
18 January 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Effects of Rayleigh and Weber numbers on two-layer turbulent Rayleigh–Bénard convection / Demou, Andreas D.;
Scapin, Nicolò; Crialesi-Esposito, Marco; Costa, Pedro; Spiga, Filippo; Brandt, Luca. - In: JOURNAL OF FLUID
MECHANICS. - ISSN 0022-1120. - 996:(2024). [10.1017/jfm.2024.805]

Original

Effects of Rayleigh and Weber numbers on two-layer turbulent Rayleigh–Bénard convection

Cambridge University Press postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1017/jfm.2024.805

Terms of use:

Publisher copyright

This article has been published in a revised form in JOURNAL OF FLUID MECHANICS
http://doi.org/10.1017/jfm.2024.805. This version is free to view and download for private research and study only. Not
for re-distribution or re-use. © copyright holder.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2996264 since: 2025-01-06T21:38:14Z

Cambridge University Press



This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

E↵ects of Rayleigh and Weber numbers on
two-layer turbulent Rayleigh–Bénard

convection
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This study presents direct numerical simulation results of two-layer Rayleigh–Bénard
convection, investigating the previously unexplored Rayleigh–Weber parameter space
106 6 Ra 6 108 and 102 6 We 6 103. Global properties, such as the Nusselt and
Reynolds numbers, are compared against the extended Grossman–Lohse theory for two
fluid layers, confirming a weak Weber number dependence for all global quantities and
considerably larger Reynolds numbers in the lighter fluid. Statistics of the flow reveal
that the interface fluctuates more intensely for larger Weber and smaller Rayleigh
numbers, something also reflected in the increased temperature r.m.s. values next to
the interface. The dynamics of the deformed two-fluid interface are further investigated
using spectral analysis. Temporal and spatial spectrum distributions reveal a capillary-
wave range at small Weber and large Rayleigh numbers, and a secondary energy peak
at smaller Rayleigh numbers. Furthermore, the maxima of the space-time spectra lie in
an intermediate dispersion regime, between the theoretical predictions for capillary and
gravity-capillary waves, showing that the gravitational energy of the interfacial waves is
strongly altered by temperature gradients.

Key words: Rayleigh–Bénard convection, thermally driven turbulence, multiphase con-
vection
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1. Introduction

The thermally driven flow inside a fluid layer heated from below and cooled from
above, known as Rayleigh–Bénard convection, is a widely studied physical problem
due to its similarities with a range of real-life applications and physical phenomena.
Despite its apparent simplicity, this type of convection exhibits rich physics both in terms
of large-scale characteristics, e.g. Nusselt number, large-scale circulation, etc. (see the
review by Ahlers et al. 2009) and small-scale turbulence dynamics, e.g. spectra, structure
functions, etc. (see Lohse & Xia 2010). Even in its simplest form, the complexity of the
flow increases rapidly with the Rayleigh number, with progressively thinner boundary
layers and smaller thermal plumes. Consequently, resolving these smaller structures in
numerical simulations imposes overwhelming resolution requirements (Shishkina et al.

2010). Moreover, when additional complexities are included in the configuration, such as
solid particles suspended in the fluid phase (Demou et al. 2022) or two fluid layers (Liu
et al. 2022), the numerical solution becomes even more challenging.

Focusing on thermal convection between two fluid layers, the need to study this specific
problem stems from the fact that, regardless of the application, there is always some
dissolved gas in every liquid. Therefore, it is almost inevitable that a gaseous phase will
be formed in any realistic natural convection flow. This is also evident in experiments
of natural convection in liquids, where a long degassing procedure should be followed
to prevent the formation of the gaseous phase: (i) the liquid phase is heated close to
boiling point, (ii) a pump sucks the released gas and (iii) the treated liquid must be
kept isolated to prevent any gases from dissolving back into the liquid. The proposed
study aims to facilitate the transition from the ideal problem to a more realistic setup by
considering the gaseous phase in a two-layer configuration. From an application point of
view, physical phenomena such as the convection in the earth’s mantle (Busse 1981) or
engineering applications such as the heat transfer inside magnetic confinement systems in
fusion reactors (Wilczynski & Hughes 2019) are more accurately modelled as a two-layer
convection, where the two fluid layers are dynamically coupled.

Before introducing the two-layer Rayleigh–Bénard convection, it is vital to understand
some key characteristics of the classical Rayleigh–Bénard convection in a single fluid.
This problem is determined by three control parameters: the Rayleigh number (Ra),
the Prandtl number (Pr) and the aspect ratio of the cavity (� ) within which the
thermal convection takes place. The dependence of all physical features (including flow
regime, flow structures, heat transfer, etc.) on only three control parameters is partly
due to adopting the Oberbeck–Boussinesq approximation (Boussinesq 1903; Oberbeck
1879) which, in brief, assumes constant fluid properties except for the density in the
gravitational term, which varies linearly with the temperature. Within this physical
setting, the Grossmann–Lohse theory (Grossmann & Lohse 2000; Stevens et al. 2013)
provides scaling laws for the Reynolds (Re) and Nusselt (Nu) numbers with respect to
the control parameters, assuming di↵erent exponent values in di↵erent Ra–Pr regimes.
This theory is based on the existence of a coherent large-scale convection roll, something
that is not necessarily true in the two-layer configuration where each layer develops its
own confined convection rolls, which can be qualitatively very di↵erent.

Moving on to the two-layer Rayleigh–Bénard configuration, new control parameters
should be considered, even within the limits of applicability of the Oberbeck–Boussinesq
approximation. Firstly, each layer is composed of a di↵erent fluid with constant ther-
mophysical properties. Hence, the ratios of density, viscosity, conductivity, thermal
expansion and heat capacity also become governing parameters. In addition, since the
two layers are separated by a deformable interface featuring surface tension, the Weber
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number (We) should also be considered. Furthermore, the Froude number (Fr) is included
to di↵erentiate between the relative e↵ects of gravity in the two fluids. This set of control
parameters is translated into an enhanced flow complexity with many di↵erent regimes
depending on the combination of these parameters (Liu et al. 2021).

