on ViT obviously prevents comparisons with earlier

architectures because it is a more performing network with many more parameters

and has been trained on a larger amount of data, but makes it possible to demonstrate

how this architecture can be used in various contexts and with various backbones.

7.4 Conclusion

Proto-LTN, FLVN, and FLPN are three new NeSy designs that are introduced for

ZSL and GZSL tasks, based on ideas from the current ZSL literature, and embedded

within a NeSy framework. In order to handle exceptions within the dataset (e.g.,

“there exists a zebra that is not agile”) and establish relationships between images

(e.g., “if two images belong to the same class, they must be similar”), FLVN and

FLPN incorporate axioms that combine prior class-specific knowledge (e.g., class

hierarchies) with high-level inductive biases. These axioms serve as semantic priors

that compensate up for the absence of annotations, giving GZSL tasks a strong NeSy

base.

These architectures maintain approximately the same number of parameters as

typical embedding-based techniques. The suggested methods can also be used to

different architectures by altering the predicates’ grounding, for example. Empirical

findings demonstrate that it attains performance comparable to or better than that of

recent research on widely used GZSL benchmarks.

There are many ways in which this method might be expanded upon. To improve

explainability, one may pay more attention to discriminative areas within the image

by introducing additional predicates to anticipate image-level features or rephrasing

the isOfClass predicate. Without necessitating extra labels in the dataset, axioms

that only take into account how similar two photos are to one another (without taking

into account the images’ class membership) may yield better results for classes that

7.4 Conclusion 81

have not yet been seen. In addition, the knowledge base might be expanded to take

into account interactions of a different kind, one that goes beyond class hierarchies

and emerges from new sources, like language models. Lastly, a transductive ZSL

scenario might be used to investigate the suggested approach.

Chapter 8

Concluding remarks

This doctoral dissertation summarizes the research conducted during the doctoral

path, which centered on developing NeSy methods to enhance the robustness of

machine learning models when handling high-dimensional data, such as images. The

proposed methodologies are capable of learning from both the distributed data and

from prior knowledge related to the underlying concepts present in the images. By

making deep learning models more reliable and interpretable, these designs can be

utilized in various business domains, offering significant benefits. Incorporating

logical constraints can compensate for the knowledge gaps that cannot be statistically

derived from the input data, thereby addressing, at least partially, well-known deep

learning challenges such as noise, scarcity of labeled data, sensitivity to biases, and

fairness issues.

This doctoral dissertation has been structured to emphasize how LTNs were

applied to increasingly complex architectures in computer vision tasks, offering

improved performance and demonstrating their potential in tackling sophisticated

challenges. In order to demonstrate how NeSy architectures, such as LTNs [43], can

be applied in a complementary manner to CNNs and transformers, effectively sharing

knowledge between the convolutional model and the LTN knowledge base, two

tasks were analyzed in depth in this dissertation: object detection and classificatio

in a ZSL setting. The goal is to improve the generalization capabilities of the

overall architecture by leveraging knowledge expressed in symbolic form to integrate

semantically connected concepts. The final goal is to create an architecture that

83

incorporates symbolic knowledge in the learning process to improve the quality of

the features learnt by the convolutional model.

The integration of LTNs in an object detection task is examined in Chapter 4.

Specifically, the LTN replaced the model classification layers of a Faster-CNN [1]

object detection network. Building on previous works by Donadello et al. [41],

it is demonstrated that it is possible to train the entire architecture in an end-to-

end fashion, whereas in previous work the LTN was trained separately. This is a

crucial step to allow the CNN backbone to benefit from the NeSy loss, rather than

employing the LTN to merely refine the network’s prediction. A knowledge base

with the labeled samples can be embedded in the training loss by grounding the

isOfClass predicate through a trainable layer. The experimental results show that

Faster-LTN outperforms the original Faster-CNN architecture. By applying extra

constraints that limit the classification space of the image’s objects, mereological

constraints provide additional information that further improves the classification of

the detected ROIs. An additional analysis is provided to demonstrate the approach’s

potential by assessing the architecture’s performance while training on reduced

datasets.

The second part of this doctoral dissertation analyzes in depth a ZSL setting. If

every class symbol in the dataset is associated with a vectorized representation, it

is possible to create class prototypes that live in the same embedding space as the

images by suitably converting them using a neural network. In Proto-LTN, in which

the CNN network is frozen and only the LTN is trained, the isOfClass predicate

is grounded based on the Euclidean distance between class prototypes and image

embeddings.

