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This study presents direct numerical simulation results of two-layer Rayleigh—Bénard
convection, investigating the previously unexplored Rayleigh—-Weber parameter space
10 < Ra < 108 and 102 < We < 103. Global properties, such as the Nusselt and
Reynolds numbers, are compared against the extended Grossman—Lohse theory for two
fluid layers, confirming a weak Weber number dependence for all global quantities and
considerably larger Reynolds numbers in the lighter fluid. Statistics of the flow reveal
that the interface fluctuates more intensely for larger Weber and smaller Rayleigh
numbers, something also reflected in the increased temperature r.m.s. values next to
the interface. The dynamics of the deformed two-fluid interface are further investigated
using spectral analysis. Temporal and spatial spectrum distributions reveal a capillary-
wave range at small Weber and large Rayleigh numbers, and a secondary energy peak
at smaller Rayleigh numbers. Furthermore, the maxima of the space-time spectra lie in
an intermediate dispersion regime, between the theoretical predictions for capillary and
gravity-capillary waves, showing that the gravitational energy of the interfacial waves is
strongly altered by temperature gradients.
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vection
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1. Introduction

The thermally driven flow inside a fluid layer heated from below and cooled from
above, known as Rayleigh—Bénard convection, is a widely studied physical problem
due to its similarities with a range of real-life applications and physical phenomena.
Despite its apparent simplicity, this type of convection exhibits rich physics both in terms
of large-scale characteristics, e.g. Nusselt number, large-scale circulation, etc. (see the
review by |Ahlers et al.[2009) and small-scale turbulence dynamics, e.g. spectra, structure
functions, etc. (see |Lohse & Xia||2010)). Even in its simplest form, the complexity of the
flow increases rapidly with the Rayleigh number, with progressively thinner boundary
layers and smaller thermal plumes. Consequently, resolving these smaller structures in
numerical simulations imposes overwhelming resolution requirements (Shishkina et al.
2010). Moreover, when additional complexities are included in the configuration, such as
solid particles suspended in the fluid phase (Demou et al.[2022)) or two fluid layers (Liu
et al. 2022)), the numerical solution becomes even more challenging.

Focusing on thermal convection between two fluid layers, the need to study this specific
problem stems from the fact that, regardless of the application, there is always some
dissolved gas in every liquid. Therefore, it is almost inevitable that a gaseous phase will
be formed in any realistic natural convection flow. This is also evident in experiments
of natural convection in liquids, where a long degassing procedure should be followed
to prevent the formation of the gaseous phase: (i) the liquid phase is heated close to
boiling point, (ii) a pump sucks the released gas and (iii) the treated liquid must be
kept isolated to prevent any gases from dissolving back into the liquid. The proposed
study aims to facilitate the transition from the ideal problem to a more realistic setup by
considering the gaseous phase in a two-layer configuration. From an application point of
view, physical phenomena such as the convection in the earth’s mantle (Busse|[1981) or
engineering applications such as the heat transfer inside magnetic confinement systems in
fusion reactors (Wilczynski & Hughes|2019) are more accurately modelled as a two-layer
convection, where the two fluid layers are dynamically coupled.

Before introducing the two-layer Rayleigh—-Bénard convection, it is vital to understand
some key characteristics of the classical Rayleigh-Bénard convection in a single fluid.
This problem is determined by three control parameters: the Rayleigh number (Ra),
the Prandtl number (Pr) and the aspect ratio of the cavity (I") within which the
thermal convection takes place. The dependence of all physical features (including flow
regime, flow structures, heat transfer, etc.) on only three control parameters is partly
due to adopting the Oberbeck—Boussinesq approximation (Boussinesq [1903; |[Oberbeck
1879) which, in brief, assumes constant fluid properties except for the density in the
gravitational term, which varies linearly with the temperature. Within this physical
setting, the Grossmann—Lohse theory (Grossmann & Lohse [2000; [Stevens et al.||2013)
provides scaling laws for the Reynolds (Re) and Nusselt (Nu) numbers with respect to
the control parameters, assuming different exponent values in different Ra—Pr regimes.
This theory is based on the existence of a coherent large-scale convection roll, something
that is not necessarily true in the two-layer configuration where each layer develops its
own confined convection rolls, which can be qualitatively very different.