While experimental studies of two-layer Rayleigh–Bénard convection have been con-
ducted for a few decades now (Degen et al. 1998; Xie & Xia 2013; Zeren & Reynolds 1972),
direct numerical simulation (DNS) studies appeared in the literature only recently. In a
series of publications, Yoshida and co-workers utilized DNS to study two-layer Rayleigh–
Bénard convection in a two-dimensional spherical-shell geometry (Yoshida 2019; Yoshida
& Hamano 2016; Yoshida et al. 2017). By considering large viscosity di↵erences between
the two fluids, these authors focused on characterizing the large-scale flow structures in
each fluid and the dynamic coupling of these structures through the interface. Most
recently, Liu et al. conducted DNS in two-dimensional (Liu et al. 2021) and three-
dimensional (Liu et al. 2022) rectangular cavities. In their two-dimensional study, these
authors considered a wide range of Weber numbers and density ratios, identifying two
qualitatively di↵erent mechanisms of interface breakup based on these two parameters.
In their three-dimensional study, they focused on the e↵ects of the relative thickness
of each layer and the thermal conductivity ratio, suggesting a model to predict the
interface temperature and the global heat transfer within the explored parameter space.
Finally, Scapin et al. (2023) moved even further and included evaporation along the
two-fluid interface, extending the model proposed in (Liu et al. 2022) to account for
non-Oberbeck-Boussinesq e↵ects and evaporation.

Even though the aforementioned works contributed to the understanding of several
aspects of two-layer Rayleigh-Bénard convection, important open questions still need to
be addressed. First, the influence of the Rayleigh and Weber numbers on the movement of
the interface remains elusive. While Liu et al. (2021) thoroughly described the scenarios
under which the interface breaks for di↵erent Weber numbers and density ratios, the
interface oscillation modes well before break up were not characterized. Additionally,
further insight into the temperature distribution and variations of quantities, such as
the thermal boundary layer thickness and the interface temperature, is necessary for a
deeper understanding of the heat transfer near the interface. More specifically, the extent
to which the top and bottom thermal boundary layers are a↵ected by the asymmetrical
two-layer structure considered here, is one of the questions addressed in the present study.

Building on the studies of Liu et al. (Liu et al. 2021, 2022), the present study aims
to provide further insight into the physical characteristics of two-layer Rayleigh–Bénard
convection in the turbulent regime. More specifically, a large section of the previously
unexplored Rayleigh–Weber parameter space is investigated. The Nusselt and Reynolds
numbers, along with the interface temperature, are compared against scaling laws based
on the extended Grossmann-Lohse theory for thermal convection in two stratified fluid
layers. Moreover, a closer inspection of the vertical distribution of mean and r.m.s. values
of the temperature and velocity fields reveals the influence of the interface deformation.
The dynamics of this deformation are further analysed through spectral analysis in space
and time.

The remainder of this study is structured as follows: Section 2, presents the mathe-
matical and numerical framework used in this study, including a description of the setup
under investigation. This is followed by the presentation of the results in section 3. More
specifically, the flow organization, global properties, two-phase statistics and spectral
characteristics of the two-fluid surface waves are thoroughly analysed and discussed. The
study concludes with a summary of the key findings in section 4.
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2. Mathematical framework and numerical method

2.1. Governing equations

The presence of two immiscible fluids in the domain can be described using the so-called
one-fluid formulation. Fluids (1) and (2) are assumed to occupy volumes ⌦1(t) and ⌦2(t)
respectively, which are ideally separated by a time-evolving interface of zero thickness,
S(t) = ⌦1(t)

T
⌦2(t). The volume fraction field of fluid (1), C(x, t), is consequently

defined as,

C(x, t) =

(
1 if x 2 ⌦1(t),

0 if x 2 ⌦2(t).
(2.1)

This indicator function is then used to define the value of any thermophysical property
X̂(x, t) inside the entire domain,

X̂(x, t) = C(x, t)X̂1 + (1� C(x, t))X̂2, (2.2)

where X̂1 and X̂2 are the constant values of the corresponding properties for each fluid.
Throughout the manuscript, subscripts (1) and (2) are used to di↵erentiate between
quantities that only refer to one of the fluids. Quantities that bear no such subscript
apply to both fluids, in the spirit of equation (2.2). Furthermore, in equation (2.2) and
hereinafter, dimensional quantities are denoted with a hat (•̂) to di↵erentiate from the
dimensionless quantities.

Using this notation, the governing equations in dimensionless form can be written as,

@C

@t
+r · (Cu) =0, (2.3)

r · u =0, (2.4)

@u

@t
+r · (uu) =� 1

⇢
rP +

r
Pr

Ra

1

⇢
r ·

h
µ
⇣
ru+ (ru)T

⌘i

+
1

⇢We
S�(x� xS)nS

� nz


1

Fr2
� ⇥

⇢
(C + ⇤⇢⇤↵ (1� C))

�
,

(2.5)

@⇥

@t
+r · (⇥u) =

1

⇢cp
p
PrRa

r · (⇣r⇥) . (2.6)

The dimensionless groups emerging are the Rayleigh number Ra = ĝ↵̂1�⇥̂L̂3
ref/(⌫̂1̂1),

the Prandtl number Pr = ⌫̂1/̂1, the Weber number We = ⇢̂1Û2
ref L̂ref/�̂ and the

Froude number Fr = Ûref/(ĝL̂ref )1/2 = (↵̂1�⇥̂)1/2. ĝ is the acceleration of gravity,

acting along the negative z-direction, ↵̂ is the thermal expansion coe�cient, �⇥̂ is the
temperature di↵erence between the heated ⇥̂h and cooled ⇥̂c walls, and L̂ref is the
height of the cavity. Moreover, ⌫̂ denotes the kinematic viscosity, µ̂ the dynamic viscosity,
⇢̂ the density, ̂ the thermal di↵usivity, ĉp the specific heat, ⇣̂ the thermal conduction
coe�cient and �̂ the surface tension coe�cient. All the thermophysical properties are
non-dimensionalized using the corresponding values of fluid (1). The property ratios are
denoted as ⇤X = X̂2/X̂1 for property X̂, e.g. ⇤⇢ = ⇢̂2/⇢̂1 is the density ratio. The free-fall

velocity was adopted as the velocity scale Ûref = (ĝ↵̂1�⇥̂L̂ref )1/2. Temperature is non-

dimensionalised as ⇥ = (⇥̂ � ⇥̂ref )/�⇥̂, where ⇥̂ref is the reference temperature inside

the domain, defined as ⇥̂ref = (⇥̂h+⇥̂c)/2. The pressure scale is taken as P̂ref = ⇢̂1Û2
ref .