FLVN (Chapter 6) improves Proto-LTN by allowing more effective information

exchange between the CNN and the LTN, supported by a more comprehensive

knowledge base. In Proto-LTN, the positive axioms are designed to minimize the

distance between image embeddings and their corresponding class prototypes using

the Euclidean distance metric. This setup, combined with a frozen backbone, pre-

vents the collapse of prototypes by maintaining a stable representation space, thus

ensuring that the learned prototypes retain meaningful separability across classes.

Furthermore, FLVN shows that the model can be trained end-to-end if the predi-

cate isOfClass is grounded as a multiplication between image features and class

attributes in a common space, with the inclusion of a softmax activation function.

84 Concluding remarks

Additionally, the knowledge base incorporates prior knowledge regarding the clas-

sified objects: classes and macroclasses are arranged hierarchically (“if an image

belongs to a class, it must also belong to its macroclass”); images that belong to a

class but do not possess all of its properties, with at least one exception for each

class; and images’ relationships (“two images that have similar features belong

to the same class”). The architecture is compared with embedding-based models

(like Proto-LTN), architectures that introduce attention mechanisms and are trained

end-to-end, and generative models (which learn a relationship between seen classes

and attributes with the goal of generating examples for unseen classes). The results

indicate that it is possible to achieve improvements over the state-of-the-art results

without introducing additional layers to the backbone architecture. This demonstrates

that the enhancements in performance is achieved through an improved training

process, rather than by increasing the complexity of the model.

In the end, FLPN (Chapter 7) combines the best aspects of previous architectures;

it uses the prototype space as an embedding space, similar to Proto-LTN, but it also

allows for end-to-end training and includes a sophisticated knowledge base, similar

to FLVN. With the help of this attention mechanism, the final design can incorporate

a knowledge base that considers both the global properties of the image and the

attributes that are specific to a given image or class. The study assesses the informa-

tion collected by the architecture as the axioms incorporated in the knowledge base

change, taking into consideration an alternative and more sophisticated backbone

to extract the features. The results obtained achieve state-of-the-art performance in

terms of performance and explainability.

All studies have limitations that could be addressed in future work. Faster-LTN

should be validated on larger and more complex datasets, which will likely require

alternative implementations of the final aggregator or alternative implementations of

the isOfClass predicate. Additionally, the introduction of partially labeled datasets

could be evaluated (for example, providing a description of the parts for some classes,

in lieu of labeled examples), further reducing the lack of supervision.

One of the crucial points of these systems concerns their scalability. As the

complexity of the datasets increases, the number of rules used to describe the

knowledge base may also grow, making it difficult to optimize the overall satisfiability.

The way in which various predicates are grounded can also add complexities in terms

of resources required to train the model.

85

For the ZSL tasks, the next objective could be to investigate the generalizability

of the approach with different models and datasets to improve the learning of seen

and unseen classes. Improving individual attribute learning could open the way to

new knowledge bases capable of better describing each individual class, for example

“if an image has black and white stripes and is similar to a horse then it represents a

zebra”. The lack of attribute-level supervision for the individual image is another

obstacle to overcome.

In general, NeSy architectures allow the introduction of logical constraints in the

loss function, unlike the standard training cycle of deep learning networks. However,

the creation of the knowledge base and its rules represents one of the most significant

barriers to adoption. Firstly, constructing the knowledge base requires considerable

effort, necessitating domain experts capable of annotating the correct relationships

between extracted concepts. Secondly, it is essential to develop a knowledge base

that accounts for exceptions to general rules, which are often expressed in principle

but may not always be consistent with complex real-world data. In addition, the

quality of the knowledge base, the time required for annotation, and the feasibility

of training on very large knowledge bases are critical challenges. To address these

issues, methods could be evaluated to automate or semi-automate the process by

introducing more general knowledge bases that can be adapted to more specific

domains or by employing large language models to directly generate FOL statements.

Therefore, addressing these challenges is crucial not only for the effective deployment

of NeSy architectures but also for enhancing their applicability in diverse real-world

scenarios, ultimately leading to more robust and interpretable AI systems.

References

[1] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. IEEE
transactions on pattern analysis and machine intelligence, 39(6), 2016.

