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Abstract: Optimization is a crucial challenge across various domains, including finance,
resource allocation, and mobility. Quantum computing has the potential to redefine the
way we handle complex problems by reducing computational complexity and enhancing
solution quality. Optimization, particularly of objective functions, stands to benefit sig-
nificantly from quantum solvers, which leverage principles of quantum mechanics like
superposition, entanglement, and tunneling. The Ising and Quadratic Unconstrained Bi-
nary Optimization (QUBO) models are the most suitable formulations for these solvers,
involving binary variables and constraints treated as penalties within the overall objective
function. To harness quantum approaches for optimization, two primary strategies are
employed: exploiting quantum annealers—special-purpose optimization devices—and
designing algorithms based on quantum circuits. This review provides a comprehensive
overview of quantum optimization methods, examining their advantages, challenges, and
limitations. It demonstrates their application to real-world scenarios and outlines the steps
to convert generic optimization problems into quantum-compliant models. Lastly, it dis-
cusses available tools and frameworks that facilitate the exploration of quantum solutions
for optimization tasks.

Keywords: QUBO; quantum computing; design automation; quantum optimization;
quantum annealer; quantum circuit model; quantum-inspired optimization

1. Introduction
Solving optimization problems is a fundamental challenge across various research

and industrial domains, including finance [1], automatic control systems [2], machine
learning [3], and telecommunications [4].

Many optimization problems belong to the NP (Nondeterministic Polynomial time)
complexity class, which includes decision problems that, although not solvable in poly-
nomial time, can be verified in polynomial time using classical strategies [5]. Particularly,
NP-complete problems are significant since every problem in NP can be reduced to them
in polynomial time. Solving any NP-complete problem in polynomial time would imply
P = NP. In contrast, NP-hard problems are at least as difficult as NP-complete problems
but may not be verifiable in polynomial time and are not limited to decision problems,
encompassing many optimization tasks.

The growing need for efficient solutions to large-scale problems has driven continuous
innovation, fostering new approaches that better explore solution spaces [6].

With advances in quantum computing [7], interest has risen in evaluating its poten-
tial for optimization. Quantum computing could reduce computational complexity and
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improve solution quality, addressing challenges in diverse fields such as healthcare, energy
systems, and finance. Notable examples include grid management [8] and portfolio opti-
mization [9]. By enhancing optimization techniques, quantum approaches can bridge the
gap between computational methods and real-world applications.

Currently, two main methods are employed: quantum annealers (QAs) [10,11], special-
purpose devices for optimization tasks, and algorithms based on quantum circuits or quan-
tum gate arrays (QGAs) [7], which run on general-purpose quantum hardware or classical
simulators. To leverage quantum solvers, optimization problems must be reformulated
into quantum-compliant models. The Ising [12] and Quadratic Unconstrained Binary Op-
timization (QUBO) [13] models are widely used for this purpose. However, translating
problems into these formulations often demands specialized expertise. To simplify this
process, recent years have seen the development of tools and frameworks to assist users.

This review provides a comprehensive overview of quantum approaches to optimiza-
tion, emphasizing their advantages, challenges, and limitations. It demonstrates how these
methods apply to real-world scenarios, detailing the required steps and offering practical
examples. Furthermore, it examines tools, frameworks, and solvers that support users in
adopting quantum techniques for optimization tasks.

The article is organized as follows: Section 2 reviews optimization problems and
conventional solvers. Section 3 discusses quantum-compliant formulations and tools for
problem translation. Sections 4 and 5 focus on quantum annealers and circuit-based solvers,
respectively. Finally, Section 6 concludes the article.

2. Solving Optimization Problems
The goal of optimization problems is to determine the configuration of parameters,

inputs, or variables that minimizes or maximizes an objective function. For example,
optimization minimizes delivery times in logistics and reduces costs in energy systems.
These problems arise in fields like engineering, finance, and healthcare, and solvers explore
solutions in an intelligent and systematic manner.

Optimization problems are classified based on variable types:

• Combinatorial Optimization (CO): this involves discrete variables.
• Continuous Optimization: this involves continuous variables.

When constraints limit feasible solutions, the problem is termed constrained opti-
mization. Constraints can be integrated into the objective function via penalty functions or
handled by generating only feasible solutions during exploration. The former is widely
adopted in quantum optimization.

Objective functions are called cost functions when minimized and fitness functions
when maximized. Many real-world problems involve multi-objective optimization (MO),
requiring trade-offs among objectives. Solutions can be identified using Pareto optimal sets,
enabling preference evaluation during (interactive methods) or after (a posteriori methods)
optimization. Alternatively, objectives can be aggregated into a single scalar function (a
priori methods).

Exploration strategies depend on problem characteristics. Brute-force approaches
guarantee optimal solutions but become impractical as the problem size grows due to
exponential complexity.

Deterministic methods suit convex problems with single minima but face challenges
in multimodal or non-convex scenarios. In contrast, heuristic approaches are preferred for
large-scale problems, balancing the exploration of feasible spaces and the exploitation of
prior solutions.

Population-based algorithms explore solutions in parallel, inspired by natural and
social systems. Examples include the following:
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• Cooperative algorithms: these mimic swarm behavior (e.g., particle swarm optimiza-
tion [14]).

• Genetic algorithms (GAs): these model biological evolution [15].
• Artificial immune algorithms: these simulate immune responses [16].

Algorithms inspired by physical systems are also prominent. For instance, simulated
annealing (SA) [17] mimics annealing in materials science. SA probabilistically accepts
solutions that may worsen objective values based on a temperature parameter, enabling
exploration early and exploitation as temperature decreases. Modern hardware accelerators,
such as probabilistic computers [18] and Coherent Ising Machines (CIMs) [19], exploit
physical processes to solve optimization problems.