Vectors nS and nz are unit vectors that are directed normal to the fluid interface and
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along the z-direction, respectively. Completing this description, �(x � xS) is a delta
function centered on the two-fluid interface, and S is the local curvature of the interface.
A small note is added here regarding the formulation of the gravity term in equa-

tion (2.5). In dimensional form, the gravity term is �⇢̂(⇥̂)ĝnz, with the density field
being a function of the temperature alone. Considering the Oberbeck–Boussinesq ap-
proximation, this term becomes,

�
h
⇢̂1(⇥̂)C + ⇢̂2(⇥̂) (1� C)

i
ĝnz =

�
h
⇢̂1
⇣
1� ↵1(⇥̂ � ⇥̂ref )

⌘
C + ⇢̂2

⇣
1� ↵2(⇥̂ � ⇥̂ref )

⌘
(1� C)

i
ĝnz.

(2.7)

For brevity, the constant density values ⇢̂1(⇥̂ref ) and ⇢̂2(⇥̂ref ), are simply denoted as
⇢̂1 and ⇢̂2. When this term is non-dimensionalized with the appropriate scales, the form
shown in equation (2.5) is recovered. Finally, as required by the Oberbeck–Boussinesq
approximation, the temperature dependence of the density in all other terms in the
governing equations is neglected, i.e. ⇢̂ = ⇢̂1C + ⇢̂2(1� C).

2.2. Definitions of key output parameters

The key output parameters in the present study result from the analysis of the space-
and time-averaged fields. To represent these quantities, the bracket notation h�ia,b,... is
adopted, expressing the averaging of a variable � with respect to variables a, b, etc. More
specifically, the mean and r.m.s. values of a variable � are denoted as h�it and �rms,
where �rms = (h�2it � h�i2t )1/2.

Following this notation, the time-varying, area-averaged Nusselt numbers along the
bottom Nubot(t) and top Nutop(t) walls are defined as,

Nubot(t) = �
✓
⇣1

@h⇥ix,y
@z

◆

z=0

, Nutop(t) = �
✓
⇣2

@h⇥ix,y
@z

◆

z=1

, (2.8)

where it is assumed that the bottom and top walls of the domain are located at z = 0
and z = 1, respectively. For simplicity, the time- and area-averaged Nusselt numbers are
simply denoted as Nubot = hNubot(t)it and Nutop = hNutop(t)it for the bottom and top
walls, respectively. Assuming statistical equilibrium and adequate statistical sample size,
the two values of the Nusselt number converge to the same value Nubot = Nutop = Nu.
Another important output parameter is the Reynolds number, defined as Re =

L̂ref Û0/⌫̂ref . In the present study, the maximum r.m.s. values of the vertical velocity
ŵrms in the denser fluid and in the lighter fluid, were chosen as the characteristic velocity
amplitude Û0, similarly to the relevant single-fluid studies of Calzavarini et al. (2005)
and Van Der Poel et al. (2013). With this choice, the Reynolds number at the bottom
and top of the cavity characterizes the turbulence induced by the large-scale circulation
structures that stir the denser and lighter fluids, respectively.

For classical Rayleigh–Bénard convection in a single fluid within the Oberbeck–
Boussinesq approximation, the mean fields are symmetric around the center of the cavity.
In the presence of two fluids, this symmetry breaks due to the di↵erence in density
which causes the stratification of the two fluids, i.e. a two-layer structure appears. Each
layer develops its own large-scale circulation structures, which interact mechanically and
thermally through the interface that separates the two layers. Consequently, thermal
boundary layers are formed not only next to the solid walls, but also on either side of the
two-fluid deformable interface. In the bulk of each fluid layer and away from the solid or
fluid boundaries, the convection-induced mixing prevents large temperature gradients.

Assuming that the two fluids have equal volumes with fluid (1) being the heavier fluid
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z

h⇥
i x

,y
,t

Figure 1: A schematic representation of the key quantities that can be defined from
the temperature field. The temperature drops next to each solid (z = 0 and z = 1)
and fluid (z = 0.5) surface are represented as �1,s = AB, �1,f = EF, �2,f = FG
and �2,s = JK. The respective thermal boundary layer thicknesses are represented as
h✓
1,s = BC, h✓

1,f = DE, h✓
2,f = GH and h✓

2,s = IJ.

at the bottom layer, the temperature drop next to each solid or fluid surface is defined
as,

�1,s = h⇥ix,y,t|z=0 � h⇥ix,y,t|z=0.25, �1,f = h⇥ix,y,t|z=0.25 � h⇥ix,y,t|z=0.5,

�2,f = h⇥ix,y,t|z=0.5 � h⇥ix,y,t|z=0.75, �2,s = h⇥ix,y,t|z=0.75 � h⇥ix,y,t|z=1,
(2.9)

where subscripts (1,2) identify the fluid and subscripts (s, f) refer to the respective solid
or fluid surface. The traditional definition of the thermal boundary layer thickness is the
distance from the surface where the line tangent to the temperature distribution on the
surface meets the bulk temperature. Using the adopted notation, the thermal boundary
layer thickness in the solid and fluid surfaces is calculated as,

h✓
1,s =

�1,s

�@h⇥ix,y,t

@z

���
z=0

, h✓
1,f =

�1,f

�@h⇥ix,y,t

@z

���
z=0.5

,

h✓
2,f =

�2,f

�@h⇥ix,y,t

@z

���
z=0.5

, h✓
2,s =

�2,s

�@h⇥ix,y,t

@z

���
z=1

.
(2.10)

The thermal boundary layer thicknesses and the corresponding temperature drops next
to each solid and fluid surface are schematically represented in figure 1.