[2] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-
shot learning—a comprehensive evaluation of the good, the bad and the ugly.
IEEE transactions on pattern analysis and machine intelligence, 41(9), 2018.

[3] Haiying Wang, Estelle Pujos-Guillot, Blandine Comte, Joao Luis de Miranda,
Vojtech Spiwok, Ivan Chorbev, Filippo Castiglione, Paolo Tieri, Steven Wat-
terson, Roisin McAllister, et al. Deep learning in systems medicine. Briefings
in bioinformatics, 22(2), 2021.

[4] Akshara Pramod, Harsh Sankar Naicker, and Amit Kumar Tyagi. Machine
learning and deep learning: open issues and future research directions for the
next 10 years. Computational analysis and deep learning for medical care:
Principles, methods, and applications, 2021.

[5] Travers Ching, Daniel S Himmelstein, Brett K Beaulieu-Jones, Alexandr A
Kalinin, Brian T Do, Gregory P Way, Enrico Ferrero, Paul-Michael Agapow,
Michael Zietz, Michael M Hoffman, et al. Opportunities and obstacles for deep
learning in biology and medicine. Journal of The Royal Society Interface,
15(141), 2018.

[6] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A
survey of deep learning techniques for autonomous driving. Journal of Field
Robotics, 37(3), 2020.

[7] Leslie G. Valiant. Knowledge infusion: in pursuit of robustness in artificial
intelligence. In Proceedings of the Foundations of Software Technology and
Theoretical Computer Science, 2008.

[8] Wenguan Wang, Yi Yang, and Fei Wu. Towards Data-and Knowledge-Driven
Artificial Intelligence: A Survey on Neuro-Symbolic Computing. arXiv
e-prints, October 2022.

[9] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature,
521, 2015.

References 87

[10] Ali Bou Nassif, Ismail Shahin, Imtinan B. Attili, Mohammad Azzeh, and
Khaled F. Shaalan. Speech recognition using deep neural networks: a system-
atic review. IEEE Access, 7, 2019.

[11] Hao Wu, Qi Liu, and Xiaodong Liu. A review on deep learning approaches
to image classification and object segmentation. Computers, Materials &
Continua, 2019.

[12] Azhar Toilybaikyzy Tursynova, B. S. Omarov, O. A. Postolache, and M. Zh.
Sakypbekova. Convolutional deep learning neural network for stroke image
recognition: Review. Journal of Mathematics, Mechanics and Computer
Science, 112(4), Dec. 2021.

[13] Kohei Watanabe and Yuan Zhou. Theory-driven analysis of large cor-
pora: semisupervised topic classification of the un speeches. Social Science
Computer Review, 40, 2020.

[14] Sristy Lalaika Vemula and Nisha Rathee. Bio-inspired feature selection tech-
niques for sentiment analysis – review. 2023 Third International Conference
on Artificial Intelligence and Smart Energy (ICAIS), 2023.

[15] Blanka Frydrychova Klimova, Marcel Pikhart, Alice Delorme Benites, Caro-
line Lehr, and Christina Sanchez-Stockhammer. Neural machine translation
in foreign language teaching and learning: a systematic review. Education
and Information Technologies, 28, 2022.

[16] Shun-ichi Amari. Backpropagation and stochastic gradient descent method.
Neurocomputing, 5, 1993.

[17] Giuseppe Futia and Antonio Vetrò. On the integration of knowledge graphs
into deep learning models for a more comprehensible ai—three challenges for
future research. Information, 11(2), 2020.

[18] Tirtharaj Dash, Sharad Chitlangia, Aditya Ahuja, and Ashwin Srinivasan.
A review of some techniques for inclusion of domain-knowledge into deep
neural networks. Scientific Reports, 12(1), 2022.

[19] Nathan Drenkow, Numair Sani, Ilya Shpitser, and Mathias Unberath. A
Systematic Review of Robustness in Deep Learning for Computer Vision:
Mind the gap? arXiv e-prints, December 2021.

[20] James F Mullen Jr, Franklin R Tanner, and Phil A Sallee. Comparing the
effects of annotation type on machine learning detection performance. In
Proceedings of the conference on computer vision and pattern recognition
workshops, 2019.