Quantum solvers leverage quantum phenomena such as superposition, entanglement,
and tunneling. Quantum annealing (QA) parallels simulated annealing (see Section 4),
while quantum gate arrays (QGAs) use methods like Grover Adaptive Search and Quantum
Approximate Optimization Algorithms (QAOAs) (see Section 5).

However, quantum devices remain in the Noisy Intermediate-Scale Quantum (NISQ)
era, with limited qubits, connectivity, and susceptibility to errors, posing challenges for
real-world applications.

3. Quantum-Compliant Problem Formulations
3.1. Ising

The Ising formulation [20] is a physical–mathematical model used in statistical me-
chanics to describe phase transitions in ferromagnetic systems. It represents magnetic
dipoles as binary variables, +1 (spin-up) and −1 (spin-down), arranged in a lattice struc-
ture with interactions. Initially proposed for a one-dimensional chain, it was extended to
two dimensions by Lars Onsager in 1944.

Its energy function, known as Hamiltonian, includes the following:

• An external field term h, whose sign determines the preferred spin orientation and the
magnitude reflects the strength of the spin’s contribution to the total energy.

• An interaction term between neighboring spins J, due to the influence of the magnetic
field generated by each magnetic dipole on its neighbors, which can be either aligned
or counter-aligned, with the strength depending on its magnitude.

The Ising Hamiltonian is expressed as follows:

H(s) =
N

∑
i=1

hisi +
1
2

N

∑
i=1

N

∑
j=1,j ̸=i

Jijsisj , (1)

where N is the total number of spins, si is ith spin, hi is the external field coefficient of the
ith spin, and Jij is the interaction coefficient between the ith and jth spins.

Minimizing this Hamiltonian is generally NP-hard, except for special cases, such as
planar 2D graphs without external fields [21].

The Ising model, extensively studied with computational methods like Monte Carlo
simulations, is widely used for solving CO problems, where the ground state represents
the optimal solution. Any CO problem can be recast into the Ising framework, as any
binary-variable objective function can be reduced to a second-order polynomial, matching
the Ising Hamiltonian, at the expense of introducing auxiliary variables.

3.2. QUBO

Quadratic Unconstrained Binary Optimization (QUBO) [13] models CO problems
using a quadratic pseudo-Boolean objective function, similar to the Ising model but
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with unipolar variables (0, 1) instead of bipolar (−1, 1). A QUBO problem is typically
expressed as follows:

minimize f (x) = q0 +
N

∑
i=1

qixi +
N

∑
i=1

N

∑
j=i+1

qijxixj , (2)

where N is the number of variables, equivalent to the number of spins in the Ising case;
xi is the ith binary variable; qi is the bias associated with the single ith variable; qij is
the coupling coefficient between the ith and jth variables; and q0 is an offset, which can
be neglected during optimization, as it does not influence the optimal configuration of
variables. Alternatively, it can be written in matrix form:

minimize f (x) = xtQx , (3)

where Q is a square matrix with linear coefficients on the diagonal and coupling coefficients
off-diagonal, either in upper triangular or symmetric form.

In both QUBO and Ising formulations, the constraints can be taken into account only
through the quadratic penalty functions:

minimize y = f (x) + λg(x) , (4)

where λ is a positive penalty parameter and g(x) is the penalty function. Multi-objective
optimization can also be handled in QUBO using an aggregation approach (Objective
Weighting), which combines multiple objectives into a single one [22].

The QUBO formulation can be translated in the Ising model by applying a simple
change of variable:

si = 2xi − 1 . (5)

From this equation, transformations to switch from QUBO to Ising can be straightfor-
wardly performed.

3.3. HUBO/PUBO

The QUBO formulation can be extended to handle higher-degree polynomials while
preserving its features, resulting in Higher-Order Unconstrained Binary Optimization
(HUBO) or Polynomial Unconstrained Binary Optimization (PUBO). These models mini-
mize polynomial pseudo-Boolean functions:

minimize, f (x) = ∑
V⊆1,2,...,N

qV ∏
i∈V

xi, (6)

where V represents subsets of indices from 1, 2, . . . , N. The Ising model’s higher-order
extension is known as the Higher-Order Ising model.

Formulating higher-order polynomials in QUBO/Ising models requires polynomial
reduction, introducing auxiliary variables. This expands the search space and reshapes the
energy landscape, adding small barriers that make exploration more challenging [23].

Therefore, higher-order models for problems that are naturally represented by polyno-
mial cost functions scale more efficiently with the problem size and offer a smoother search
space, simplifying exploration compared to reduced formulations.

3.4. PCBO

The Polynomial Constrained Binary Optimization (PCBO) extends the PUBO model
by optimizing a polynomial function with binary variables while explicitly including
polynomial constraints, unlike QUBO or PUBO, which handle constraints via penalties.
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3.5. Writing an Optimization Problem as QUBO

Most quantum solvers support QUBO/Ising formulations, while only a few handle
PUBO or PCBO. Due to the intuitive use of unipolar variables and straightforward conver-
sion, PCBO, PUBO, and QUBO are preferred over Ising. This work focuses on reducing
problems to the more widely supported QUBO formulation.

The first step involves identifying the problem variables, i.e., the elements to optimize.
Two situations can occur:

• The optimization subjects can be easily described through binary variables since the
target is to optimize decisional elements;

• The optimization subjects can assume several continuous or discrete values.

