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Abstract—Equilibrium propagation is a learning technique
conceived for training continuous-time recurrent neural net-
works. It offers some notable advantages when compared to
conventional back-propagation-based algorithms and to classical
design methods. From an implementation perspective, it demands
only a single computational circuit. Theoretically, although it
seeks to minimize a cost function, it exhibits similarities to spike-
timing-dependent plasticity (STDP), rendering it, to a certain
extent, biologically plausible. This paper explores the global
dynamic behavior of continuous-time piecewise linear networks
trained through equilibrium point propagation. We examine a
network in which the target patterns are presented as external
inputs rather than as initial conditions. We first show that the
learning rules, which extend equilibrium propagation to gradient-
like and non-symmetric networks, can be derived as a suitable
approximation of Lagrangian optimization. Then, by studying a
relatively simple but thoroughly significant case, we demonstrate
that a detailed analysis of the equilibrium point distribution yields
a profound understanding of the network’s fundamental proper-
ties and provides a valuable tool for quantitatively evaluating the
network’s accuracy. Compared to classical synthesis techniques,
our approach, where patterns are introduced as external inputs,
in most cases, circumvents the impractical task of estimating
the basins of attraction for sets of multiple equilibrium points.
Furthermore, preliminary extensive simulations indicate that the
primary dynamic features observed in relatively small networks
closely resemble those ensuring the performance and accuracy
of large-scale networks.

I. INTRODUCTION

Within the context of biological systems, ”learning” denotes
the result of gradual changes occurring at the neuronal synaptic
level. It is crucial to recognize that synaptic adjustments
and overarching tasks operate on distinct planes - individual
synapses lack awareness of the broader learning objectives.
This prompts the existence of underlying principles governing
localized synaptic modifications, which enable the system to
accomplish the overall learning process. Nonetheless, these
foundational rules remain widely undisclosed.

A groundbreaking local learning rule was introduced by
Donald O. Hebb, back in 1962 [1]. Hebb’s insight suggested
that synaptic changes take place when there is a coincidental
firing of pre- and post-synaptic neurons. Specifically, the
connection between two neurons is strengthened if they both
activate concurrently in response to external input, and this
connection weakens if they fire separately. This seemingly
straightforward rule, known as the Hebbian learning rule, holds
profound significance. It is recognized for its potential to

induce robust self-organizing effects, particularly within the
context of relatively simple neural network models.

From an alternative standpoint, gradient descent and, pri-
marily, back-propagation algorithms have served as the central
tools for training diverse types of neural networks. Paired
with the abundance of data and unparalleled computational
resources, they form the foundation of the remarkable ad-
vancements in neural network applications, encompassing the
most cutting-edge Artificial Intelligence applications.

In the framework of continuous-time neural networks,
specifically focusing on continuous-time Hopfield networks,
Almeida and Pineda independently introduced a recurrent
back-propagation algorithm [2], [3]. The core idea is to force
the network to converge onto a desired fixed-point attractor,
starting from a given input and initial state, through an iterative
process aimed at adjusting the synaptic weight matrix of
a dynamic neural network. Similar to feed-forward neural
networks, this is achieved by minimizing a specific loss
function tied to the network parameters. The novelty lies in
the approach of ”back propagating” the error signal using
an analog auxiliary network, involving a related differential
equation which avoids the computation of the inverse of the
Jacobian. Nevertheless, the need for a side network to propa-
gate error derivatives makes this technique markedly different
from emulating the computational processes of the brain. In
general back-propagation algorithms are not considered to be
biologically plausible, because experimental observation in
neuroscience shows that the change of synaptic weights is
primarily due to the timing difference between post- and pre-
synaptic spikes (Spike-Timing-Dependent-Plasticity [4]).

In [5] Scellier and Bengio introduced a new learning
framework for energy based models, named ”Equilibrium
Propagation” which requires only one computational circuit
and, despite minimizing a cost function, may be interpreted
as a STDP approach (see also [6]). By exploiting a rather
different technique, partially based on linear algebra, some
efficient methods were proposed for designing Hopfield-like
continuous-time networks. In particular, Michel et al. devel-
oped a series of algorithms for synthesizing network with
piecewise linear output functions, with a prescribed number of
stable equilibrium points, that behaves as associative memories
[7].