[21] Khaled Alhazmi, Walaa Alsumari, Indrek Seppo, Lara Podkuiko, and Martin
Simon. Effects of annotation quality on model performance. In Proceedings
of the 2021 International Conference on Artificial Intelligence in Information
and Communication (ICAIIC). IEEE, 2021.

88 References

[22] Pascal Hitzler, Aaron Eberhart, Monireh Ebrahimi, Md Kamruzzaman Sarker,
and Lu Zhou. neuro-symbolic approaches in artificial intelligence. National
Science Review, 9(6), 03 2022.

[23] Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Luis C Lamb,
Leo de Penning, BV Illuminoo, Hoifung Poon, and COPPE Gerson Za-
verucha. Neural-symbolic learning and reasoning: a survey and interpretation.
Neuro-Symbolic Artificial Intelligence: The State of the Art, 342(1), 2022.

[24] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing.
Harnessing Deep Neural Networks with Logic Rules. arXiv e-prints, March
2016.

[25] Michelangelo Diligenti, Marco Gori, and Claudio Sacca. Semantic-based
regularization for learning and inference. Artificial Intelligence, 244, 2017.

[26] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Broeck. A seman-
tic loss function for deep learning with symbolic knowledge. In Proceedings
of the International conference on machine learning. PMLR, 2018.

[27] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas De-
meester, and Luc De Raedt. Deepproblog: neural probabilistic logic program-
ming. Advances in neural information processing systems, 31, 2018.

[28] Zhi-Hua Zhou. Abductive learning: towards bridging machine learning and
logical reasoning. Science China Information Sciences, 62, 2019.

[29] Le-Wen Cai, Wang-Zhou Dai, Yu-Xuan Huang, Yu-Feng Li, Stephen H
Muggleton, and Yuan Jiang. Abductive learning with ground knowledge base.
In Proceedings of the IJCAI, 2021.

[30] Meng Qu and Jian Tang. Probabilistic Logic Neural Networks for Reasoning.
arXiv e-prints, June 2019.

[31] Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan
Qi, and Le Song. Efficient probabilistic logic reasoning with graph neural
networks. ArXiv, abs/2001.11850, 2020.

[32] Giuseppe Marra, Michelangelo Diligenti, Francesco Giannini, Marco Gori,
and Marco Maggini. Relational neural machines. In Proceedings of the
European Conference on Artificial Intelligence, 2020.

[33] Luciano Serafini and Artur S d’Avila Garcez. Learning and reasoning with
logic tensor networks. In Conference of the Italian Association for Artificial
Intelligence. Springer, 2016.

[34] Xiaochun Luo, Heng Li, and SangHyun Lee. Bridging the gap: neuro-
symbolic computing for advanced ai applications in construction. Frontiers
of Engineering Management, 10(4), 2023.

References 89

[35] Francesco Manigrasso, Filomeno Davide Miro, Lia Morra, and Fabrizio Lam-
berti. Faster-LTN: a neuro-symbolic, end-to-end object detection architecture.
In Artificial Neural Networks and Machine Learning–ICANN 2021: 30th
International Conference on Artificial Neural Networks, Bratislava, Slovakia,
September 14–17, 2021, Proceedings, Part II 30. Springer, 2021.

[36] Simone Martone, Francesco Manigrasso, Fabrizio Lamberti, and Lia Morra.
PROTOtypical logic tensor networks (PROTO-LTN) for zero shot learning.
In 2022 26th International Conference on Pattern Recognition (ICPR). IEEE,
2022.

[37] Francesco Manigrasso, Lia Morra, and Fabrizio Lamberti. Fuzzy Logic Visual
Network (FLVN): A neuro-symbolic approach for visual features matching. In
International Conference on Image Analysis and Processing. Springer, 2023.

[38] Somak Aditya, Yezhou Yang, and Chitta Baral. Integrating knowledge and
reasoning in image understanding. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, IJCAI 2019. International Joint
Conferences on Artificial Intelligence, 2019.

[39] Luc de Raedt, Sebastijan Dumančić, Robin Manhaeve, and Giuseppe Marra.
From statistical relational to neuro-symbolic artificial intelligence. In
Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, 2020.

[40] Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael
Spranger. Logic tensor networks. Artificial Intelligence, 303, 2022.

[41] Ivan Donadello, Luciano Serafini, and Artur D’Avila Garcez. Logic ten-
sor networks for semantic image interpretation. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence. AAAI Press, 2017.

