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Playing the Lottery With Concave Regularizers
for Sparse Trainable Neural Networks

Giulia Fracastoro , Member, IEEE, Sophie M. Fosson , Member, IEEE,
Andrea Migliorati , and Giuseppe C. Calafiore , Fellow, IEEE

Abstract— The design of sparse neural networks, i.e.,
of networks with a reduced number of parameters, has been
attracting increasing research attention in the last few years. The
use of sparse models may significantly reduce the computational
and storage footprint in the inference phase. In this context, the
lottery ticket hypothesis (LTH) constitutes a breakthrough result,
that addresses not only the performance of the inference phase,
but also of the training phase. It states that it is possible to extract
effective sparse subnetworks, called winning tickets, that can be
trained in isolation. The development of effective methods to play
the lottery, i.e., to find winning tickets, is still an open problem.
In this article, we propose a novel class of methods to play the
lottery. The key point is the use of concave regularization to
promote the sparsity of a relaxed binary mask, which represents
the network topology. We theoretically analyze the effectiveness of
the proposed method in the convex framework. Then, we propose
extended numerical tests on various datasets and architectures,
that show that the proposed method can improve the performance
of state-of-the-art algorithms.

Index Terms— Concave regularization, lottery ticket hypothesis
(LTH), neural network pruning, sparse optimization.

I. INTRODUCTION

NEURAL network pruning refers to the sparsification of a
neural architecture by removing unnecessary parameters,

i.e., either connections (weights) or neurons. As a matter of
fact, neural networks are often overparametrized and their size
can be significantly decreased while keeping a satisfactory
accuracy. Pruning allows us to reduce the computational costs,
storage requirements, and energy consumption of a neural
network in the inference phase; see, e.g., [1], [2], [3], [4]. This
has several advantages, ranging from the circumvention of
overfitting [1] to the possibility of implementing deep learning
in embedded mobile applications [5], [6].

Learning pruned (or sparse) neural networks is a challenging
task, which has drawn substantial attention in the last
years. In the literature, two main approaches are considered.
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The classic one is dense-to-sparse: the model is dense
at the beginning and during the training, while the output of the
training is a sparse network. In this context, a common practice
is the following three-stage iterative procedure [2], [7]: first,
the dense method is trained, then the sparse subnetwork is
extracted, and finally the subnetwork is retrained, by starting
from the weights of the trained dense model; this last stage
is known as fine-tuning (FT). Most of the proposed dense-
to-sparse training methods reduce the number of nonzero
parameters (i.e., the ℓ0 norm of the parameter vector)
by pruning the weights with the largest magnitude [2],
[8] or via ℓ0 regularization [3]. More recently, ℓ1 and
concave regularizations have been studied and tackled through
proximal gradient methods [9], [10]. The benefit of the dense-
to-sparse approach is the acceleration of the inference task
by using the sparse model; nevertheless, the training remains
computationally intense.

The second and more recent approach, known as sparse-to-
sparse, tackles the computational burden of the training phase.
Basically, it states that we can learn the sparse architecture
and then train it in isolation. However, learning a sparse
topology that can be trained in isolation is very challenging.
In particular, it has been observed that retraining a sparse
network obtained through a dense-to-sparse method from
a random initialization often yields a substantial loss of
accuracy. A way to circumvent this problem is rewinding
the weights to the original initialization of the dense model,
as proposed in [4]. More precisely, in [4], the authors
conjecture the lottery ticket hypothesis (LTH): a dense,
randomly initialized neural network Nd contains a small
subnetwork Ns that achieves a test accuracy comparable to
the one of Nd , with a similar number of iterations, provided
that Ns is trained in isolation with the same initialization
of Nd .

The effective subnetworks mentioned in the LTH are named
winning tickets as they have won the initialization lottery.
While their existence is proven in [4], their extraction is
not straightforward. As a matter of fact, the development of
effective algorithms to win the lottery is still an open problem.
In [4], a method based on iterative magnitude pruning (IMP) is
proposed, which still represents the state-of-the-art heuristic to
play the lottery. In [11], IMP is refined to deal with instability:
the weights are rewinded to an early iteration k > 0 instead
of the initial θ0 [11, Sec. III]. Thus, subnetworks are no
longer randomly initialized, and they are denoted as matching
tickets [11, Sec. IV]. In [12], an ℓ0 regularization approach
is proposed to search winning tickets, based on continuous
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Fig. 1. Three-stage pipeline for pruning. The initialization of the retraining
stage is done either with FT or rewinding.

sparsification, which outperforms the accuracy of IMP in
some numerical experiments. Nevertheless, such enhancement
is obtained at the price of repeated rounds, which causes a
slower sequential search, as discussed in [12, Sec. V.1].