In this manuscript, we thoroughly analyze the global dy-
namic behavior of continuous-time networks trained using
equilibrium point learning. We focus on networks featuring
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piecewise linear outputs, where target patterns are presented
as constant inputs. Initially, we show that the local learning
rule presented in [8] for the non-symmetric case can be de-
rived as a precise approximation of Lagrangian optimization.
Subsequently, we delve into exploring the dynamic structure
inherent in networks trained through equilibrium propagation.
By concentrating on relatively straightforward yet notable
scenarios that enable the direct computation of all stable
equilibrium points, we systematically investigate the network’s
convergence for each distinct input pattern. This provides
a deep understanding and an almost analytical assessment
of the accuracy of equilibrium learning methodologies, also
facilitating a thorough comparison with the outcomes obtained
through exact Lagrangian optimization. Furthermore, when
compared with conventional neural network synthesis, our ap-
proach, where patterns are introduced as external inputs, often
mitigates the impractical challenge of estimating the basins
of attraction for extensive sets of equilibrium points. Finally,
preliminary simulations suggest that the principal dynamic
characteristics observed in relatively small networks closely
mirror those responsible for the performance and precision of
larger-scale networks [9], [10], [11].

II. NEURAL NETWORK MODEL

We consider a continuous-time recurrent neural network,
composed of N cells and described by the following nonlinear
differential equation in matrix form:

8
>><

>>:

ẋ = f(x,W,b,I) = �x + Wg(x) + b + I

y = g(x)

(1)

where x represents the state, I 2 R
N is the input vector,

W 2 R
N,N is the interconnecting weight matrix, and b 2 R

N

is the usual constant bias term. The neural output y = g(x) =
[g(x1), ...,g(xN)]T is defined through the following piecewise
linear monotone increasing function g(·):

g(xi) =
1
2
(|xi +1|� |xi �1|) (2)

Equilibrium point learning and synthesis techniques aim to
design a network that exhibits a prescribed set of equilibrium
points. In general, the objective is to determine the weights Wi j

and the bias bi such that, for any initial condition x0 within
a given set, the system output converges towards a specified
target value T. In practical applications, it is often challenging
to specify initial conditions with accuracy. As an alternative
approach, one can require that for each input within a given
set, the system output converges to a predefined target value,
regardless of the initial condition. This alternative approach not
only makes implementation in physical systems more feasible
but also simplifies the analysis of the network global dynamic
behavior. In addition, the network weights can be efficiently
implemented through memristor devices [12]. As shown in
[13], the adjustable connections are implemented by using

memristors as programmable resistors coupled in a differential
pair configuration.

The problem can be addressed by minimizing a suitable cost
function, C (T ,Y ) = Âk C[Tk,g(x̂k)] with T = {T1, . . . ,Tm}
and Y = {g(x̂1), . . .g(x̂m)}, which quantifies the discrepancy
between the selected set of target patterns and the outputs at
the corresponding equilibria x̂k. Furthermore, in the expression
of the cost function, it is convenient to replace the piecewise
linear function g(·) with a more manageable smooth function,
specifically h(·) = tanh(·).

The matrix weights and the bias terms can be accordingly
updated, by iteratively moving in the direction of the steepest
descent:

DWi j = �h ∂C

∂Wi j

(T ,Y ) =�h
m

Â
k=1

∂C
∂Wi j

[Tk,h(x̂k)]

Dbi = �h ∂C

∂bi

(T ,Y ) =�h
m

Â
k=1

∂C
∂bi

[Tk,h(x̂k)] (3)

Due to the linearity of differentiation, without loss of
generality, we can focus on the estimation of the gradient for
a single pattern. According to the approach followed in [5]
and [14], the optimization problem can be recast as follows:

min
W,b

C[T,h(x)] subject to f(x,W,b,I) = 0 (4)