Moving on to the two-layer Rayleigh-Bénard configuration, new control parameters
should be considered, even within the limits of applicability of the Oberbeck—Boussinesq
approximation. Firstly, each layer is composed of a different fluid with constant ther-
mophysical properties. Hence, the ratios of density, viscosity, conductivity, thermal
expansion and heat capacity also become governing parameters. In addition, since the
two layers are separated by a deformable interface featuring surface tension, the Weber
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number (We) should also be considered. Furthermore, the Froude number (Fr) is included
to differentiate between the relative effects of gravity in the two fluids. This set of control
parameters is translated into an enhanced flow complexity with many different regimes
depending on the combination of these parameters (Liu et al.|[2021)).

While experimental studies of two-layer Rayleigh—Bénard convection have been con-
ducted for a few decades now (Degen et al.|1998; Xie & Xia|2013;|Zeren & Reynolds|1972)),
direct numerical simulation (DNS) studies appeared in the literature only recently. In a
series of publications, Yoshida and co-workers utilized DNS to study two-layer Rayleigh—
Bénard convection in a two-dimensional spherical-shell geometry (Yoshida|2019; |Yoshida
& Hamano [2016} [Yoshida et al. [2017)). By considering large viscosity differences between
the two fluids, these authors focused on characterizing the large-scale flow structures in
each fluid and the dynamic coupling of these structures through the interface. Most
recently, Liu et al. conducted DNS in two-dimensional (Liu et al.2021) and three-
dimensional (Liu et al. [2022) rectangular cavities. In their two-dimensional study, these
authors considered a wide range of Weber numbers and density ratios, identifying two
qualitatively different mechanisms of interface breakup based on these two parameters.
In their three-dimensional study, they focused on the effects of the relative thickness
of each layer and the thermal conductivity ratio, suggesting a model to predict the
interface temperature and the global heat transfer within the explored parameter space.
Finally, Scapin et al| (2023) moved even further and included evaporation along the
two-fluid interface, extending the model proposed in (Liu et al.||2022)) to account for
non-Oberbeck-Boussinesq effects and evaporation.

Even though the aforementioned works contributed to the understanding of several
aspects of two-layer Rayleigh-Bénard convection, important open questions still need to
be addressed. First, the influence of the Rayleigh and Weber numbers on the movement of
the interface remains elusive. While [Liu et al.| (2021) thoroughly described the scenarios
under which the interface breaks for different Weber numbers and density ratios, the
interface oscillation modes well before break up were not characterized. Additionally,
further insight into the temperature distribution and variations of quantities, such as
the thermal boundary layer thickness and the interface temperature, is necessary for a
deeper understanding of the heat transfer near the interface. More specifically, the extent
to which the top and bottom thermal boundary layers are affected by the asymmetrical
two-layer structure considered here, is one of the questions addressed in the present study.

Building on the studies of Liu et al. (Liu et al. |2021}, 2022)), the present study aims
to provide further insight into the physical characteristics of two-layer Rayleigh-Bénard
convection in the turbulent regime. More specifically, a large section of the previously
unexplored Rayleigh—Weber parameter space is investigated. The Nusselt and Reynolds
numbers, along with the interface temperature, are compared against scaling laws based
on the extended Grossmann-Lohse theory for thermal convection in two stratified fluid
layers. Moreover, a closer inspection of the vertical distribution of mean and r.m.s. values
of the temperature and velocity fields reveals the influence of the interface deformation.
The dynamics of this deformation are further analysed through spectral analysis in space
and time.