In this work, we propose a novel method to play the lottery,
i.e., to find sparse neural networks that can be trained in
isolation by rewinding. The key steps of our approach are the
following: we define a binary relaxed mask, which describes
the network topology, and we optimize it by applying a
continuous, concave regularization. In particular, we consider
ℓ1 (which is also convex) and logarithmic regularizers. The
rationale behind continuous regularization is that most of
the sparse-to-sparse methods used to play the lottery [4],
[12] are ℓ0-based, which yields hard decisions. For example,
in IMP, the percentage of surviving parameters is priorly set,
possibly causing the removal of important weights. Instead,
a continuous regularization may yield softer decisions in the
pruning process, and, as a consequence, more accurate models.
To the best of the authors’ knowledge, this is the first sparse-
to-sparse method employing an ℓ1/concave setting.

As discussed throughout the article, the use of a relaxed
binary mask allows us to train the model via projected
gradient descent even though the proposed sparsity-promoting
regularization is nondifferentiable. On the other hand, we show
that strictly concave regularization is particularly efficient
when applied on binary variables.

The main contributions of this article can be summarized
as follows. We develop a novel strategy to play the lottery
that leverages the use of sparsity-promoting regularization and
relaxed binary masks. Then, we provide theoretical conditions
under which our approach guarantees to find an optimal
sparse mask, at least in the case of convex loss functions.
Finally, we extensively validate the proposed method on
various datasets and architectures. The article is organized
as follows. In Section II, we illustrate the background
and previous work on neural network pruning and LTH,
to contextualize the proposed contribution. In Section III,
we present the proposed method, which is theoretically
analyzed in Section IV. Section V is devoted to experiments,
comparisons, and discussions. Finally, we draw some
conclusion.

II. RELATED WORK

In recent years, the literature on neural network pruning
and LTH has significantly grown, and a complete overview
is beyond our purposes. In this section, we review the
main works that, for different motivations, are related to our
approach. In Table I, we report a list of relevant works and
their properties.

A. Dense-to-Sparse Methods

Regarding the dense-to-sparse approach, several approaches
include a regularization term in the loss function to sparsify the
model, the most popular being the ℓ0-norm [3], ℓ1-norm [9]
and concave ℓp norms [10]. In these works, training and
sparsification are performed in a joint optimization problem.
In contrast, in the method proposed in [2], training and
pruning are separated tasks, and the pruned architecture is
iteratively retrained, according to the three-stage pipeline
depicted in Fig. 1. The retraining stage is initialized with FT,
i.e., by starting from the parameters obtained in the previous
training stage. Such a three-stage procedure with FT is very
common in the dense-to-sparse approach, see, e.g., [2], [6],
[13], [14].

Among more recent works, in [15] a different regularization
is proposed, based on the neural sensitivity, to learn sparse
topologies with a structure. In [16], an energy-based pruning
method is developed, combined with a dropout approach.
In [17], [18], [19], [20], and [21], specific methods for
filter/channel pruning in convolutional neural networks are
developed.

B. Sparse-to-Sparse Methods

The above-mentioned three-stage pipeline is also popular in
the sparse-to-sparse approach [4], [12], but with rewinding:
in the retraining stage, the parameters are reinitialized by
rewinding them to the original initialization; see Section I.
In the IMP method [4], which is by far the most common
sparse-to-sparse approach, pruning is performed by removing
the p% parameters with the smallest magnitude. This
approach has some drawbacks. As p is priorly set, this may
result either in an excessive sparsification with the removal
of important weights or in an insufficient sparsification
that retains superfluous parameters. Moreover, very similar
weights may be either retained or removed to fulfill p%,
which contradicts the principle of saving the most relevant
parameters. In [12], the hard effect of magnitude pruning is
mitigated by a continuous relaxation of the ℓ0 regularization.
However, as discussed in Section I, in practice this does not
outperform IMP.