[42] Ivan Donadello and Luciano Serafini. Compensating supervision incomplete-
ness with prior knowledge in semantic image interpretation. In Proceedings
of the International Joint Conference on Neural Networks, 2019.

[43] Luciano Serafini and Artur S. d’Avila Garcez. Learning and reasoning with
logic tensor networks. In Proceedings of the International Conference of the
Italian Association for Artificial Intelligence, 2016.

[44] Merrie Bergmann. An introduction to many-valued and fuzzy logic:
semantics, algebras, and derivation systems. Cambridge University Press,
2008.

[45] Ivan Donadello, Luciano Serafini, and Artur D’Avila Garcez. Logic ten-
sor networks for semantic image interpretation. In 26th International Joint
Conference on Artificial Intelligence, 2017.

[46] Mingsheng Ying. Implication operators in fuzzy logic. IEEE Trans. Fuzzy
Syst., 10, 2002.

90 References

[47] Emile van Krieken, Erman Acar, and Frank van Harmelen. Analyzing differ-
entiable fuzzy logic operators. Artificial Intelligence, 302:103602, 2022.

[48] Tomasa Calvo, Anna Kolesárová, Magda Komorníková, and Radko Mesiar.
Aggregation operators: properties, classes and construction methods.
Aggregation operators: new trends and applications, pages 3–104, 2002.

[49] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, (11), 2008.

[50] Murray Shanahan, Kyriacos Nikiforou, Antonia Creswell, Christos Kaplanis,
David Barrett, and Marta Garnelo. An explicitly relational neural network
architecture. In Proceedings of the 37th International Conference on Machine
Learning, volume 119. PMLR, 2020.

[51] Luís C. Lamb, Artur d’Avila Garcez, Marco Gori, Marcelo O.R. Prates,
Pedro H.C. Avelar, and Moshe Y. Vardi. Graph neural networks meet
neural-symbolic computing: a survey and perspective. In Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence,
2020.

[52] Kexin Yi, Jiajun Wu, Chuang GAN, Antonio Torralba, Pushmeet Kohli, and
Joshua B Tenenbaum. Neural-symbolic VQA: disentangling reasoning from
vision and language understanding. In 32nd International Conference on
Neural Information Processing Systems, 2018.

[53] A. Garcez, M. Gori, L. Lamb, L. Serafini, Michael Spranger, and S. Tran.
Neural-symbolic computing: an effective methodology for principled integra-
tion of machine learning and reasoning. FLAP, 6, 2019.

[54] Yuke Zhu, Alireza Fathi, and Li Fei-Fei. Reasoning about object affordances in
a knowledge base representation. In David Fleet, Tomas Pajdla, Bernt Schiele,
and Tinne Tuytelaars, editors, Proceedings of the European conference on
computer vision – ECCV 2014, 2014.

[55] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual rela-
tionship detection with language priors. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, editors, Proceedings of the European conference on
computer vision – ECCV 2016, Cham, 2016.

[56] Kenneth Marino, Ruslan Salakhutdinov, and Abhinav Gupta. The more you
know: using knowledge graphs for image classification. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[57] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision, 2017.

[58] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In
Proceedings of the IEEE international conference on computer vision, 2015.

References 91

[59] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yuting Song, and Serge Belongie. Class-
balanced loss based on effective number of samples. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

[60] Wenjia Xu, Yongqin Xian, Jiuniu Wang, Bernt Schiele, and Zeynep Akata.
Attribute prototype network for zero-shot learning. Advances in Neural
Information Processing Systems, 33, 2020.

[61] De Cheng, Gerong Wang, Nannan Wang, Dingwen Zhang, Qiang Zhang,
and Xinbo Gao. Discriminative and robust attribute alignment for zero-shot
learning. IEEE Transactions on Circuits and Systems for Video Technology,
2023.

[62] Li Zhang, Tao Xiang, and Shaogang Gong. Learning a deep embedding model
for zero-shot learning. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017.

[63] Pengkai Zhu, Hanxiao Wang, and Venkatesh Saligrama. Generalized zero-
shot recognition based on visually semantic embedding. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, 2019.

[64] Long Chen, Hanwang Zhang, Jun Xiao, Wei Liu, and Shih-Fu Chang. Zero-
shot visual recognition using semantics-preserving adversarial embedding
networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1043–1052, 2018.