The constrained optimization problem defined in Eq. (4)
can be readily addressed, by introducing a Lagrange multiplier
lll 2 RN , and considering the Lagrangian function defined by:

L(x,lll ,W,b,T,I) = C[T,h(x)]+lll T f(x,W,b,I). (5)

By keeping the entries of the weight matrix W and of the bias
term b constant and solving for (lll ,x), we obtain:
(

—lll L = f(x,W,b,I) = 0 ! x = x̂ equilibrium of (1)
—x L = H

0(x)—h(x)C[T,h(x)]+JT

f (x)lll = 0
(6)

where H
0(x̂) = diag[h0(x̂1), . . . ,h0(x̂n)], — denotes the gradient,

and Jf(x) the Jacobian of function f. The expression of lll is
promptly derived:

l̂ll =�[JT

f (x̂)]�1
H

0(x̂)—h(x̂)C[T,h(x̂)] (7)

The corresponding variation of the weight matrix and bias
terms, due to the pattern T can accordingly be computed as:

DW = �h ∂L
∂W

=�h l̂ll · [g(x̂)]T

Db = �h ∂L
∂b

=�h l̂ll (8)

The above expression formally holds for generic, even
non symmetric networks, but requires the computation of
the inverse of a Jacobian matrix and some additional matrix
multiplications, which are not feasible for large systems.

An alternative and effective approach to calculating the
Lagrange multiplier l̂ll involves examining the following aug-
mented dynamical system derived from the equilibrium prop-
agation approach, as introduced in [5]:
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dxb

dt
= fb (xb ,W,b,I) = f(xb ,W,b,I)�b—

h(xb )C[T,h(xb )]

(9)
where b > 0 is a forcing parameter. A fixed point x̂b of the
new dynamical system satisfies

fb (x̂b ,W,b,I) = 0. (10)

Since (10) is constant for all b , the total derivative with respect
to b evaluated at b = 0 gives:

Jf(x̂)
∂ x̂b

∂b

���
b=0

� —h(x̂)C[T,h(x̂)] = 0 (11)

where x̂b |b=0 = x̂. By comparing (7) and (11) we obtain:

l̂ll =�JT

f (x̂)�1
H

0(x̂)Jf(x̂)
∂ x̂b

∂b

���
b=0

. (12)

We shall show that certain advantageous geometric char-
acteristics of Lagrangian multipliers, can be used to accu-
rately approximate the gradient descent computation, without
computing the Jacobian inverse, which is an unfeasible task.
This also offers an alternative derivation of the local learning
rules introduced in [8], which only relies on the Lagrangian
multiplier approach. The results are based on the following
proposition:

Proposition 1. The following property hold:

—h(x̂)C[T,h(x̂)]T l̂ll =�—h(x̂)C[T,h(x̂)]T ∂h(x̂b )

∂b

���
b=0

(13)

Proof. The above assertion can be proved by considering a
system comprising equation (11) and the transpose of equation
(7): 8

<

:
Jf(x̂) ∂ x̂b

∂b

���
b=0

� —h(x̂)C[T,h(x̂)] = 0

l̂ll
T

Jf(x̂)+—h(x̂)C[T,h(x̂)]T H
0(x̂) = 0T

(14)

By multiplying the first equation with the row vector l̂ll
T

it is
obtained:

8
<

:
l̂ll

T

Jf(x̂) ∂ x̂b

∂b

���
b=0

� l̂ll
T

—h(x̂)C[T,h(x̂)] = 0

l̂ll
T

Jf(x̂)+—h(x)C[T,h(x̂)]T H
0(x̂) = 0

(15)

By substituting the second equation into the first and using
the symmetry property of the dot product it follows:

—h(x̂)C[T,h(x̂)]T l̂ll =�—h(x̂)C[T,h(x̂)]T H
0(x̂) ∂ x̂b

∂b

���
b=0

(16)

which yields (13) and proves the proposition.