In this article, we tackle these issues by introducing ℓ1/log
regularizers to induce sparsity. This results in a softer approach
where the output of the optimization/training stage is not
expected to be an exact binary mask, but a relaxed mask
that can be used for pruning the dense network by setting
a suitable threshold α ∈ [0, 1]. Also, the dense-to-sparse
approach presented in [2] proposes to set a threshold instead of
removing a fixed percentage of the weights. However, in [2],
the threshold is set on the weights of the parameters, which
basically can assume any real value and whose range may
vary at each layer of the network. Therefore, setting such a
threshold may be critical and it requires some prior knowledge
of the range of the parameters. In addition, defining a unique
threshold for the entire network can be troublesome because
weights from different layers might have different orders of
magnitude.
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TABLE I
CLASSIFICATION OF MAIN WORKS ON NEURAL NETWORK PRUNING.

NOTATION: D2S = DENSE-TO-SPARSE APPROACH; S2S = SPARSE-TO-
SPARSE APPROACH; 3S = METHODS EXPLOITING A THREE-STAGE

ITERATIVE PROCEDURE, AS IN FIG. 1. 3S METHODS MAY
REINITIALIZED EITHER WITH FT OR REWINDING (RW)

III. PROPOSED METHOD

In this section, we present the proposed method.
Let us consider a neural network f (x; θ), where x

represents the input data and θ ∈ Rd are the weights. Let
⊙ be the componentwise product between vectors. According
to [4], playing the lottery consists of searching a binary mask
m ∈ {0, 1}

d with ∥m∥0 ≪ d such that f (x; m ⊙ θ) is a
winning ticket, i.e., it achieves performance comparable to
f (x; θ) when trained in isolation.

The seminal IMP search algorithm proposed in [4] consists
of an iterative three-stage pipeline, as illustrated in Fig. 1. The
retraining phase is performed by rewinding the parameters to
m t ⊙ θ0, where θ0 is the original initialization and m t is the
current estimated mask.

The proposed method is as follows. We consider the mask m
as an optimization variable and we use concave regularization
to promote its sparsity. To avoid mixed-integer problems,
we relax the binary mask and we consider it as a continuous
variable

m ∈ [0, 1]
d . (1)

Then, we jointly train and sparsify the network by solving

min
θ∈Rd ,m∈[0,1]d

L(x; m ⊙ θ) + λR(m) (2)

where R is a sparsity-inducing, concave regularizer. This
approach returns both a sparse relaxed mask and the trained
weights. The relaxed mask in [0, 1]

d can be interpreted as a
relevance score or soft decision for each parameter. To refine
these soft results, we prune the parameters with mask value
below a small threshold α ∈ (0, 1), α ≪ 1. We remark that this
is not a harsh pruning, which would contradict the proposed
soft approach; instead, it is just a way to remove small weights
expected to converge to zero. Furthermore, we notice that
setting a threshold in (0, 1) is more straightforward than setting
a magnitude threshold on the parameters’ values as in [2],
because it does not require information about the parameters’
range.

Then, we iterate the procedure as in Fig. 1, with a rewinding
strategy, i.e., the three-stage external loop is analogous to the
one of IMP.

The thorough procedure is summarized in Algorithm 1.

Algorithm 1 Soft Mask Pruning With Concave Regularization

Input: θ0 ∈ Rd , m0 =
1
2 (1, 1, . . . , 1) ∈ Rd , α ∈ (0, 1), T

1: for all t = 1, . . . , T do

2: Initialization:

θ = θ0, m = m t−1

3: Optimization:

minθ∈Rd ,m∈[0,1]d L(x; m ⊙ θ) + λR(m) → (θt , m t )

4: Pruning:

for each i = 1, . . . , d , if m t,i < α, then m t,i = 0

5: end for

To complete the illustration of the algorithm, we introduce
the family of considered regularizers R(m).

A. Sparsity-Inducing Concave Regularizers

The rationale behind concave regularization is as follows.
While sparsity is represented by the ℓ0-norm, its use as a
regularizer is critical due to noncontinuity and nonconvexity.
For this motivation, the ℓ1-norm is often used, as it is the best
convex approximation of the ℓ0-norm, see [22]. In the presence
of a convex cost function, by using the ℓ1-norm, we recast the
overall problem into convex optimization. A typical example
is Lasso [22].

On the other hand, continuous concave regularizers have
been observed to be more effective than ℓ1 regularization, even
though they introduce nonconvexity in the problem, as their
shape is closer to the ℓ0-norm.