2.3. Numerical method

The GPU-accelerated code FluTAS, openly available in https://github.com/
Multiphysics-Flow-Solvers/FluTAS.git, is used for the solution of the governing
Eqs. (2.3)–(2.6) following the procedure detailed in Costa (2018) and Crialesi-Esposito
et al. (2023). In short, FluTAS couples a pressure correction method to solve the
momentum equation and the algebraic Volume-of-Fluid method MTHINC (Ii et al.

2012) to capture the dynamics of the two-fluid interface. The governing equations are
discretized in time with a second-order Adams-Bashforth method and in space with
standard second-order central schemes, except for the convective term of the energy
equation discretized using the WENO5 scheme (Jiang & Shu 1996). A time-splitting
procedure (Dodd & Ferrante 2014) is applied to the Poisson equation for the pressure,

%20https://github.com/Multiphysics-Flow-Solvers/FluTAS.git
%20https://github.com/Multiphysics-Flow-Solvers/FluTAS.git
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Figure 2: Schematic representation of the three-dimensional geometry used in the present
study. The two fluid layers are enclosed by a bottom-heated surface (depicted in red) and
a top-cooled surface (in blue), while periodic boundary conditions are assumed along the
vertical boundaries of the domain.

⇤⇢ ⇤µ ⇤↵ ⇤cp ⇤⇣ Pr Fr Ra We

0.1 0.1 1 1 0.1 1 1 {106, 107, 108} {102, 103}

Table 1: Dimensionless parameters adopted for the study of two-layer Rayleigh–Bénard
convection.

facilitating e�cient solutions using the cuFFT library (Costa et al. 2021). A validation
of the numerical method for relevant test cases can be found in Crialesi-Esposito et al.

(2023). The simulations were carried out on two di↵erent GPU clusters, consuming
approximately 40 million core hours in total: (i) on MARCONI100, managed by
CINECA and equipped with V100-16 GB cards, each case was run on 32 GPUs, and (ii)
on Berzelius, managed by NSC and equipped with A100-40 GB cards, each case was run
on 8 GPUs.

2.4. Case description

The three-dimensional geometry under consideration is shown in figure 2 and is
equivalent to what is used in Liu et al. (2022). Thermal convection is developed between
two infinitely long horizontal solid surfaces, heated from below and cooled from above
at a constant temperature. The x and y directions are considered periodic, and the
aspect ratio between the horizontal and vertical dimensions of the cavity is � = 2.
The dimensionless parameters adopted are shown in Table 1. The density, viscosity
and thermal conductivity ratios between the two fluids are set to 0.1, while the rest
of the property ratios are set to 1. Consequently, the kinematic viscosity ⌫ and thermal
di↵usivity  ratios between the two fluids are also set to 1. The mismatch in densities is
the reason behind the arrangement of the fluids in a two-layer configuration. This choice
of parameters di↵erentiates the present study from Liu et al. (2021), since the focus here
is turned to the Rayleigh–Weber parameter space. A total of 6 cases were simulated,
covering 106 6 Ra 6 108 and 102 6 We 6 103.

Preliminary simulations revealed that a uniform grid of Nx⇥Ny⇥Nz = 1024⇥1024⇥
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512 is adequate to provide grid-independent results for the cases with Ra=108, and was
also adopted for all other cases. The solution was advanced in time using a dynamically
adjusted time-step, respecting the appropriate time-step restrictions (Kang et al. 2000).
All cases were initialized with stagnant and nearly isothermal conditions in the presence
of random temperature fluctuations of 1% intensity to trigger a convective flow. Each
simulation underwent an initial transient period before developing a statistically station-
ary solution, at which point the statistical sampling commenced. Afterwards, su�cient
time was allowed to reach large enough sample sizes so that the statistics for each case
converged.

3. Results

3.1. Flow organisation

In this section, a qualitative description of the main features of the two-layer Rayleigh–
Bénard convection is presented through a series of di↵erent flow visualizations. First,
figure 3 presents snapshots of the temperature volumetric rendering, including the
isosurface representing the location of the two-fluid interface. The activity of the thermal
plumes is clearly depicted, especially at the top half of the cavity, where hotter plumes
rise from the interface along with colder plumes descending from the top cooled wall.
The plume activity typically feeds the large-scale circulation structures that sweep the
boundary layers at their periphery. The bottom half of the cavity appears to be less active,
with thicker thermal structures that occupy a significant portion of the available volume.
As observed in single-phase thermal convection, the thermal structures become finer as
the Rayleigh number increases, intensifying the thermal transport from the boundary
layers to the large-scale circulation. On the contrary, based on the various snapshots in
figure 3, the Weber number does not appear to have any obvious e↵ect on the temperature
field.
Focusing on the two-fluid interface as depicted in figure 3, its deformation is mostly

visible for the Ra = 106 cases. For larger Rayleigh numbers this deformation becomes
less pronounced. More specifically, the r.m.s. values of the interface elevation ⌘rms reduce
by 69% from Ra = 106 to Ra = 108 considering a Weber number of 100, and by 66%
considering a Weber number of 1000. The e↵ects of the Weber number on the interface
deformation are more clearly depicted in figure 4, where cases with larger Weber numbers
exhibit a more noticeable deformation. As concerns the velocity fields, we note that the
appearance of progressively smaller structures as the Rayleigh number increases well
correlates with the ejected thermal plumes. This observation is more evident in the
top half of the cavity, as the bottom half exhibits smaller temperature di↵erences. The
more qualitative observations discussed in this section will be verified in the quantitative
statistical analysis presented in the following sections.