In the first case, a suitable data structure is needed to reference variables in the
cost function. While some cases are straightforward, more complex scenarios, such as
associating one set of elements with another, may require a binary variable grid. Columns
and rows represent different objects (e.g., data points and classes), with a value of 1
indicating an association. Constraints are typically added to prevent multiple associations.

The second case is more complex, as continuous variables must be converted into
binary form. This typically begins with discretization, which reduces solution accuracy.
Therefore, precision must balance variable count and representation accuracy. Several
encoding mechanisms can be considered for describing the discretized variables.

In both cases, converting the function to a polynomial form may be required. This can
be challenging and may reduce accuracy, impacting reliability.

Afterwards, constraints have to be included in the formulation, either directly (PCBO)
or via penalty functions. Creating a penalty function may frequently require the addition of
auxiliary variables. Moreover, an appropriate penalty weight has to be chosen to correctly
penalize the configurations violating the constraints. This task is crucial since a low weight
may neglect constraints, while a high weight can flatten the objective function, hindering
solution evaluation. Some techniques can be applied to effectively estimate its value.

At this point, if the solver cannot handle the PUBO formulation, a polynomial reduc-
tion step, introducing further auxiliary variables, has to be applied to obtain the QUBO
formulation. Finally, the QUBO formulation can be moved to Ising if needed by using the
relation of Equation (5).

The stages below summarize the process of transforming an optimization problem
into a form compatible with a quantum solver:

• Define the variables, objective functions, and eventual constraints.
• Choose the solver.
• Convert the problem into a solver-compliant format (e.g., QUBO) by executing the

following steps:

1. Describe variables as binary.
2. Compose the cost function.
3. Write constraints as penalties.
4. Estimate penalty weights to integrate constraints into the cost function.
5. Perform polynomial reduction if necessary.

3.6. Frameworks and Tools

All the steps discussed above require substantial expertise in QUBO formulation,
which many users may lack. This knowledge gap limits access to the potential benefits of
quantum computation. Moreover, tasks such as variable encoding, solution decoding, and
function rewriting can be time-consuming and lead to errors when performed manually.
Managing penalty functions is equally important, especially the operation of translating
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a constraint into a suitable penalty function. This process can be even more challenging
when auxiliary variables are needed for inequality constraints. Additionally, selecting an
appropriate penalty weight is crucial for obtaining satisfactory results. For these reasons,
libraries and frameworks that automate the translation of optimization problems into
solver-compatible formats are essential in assisting end-users.

The main libraries include pyqubo [24,25], qubovert [26], dimod [27], Fixstarts Am-
plify [28], Qiskit-optimization [29], and openQAOA Entropica [30]. Additionally, sev-
eral key frameworks have emerged in the last two years to address user demands for
tools that automate the entire process, including AutoQUBO [31–33], QUBO.jl [34], and
mqt-qao [35–37]. Refs. [34,35] offer a detailed overview of these tools, along with a compar-
ison of their features. In addition to these tools, a framework for formulating graph-based
optimization problems into QUBO format has been proposed in [38], as part of the Munich
Quantum Toolkit [37]. Furthermore, in [39], a similar tool is introduced for formulating
discrete optimization problems such as QUBO.

Finally, D-Wave has released a QUBO preprocessing toolchain [40] optimized for
their Quantum Annealer platform to reduce problem complexity. This toolchain includes
methods for reducing the number of QUBO variables and estimating the lower bound of
the objective function, based on techniques from [41]. Alternatively, the tool Qoolchain,
proposed in [42], offers further methods to reduce QUBO size, decompose it, and estimate
function bounds especially focusing on GAS.

4. Quantum Annealer
Quantum annealers [10,11] are special-purpose quantum computers designed to solve

QUBO problems. They are defined as analog quantum computers because they exploit
quantum systems’ continuous, analog properties to explore the problem solution space.
Unlike digital quantum computers, which rely on discrete operations and gates, quantum
annealers use smooth, gradual changes in physical parameters (such as magnetic fields)
to steer the system toward a low-energy solution. They are the physical implementation
of the quantum annealing optimization process (Section 4.2), which is based on Adiabatic
Quantum Computing (Section 4.1).

4.1. Adiabatic Quantum Computing

Adiabatic Quantum Computing [43] (AQC) exploits the adiabatic theorem—asserting
that a quantum system remains in the ground state if its Hamiltonian changes sufficiently
slowly and if there is a significant energy difference between the ground energy level and
the next highest energy state during the process—to perform optimization. The form of the
considered time-dependent Hamiltonian is as follows:

H(t) = A(t)H1 + B(t)H0 , (7)

where H1 is the final Hamiltonian encoding the optimization problem to solve; H0 is the
initial Hamiltonian, whose ground state should be well known and easy to prepare; and
A(t) and B(t) are the field strengths, respectively. They have a complementary behavior
with time so that H(0) = H0 and H(∞) = H1. In this way, the final state of the system,
i.e., the ground state of the final Hamiltonian, should be the minimum of the encoded
optimization problem function.

The success of the AQC depends on the evolution speed, i.e., the rate of change of
H(t), which should be slower than the inverse square of the minimum energy gap [44]:

T ≫
h̄ · maxs

∣∣∣⟨ψ1(s)
∣∣∣ dH(s)

ds

∣∣∣ψ0(s)⟩
∣∣∣

∆E(t)2 , (8)
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where

• T is the required evolution time.
• ∆E(t) is the energy gap between the two lowest energy levels at time t.
• ψ0(s) and ψ1(s) are the instantaneous ground and first excited states of the time-

dependent Hamiltonian H(s), respectively.
• H(s) is the Hamiltonian of the system, parametrized by s = t/T with s ∈ [0, 1] as the

normalized time.
• dH(s)

ds is the derivative of the Hamiltonian with respect to the normalized time, repre-
senting the rate of change in the Hamiltonian during evolution.