In this work, we consider concave regularizers R(m) with
the following property.

Assumption 1: R(m) is any function

R(m) =

d∑
i=1

r(mi ), mi ∈ [0, 1] (3)

such that r : [0, 1] → [0, 1] is continuous and differentiable
in (0, 1), concave, nondecreasing, and its image is [0, 1].
In the literature of signal processing and sparse optimization,
the most popular regularizers satisfying Assumption 1 are

1) ℓ1: r1(mi ) = mi , see [9], [10], [22].
2) log: rϵ(mi ) = (log((mi + ϵ)/ϵ))/(log((1 + ϵ)/ϵ)) for

any ϵ > 0, see [23].
Other possible choices are ℓq norm, see [10], [24], and
minimax concave penalties, see [25]. In this work, we focus
our attention on ℓ1 and log regularizers.

In the literature, the use of strictly concave regularization
has arisen in the context of linear regression and compressed
sensing, see, e.g., [23], [24], [26], [27], [28]. Then, it has been
extended to several machine learning models; we refer the
interested reader to the survey [29]. When the cost function is
strictly convex, adding a strictly concave regularizer may keep
the problem in the convex optimization framework, see, e.g.,
[30]. In contrast, the problem is more challenging when the
cost function is nonconvex. This case is theoretically analyzed,
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e.g., in [31], [32], and [33], where much attention is devoted to
proving the convergence of the applied algorithms (proximal
methods and alternating direction method of multipliers).

Within the family of nonconvex cost functions, the case of
neural networks is even more difficult. In fact, in deep learning,
gradient-based algorithms are commonly used for training,
which is in conflict with nondifferentiable regularization as
in Assumption 1, as discussed in Section III-B.

B. Discussion on the Training Algorithm

The training phase of the proposed approach requires locally
solving (2). In principle, the ℓ1/ log regularization is critical
for the application of gradient-based training algorithms, due
the nondifferentiability in zero. However, in our approach,
we regularize m ∈ [0, 1]

d ; thus, we can use a projected
gradient-based algorithm, without differentiability issues.

We remark that ℓ1 regularization is popular in deep learning
and it is usually implemented in libraries such as TensorFlow
and PyTorch. However, since ℓ1 norm is not differentiable at
zero, it is usually implemented with a subgradient approach,
namely the gradient of |x | is defined as sign(x) for x ̸= 0, and
0 for x = 0. This workaround may be effective in controlling
the energy of the parameters, but subgradient iterates do not
attain zero, thus sparsification fails. Moreover, subgradient
methods are substantially slow and may result in oscillations.
These drawbacks are illustrated in the numerical example in
Section IV-C.

Recently, proximal operator methods are used instead of
subgradient, see, e.g., [9], [10]. However, their application and
convergence proof are critical and limited to some specific
cases.

Given these considerations, the proposed relaxed binary
mask turns out to be an effective alternative strategy to match
the use of nondifferentiable, sparsity-promoting regularizers
with standard gradient-based training algorithms.

IV. THEORETICAL ANALYSIS

In this section, we prove theoretical results that support the
effectiveness of the proposed method, by providing conditions
that guarantee to extract an optimal sparse subnetwork
topology. In particular, these results explain why a log
regularizer may be preferable to ℓ1. Finally, we show an
illustrative example that corroborates the theoretical findings.

As a thorough analysis is quite complex, we focus on the
following problem: we assume that a vector θ of trained
parameters is available and that a sparse mask m̃ ∈ {0, 1}

d

exists, such that m̃ ⊙ θ is a sparse topology with no substantial
performance loss. Our aim is to estimate this optimal m̃.
To this purpose, we solve

min
m∈[0,1]d

L(x; m ⊙ θ) + λR(m) (4)

where R(m) satisfies Assumption 1.
On the one hand, this problem is addressed in the context

of the strong LTH, where subnetworks are extracted from
randomly weighted neural networks without modifying the
weight values, see [34], [35]. On the other hand, if in (2)

we proceed by alternated minimization over θ and m, (4) can
be interpreted as a subproblem of (2).