3.2. Global properties

The analysis of global properties focuses on the interface temperature (⇥� ) and the
Nusselt and Reynolds numbers, which represent, in non-dimensional form, heat transfer
and turbulence intensity, respectively. In this section, results extracted from the present
DNS are compared against recently developed scaling laws with respect to the Rayleigh
and Weber numbers. We note here that Liu et al. (2022) have argued that the proposed
scaling laws can hold for di↵erent Rayleigh numbers. Nonetheless, this hypothesis has not
been assessed so far. The scaling laws for ⇥� , Nu and Re are based on the Grossmann–
Lohse (GL) theory, which consists of two non-linear equations, originating from the
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Ra = 106

We = 100

(a)
Ra = 106

We = 1000

(b)

Ra = 107

We = 100

(c)
Ra = 107

We = 1000

(d)

Ra = 108

We = 100

(e)
Ra = 108

We = 1000

(f )

Figure 3: Snapshots of volume representations of the temperature field (semi-transparent
colored iso-surfaces) and the interface (light-brown colored surface at approximately mid-
height) for the six di↵erent DNS cases. Red color denotes a higher temperature compared
to blue color.

relations for the kinetic and thermal energy dissipation rates. For a multiphase problem,
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(a) Ra = 106, We = 100 (b) Ra = 106, We = 1000

(c) Ra = 107, We = 100 (d) Ra = 107, We = 1000

(e) Ra = 108, We = 100 (f ) Ra = 108, We = 1000

Figure 4: Snapshots of x � z planar representations of the temperature field, including
streamlines (black lines with arrows) and the interface (white dashed line) for the six
di↵erent DNS cases. Red color denotes a higher temperature compared to blue color.

this set of equations is written for both layers separately (Liu et al. 2022).

(Nuj � 1)RajPr
�2
j =

c1Re
2
j

g

 s
Rec
Rej

! + c2Re
3
j ,

(Nuj � 1) = c3Re
1/2
j Pr1/2j

vuutf

"
2c0Nujp

Rej
g

 s
Rec
Rej

!#

+ c4PrjRejf

"
2c0Nujp

Rej
g

 s
Rec
Rej

!#
,

(3.1)

where indices j = 1, 2 denote the corresponding parameters in the heavier and lighter
fluids, respectively. The coe�cients ci, with i = 0, . . . , 4 are the prefactors which are
chosen equal to ci = [0.922, 8.05, 1.38, 0.487, 0.0252] as suggested in Stevens et al. (2013),
together with Rec = (2c0)

2. The crossover functions g and f in equations (3.1) are given
by g(x) = (1 + xn)1/n and f(x) = xn(1 + xn)1/n with n = 4 (Grossmann & Lohse
2000, 2001; Stevens et al. 2013). The Prandtl number in equations (3.1) is computed as
Pr = µ̂j ĉp,j/⇣̂j , while the Rayleigh numbers of each phase, Raj , read

Ra1 = C3
tot(1/2�⇥� )Ra,

Ra2 = (1� Ctot)
3(1/2 +⇥� )Ra⇤µ⇤⇣/

�
⇤2
⇢⇤cp⇤↵

�
,

(3.2)
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Figure 5: (a) Nusselt number and (b) Reynolds number predictions as a function of the
Rayleigh number, for di↵erent Weber numbers. The GL theory predictions are calculated
from equations (3.1)-(3.3).

where Ctot is the overall volume fraction of phase 1. Note that in Liu et al. (2022),
the properties ratios ⇤µ, ⇤⇢, ⇤cp and ⇤↵ are omitted in equations (3.2) since they are
considered equal to 1, but are kept here for completeness. Therefore, the Nusselt numbers
are defined as,

Nu1 =
Q̂1Ctot l̂z

⇣̂1(1/2�⇥� )�⇥̂
,

Nu2 =
Q̂2(1� Ctot)l̂z

⇣̂2(1/2 +⇥� )�⇥̂
,

(3.3)

where the heat fluxes Q̂1,2 at the bottom and top walls are considered equal once a

statistical equilibrium is reached, i.e. hQ̂1it = hQ̂2it. Equations (3.1) are applied to each
layer separately, coupled to equations (3.2) and (3.3). The solution of this system of
equations provides the value of ⇥� , Nuj and Rej . Since the GL theory is implicit in Nuj
and Rej , an iterative procedure is required. Once Nuj , Rej and ⇥� are known, the global
Nusselt number can be readily obtained from Nuj at one of the interface sides. Taking
as reference the top wall and using the relation for Nu2 in equation (3.3), the global Nu
reads,

Nu =
Q̂2 l̂z

⇣̂2�⇥̂
= Nu2

1/2 +⇥�

1� Ctot
. (3.4)

Similarly, we can define two global Reynolds numbers for the top (Retop) and bottom
(Rebot) halves of the cavity. These quantities can be related to the turbulence in each
phase, with Rebot = Re1(⌫̂1/⌫̂ref )/Ctot and Retop = Re2(⌫̂2/⌫̂ref )/(1 � Ctot). Note that
in the present set-up, ⌫̂j=1,2 = ⌫̂ref and Ctot = 0.5, therefore Rebot = 2Re1 and Retop =
2Re2.
The Nusselt and Reynolds numbers predictions are shown in figure 5, exhibiting an

excellent agreement against the corresponding scaling laws. This confirms the observation
from Liu et al. (2022) that the weak dependence on the Weber number is expected
to hold as long as the interface does not break up and two separated layers can be
clearly identified. Furthermore, the Reynolds number is approximately two times higher
in the lighter fluid compared to the denser fluid, for all the Weber and Rayleigh numbers
explored. This indicates significantly higher turbulence levels in the top half of the cavity.

Furthermore, as an alternative to equation (3.1) which requires an iterative solution, an
approximation of ⇥� can be explicitly obtained. This approach has been proposed in Liu
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et al. (2022) for multiphase thermal convection and Scapin et al. (2023) for evaporating
Rayleigh-Bénard convection. The main idea is to employ a simplified scaling of the form
Nuj = AjRa

�j

j Pr
mj

j and to assume that the Rayleigh and Prandtl numbers of both phases
are su�ciently similar to fall inside the same scaling regime of the GL theory, so that
A1 = A2 = A, �1 = �2 = � and m1 = m2 = m. Then, by using equations (3.3) to express
the Nuj and equations (3.2) to express the Raj , the following approximate relation for
⇥� emerges,

⇥� = �1

2
+

0

BB@1 +

✓
1� Ctot

Ctot

◆1� 3�

1 + �
 
⇤2
⇢⇤cp⇤↵

⇤µ

! �

1 + �
⇤

1� �

1 + �
⇣

1

CCA

�1

. (3.5)