• ⟨ψ1(s)| dH(s)
ds |ψ0(s)⟩ measures the coupling between the ground and excited states

induced by the evolution of the Hamiltonian.

4.2. Quantum Annealing

Quantum annealing is the practical implementation of the theoretical and ideal AQC.
It is based on AQC principles, but to make the physical implementation feasible, the
possible final Hamiltonian is limited to the Ising form, which is reformulated as a quantum
Hamiltonian formulation:

H1 =

(
− ∑

ij
Jijσ

z
i σz

j − h ∑
i

σz
i

)
, (9)

where σz
i is the Pauli matrix associated with the z component, allowing the optimization

of only Ising/QUBO problems. On the other hand, the initial Hamiltonian is usually
the transverse field H0 = −∑i σx

i , where σx
i is the Pauli matrix associated with the x

component. Moreover, in quantum annealing, the adiabaticity is no longer guaranteed
since the estimation of the time TA is harder than the optimization problem to solve [45],
and it could be impractical to run the system evolution for such a long time. Therefore, the
quantum annealing runs for a certain time and, even if it does not satisfy the adiabaticity,
it is expected to be able to find a good approximation of the optimal solution. In fact, it
is not strictly needed to remain in the ground state of H(t). Ultimately, upon measuring
the state, it is sufficient for the amplitude of an optimal or adequately good solution in the
final state to be large enough. This ensures that the probability of obtaining a useful result
remains high.

To better understand the quantum annealing evolution, a qualitative idea can be given
considering a hydraulic model in Figure 7b of [46]:

• In the beginning, the transverse field makes the bottom of the tank flat; thus, the water
is uniformly distributed. This corresponds to having all the spins aligned along the
x-axis (Figure 7a of [46]), i.e., state superposition.

• By increasing the longitudinal field and decreasing the strength of the transverse one,
the bottom of the tank is gradually deformed and the water begins to flow towards
the lowest points. This corresponds to having the spins that gradually modify their
orientation to follow the instantaneous ground state.

• In the end, only the longitudinal field is present, which has deformed the bottom of
the tank as a function of the problem, and the water is concentrated in the lowest point,
i.e., that with minimum energy. Therefore, the final spin configuration corresponds to
the optimal solution of the optimization problem expressed as the Ising Hamiltonian.

Quantum annealing can be seen as an improvement of the simulated annealing [17],
in which thermal fluctuations are replaced with quantum fluctuations [11]. The trans-
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verse Ising model form, proposed in [11], is the basis of the Hamiltonian used in
quantum annealing:

H(t) = −∑
ij

Jijσ
z
i σz

j − h ∑
i

σz
i − Γ(t)∑

i
σx

i , (10)

where Γ(t) is the transverse field strength (equivalent of B(t) of the previous section).
The transverse field Γ(t) causes quantum tunneling between system eigenstates. The

advantage of quantum annealing exploration is that the probability of overcoming an

energy barrier with height ∆ is proportional to e−
√

∆w
Γ (where w is the width of the energy

barrier and Γ the strength of the transverse field). On the other hand, in the simulated

annealing case, it is equal to e−
∆

kBT (where T is the temperature parameter and kB is the
Boltzmann constant). Consequently, quantum exploration is significantly more effective
than classical one in case of problems with the energy landscape with a high amount of
perturbation with many high and thin barriers (w ≪ ∆) [47], as shown in Figure 7c of [46].

4.3. Hardware Implementations

A leading company in the field of QAs is D-Wave Systems [48], which, since 2011, has
been developing QAs with a growing number of qubits (more than 5000), enabling the
solution of increasingly complex optimization problems. These devices are implemented in
superconductive technology, which requires very strict operating conditions, e.g., 15 mK,
and presents limited connectivity. Therefore, to map a generic fully connected problem,
minor embedding [49] is needed. This technique consists of splitting a logical bit into
multiple physical bits of the target architecture, each one belonging to a different sub-
graph. The physical bits associated with the same logical bit are strongly ferromagnetically
coupled, so that discordant states are penalized. Therefore, the physical bits are expected
to collapse to the same value at the end of the annealing process. It is necessary to note that
using a minor embedding configuration rapidly increases the number of involved physical
bits, which adds a time overhead in the overall execution.

D-Wave has proposed three minor embedding topologies: Chimera at the beginning,
and Pegasus and Zephyr, recently. The Chimera structure is a connected network of bits
with groups of densely connected nodes sparsely connected to other groups of densely
connected nodes. In this topology, variables have degree 6, which means that each bit
is connected through couplers to six others. The instructions for obtaining a Chimera
mapping for some important problems are reported in [50]. It is the topology of D-Wave
2000Q. Pegasus [51] is able to provide a more efficient embedding compared to Chimera
and requires a shorter embedding time. This topology has a degree of 15, so a lower number
of bits is required to obtain an equivalent configuration of the Chimera one. The additional
connectivity of the Pegasus graph can be also used to construct a simple error correction
scheme for quantum annealing. It is the topology of Advantage devices. Zephyr represents
a further advantage, with a qubit degree of 20.

It is possible to use the real quantum annealer by creating a free account on Dwave
Leap, a cloud service providing one minute of free computing access per month.