Since, in this section, we consider m as the unique variable,
for simplicity we write L(x; m ⊙ θ) = L(m). Let

m⋆
= argmin

m∈[0,1]d
L(m) + λR(m). (5)

Then, m⋆ is an estimate of m̃. To evaluate the accuracy of this
estimate, we analyze the distance between m⋆ and m̃. To this
end, we assume that

∥∇L(m̃)∥∞ ≤ λ. (6)

This is always true by properly choosing λ. On the other hand,
we expect ∥∇L(m̃)∥∞ to be small as far as m̃ is close to a
stationary point, i.e., if the model is amenable to effective
sparsification.

To keep the analysis straightforward, we do the following
convexity assumption.

Assumption 2: There exists γ > 0 such that

L(m⋆) ≥ L(m̃) + ∇L(m̃)T (m⋆
− m̃) +

γ

2
∥m⋆

− m̃∥
2
2. (7)

In other terms, we require strong convexity at least with
respect to the points m̃ and m⋆. Clearly, this is fulfilled if the
loss is globally strongly convex.

A. Accuracy Analysis for ℓ1 Regularization

In this section, we study the accuracy, in terms of
distance between m̃ and m⋆, in the case of ℓ1 regularization.
Specifically, we prove the following result.

Theorem 1: Let h = m⋆
− m̃. If R(m) = ∥m∥1, then

∥h∥2 ≤
4λ

√
k

γ
. (8)

Proof: By definition of m⋆ in (5), we have

L(m⋆) + λR(m⋆) ≤ L(m̃) + λR(m̃). (9)

Let S and Sc denote the support of m̃ and its complementary
set, respectively. Moreover, hS (respectively, hSc ) is the
subvector of h with components indexed in S (respectively,
in Sc). Then

L(m⋆) − L(m̃) ≤ λ∥m̃∥1 − λ∥m⋆
∥1

= λ[∥m̃∥1 − ∥m̃ + h∥1]
= λ

[
∥m̃∥1 − ∥m̃S + hS∥1 − ∥hSc∥1

]
≤ λ

[
∥m̃∥1 − ∥m̃S∥ + ∥hS∥1 − ∥hSc∥1

]
= λ∥hS∥1 − λ∥hSc∥1. (10)

Moreover,

∇L(m̃)T (m⋆
− m̃) ≤ ∥∇L(m̃)∥T

∞
∥h∥1

≤ λ∥h∥1. (11)

Now, from (7) and (10), we have a lower bound and an upper
bound for L(m⋆) − L(m̃). By using also (11), we obtain

−λ∥h∥1 +
γ

2
∥h∥

2
2 ≤ L(m⋆) − L(m̃) ≤ λ∥hS∥1 − λ∥hSc∥1.

(12)
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Then,
γ

2
∥h∥

2
2 ≤ λ∥h∥1 + λ∥hS∥1 − λ∥hSc∥1

≤ λ∥hS∥1 + λ∥hSc∥1 + λ∥hS∥1 − λ∥hSc∥1

≤ 2λ∥hS∥1

≤ 2λ
√

k∥h∥2. (13)

Then, by dividing by ∥h∥2, we obtain the claim.
The statement of Theorem 1 provides an error bound on

the estimate m⋆ of the optimal mask m̃. This error bound is
proportional to λ, which can be chosen as equal to ∥∇L(m̃)∥∞

based on (6). In other terms, the more the masked solution
m̃ ⊙ θ is close to the nonmasked optimum θ , the more by
solving the ℓ1-regularized problem we obtain a good estimate.
Similarly, the more sparsity k of m̃ is small, the more m⋆

is a good estimate. The third parameter present in the error
bound is γ , which is a measure of the convexity of the loss in
Assumption 2. Then, the error bound is smaller if the loss is
more convex, i.e., γ is larger. An enhancement of Theorem 1
can be obtained by replacing ℓ1 with a more general strictly
concave regularization.

B. Accuracy Analysis for Strictly Concave Regularization

In this section, we analyze the accuracy in case of strictly
concave regularization.

Theorem 2: Let h = m⋆
− m̃. Let R(m) be strictly concave

in [0, 1] as in Assumption 1. Then

∥h∥2 ≤
4λ

√
k

γ
− φ(m⋆) (14)

where φ(m⋆) > 0 is assessed in the proof.
Proof:

L(m⋆) − L(m̃) ≤ λR(m̃) − λR(m⋆). (15)

Now, since m̃ ∈ {0, 1}
d , then R(m̃) = ∥m̃∥1 =

∑
m̃i

. Then,

R(m̃) − R(m⋆) = ∥m̃∥1 − R(m⋆)

= ∥m̃∥1 − R(m⋆) ± ∥m⋆
∥1

≤ ∥hS∥1 − ∥hSc∥1 − φ(m⋆) (16)

where

φ(m⋆) = R(m⋆) − ∥m⋆
∥1 ≥ 0. (17)

Theorem 2 states that by replacing ℓ1 with a strictly concave
regularization, such as the logarithmic one, we obtain an error
bound which is smaller than the one in Theorem 1 of φ(m⋆).