[65] Lei Zhang, Peng Wang, Lingqiao Liu, Chunhua Shen, Wei Wei, Yanning
Zhang, and Anton Van Den Hengel. Towards effective deep embedding for
zero-shot learning. IEEE Transactions on Circuits and Systems for Video
Technology, 30(9), 2020.

[66] Huajie Jiang, Ruiping Wang, Shiguang Shan, and Xilin Chen. Transferable
contrastive network for generalized zero-shot learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019.

[67] Yun Li, Zhe Liu, Lina Yao, Xianzhi Wang, and Can Wang. Attribute-
modulated generative meta learning for zero-shot classification. ArXiv, 2021.

[68] Guo-Sen Xie, Li Liu, Xiaobo Jin, Fan Zhu, Zheng Zhang, Jie Qin, Yazhou Yao,
and Ling Shao. Attentive region embedding network for zero-shot learning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2019.

[69] Yu Du, Miaojing Shi, Fangyun Wei, and Guoqi Li. Boosting zero-shot learning
via contrastive optimization of attribute representations. IEEE Transactions
on Neural Networks and Learning Systems, 2023.

[70] Yang Liu, Lei Zhou, Xiao Bai, Yifei Huang, Lin Gu, Jun Zhou, and Tatsuya
Harada. Goal-oriented gaze estimation for zero-shot learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2021.

92 References

[71] Yunlong Yu, Zhong Ji, Jungong Han, and Zhongfei Zhang. Episode-based
prototype generating network for zero-shot learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020.

[72] Zhe Liu, Yun Li, Lina Yao, Xianzhi Wang, and Guodong Long. Task aligned
generative meta-learning for zero-shot learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, 2021.

[73] Jingjing Li, Mengmeng Jing, Ke Lu, Zhengming Ding, Lei Zhu, and
Zi Huang. Leveraging the invariant side of generative zero-shot learning.
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[74] Rafael Felix, Ian Reid, Gustavo Carneiro, et al. Multi-modal cycle-consistent
generalized zero-shot learning. In Proceedings of the European conference
on computer vision (ECCV), 2018.

[75] Zongyan Han, Zhenyong Fu, Shuo Chen, and Jian Yang. Contrastive em-
bedding for generalized zero-shot learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021.

[76] A Vaswani. Attention is all you need. Advances in Neural Information
Processing Systems, 2017.

[77] José Maurício, Inês Domingues, and Jorge Bernardino. Comparing vision
transformers and convolutional neural networks for image classification: A
literature review. Applied Sciences, 13(9), 2023.

[78] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In Proceedings of the 2017 IEEE
International Conference on Computer Vision, 2017.

[79] Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel
Urtasun, and Alan Yuille. Detect what you can: detecting and
representing objects using holistic models and body parts. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
2014.

[80] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John M. Winn,
and Andrew Zisserman. The pascal visual object classes (voc) challenge.
International Journal of Computer Vision, 88:303–338, 2010.

[81] João Cartucho, Rodrigo Ventura, and Manuela Veloso. Robust object recogni-
tion through symbiotic deep learning in mobile robots. In Proceedings of the
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018.

[82] Luciano Serafini, A.S. d’Avila Garcez, Samy Badreddine, Ivan Donadello,
Michael Spranger, and Federico Bianchi. Logic tensor networks: theory and
applications. In Proceedings of the Neuro-Symbolic Artificial Intelligence,
2021.

References 93

[83] E. G. Miller, N. E. Matsakis, and P. A. Viola. Learning from one example
through shared densities on transforms. In IEEE Conference on Computer
Vision and Pattern Recognition, 2000.

[84] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. One shot learning of
simple visual concepts. Cognitive Science, 2011.

[85] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural
networks for one-shot image recognition. In ICML deep learning workshop.
Lille, 2015.

[86] Catherine Wah, Steve Branson, Pietro Perona, and Serge Belongie. Mul-
ticlass recognition and part localization with humans in the loop. In 2011
International Conference on Computer Vision, 2011.

[87] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing objects
by their attributes. In IEEE Conference on Computer Vision and Pattern
Recognition, 2009.

[88] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio
Torralba. SUN database: Large-scale scene recognition from abbey to zoo.
In 2010 IEEE computer society conference on computer vision and pattern
recognition. IEEE, 2010.

[89] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[90] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, 2009.