4.4. Recent Evolutions

Classical and quantum solver performance is strongly dependent on the energy profile.
For example, SA and other local search-based methods are effective in exploring wide and
smooth barriers in the energy landscape, but they cannot efficiently overcome high and
narrow barriers. In contrast, QA is particularly well suited for problems where the energy
landscape is characterized by high and narrow peaks, leveraging quantum tunneling
to bypass these barriers. However, QA is expected to be less effective in wide and flat
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regions [52]. Real-world problems, however, often exhibit heterogeneous energy profiles,
as shown in Figure 10 of [46]. A solver effectiveness depends on the size and features of
the region in the energy profile that matches its exploration mechanism. For instance, in
a heterogeneous landscape, significant improvements can be achieved by combining a
local approach for exploring wide and smooth regions with QA to handle rough, peak-
filled regions.

For these reasons, interest in the development of hybrid solvers, which are designed
to effectively alternate between local and global search strategies, arises. Several proposals
for hybrid approaches have been introduced in recent works [53]. Nowadays, D-Wave has
also proposed hybrid solvers [54], which divide the problem, assigning different parts to
classical solvers and quantum annealers, and then reconstructing a global solution from
the local ones. These solvers support constrained problems in addition to QUBO.

In addition, the recently proposed reverse annealing [9] begins from a known candi-
date solution (classical solution), gradually reintroducing quantum fluctuations (superposi-
tion) to explore nearby states in the solution space, allowing for refinement and local search
within a specific region of the energy landscape.

5. Quantum Circuit Model-Based Solvers
This section discusses the most popular quantum circuit-based algorithms for solving

optimization problems. Due to the limitations of quantum hardware, these algorithms are
all hybrid, i.e., involving both classical and quantum computers. QAOA and VQE (dis-
cussed in Sections 5.1 and 5.2) exploit variational circuits whose parameter optimization
helps address noise problems of NISQ hardware. GAS (explored in Section 5.3) lever-
ages the Quantum Fourier Transform (QFT), which is designed to be effective in future
Fault-Tolerant Quantum Computers (FTQCs).

5.1. QAOA

The Quantum Approximate Optimization Algorithm (QAOA) [55] is a hybrid
quantum–classical algorithm introduced in [56], designed to solve optimization prob-
lems approximating the quantum AQC on gate-based quantum computers (discussed in
Section 4.1). Starting from an Ising Hamiltonian, it has to be reformulated as a quantum
Hamiltonian formulation by replacing the binary variables with Pauli Z matrices, since the
eigenvalues of this matrix are +1 and −1.

H1 = ∑
i

hiσ
z
i + ∑

i,j
Jijσ

z
i ⊗ σz

j . (11)

Quantum circuit model computers nature operate by applying discrete quantum gates to
modify the qubit’s state, while AQC depends on a continuous evolution of the Hamiltonian.
This evolution can be discretized through the Trotterization technique, which approxi-
mates it in discrete steps. The AQC time-dependent Hamiltonian (Equation (7)) can be
discretized for the execution of quantum gates by expressing it as a product of unitary
operators performing a small evolution step. Since H(t) is diagonal in the quantum system
computational space, i.e., a 2n × 2n Hilbert space, it can be made unitary by exponentiating
H(t), which corresponds to taking the exponential of its elements. The discretized operator
can be obtained by considering the evolution only in a small time instant ∆t:

ei∆t(A(tc)H0+B(tc)H1), (12)
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where tC is a fixed timestep within the range [0, T], with T being the total duration of the
process. In a small time interval ∆t, the Hamiltonian can be assumed to be constant. By
discretizing the process into p steps, the Hamiltonian becomes

p

∏
m=0

ei∆t(A(tm)H0+B(tm)H1) , (13)

where tm = m∆t/T and p = T/∆t. According to the Lie–Trotter product formula, if ∆t
is very small, eA+B ≈ eAeB with A, B being two square complex matrices. Furthermore,
by selecting A(tm) and B(tm) as small increments of time, the quantum circuit simulates
the adiabatic evolution of the Hamiltonian. However, instead of A(tm) and B(tm), two
angles, γ and β, can be chosen at each iteration of the parametric circuit according to a
classical optimization algorithm to obtain the best values for reaching the ground state of
the Ising Hamiltonian. The quantum part of QAOA is performed by a variational quantum
circuit—i.e., a circuit including parametric gates, whose value has to be optimized during
algorithm execution—preparing the following state:

|x⟩ =
0

∏
m=p

eiβm H0 eiγm H1 |Ψ0⟩ =
0

∏
m=p

UM(βm)Uc(γm)|Ψ0⟩ . (14)

To keep the analogy with the quantum adiabatic algorithm and ensure the system evolves
while keeping the quantum state as the ground state of the evolving Hamiltonian, Ψ0 must
be the ground state of H0. A suitable choice for the mixed Hamiltonian is the tensor product
of n Pauli X operators (σx

j ) with a negative sign, with n being the number of qubits. Given
a quantum state |Ψ⟩, the expectation value of the operator σx

j in this state is as follows:

⟨Ψ|Xj|Ψ⟩ = 2c0c1 ≤ 1, with|Ψ⟩ = c0|0⟩+ c1|1⟩, (15)

which is equal to 1 only when c0 = c1 = 1/
√

2; thus, the expectation value is maxi-
mum when |Ψ⟩ = |+⟩. Therefore, H0 is specifically chosen because its ground state is
|Ψ0⟩ =

⊗n−1
j=0 |+⟩, which is straightforward to prepare, as it can be obtained by applying

n Hadamard gates and is completely unentangled. To represent the mixed Hamiltonian
with unitary quantum gates, it is transformed into the following operator, since the σx

j
matrices commute:

eiβm H0 = e−iβm
⊗n−1

j=0 σx
j =

n−1⊗
j=0

e−iβmσx
j = RX(2βm). (16)

Therefore, the operator UM(βm) is implemented just by applying the RX gate to every qubit
in the circuit (Figure 1).