Let us discuss more in detail the role of φ(m⋆). We notice
that if m⋆

∈ {0, 1}
d , then R(m⋆) = ∥m⋆

∥1, φ(m⋆) =

0, and no enhancement is obtained by using a strictly
concave regularizer. However, we know from the statements
of Theorems 1 and 2 that ∥m⋆

− m̃∥2 ≤ (4
√

k/γ )λ.
Then,

Lemma 1: If (4
√

k/γ )λ < 1 and m⋆
∈ {0, 1}

d , then
m⋆

= m̃.
Therefore, if (4

√
k/γ )λ < 1, the unique feasible binary

solution is m̃. Moreover, if m⋆ /∈ {0, 1}
d , then φ(m⋆) > 0 and

Fig. 2. Eight samples from the MNIST dataset.

we obtain a smaller error bound by using a strictly concave
regularizer.

C. Illustrative Example

To conclude the analysis, we show an illustrative example
of Problem (4) with Assumption 2. Specifically, we consider
a problem of binary classification performed through logistic
regression (LG). We use the MNIST dataset [36] restricted to
the digits 0 and 1. Each image is composed of d = 400 pixels.
We consider 200 samples for each digit, 160 for training, and
N = 40 for validation test. The corresponding cross-entropy
loss function is

L(X, y; θ) =

N∑
i=1

yi log(ŷi ) − (1 − yi ) log(1 − ŷi )

where y ∈ {0, 1}
N and ŷ ∈ [0, 1]

N , respectively, are the
vectors of correct and estimated labels. More precisely,

ŷi =
1

1 + eX i θ

where θ ∈ Rd is the vector of estimated parameters and
X ∈ RN ,401 is the validation dataset (including the intercept).
The loss is convex; if an ℓ2 regularization is added, we have
strong convexity as in Assumption 2.

As we can see in Fig. 2, many pixels (e.g., the ones
toward the image borders) are not significant for classification,
therefore there is room for sparsification. Then, we tested
different approaches for sparsification. First, we considered a
classic ℓ1 regularization, i.e., we minimize L(X, y; θ)+λ∥θ∥1.
Second, we applied ℓ1 and logarithmic regularizations to
the mask. More precisely, given a vector θ̂ of parameters,
e.g., obtained via LG, we aim at finding a binary mask
m ∈ {0, 1}

d that selects the significant pixels, i.e., the final
parameter vector will be θ̂ ⊙ m. Since X θ̂ ⊙ m = Xdiag(θ̂)m,
for finding m, it is sufficient to train over the dataset
Xdiag(θ̂), with the chosen regularization. In formulas, we
minimize

L
(
Xdiag(θ̂), y; m

)
+ λR(m), m ∈ [0, 1]

d

where R is either ℓ1 or log regularization. We notice
that this approach does not retrain the model, but it just
performs a selection of the parameters/pixels that can be
neglected.

In the experiment, we do not set the ground truth m⋆, but we
consider acceptable solutions whose accuracy is comparable to
the one of standard LG.
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Fig. 3. Binary classification on MNIST dataset with LG accuracy and sparsity
with respect to the design parameter λ.

The results of the experiment can be visualized in Fig. 3,
where we depict the mean accuracy and sparsity over
100 random runs, with respect to different values of the
design parameter λ. In all the approaches, the minimization
is performed via gradient descent. More precisely, for the
ℓ1 approach on θ , a subgradient method is used given the
nondifferentiability of ℓ1. As previously discussed, this may
not provide sparse solutions, which is clearly visible in the
experiment: basically, a larger λ causes large oscillations
around zero and the solution is not sparse. This makes this
solution not useful, and even less sparse than the original LG.
This issue is solved by using the mask: since the relaxed mask
is positive, we can use a projected gradient descent, which
yields sparse solutions.