Note that the Prandtl number dependence is typically omitted since the corresponding
scaling exponent becomes 0 < m ⌧ 1 for Pr > 0.5 (Grossmann & Lohse 2000, 2001;
Stevens et al. 2013). In contrast to the implicit relations of the GL theory, equation (3.5)
depends only on the various property ratios ⇤ and the chosen scaling exponent �.
Figure 6 shows the interface temperature obtained from the DNS, compared against the
predictions of the GL theory (equations (3.1)-(3.3)) and the predictions of the simplified
scaling (equation (3.5)). The results of the simplified scaling assume the typical scaling
exponent range 1/4 6 � 6 1/3. As observed in figure 6, the DNS results from the low
Weber number cases follow the GL theory closely. The higher Weber number cases deviate
from the GL theory as the lower surface tension induces a stronger interface deformation,
which influences the resulting scaling. Noteworthy is the fact that the simplified scaling
provides a reliable estimation of ⇥� for the di↵erent values of the Rayleigh number
considered in the present study, with a maximum deviation of less than 2% from the
GL theory. Furthermore, despite its apparent simplicity, the simplified scaling directly
highlights some important features of the equilibrium interface temperature, ⇥� . Firstly,
we highlight that the weak dependence of ⇥� on the Rayleigh number (absent in
equation (3.5)) is confirmed by the DNS results, since the value of ⇥� decreases by less
than 3% as Ra increases from 106 to 108. Secondly, equation (3.5) enables us to quantify
the role of each thermophysical property in modulating ⇥� , because each property ratio
⇤ has its own scaling exponent. In particular, the density and thermal conductivity
ratios have the largest exponents, representing the dominant sources of influence on the
interface temperature ⇥� .

We conclude this section by examining the thickness of the scaled thermal boundary
layers at di↵erent locations in the cavity, which are shown in figure 7. The single phase
scaling of Ra�1/4 is used, as this scaling was proven to agree reasonably well with the
interface temperature predictions in figure 6. Due to the presence of two fluid layers,
the e↵ective Rayleigh numbers Ra1,2 defined in equation (3.2) are used to scale the
thermal boundary layer thickness at the bottom and top halves of the cavity. The e↵ective
Rayleigh numbers consider the height and the temperature di↵erence of the corresponding
fluid layer and, for the parameters of the present study, can be simplified as Ra1 =
Ra(0.5 � ⇥� )/8 at the bottom layer and Ra2 = Ra(⇥� + 0.5)/8 at the top layer. As
shown in figure 7, this scaling is successful in collapsing the thicknesses of the thermal
boundary layers that form on both the solid surfaces and the fluid interface. Note that
this is true despite the variation of the Weber number, which, however, does not have
a clear impact on the scaled thermal boundary layer thicknesses. As shown in figure 6,
the Weber number has a minor influence on the interface temperature, which is not
clearly noticeable when examining the thermal boundary layer thicknesses in figure 7.
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Figure 8: Vertical distribution of the (a) average and (b) r.m.s. values of the indicator
function for di↵erent values of the Rayleigh and Weber numbers.

distribution in figure 8(a), and larger fluctuating regions in figure 8(b). These trends
are due to the decreased surface tension, leading to larger interface deformation. The
interface deformation will be further analyzed and characterized in section 3.4.

The vertical profiles of the temperature field statistics are depicted in figure 9. The
data in the figure suggest several considerations. First, the average temperature field in
figure 9(a) reveals an increasingly sharper temperature profile as the Rayleigh number
increases. Specifically at the bottom and top walls of the cavity, the temperature gradients
become larger (in absolute value) with increasing Rayleigh number, in accordance with
the Ra�1/4 scaling of the thermal boundary layers in figure 7. The same characteristic
is also observed in the temperature distribution next to the interface. In the bulk of
the bottom half (approximately z=0.2-0.4) and the top half (approximately z=0.6-0.8),
a nearly uniform temperature profile is observed, with a very weak dependence on the
Rayleigh number. The temperature values in these regions are approximately 0.42 at
the bottom half and -0.05 at the top half, approximately constant in all the cases. This
significant asymmetry is mainly attributed to the di↵erent thermal conductivities on
each side of the interface. Since the thermal conductivity of the denser fluid is an order
of magnitude larger than the lighter fluid, the bulk temperature at the bottom half is
much closer to the temperature at the bottom heated wall than that of the top half of the
cavity. A final observation from figure 9(a) is that the average temperature distributions
show negligible sensitivity to the Weber number.

The vertical distribution of the temperature r.m.s. fields is depicted in figure 9(b).
The most distinct feature is the significantly smaller r.m.s. values at the bottom of the
cavity compared to the top, hinting at a weaker turbulent state in the denser fluid, in line
with the observations made from the instantaneous fields in section 3.1 and the Reynolds
number predictions discussed in section 3.2. At the top of the cavity, two maxima are
observed: a smaller one next to the top wall and a larger one next to the two-phase
interface, reinforced by the interface oscillation. For both peaks, the maximum values
become smaller, and their location moves closer to the boundaries as the Rayleigh number
increases. The same behaviour of the temperature r.m.s. field was observed in other single-
phase studies, such as du Puits et al. (2007) for the turbulent convection in a cylindrical
cell and Demou & Grigoriadis (2019) in a cuboid cavity. Furthermore, increasing the
Weber number leads to a noticeable increase in the temperature r.m.s. maximum values
next to the interface. More specifically, the Weber number e↵ects are stronger as the
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Figure 9: Vertical distribution of the (a) average and (b) r.m.s. values of the temperature
field, for di↵erent values of the Rayleigh and Weber numbers. The line notation followed
is the same as figure 8.
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Figure 10: Vertical distribution of the (a) vertical and (b) horizontal components of the
velocity r.m.s. field, for di↵erent values of the Rayleigh and Weber numbers. The line
notation followed is the same as figure 8.