Concerning the Ising Hamiltonian operator, H1 comprises only diagonal matrices;
thus, they commute as well. Consequently, the linear and quadratic terms can be separated
into two distinct operators:

Uc(γm) = eiγm H1 = eiγm ∑j hjσ
z
j +∑j,k Jjkσz

j ⊗σz
k = ∏

j
eiγmhjσ

z
j ∏

j,k
eiγm Jjkσz

j ⊗σz
k . (17)

The operator associated with the linear Ising term has the same form as the mixed
Hamiltonian one—a product of operators applied on different qubits is equivalent to
the tensor product of these operators. Therefore, it can be implemented by applying the
RZ(−2γmhj) quantum gate on the jth qubit. The operator associated with the quadratic term
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includes a tensor product between two diagonal matrices; hence, it should be performed
by a two-qubit gate. Two different cases can be discerned:

• If qubits j and k have the same value, the operator becomes eiγm Jjk ,
• If qubits j and k have different value, the operator becomes e−iγm Jjk .

Repeated p times

nu
m

va
ria

bl
es

Classical
Optimizer

Problem Hamiltonian Mixed state

Inizialization

Figure 1. Example of QAOA quantum circuit to optimize the Ising Hamiltonian −2s1s2 + 1s0.

Therefore, this transformation is equivalent to applying the RZ(−2γm Jjk) gate on the
kth between two controlled not gates (Figure 1). In this way, if |j⟩ = |1⟩ and |k⟩ = |0⟩,
|k⟩ is inverted and its phase is flipped. If |j⟩ = |0⟩ and |k⟩ = |1⟩, the CNOT gate does
not affect |k⟩ and its phase is flipped. Hence, the operator flips the phase only when
the two qubits have different values. The sequence of these gates produces a quantum
circuit implementing the operators UM(βm)Uc(γm), which is also called ansatz since it
is a parametric circuit repeated many times (p) in the algorithm to approximate AQC as
discrete evolution.

Since QAOA is a variational circuit (Figure 1), a classical optimization part is needed
to properly select the circuit parameters and obtain the ground state of the problem Hamil-
tonian. Therefore, the algorithm steps are reported below [57]:

1. The effective quantum circuit is defined by selecting a proper value for the number of
discretization steps p.

2. Initial values for the parameters β = (β1, . . . , βp) and γ = (γ1, . . . , γp) are chosen.
3. The quantum circuit is executed multiple times and the expectation value with respect

to the problem Hamiltonian is calculated.
4. The circuit parameters β = (β1, . . . , βp) and γ = (γ1, . . . , γp) are updated by the

classical optimizer exploration approach exploiting the obtained expectation value.
5. Repeat from step 2 until the algorithm’s stop condition—e.g., a selected number of

iterations or the convergence of the classical optimizer—is met.

The classical optimizer can be any algorithm that does not require an explicit expres-
sion for the objective function, but only a cost evaluation based on the selected parameters.
The results produced by QAOA may significantly vary according to the optimizer used
to tune the angle parameters. However, the execution time of these algorithms is crucial;
since a quantum algorithm is exploited as a heuristic, increasing the number of iterations
may be more favorable than relying on more accurate classical optimizers. An overview
and comparison of the best classical optimizers for QAOA is provided in [58].

Regarding the number of time steps p, a larger value should better approximate the
adiabatic evolution. However, this also increases the quantum circuit depth, which can
negatively impact the accuracy and reliability of NISQ hardware [59].

QAOA can directly solve PUBO problems, as a monomial of any degree can be
encoded in a quantum state. The polynomial Hamiltonian can be reformulated as a
quantum Hamiltonian, as shown in Equation (11). Calling L the set of qubits involved, a
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generic polynomial term is composed of the tensor product of |L| σz matrices. Therefore,
two different cases can still be distinguished:

• If the number of qubits in the state |1⟩ is even, the operator is eiγm JL ;
• If the number of qubits in the state |1⟩ is odd, the operator is e−iγm JL .

This transformation is then a parity check on the qubits in L, followed by a RZ(−2γm JL)

gate, ensuring that the phase shift is negative only when the parity is even. Parity can be
determined by applying a CNOT gate for each qubit l in L except for the last one, using
l as the control qubit and the last as the target (an example is reported in Figure 2). For
formulations that naturally belong to the PUBO category, results in [60] evidence that using
a PUBO function not only avoids the need for auxiliary variables and improves the cost
function profile, but also improves the accuracy of results and reduces the optimization
time of angle parameters in QAOA, when using the same depth and hyperparameters for
the classical optimization algorithm. However, this comes at the expense of increasing the
depth of the quantum circuit, which grows linearly compared to the QUBO case.

Figure 2. Example of the quantum operator realizing the 3s0s1 . . . sn−1 higher-order Ising term.

Recently, improvements to the algorithm have been proposed in the literature. Among
them, the so-called Warm-Start QAOA [61] is worth mentioning, which exploits as the
initialization state the solution of the continuous relaxation of the QUBO problem—which
can be easily obtained since it is a convex problem—instead of the uniform superposition.
Moreover, the mixed Hamiltonian is modified to be coherent with the initialization state.