In particular, we notice that all the methods achieve
comparable accuracy, but the proposed mask ℓ1/log methods
efficiently sparsify the model. As expected from the theoretical
results, in most cases, the logarithmic version is more accurate
than the ℓ1 version, by providing sparser models.

In this regard, in Fig. 4(a), we can see an 8-sparse mask
obtained via logarithmic regularization. By applying this
mask on the eight digits in Fig. 2, we obtain the masked
digits in 4(b): even though extremely sparsified, from visual
inspection, we can verify that 0 and 1 are distinguishable.

Fig. 4. (a) Eight-sparse mask obtained with logarithmic regularization.
(b) Samples of Fig. 2 masked via (a). We can see that eight pixels may
be sufficient to distinguish between digits 0 and 1.

V. EXPERIMENTS

In this section, we perform an experimental evaluation of the
proposed method. We first illustrate the experimental settings,
then we discuss the experimental performance of the proposed
method both in the context of the lottery ticket hypothesis
and in network pruning. Then, an ablation study is conducted
to evaluate the impact of the various aspects of the proposed
technique. Finally, we report the training times of our method.

A. Concave Regularizers

In the experimental evaluation, we consider two concave
regularizers, chosen among the most popular ones. The first
one is r1(mi ) = mi . As discussed in the previous section, this
regularizer corresponds to the ℓ1-norm restricted to the interval
[0, 1] and represents the limit case since it is both convex and
concave. The second concave regularizer considered in the
experiments is rϵ(mi ) = (log((mi + ϵ)/ϵ))/(log((1 + ϵ)/ϵ)),
which is strictly convex.

B. Networks and Datasets

We test the chosen concave regularizers on various
datasets and architectures. In particular, we focus on
image classification. In this context, we consider three
architectures: ResNet-20, VGG-11, and WideResNet-20 with
64 convolutional filters in the first block of the network.
All these architectures are tested on CIFAR-10, CIFAR-100,
and Tiny ImageNet datasets, resulting in nine distinct
combinations. In the context of network pruning, we evaluate
the performance of the proposed method on CIFAR-10 using
the ResNet-56 architecture, which is a standard experiment in
this framework.

C. Sparsities

As discussed by [11], sparsities can be divided into three
ranges. Trivial sparsities are the lowest sparsities, where even
random pruning can achieve full accuracy. Matching sparsities
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Fig. 5. Test accuracy and sparsity of the subnetworks of ResNet-20 produced
by IMP and the proposed method on CIFAR-10, CIFAR-100, and Tiny
ImageNet.

correspond to moderate sparsities, where benchmark methods
can approximately reach the accuracy of the full network.
Extreme sparsities are the highest sparsities, where the
subnetworks cannot reach full accuracy. In these experiments,
we consider matching sparsities and the lowest extreme
sparsities.

D. Experimental Settings

For all the methods considered in the experimental
evaluation, we perform three pruning rounds to identify the

Fig. 6. Test accuracy and sparsity of the subnetworks of WideResNet-20
produced by IMP and the proposed method on CIFAR-10, CIFAR-100, and
Tiny ImageNet.

sparse subnetwork. In each round, we follow the standard
setup proposed in [4], training with SGD, a learning rate
of 0.1, a weight decay of 0.0001, and a momentum of 0.9.
Each round constitutes 85 epochs for ResNet-20 and 120 for
VGG-11 and WideResNet-20, using a batch size of 128.
We decay the learning rate by a factor of 10 at epochs
56 and 71 for ResNet-20 and epochs 60 and 90 for VGG-11
and WideResNet-20. The results are averaged on three runs,
with different random seeds. For the concave regularizers,
we set λ = 3 × 10−6 for r1(mi ) and λ = 10−6 for rϵ(mi ).
In addition, for rϵ(mi ) we set ϵ = 0.1. All the methods
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Fig. 7. Test accuracy and sparsity of the subnetworks of VGG-11 produced
by IMP and the proposed method on CIFAR-10, CIFAR-100, and Tiny
ImageNet.

considered in the experiments were implemented using the
publicly available open_lth framework1 (MIT license). All
the experiments were conducted using two NVIDIA TITAN
Xp GPUs.