The remainder of this study is structured as follows: Section [2] presents the mathe-
matical and numerical framework used in this study, including a description of the setup
under investigation. This is followed by the presentation of the results in section [3] More
specifically, the flow organization, global properties, two-phase statistics and spectral
characteristics of the two-fluid surface waves are thoroughly analysed and discussed. The
study concludes with a summary of the key findings in section
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2. Mathematical framework and numerical method
2.1. Governing equations

The presence of two immiscible fluids in the domain can be described using the so-called
one-fluid formulation. Fluids (1) and (2) are assumed to occupy volumes §2; (¢) and 25(t)
respectively, which are ideally separated by a time-evolving interface of zero thickness,
S(t) = 21(t)() 22(t). The volume fraction field of fluid (1), C(x,t), is consequently
defined as,

o 1 ifx € Ql(t),
Cla,t) = {0 it @ e (1), (2.1)

This indicator function is then used to define the value of any thermophysical property
X (x,t) inside the entire domain,

X(x,t) = C(z, )X, + (1 — C(a, 1)) Xo, (2.2)

where X and X5 are the constant values of the corresponding properties for each fluid.
Throughout the manuscript, subscripts (1) and (2) are used to differentiate between
quantities that only refer to one of the fluids. Quantities that bear no such subscript
apply to both fluids, in the spirit of equation (2.2]). Furthermore, in equation (2.2)) and
hereinafter, dimensional quantities are denoted With a hat (e) to differentiate from the
dimensionless quantities.

Using this notation, the governing equations in dimensionless form can be written as,

oC
5 TV (Cu) =0, (2.3)
V -u =0, (2.4)
aﬁ.,.v (u )—_7VP Prl V-[ (Vu—k(Vu)T)}
ot B Rap " U/
+ ﬁfisé(w —xg)ng (2.5)
1 &)
- N |:Fr2 p(C+ApAa(1C)):| )
00 1
9t + V. (Ou) :mv -((VO). (2.6)

The dimensionless groups emerging are the Rayleigh number Ra = g&lAéﬁfe 1/ (P1R1),
the Prandtl number Pr = /&1, the Weber number We = plUTefLr{,f/a and the
Froude number Fr = Uyep/(GLref)'/? = (G1A40)'/2. § is the acceleration of gravity,
acting along the negative z-direction, & is the thermal expansion coefficient, AB is the
temperature difference between the heated éh and cooled @C walls, and ﬁref is the
height of the cavity. Moreover, © denotes the kinematic viscosity, /i the dynamic viscosity,
p the density, & the thermal diffusivity, ¢, the specific heat, é the thermal conduction
coefficient and & the surface tension coefficient. All the thermophysical properties are
non-dimensionalized using the corresponding values of fluid (1). The property ratios are
denoted as Ax = X5 /X for property X, e. g A, = pa/p1 is the density ratio. The free-fall
velocity was adopted as the ve1001ty scale Uy = (g ABOL,. ) /2 Temperature is non-
dimensionalised as © = (9 O, ) /A@ where ©,. ¢ is the reference temperature inside
the domain, defined as @76]“ = (@m—@ )/2. The pressure scale is taken as P,»ef =p1 U,,

Vectors ng and n, are unit vectors that are directed normal to the fluid interface and
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along the z-direction, respectively. Completing this description, §(x — xg) is a delta
function centered on the two-fluid interface, and kg is the local curvature of the interface.

A small note is added here regarding the formulation of the gravity term in equa-
tion . In dimensional form, the gravity term is —ﬁ(é)gnz, with the density field
being a function of the temperature alone. Considering the Oberbeck—Boussinesq ap-
proximation, this term becomes,

~[(©)0 + 2(6) (1~ O)] dm. =

_ [,31 (1 (6 - é,.ef)) C+ po (1 — (6 - é,,.ef)) (1- C)} in.. 27

For brevity, the constant density values p1(Orer) and pa(Ores), are simply denoted as
p1 and ps. When this term is non-dimensionalized with the appropriate scales, the form
shown in equation is recovered. Finally, as required by the Oberbeck—Boussinesq
approximation, the temperature dependence of the density in all other terms in the
governing equations is neglected, i.e. p = p1C + po(1 — C).

2.2. Definitions of key output parameters

The key output parameters in the present study result from the analysis of the space-
and time-averaged fields. To represent these quantities, the bracket notation (@)qp,... is
adopted, expressing the averaging of a variable ¢ with respect to variables a, b, etc. More
specifically, the mean and r.m.s. values of a variable ¢ are denoted as (¢); and ¢y,
where ¢rms = ((6%): — (9)7)'/2.