5.2. VQE

The Variational Quantum Eigensolver (VQE), introduced in [55,62], was originally
conceived for finding the lowest eigenvalue of any type of Hamiltonian, in particular focus-
ing on quantum chemistry applications, but it is also applicable for optimization problems
in general. It exploits a parametric guess quantum circuit (ansatz), whose parameters can
be classically optimized, to make the state converge toward an upper bound of the ground
state of an input Hamiltonian thanks to the variational principle (Figure 3). The variational
principle states that the smallest expectation value of an observable A, which is hence
described by a Hermitian operator (for which A† = A), is always found at an eigenvector
of the observable [55]. The expectation value of an Hermitian operator A in a state |ψ⟩ is
given by the following:

⟨A⟩ψ = ∑
j,k

|⟨λk
j |ψ⟩|2λj = ⟨ψ|A|ψ⟩, (18)

where λj is an eigenvalue of the operator A, and |λk
j ⟩ is the kth eigenvector associated

with the eigenvalue λj, as multiple eigenvectors can correspond to the same eigenvalue.
Supposing that λ0 is the smallest among the eigenvectors of A, then

⟨A⟩ψ = ∑
j,k

|⟨λk
j |ψ⟩|2λj ≥ ∑

j,k
|⟨λk

j |ψ⟩|2λ0 = λ0. (19)
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This expectation value, which is the smallest of the observable A, can be achieved in a state
that is either one of the eigenvectors associated with λ0 or a normalized linear combination
of these eigenvectors. Indeed, from the definition of eigenvalue, the following is obtained:

⟨λk
0|A|λk

0⟩ = λ0⟨λk
0|λk

0⟩ = λ0. (20)

Therefore, minimizing the expectation value means finding the lowest eigenvalue. In
the case of an Ising Hamiltonian—which is a diagonal operator and hence its eigenvectors
are the computational basis states—this also coincides to identifying the lowest energy
state since

⟨ψ|H|ψ⟩ = ∑
x
|ax|2 f (x), (21)

where |ax|2 represents the probability of observing the input configuration |x⟩ when |ψ⟩ is
measured in the computational basis. However, a general Hamiltonian cannot be assumed
to be diagonal. For any operator with eigenvectors different from the computational
basis, computing the minimum of its expectation value on a quantum computer requires
measuring in the basis defined by its eigenvectors. In a quantum circuit, it is always
possible to apply a change of basis so that measurement in the computational basis becomes
equivalent to measurement in the eigenvector basis.

After the introduction of the principle and objectives of VQE, we can now examine
each step of the algorithm, which are listed below:

1. An ansatz and an initial set of values for the parameters are chosen.
2. The quantum state is prepared by the parametric circuit.
3. The quantum state is measured, so the expectation value, namely the energy of the

Hamiltonian, is estimated.
4. A classical optimizer is used to determine the parameter values for the next iteration

to decrease the estimated expectation value.
5. Repeat from step 2 until the algorithm’s stop condition—e.g., a selected number of

iterations or the convergence of the classical optimizer—is met.

From the algorithm steps, a remarkable similarity with QAOA can be noticed. In fact,
QAOA can be regarded as a special case of VQE, employing a specific ansatz based on the
Ising Hamiltonian.

Classical 
 post-processing

Initial state
preparation

Ansatz

Classical
Optimizer

nu
m

va
ria

bl
es

Figure 3. VQE example.

The ansatz is a parametric quantum circuit with a structure chosen to produce a trial
wavefunction to be measured, which, after optimizing the ansatz’s parameters, should
approximate the Hamiltonian minimum expectation value. Many ansatz structures are
suitable for this goal, and the quality of the approximation also depends on this choice.
Therefore, the structure employed can be considered as a hyperparameter of the problem.
The optimal choice typically depends on the problem characteristics. However, some
features of an ansatz can be evaluated to identify the best fit for the problem at hand [63]:
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• Expressibility: It is the span of possible quantum states that the ansatz can reach in
the Hilbert space, or how well it can explore the space of the possible states. It can
be quantitatively assessed by the distance between the distributions of the unitary
operators generated by the ansatz and the maximally expressive uniform distribution
of operators (Haar measure) [64].

• Trainability: It is the ability to find the best parameter values to optimize the ansatz ac-
cording to the Hamiltonian expectation value within a feasible time frame. An ansatz
is not considered trainable when the cost function gradients vanish exponentially as
a function of the optimization parameters, which is referred to as the barren plateau
problem. The trainability depends on the number of parameters, their mutual depen-
dence, and the optimization landscape. This concept is related to expressibility, as a
good ansatz should accurately approximate the quantum state of the best expectation
value but an overly accurate one could make the training of its parameters intractable.

• Circuit depth: The depth of a quantum circuit can influence the final estimation due
to noise and decoherence problems; hence, it should be carefully managed in NISQ
hardware applications.

A further classification of ansatz can be based on whether their structure changes
during optimization:

• Fixed structures remain unchanged during optimization, except for their parameters.
• Adaptive structures evolve during the optimization process by incorporating addi-

tional operators. Some gradually grow at each optimization step, others embed part
of the ansatz into the optimization alongside the Hamiltonian, while some modify the
existing structure to learn an optimal configuration.

For both the ansatz categories, ref. [63] provides various examples highlighting their
structures and discussing pros and cons.

The classical optimization of the quantum circuit parameters must be sufficiently fast
to maintain the effectiveness of quantum optimization, while still providing enough accu-
racy to converge to the Hamiltonian ground state. The training of the ansatz parameters is
NP-hard [65]. However, several heuristic methods, especially those based on gradient cal-
culation, are employed for this purpose. An overview of classical optimization approaches
suitable for VQE is presented in [63].

The adaptive nature of VQE, whose parameters are optimized within the different iter-
ations of the algorithm, allows balancing the systematic errors caused by the imperfection
of control systems [66]. This makes VQE particularly well suited for NISQ hardware, as it
can mitigate the noise problems commonly affecting these systems, whereas algorithms
relying on error correction may provide more accurate results in future FTQCs.