Rayleigh number increases. On the other hand, not surprisingly, the temperature r.m.s.
values next to the top wall remain relatively una↵ected with increasing Weber numbers.
Moving on to the statistics of the velocity field, we recall that since huix,y,t = hvix,y,t =

hwix,y,t = 0, the velocity r.m.s. reduces to urms =
p
hu2ix,y,t, vrms =

p
hv2ix,y,t and

wrms =
p
hw2ix,y,t, which corresponds to the square root of the single-phase kinetic

energy per unit mass. Therefore, the velocity r.m.s. values are associated with the average
kinetic energy per unit mass of the large-scale vortical structures in each fluid layer.
Figure 10 shows the vertical distributions of (a) the vertical and (b) the horizontal
components of the velocity r.m.s. field. As already mentioned, the turbulence at the
bottom fluid layer is weaker compared to the top fluid layer, something that is clearly
depicted in the r.m.s. profiles. Still, the rotation of the large-scale vortical structures
is adequate in retaining relatively large velocity r.m.s. values in the denser fluid, in
comparison to the temperature r.m.s. values in figure 9(b).
Focusing on the vertical velocity r.m.s. component, shown in figure 10(a), the di↵erent

profiles exhibit a concave shape in each fluid layer, with a maximum at z = 0.25 and
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z = 0.75, i.e. in the middle of the two layers. The curvature at the maxima decreases
with increasing Rayleigh number, indicating a change in the circulation of the large-
scale vortical structures. The actual maximum values behave non-monotonically, with
larger maxima for the Ra=107 case. Moreover, the e↵ects of the Weber number are more
visible in the lighter fluid. They are much more pronounced for the lower Rayleigh number
cases, as can be expected considering the stronger interface deformation in these cases.
More specifically, the maximum vertical velocity r.m.s. component in the lighter fluid for
Ra=106 increases noticeably with increasing Weber number, while there is no significant
shift in the higher Rayleigh number cases. On the other hand, the horizontal velocity
r.m.s. components, shown in figure 10(b), exhibit a similar shape to the temperature
r.m.s. profiles in figure 9(b), with two maxima in each layer; one next to the solid wall
and one next to the two-fluid interface. The di↵erence compared to the temperature
profiles is that the maximum velocity r.m.s. values are approximately symmetric in each
layer. As concerns variations of interface deformability, we observe similar trends as those
observed for the vertical velocity r.m.s. distribution, with a more pronounced e↵ect of
the Weber number for smaller Rayleigh numbers.

3.4. Surface displacement

The dynamics of a mechanically perturbed interface are thoroughly discussed in the
literature, usually referred to as wave-turbulence (Falcon & Mordant 2022). By applying
a statistically stationary large-scale perturbation (either through wind or mechanical
excitation), the interface deforms into waves, whose elevation ⌘(x, y, t) may vary sig-
nificantly in time and space. Energy is redistributed towards small (dissipative) scales
through nonlinear interactions, leading to a cascade process thoroughly described in
literature (Nazarenko 2011; Zakharov & Filonenko 1967). Larger waves are generated
through gravity forces, while smaller ones are governed by capillarity. The dispersion
relation for the linear (small-amplitude) gravity-capillary waves reads (see the book by
Lamb 1993):

!̂2 =

✓
⇢̂1 � ⇢̂2
⇢̂1 + ⇢̂2

ĝ +
�̂

⇢̂1 + ⇢̂2
k̂2
◆
k̂, (3.6)

where !̂ = 2⇡f̂ is the angular frequency (corresponding to time period T̂f = 1/f̂) and

k̂ = 2⇡/�̂ is the wavenumber, corresponding to wavelength �̂. The first term on the right-
hand side of equation 3.6 represents the contribution due to the gravity forces, while the
second is the modulation due to capillary stresses. These two contributions are equal
at the capillary wavenumber k̂c =

p
ĝ(⇢̂1 � ⇢̂2)/�̂, which, using equation (3.6), gives

the capillary frequency f̂c = ĝ3/4(⇢̂1 � ⇢̂2)3/4(⇢̂1 + ⇢̂2)�1/2�̂�1/4/(
p
2⇡). The crossover

scale is the capillary wavelength �̂c = 2⇡
p
�̂/((⇢̂1 � ⇢̂2)ĝ): waves longer than this are

driven by gravity, while smaller waves by capillarity. For both the capillary (�̂ > �̂c)
and gravity (�̂ < �̂c) regimes, theoretical predictions are available for spectra computed
both in time, Ŝ! = h|⌘̃(x, y,!)|2ix,y and space Ŝk = h|⌘̃(kx, ky, t)|2it, with (•̃) being the

Fourier transform. For gravity waves, Zakharov & Filonenko (1966) found that Ŝ! ⇠ !̂�4

and Ŝk ⇠ k̂�5/2, while for capillary waves the scaling laws Ŝ! ⇠ !̂�17/6 and Ŝk ⇠ k̂�15/4

were obtained by Zakharov & Filonenko (1967).
The dispersion relation (3.6) is obtained by solving the linearized system composed by

the Euler equations (in Fourier space) for an incompressible, irrotational, and inviscid
velocity field and the equation for the interface elevation dynamics. However, the present
system is quite di↵erent, with gravity e↵ects not only producing waves at the interface (as
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in the aforementioned references) but also a↵ecting the velocity field through buoyancy
due to the dependency of density on the temperature. In fact, the full system of equations
for the present configuration should comprise the Navier-Stokes equations, including not
only viscosity but, more importantly, the e↵ect of density variations that lead to the
production of vorticity by the baroclinic torque, making equation (3.6) only indicative
for the present study. Furthermore, the linearization employed to obtain equation (3.6)
assumes that the non-linearities of the problem provide only weak contributions. If non-
linearities become stronger, the dispersion relation widens (Aubourg & Mordant 2016)
and eventually deviates from the theoretical prediction in equation (3.6) (Herbert et al.
2010).
Given this short overview, we move on to examine the results of the present simulations.

Figure 11 shows the temporal spectrum Ŝ! of the wave elevation for each case, together
with the scaling exponent predicted for gravity and capillary waves. When surface tension
forces are higher, i.e. low We (top panels), we observe that the capillary regimes (!̂ > !̂c)
can be observed over an extended range of frequencies, especially for the highest Rayleigh
numbers under investigation here (see panels (b) and (c)). For the larger Weber number
(bottom panels of the same figure), we observe a region with a flatter spectrum around
!̂ ⇠ !̂c, with a secondary peak and a scaling behaviour close to the capillary regime,
!̂�17/6. The secondary peak becomes less pronounced with increasing Rayleigh number,
while no capillary scaling can be observed at large wavenumbers. While it is di�cult to
explain the origin of the secondary peak, this is likely not connected to gravity waves. In
fact, by increasing the Weber number, we do not find any consistent trend, either with
the capillary or the gravity power laws. This is indeed counter-intuitive, as increasing the
Weber number should lead to the formation of larger waves, as the lower surface tension
forces cannot withstand the local velocity fluctuations. Such waves should, in principle,
behave as gravity waves, as !̂ < !̂c, but this is not observed in the spectra.