Following this notation, the time-varying, area-averaged Nusselt numbers along the
bottom Nuye (t) and top Nuy,,(t) walls are defined as,

Nu) == (6 H52) L Nug = (0HF) )

where it is assumed that the bottom and top walls of the domain are located at z = 0
and z = 1, respectively. For simplicity, the time- and area-averaged Nusselt numbers are
simply denoted as Nupor = (Nupoe(t))r and Nugop = (Nugep(t))s for the bottom and top
walls, respectively. Assuming statistical equilibrium and adequate statistical sample size,
the two values of the Nusselt number converge to the same value Nupo: = Nuyo, = Nu.

Another important output parameter is the Reynolds number, defined as Re =
ﬁre fUO /Ures. In the present study, the maximum r.m.s. values of the vertical velocity
Wyms 10 the denser fluid and in the lighter fluid, were chosen as the characteristic velocity
amplitude Uy, similarly to the relevant single-fluid studies of (Calzavarini et al. (2005)
and |Van Der Poel et al.| (2013). With this choice, the Reynolds number at the bottom
and top of the cavity characterizes the turbulence induced by the large-scale circulation
structures that stir the denser and lighter fluids, respectively.

For classical Rayleigh-Bénard convection in a single fluid within the Oberbeck—
Boussinesq approximation, the mean fields are symmetric around the center of the cavity.
In the presence of two fluids, this symmetry breaks due to the difference in density
which causes the stratification of the two fluids, i.e. a two-layer structure appears. Each
layer develops its own large-scale circulation structures, which interact mechanically and
thermally through the interface that separates the two layers. Consequently, thermal
boundary layers are formed not only next to the solid walls, but also on either side of the
two-fluid deformable interface. In the bulk of each fluid layer and away from the solid or
fluid boundaries, the convection-induced mixing prevents large temperature gradients.

Assuming that the two fluids have equal volumes with fluid (1) being the heavier fluid



6 Demou et al.

A
\
\ D\ E
R Al
- \
> \
8
—
) F
~
\
\ 1\ [
= —
AT .
\
K
Z

Figure 1: A schematic representation of the key quantities that can be defined from
the temperature field. The temperature drops next to each solid (z = 0 and z = 1)
and fluid (# = 0.5) surface are represented as A; s = AB, Ay = EF, Ay y = FG
and Ay s = JK. The respective thermal boundary layer thicknesses are represented as
h‘f,s = BC, h?yf = DE, hgyf = GH and h%s =1J.

at the bottom layer, the temperature drop next to each solid or fluid surface is defined
as,

Al,s = <@>x,y,t|z=0 - <@>x,y,t|z=0.25a Al,f = <@>x,y,t 2=0.25 — <@>x,y,t|z=0.57
A2,f = <9>x,y7t|z:0.5 - <9>x,y7t|z:0.757 A2,s = <9>m7y,t|z:0.75 - <@>w,y,t|z:17

where subscripts (1,2) identify the fluid and subscripts (s, f) refer to the respective solid
or fluid surface. The traditional definition of the thermal boundary layer thickness is the
distance from the surface where the line tangent to the temperature distribution on the
surface meets the bulk temperature. Using the adopted notation, the thermal boundary
layer thickness in the solid and fluid surfaces is calculated as,

(2.9)

6 _ ALS h@ _ Alvf
1,3 o a<6>'£y t ’ 17f o 8<9>z‘y,t ’
I P I P (2.10)
0 _ Ag 0 _ Az
2! _9(O)ay.t ’ 2,8 _ 0(O)a,y,t
9 |,—05 9z |,

The thermal boundary layer thicknesses and the corresponding temperature drops next
to each solid and fluid surface are schematically represented in figure