5.3. GAS

The Grover Adaptive Search is a successive approximation hybrid quantum–classical
algorithm designed to find the minimum of a cost function f (x), which represents a
combinatorial optimization problem [55,67,68]. It is composed of the following steps:

1. Initialize the iteration index i and the variable yi to zero.
2. Adjust the cost function f (x) by vertically shifting it based on yi (Figure 4).
3. Increment the iteration index i.
4. Randomly sample a value yi from the range of f (x) such that yi < 0.
5. Consider yi as the new optimal value, as a negative value of the adjusted cost function

consistently indicates a lower value than the previous offset yi−1.
6. Repeat steps 2–5 until no further negative values are sampled. This process identifies

the variable combination where f (x) = 0, solving the optimization problem.
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Figure 4. GAS intuitive scheme.

To fully leverage this approach, an efficient negative sampling method is crucial. The
best option is a quantum routine that accelerates the process of finding solutions at each
iteration. Grover Search (GS) [69] is a quantum algorithm offering a quadratic speedup over
classical methods when searching for items in an unordered dataset. Initially, the objective
function, shifted by yi, must be encoded into a quantum state as a uniform superposition of
the domain–image obtained through a quantum dictionary [68], the quantum counterpart
of a classical dictionary, which allows the description of key–value pair data structures. The
image of f (x) is represented using the two’s complement binary format for signed integers.

Encoding an n-variable problem requires n qubits for the keys and m—sufficiently
large to avoid overflow, based on the function bounds—for the values. Unfortunately,
estimating the exact bounds has the same computational complexity as solving the problem
via brute force, growing as 2n. Thus, preprocessing is necessary to select an appropriate
value for m. Setting m too low compromises the mechanism’s effectiveness, while setting it
too high wastes limited resources. Several methods in the literature provide lower bounds
for the minimum and, by addressing the negated problem, upper bounds for the maximum,
typically requiring no more than a couple of additional qubits.

The following equation describes the quantum dictionary operator Ui:

Ui|0⟩n|0⟩m =
1√
2n

2n−1

∑
x=0

|x⟩n| f (x)− yi⟩m. (22)

At this point, the Grover phase oracle is applied to label the desired items of the
dataset—in this case, the negative samples of the objective function—and the diffuser
operator is employed to amplify the probability amplitude of the corresponding states. For
implementing an effective GS, phase oracle and diffuser have to be repeated r times, where
r is also called the number of GS rotations, and its optimal value depends on the dataset
characteristics. It can be estimated through the following equation [70]:

r ≈ π

4

√
2n

M
− 1

2
, (23)

where M is the number of desired items, i.e., the negative samples, which is unknown a
priori. This number of rotations ensures finding one of the M states with the maximum
probability [7]; hence, either a too-high or too-low r may lead to an incorrect result. Its
estimation in each GS execution is crucial, and some techniques were proposed in the
literature for this purpose [68,71–73]. The quantum circuit employed for GS execution in
the GAS algorithm is reported in Figure 4.

Once a negative value has been acquired, the function can be classically shifted by
that amount and re-encoded in the quantum dictionary to search for a new negative. The
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samples obtained are, with each iteration, closer to the function’s minimum until the
last negative is obtained, corresponding to the optimal solution. However, determining
whether additional negative values need to be sampled is a crucial task. Theoretically, a
characteristic of GS can be used for this goal: when no item meets the conditions of the GS,
any possible configuration can be sampled according to a uniform probability distribution.
If only non-negative function values are available, the GS outcomes are positive or null
samples. Unfortunately, there are other situations where a non-negative value can be
obtained, since it can also emerge when an incorrect number of Grover rotations is chosen.
Consequently, proper techniques, principally based on the counts of consequently positive
samples and the employment of thresholds, were defined in the state of the art for stopping
the algorithm [71].

Similarly to QAOA, GAS can directly address the PUBO problem by employing multi-
controlled gates in the quantum dictionary [68]. A method to reduce the required number of
gates of this GAS implementation was proposed in [74]. Moreover, PCBO can be explored
with GAS by incorporating constraints directly within the oracle rather than embedding
them in the cost function through penalties [75].

6. Conclusions
Optimization influences several fields of research and industry, like finance, telecom-

munications, and mobility. As the complexity of the problem grows, the search for efficient
and scalable solutions has led to significant interest in quantum approaches. This review
article has outlined the main advancements in these fields, focusing on quantum annealers
and quantum circuit-based algorithms solvers.

The potential of quantum solutions in handling NP-hard problems is promising,
even if quantum devices are in their early stages. Even though quantum annealers and
circuit-based models could provide meaningful benefits, they face hardware limitations
and challenges related to coherence and scalability.

A key insight is the importance of effective problem formulation. Translating conven-
tional optimization problems into quantum-compliant formats, such as QUBO or Ising
models, is a critical step in exploiting quantum solvers. Tools and frameworks available in
the state of the art for assisting end-users in this challenging task have been presented.

Emerging trends in this field suggest exciting opportunities for future research. Ad-
vancements in hybrid quantum–classical approaches are particularly meaningful as they
leverage the strengths of both paradigms to address increasingly complex problems. Ad-
ditionally, exploring enhanced heuristic methods and machine learning techniques for
guiding optimization processes in the quantum context is a promising direction.

In conclusion, the quantum approaches show great potential and are expected to
provide significant advantages once quantum technologies reach full maturity. Moreover,
future improvements in exploration mechanisms can be achieved through synergy between
quantum and classical approaches, offering a new frontier for solving increasingly complex
problems across diverse domains. The integration of these two methods presents an exciting
opportunity to advance optimization and address the increasing complexity of real-world
challenges across various fields.
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