A similar behavior is also consistently observed in the spatial spectrum, shown in
figure 12. Again, at low-We and high-Ra (panels b,c), the spatial spectra show a clean
capillary-wave range, which is only partially observed at low-Ra (panel a), and not
observed at high-We (bottom panels) except from the highest Rayleigh number. As shown
in the temporal analysis, also the spatial spectra do not display a clean gravity-waves
range. In contrast, the secondary peak is clearly observed here for both Weber number
values considered, although less visible at higher Rayleigh numbers. As evidenced, a
pronounced secondary peak is associated with the disruption of the theoretical power-
law behavior of the gravity and the capillary regimes.

Next, we discuss the existence of the secondary peak. First, it is worth recalling that
this is observed for frequencies (and wavenumbers) larger than the capillary scale. Similar
deviations from the theoretical power-laws are not unusual in wave turbulence (e.g. see
Aubourg & Mordant 2016; Berhanu & Falcon 2013; Zonta et al. 2015) and are typically
attributed to dissipative e↵ects or strong non-linearities. In the present study, the most
striking result is that the secondary peak in the spectrum attenuates at high Rayleigh
number and low Weber number (a less pronounced peak appears in the spectrum), when
a neater capillary-wave regime can be observed. This observation can be linked to the
interface fluctuations expressed through the r.m.s. values of the indicator function in
figure 8(b), revealing smaller r.m.s. values at higher Rayleigh numbers. Considering as
well the smaller values of the temperature r.m.s. distribution at higher Rayleigh numbers
exhibited in figure 9(b) in combination with a less deformable interface at lower Weber
numbers, the influence of non-linear e↵ects on the interface dynamics weakens.

To further investigate the interface dynamics, we display in figure 13 the space-time
spectrum E⌘(k,!) for all flows under investigation and compare those with the dispersion



18 Demou et al.

Ra = 106

We = 100

10�10

10�6

10�2

102(a)
(̂
l

Ra = 107

We = 100

(b)

Ra = 108

We = 100

(c)

Ra = 106

We = 1000

10�1 1 101 10210�10

10�6

10�2

102(d)

l̂/l̂2

(̂
l

Ra = 107

We = 1000

10�1 1 101 102

(e)

l̂/l̂2

Ra = 108

We = 1000

10�1 1 101 102

(f )

l̂/l̂2

Figure 11: Temporal spectrum of the wave elevation ⌘(x, y, t). In each panel, we show
the spectrum Ŝ! (black lines), the �4 power-law for gravity waves (red dashed lines),
and the �17/6 power-law for capillary waves (blue dash-dotted lines). The upper panels
show all cases at We = 100, while cases at We = 1000 are shown in the bottom ones.
The x-axes are normalised by the capillary frequency !̂c = 2⇡f̂c.

relation for capillary and gravity-capillary waves. In all cases, we observe that neither the
capillary nor the gravity-capillary dispersion relations provide good predictions for the
maxima of the spectra, which could be expected in the current system. Nevertheless, most
of the measured maxima lie between the two theoretical dispersion relations, revealing
an intermediate regime created most likely by the combination of nonlinear e↵ects due
to buoyancy and viscous e↵ects at small scales. For all the studied cases, we note a
widening of the dispersion relation, meaning that non-linearities are a critical aspect of
these flows. Such widening may also a↵ect some of the maxima, which, therefore, lie
outside the theoretical dispersion relation for the capillary and gravity-capillary laws.
Furthermore, there is a clear range of low frequencies where the footprints of the forcing
can be observed (see Aubourg & Mordant 2016). On the other hand, it is important to
notice that, as Ra increases, non-linearities seem to decrease, and the maxima converge
towards a line. This suggests that the energy transport mechanism at high Rayleigh and
low Weber numbers is characterized by reduced non-linearities, which may help predict
the e↵ective interface area across which heat/mass is transferred.

4. Conclusions

This study provided a thorough analysis of how the Rayleigh and Weber numbers
a↵ect various quantities in two-layer Rayleigh–Bénard convection. For the adopted set
of parameters, the Nusselt and Reynolds numbers, along with the interface temperature,
were found to closely follow the Grossmann–Lohse scaling laws, with very little depen-
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Figure 13: Space-time spectrum Ê⌘(k,!) of the wave elevation ⌘̂(x, y, t). In each subplot,
we show the spectrum contour, the theoretical dispersion relation for capillary waves
!̂2
c = [�̂/(ĝ(⇢̂1 + ⇢̂2))]k̂3 is shown with a black dashed line, while the gravity-capillary

dispersion relation from equation 3.6 is shown with a red dashed curve. Vertical and
horizontal dotted black lines mark the capillary angular frequency and wavenumber.
Black crosses indicate the maximum of Ê⌘ for each angular frequency. The configuration
of the plots follows figures 11 and 12, i.e. the upper panels show all cases at We = 100,
while cases at We = 1000 are shown in the bottom ones. Increased Rayleigh numbers are
shown from left to right. Hence Ra = 106 corresponds to panels (a) and (d), Ra = 107

to (b) and (e), and Ra = 108 to (c) and (f ).

the capillary scaling may help to predict the total interface through which heat and mass
are exchanged.

An immediate extension of this work would be the consideration of realistic water-air
parameters, including evaporation and non-Oberbeck–Boussinesq e↵ects. The theoretical
work by Scapin et al. (2023) suggested an analytical model for such flows, the predictions
of which can be confirmed by three-dimensional DNS for di↵erent Rayleigh numbers. Such
a study can provide invaluable insight into the heat transfer mechanism and interface
dynamics, with relevant applications in atmospheric convection (Schumacher & Pauluis
2010) and spent-fuel pools of nuclear power plants (Hay & Papalexandris 2020), among
others.
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