2.3. Numerical method

The GPU-accelerated code FIluTAS, openly available in https://github.com/
Multiphysics-Flow-Solvers/FluTAS.git, is used for the solution of the governing
Eqgs. 7 following the procedure detailed in |Costa) (2018)) and |Crialesi-Esposito
et al. (2023). In short, FIuTAS couples a pressure correction method to solve the
momentum equation and the algebraic Volume-of-Fluid method MTHINC (Ii et al.
2012) to capture the dynamics of the two-fluid interface. The governing equations are
discretized in time with a second-order Adams-Bashforth method and in space with
standard second-order central schemes, except for the convective term of the energy
equation discretized using the WENO5 scheme (Jiang & Shu |{1996). A time-splitting
procedure (Dodd & Ferrante||2014) is applied to the Poisson equation for the pressure,
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Figure 2: Schematic representation of the three-dimensional geometry used in the present
study. The two fluid layers are enclosed by a bottom-heated surface (depicted in red) and
a top-cooled surface (in blue), while periodic boundary conditions are assumed along the
vertical boundaries of the domain.

Ay Ay Ay Ao, Ac Pr Fr Ra We

0101 1 1 01 1 1 {105 107, 10®} {102,10%}

Table 1: Dimensionless parameters adopted for the study of two-layer Rayleigh—Bénard
convection.

facilitating efficient solutions using the cuFFT library (Costa ef al. [2021). A validation
of the numerical method for relevant test cases can be found in [Crialesi-Esposito et al.
(2023). The simulations were carried out on two different GPU clusters, consuming
approximately 40 million core hours in total: (i) on MARCONI100, managed by
CINECA and equipped with V100-16 GB cards, each case was run on 32 GPUs, and (ii)
on Berzelius, managed by NSC and equipped with A100-40 GB cards, each case was run
on 8 GPUs.

2.4. Case description

The three-dimensional geometry under consideration is shown in figure |2 and is
equivalent to what is used in (2022). Thermal convection is developed between
two infinitely long horizontal solid surfaces, heated from below and cooled from above
at a constant temperature. The x and y directions are considered periodic, and the
aspect ratio between the horizontal and vertical dimensions of the cavity is I' = 2.
The dimensionless parameters adopted are shown in Table The density, viscosity
and thermal conductivity ratios between the two fluids are set to 0.1, while the rest
of the property ratios are set to 1. Consequently, the kinematic viscosity v and thermal
diffusivity x ratios between the two fluids are also set to 1. The mismatch in densities is
the reason behind the arrangement of the fluids in a two-layer configuration. This choice
of parameters differentiates the present study from Liu et al. (2021)), since the focus here
is turned to the Rayleigh—~Weber parameter space. A total of 6 cases were simulated,
covering 10° < Ra < 10® and 102 < We < 103.

Preliminary simulations revealed that a uniform grid of N, x Ny, x N, = 1024 x 1024 x
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512 is adequate to provide grid-independent results for the cases with Ra=10%, and was
also adopted for all other cases. The solution was advanced in time using a dynamically
adjusted time-step, respecting the appropriate time-step restrictions (Kang et al.|2000]).
All cases were initialized with stagnant and nearly isothermal conditions in the presence
of random temperature fluctuations of 1% intensity to trigger a convective flow. Each
simulation underwent an initial transient period before developing a statistically station-
ary solution, at which point the statistical sampling commenced. Afterwards, sufficient
time was allowed to reach large enough sample sizes so that the statistics for each case
converged.

3. Results
3.1. Flow organisation

In this section, a qualitative description of the main features of the two-layer Rayleigh—
Bénard convection is presented through a series of different flow visualizations. First,
figure |3| presents snapshots of the temperature volumetric rendering, including the
isosurface representing the location of the two-fluid interface. The activity of the thermal
plumes is clearly depicted, especially at the top half of the cavity, where hotter plumes
rise from the interface along with colder plumes descending from the top cooled wall.
The plume activity typically feeds the large-scale circulation structures that sweep the
boundary layers at their periphery. The bottom half of the cavity appears to be less active,
with thicker thermal structures that occupy a significant portion of the available volume.
As observed in single-phase thermal convection, the thermal structures become finer as
the Rayleigh number increases, intensifying the thermal transport from the boundary
layers to the large-scale circulation. On the contrary, based on the various snapshots in
figure[3] the Weber number does not appear to have any obvious effect on the temperature
field.