E. Performance Comparison

We consider IMP as a benchmark method. Both the
proposed method and IMP are implemented using the same
training parameters described in the previous section. Figs. 5–7

1https://github.com/facebookresearch/open_lth

TABLE II
COMPARISON AGAINST STATE-OF-THE-ART PRUNING METHODS ON

THE CIFAR10 DATASET USING THE RESNET-56 ARCHITECTURE.
COLUMNS RESPECTIVELY REPORT THE BASELINE EVALUATION

ACCURACY, THE RATE OF UNPRUNED PARAMETERS, THE
EVALUATION ACCURACY OF THE PRUNED MODEL, AND THE

ACCURACY DIFFERENCE AGAINST THE BASELINE

show the results for ResNet-20, WideResNet-20, and VGG-11,
respectively. We can observe that the proposed method with
the concave regularizers reaches performance comparable to
the ones of IMP at matching sparsities, but significantly
outperforms IMP at higher sparsity, especially on the ResNet-
20 architecture. The two concave regularizers exhibit similar
performance in most of the experiments. However, in some
cases, such as the experiments on ResNet-20 depicted in
Fig. 5, the strictly convex regularizer rϵ(mi ) can significantly
improve the performance with respect to r1(mi ).

F. Comparison Against State-of-the-Art
Pruning Methods

Even though the main focus of this work is the lottery ticket
hypothesis where we aim to find sparse trainable networks,
we also compare our work against state-of-the-art pruning
methods that consider a dense-to-sparse approach. In this
case, we evaluate the performance of the proposed method
using a standard experiment for pruning methods, i.e., image
classification on the CIFAR10 dataset using the ResNet-56
architecture. Results in Table II show that our method greatly
outperforms competing methods: we are able to improve over
the baseline accuracy with an unpruned ratio as low as 23%,
which indicates that more than 77% of the parameters have
been pruned.
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Fig. 8. Test accuracy and sparsity of the subnetworks of ResNet-20 produced
by the proposed method on CIFAR-10. Solid lines correspond to the case
where we prune the weights whose mask values are below a given threshold
(soft approach). Dashed lines correspond to the case where at each round we
prune a fixed percentage of weights based on the magnitude of the mask value
(hard approach).

Fig. 9. Test accuracy and sparsity of the subnetworks of ResNet-20 produced
the proposed method using concave regularizer or sigmoid reparameterization
on CIFAR-10 (left) and CIFAR-100 (right).

G. Ablation Study

In this section, we evaluate the impact of some aspects
of the proposed method. First, we investigate the impact of
setting a threshold instead of removing a fixed percentage of
parameters. In the first case, we remove the parameters whose
mask values are below a given threshold, at the end of each

TABLE III
TRAINING TIMES ON CIFAR-10 OF THE ARCHITECTURES

CONSIDERED IN THE EXPERIMENTS

round. In contrast, in the second case, a constant percentage of
weights is removed at each round based on the magnitude of
the mask values. Fig. 8 shows the results of this comparison
for ResNet-20 on CIFAR-10. We can observe that setting a
threshold can significantly improve the performance of the
proposed method.

We then evaluate the importance of using concave
regularizers, comparing them against a different regularization
technique. We consider a sigmoid reparameterization m =

σ(βs) = (1/(1 + e−βs)), as proposed in [12]. The parameter
β is defined as in [12], where is updated at each epoch
using an exponential schedule β(t)

= (β(T ))t/T for epoch
t = 0, . . . , T , where we set β = 200. The results for
ResNet-20 on CIFAR-10 and CIFAR-100 are shown in Fig. 9.
We can observe that the proposed concave regularizers can
provide significantly better performance than the sigmoid
reparameterization.

H. Training Times

In Table III, we indicate the training times on CIFAR-10
of the architectures considered in the experiments. Table III
shows both the time for finding the sparse architecture and the
training time of the sparse network.

VI. CONCLUSION

In this article, we proposed a novel iterative method for
identifying matching tickets, i.e., for extracting subnetworks
that, when trained in isolation, achieve accuracy comparable
to the dense networks that contain them. The method is based
on the introduction of a binary mask, which is relaxed to a
continuous variable and penalized by concave regularization to
promote its sparsity. The use of strictly concave regularization
is quite novel in deep learning. We provide theoretical
results that substantiate its effectiveness with respect to other
methods. Experiments on different problems and architectures
show that the proposed approach is valuable with respect to
the IMP method. Future work will be devoted to optimizing
the tuning of the hyperparameters and to the reduction
of the numerical complexity, by considering early-bird
approaches and untrained models as in the strong lottery ticket
framework.
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