[91] Samy Badreddine, Artur Garcez, Luciano Serafini, and Michael Spranger.
gts: logic tensor network library. https://github.com/logictensornetworks/
logictensornetworks, 2021.

[92] Soravit Changpinyo, Wei-Lun Chao, Boqing Gong, and Fei Sha. Synthesized
classifiers for zero-shot learning. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[93] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. Hospedales.
Learning to compare: Relation network for few-shot learning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018.

[94] Meng Ye and Yuhong Guo. Progressive ensemble networks for zero-shot
recognition. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019.

[95] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and
Jonathan K Su. This looks like that: Deep learning for interpretable image
recognition. Advances in Neural Information Processing Systems, 2019.

94 References

[96] Shiming Chen, Ziming Hong, Guosen Xie, Wenhan Wang, Qinmu Peng,
Kai Wang, et al. MSDN: Mutually semantic distillation network for zero-
shot learning. 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[97] Wei Wang and Qingzhong Li. Generalized zero-shot activity recognition with
embedding-based method. ACM Transactions on Sensor Networks, 19(3),
2023.

[98] Karan Sikka, Jihua Huang, Andrew Silberfarb, Prateeth Nayak, Luke Rohrer,
Pritish Sahu, John Byrnes, Ajay Divakaran, and Richard Rohwer. Zero-
shot learning with knowledge enhanced visual semantic embeddings. arXiv
preprint arXiv:2011.10889, 2020.

[99] Tommaso Carraro. LTNtorch: PyTorch implementation of Logic Tensor
Networks. https://doi.org/10.5281/zenodo.6394282, mar 2022.

[100] Hongzu Su, Jingjing Li, Ke Lu, Lei Zhu, and Heng Tao Shen. Dual-
aligned feature confusion alleviation for generalized zero-shot learning. IEEE
Transactions on Circuits and Systems for Video Technology, 33(8), 2023.

[101] Samy Badreddine, Luciano Serafini, and Michael Spranger. logLTN: Differ-
entiable fuzzy logic in the logarithm space. ArXiv, abs/2306.14546, 2023.

	Contents
	List of Figures
	List of Tables
	1 Neural-symbolic architectures for high-dimensional data interpretation
	1.1 Main research challenges
	1.1.1 Logical constraints to improve object detection frameworks
	1.1.2 Neuro-Symbolic techniques for Zero-Shot Learning

	1.2 Structure of the Document
	2 Learning with neuro-symbolic architectures
	2.1 An overview of logic tensor networks
	2.2 Learning a grounding function
	2.3 Fuzzy logic operators
	2.3.1 Propositional connectives
	2.3.2 Aggregation operators

	3 Related work
	3.1 Neuro-symbolic approaches for object detection
	3.2 Introduction to Zero-Shot Learning
	3.2.1 Prototypical networks for Zero-Shot Learning

	4 Faster-LTN: neuro-symbolic object detection architecture
	4.1 Architecture
	4.1.1 Faster R-CNN
	4.1.2 Logic tensor network for object detection
	4.1.3 Faster-LTN

	4.2 Experimental setup
	4.3 Results
	4.4 Conclusion
	5 Proto-LTN a neuro symbolic architecture for zero-shot learning
	5.1 Prototypical networks
	5.2 Architecture
	5.2.1 Grounding terms
	5.2.2 Grounding functions and predicates
	5.2.3 Knowledge base
	5.2.4 Proto-LTN: the GZSL scenario

	5.3 Experimental setup
	5.4 Results
	5.5 Conclusion
	6 Fuzzy logic visual network (FLVN)
	6.1 Architecture
	6.1.1 Feature extraction
	6.1.2 Logic tensor network

	6.2 Experimental setup
	6.3 Results
	6.4 Conclusion
	7 Fuzzy logic prototypical network (FLPN)
	7.1 Architecture
	7.1.1 The ZSL and GZSL settings
	7.1.2 Image feature extraction
	7.1.3 Prototypes for semantic mapping
	7.1.4 Logic Tensor Network
	7.1.5 Knowledge base axioms

	7.2 Experimental setup
	7.3 Results
	7.3.1 Ablation studies
	7.3.2 Class feature visualization using t-SNE
	7.3.3 Visualization of attribute-level attention maps
	7.3.4 Architecture comparison

	7.4 Conclusion
	8 Concluding remarks
	References