Focusing on the two-fluid interface as depicted in figure |3} its deformation is mostly
visible for the Ra = 108 cases. For larger Rayleigh numbers this deformation becomes
less pronounced. More specifically, the r.m.s. values of the interface elevation 7,.,,,s reduce
by 69% from Ra = 10% to Ra = 10® considering a Weber number of 100, and by 66%
considering a Weber number of 1000. The effects of the Weber number on the interface
deformation are more clearly depicted in figure[d] where cases with larger Weber numbers
exhibit a more noticeable deformation. As concerns the velocity fields, we note that the
appearance of progressively smaller structures as the Rayleigh number increases well
correlates with the ejected thermal plumes. This observation is more evident in the
top half of the cavity, as the bottom half exhibits smaller temperature differences. The
more qualitative observations discussed in this section will be verified in the quantitative
statistical analysis presented in the following sections.

3.2. Global properties

The analysis of global properties focuses on the interface temperature (@) and the
Nusselt and Reynolds numbers, which represent, in non-dimensional form, heat transfer
and turbulence intensity, respectively. In this section, results extracted from the present
DNS are compared against recently developed scaling laws with respect to the Rayleigh
and Weber numbers. We note here that [Liu et al.| (2022)) have argued that the proposed
scaling laws can hold for different Rayleigh numbers. Nonetheless, this hypothesis has not
been assessed so far. The scaling laws for ©p, Nu and Re are based on the Grossmann-—
Lohse (GL) theory, which consists of two non-linear equations, originating from the



Ra and We effects on multiphase thermal convection 9

(a) (b)
Ra=10° Ra = 10°
We = 100

© (d)

(e)

Figure 3: Snapshots of volume representations of the temperature field (semi-transparent
colored iso-surfaces) and the interface (light-brown colored surface at approximately mid-
height) for the six different DNS cases. Red color denotes a higher temperature compared
to blue color.

relations for the kinetic and thermal energy dissipation rates. For a multiphase problem,
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Ra = 10°, We = 100 Ra = 10°, We = 1000

(a)

(b)

() d)

Ra = 108, We = 1000
(e)

Figure 4: Snapshots of x — z planar representations of the temperature field, including
streamlines (black lines with arrows) and the interface (white dashed line) for the six
different DNS cases. Red color denotes a higher temperature compared to blue color.

this set of equations is written for both layers separately (Liu et al.||2022).

c1 Re?
Re.
g Re 2

(Nu; —1) = (:;;Rejl-ﬂpr}/2 f

(Nu; — 1)RajPrJ72 = + CQRG?,

QCoNU.j %
\/Rej 9 Rej
2¢oNuy &
JRe; 7\ | Re;

where indices j = 1,2 denote the corresponding parameters in the heavier and lighter
fluids, respectively. The coefficients ¢;, with i« = 0,...,4 are the prefactors which are
chosen equal to ¢; = [0.922, 8.05,1.38,0.487,0.0252] as suggested in [Stevens et al. (2013)),
together with Re, = (200)2. The crossover functions ¢ and f in equations (3.1) are given
by g(z) = (1 +2™)Y" and f(z) = 2"(1 4+ 2™)/" with n = 4 (Grossmann & Lohse|
(2000}, 2001} [Stevens et al.|2013). The Prandtl number in equations is computed as
Pr = ¢,/ @, while the Rayleigh numbers of each phase, Ra;, read

Ra; = C},(1/2 — Or)Ra,
Ray = (1 — Cior)*(1/2 + Or)Rad, Ac/ (A2Ac, Ad)

(3.1)

+ c4PrjRe; f

b

(3.2)
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Figure 5: (@) Nusselt number and (b) Reynolds number predictions as a function of the
Rayleigh number, for different Weber numbers. The GL theory predictions are calculated

from equations ((3.1)-(3.3).

where Cy, is the overall volume fraction of phase 1. Note that in [Liu et al.| (2022),
the properties ratios A,, 4,, A., and A, are omitted in equations since they are
considered equal to 1, but are kept here for completeness. Therefore, the Nusselt numbers
are defined as,

_ Qlctot[z

G(1/2 - 6r)A6°

_ QQ(I - Otot)lz
2 — 3 A
C2(1/2 +6Or)A6
where the heat fluxes QLQ at the bottom and top walls are considered equal once a
statistical equilibrium is reached, i.e. <Q1>t = <Q2>t. Equations (3.1) are applied to each
layer separately, coupled to equations (3.2) and (3.3). The solution of this system of
equations provides the value of O, Nu; and Re;. Since the GL theory is implicit in Nuy
and Re;, an iterative procedure is required. Once Nu;, Re; and O are known, the global
Nusselt number can be readily obtained from Nu; at one of the interface sides. Taking

as reference the top wall and using the relation for Nuy in equation (3.3)), the global Nu
reads,

Nu1

(3.3)

Nu = 9 2le =
(AO
Similarly, we can define two global Reynolds numbers for the top (Re;p) and bottom

(Repot) halves of the cavity. These quantities can be related to the turbulence in each

phase, with Repor = Rel(ﬁl/ﬁref)/ctot and Retop = ReQ(ﬁ2/ﬁref)/(1 - Ctot)~ Note that

in the present set-up, ¥j—1,2 = Upey and Cyo = 0.5, therefore Reyo; = 2Req and Reyop =
2R62.

The Nusselt and Reynolds numbers predictions are shown in figure [5] exhibiting an
excellent agreement against the corresponding scaling laws. This confirms the observation
from |[Liu et al. (2022) that the weak dependence on the Weber number is expected
to hold as long as the interface does not break up and two separated layers can be
clearly identified. Furthermore, the Reynolds number is approximately two times higher
in the lighter fluid compared to the denser fluid, for all the Weber and Rayleigh numbers
explored. This indicates significantly higher turbulence levels in the top half of the cavity.

Furthermore, as an alternative to equation which requires an iterative solution, an
approximation of @p can be explicitly obtained. This approach has been proposed in |Liu

(3.4)
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et al. (2022)) for multiphase thermal convection and |Scapin et al. (2023)) for evaporating
Rayleigh-Bénard convection. The main idea is to employ a simplified scaling of the form
Nu; = AjRa;“ Pr;nj and to assume that the Rayleigh and Prandtl numbers of both phases
are sufficiently similar to fall inside the same scaling regime of the GL theory, so that
Ay = Ay = A, y1 =9 =7 and m; = mo = m. Then, by using equations to express
the Nu; and equations to express the Raj;, the following approximate relation for
Or emerges,

1—3y v 1—7 -t

1 1-0C,, A2A. AL\ 1+
Or = 2|14 (LG ) 147 (Lplela WACMW : (3.5)
Ctot Au

Note that the Prandtl number dependence is typically omitted since the corresponding
scaling exponent becomes 0 < m < 1 for Pr > 0.5 (Grossmann & Lohse {2000, 2001}
Stevens et al.|2013)). In contrast to the implicit relations of the GL theory, equation
depends only on the various property ratios A and the chosen scaling exponent +.
Figure |§| shows the interface temperature obtained from the DNS, compared against the
predictions of the GL theory (equations -) and the predictions of the simplified
scaling (equation ) The results of the simplified scaling assume the typical scaling
exponent range 1/4 < v < 1/3. As observed in figure @ the DNS results from the low
Weber number cases follow the GL theory closely. The higher Weber number cases deviate
from the GL theory as the lower surface tension induces a stronger interface deformation,
which influences the resulting scaling. Noteworthy is the fact that the simplified scaling
provides a reliable estimation of @ for the different values of the Rayleigh number
considered in the present study, with a maximum deviation of less than 2% from the
GL theory. Furthermore, despite its apparent simplicity, the simplified scaling directly
highlights some important features of the equilibrium interface temperature, © . Firstly,
we highlight that the weak dependence of @ on the Rayleigh number (absent in
equation ) is confirmed by the DNS results, since the value of © decreases by less
than 3% as Ra increases from 10° to 108. Secondly, equation enables us to quantify
the role of each thermophysical property in modulating @, because each property ratio
A has its own scaling exponent. In particular, the density and thermal conductivity
ratios have the largest exponents, representing the dominant sources of influence on the
interface temperature O .

We conclude this section by examining the thickness of the scal