Equation (13) shows that along the gradient’s direction of
the cost function C at (T,h(x̂)) the projection of the vector

�∂h(x̂b )

∂b

���
b=0

equals the projection of the vector l̂ll . By

considering that, as a consequence of the Lagrangian method,

the gradients of C and L have the same direction, it turns
out that the information provided by Eq. (12) is somewhat

redundant and one can consider l̂ll =�∂h(x̂b )

∂b

���
b=0

. Using (8)

the update rule for the system can consequently be written
without explicitly computing the Lagrangian multipliers and
without requiring the matrix symmetry:

DW = h

 
∂h(x̂b )

∂b

���
b=0

!
· [g(x̂)]T

Db = h

 
∂h(x̂b )

∂b

���
b=0

!
(17)

III. ANALYSIS OF THE GLOBAL DYNAMIC BEHAVIOR

Analyzing the dynamics yields a comprehensive grasp of
the equilibrium point learning process. To demonstrate the
potential and utility of such an investigation, we will examine
a network comprising ten cells, as initially described in [7]. We
assume that the network should memorize five target patterns,
ai, i = 1, . . .5, which represents 50% of the network nodes,
thereby rendering this system noteworthy for investigation:

a1=

2

6666666666664

�1
1

�1
1
1
1

�1
1
1
1

3

7777777777775

a2=

2

6666666666664

1
1

�1
�1

1
�1

1
�1

1
1

3

7777777777775

a3=

2

6666666666664

�1
1
1
1

�1
�1

1
�1

1
�1

3

7777777777775

a4=

2

6666666666664

1
1

�1
1

�1
1

�1
1
1
1

3

7777777777775

a5=

2

6666666666664

1
�1
�1
�1

1
1
1

�1
�1
�1

3

7777777777775

(18)

Though formally referred to a linear system operating on a
closed hypercube, it is easily derived that the system studied
in [7] can be described by (1), assuming that the input term
is presented as an initial condition and consequently I = 0.
It turns out that the network synthesized in [7] exhibits
13 stable equilibrium points: five of them lie in saturation
regions corresponding to the five stored patterns, i.e. g(x̂)=ai,
but eight of them are spurious, and lie in regions, where
at least one variable is not saturated. In addition there are
70 unstable equilibrium points. The presence of spurious
equilibrium points shows that there are initial conditions,
which do not converge to ai. We may presume that the initial
conditions with minimal hamming distance from the stored
patterns converge to one of them, but this assertion cannot be
proved without estimating the basin of attraction of the stable
equilibrium points, which is a formidable and impractical task
even for very simple networks (see [7] where a subset of the
basins of attraction is determined for a network of only three
cells).

If the network input is presented as an external input I, a
thorough examination of the equilibrium point distribution in
the resulting system serves as a valuable means for evaluating
the overall accuracy of the network. It is noteworthy that, due
to the piecewise linear architecture of the system described
by equation (1) and the relatively modest number of cells
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Method h b dH = 1 dH = 1
from one target from two targets

C AC IC C AC IC

0.3 � 46 0 0 2 0 0Lagrangian
Multipliers 0.5 � 46 0 0 2 0 0

0.5 0.2 38 8 0 2 0 0Modified
Eq. Prop. 2 0.2 30 16 0 2 0 0

Table I: Network trained through the LM and the MEP approach.

Equilibrium point analysis, considering inputs I with Hamming

distance dH = 1 from one or more target patterns (46 inputs with

dH = 1 from a single pattern ai and 2 inputs with dH = 1 from two

patterns ai, a j). The numerical values have the following meaning.

A) Network Inputs with dH = 1 from a single pattern ai: C - number of

inputs for which the system exhibits only one stable equilibrium point

such that sgn(x̂) = ai; PC - number of inputs for which the system

exhibits more than one stable equilibrium point, such that for at least

one of them sgn(x̂) = ai; IC - number of inputs for which the system

does not exhibit equilibrium points such that sgn(x̂) =ai. B) Network

inputs with dH = 1 from two patterns ai, a j: C - number of inputs for

which the system exhibits either one or two stable equilibrium points

such that for all of them sgn(x̂) 2 {ai, a j}; PC - number of inputs

for which the system exhibits more than one stable equilibrium point,

such that for at least one of them sgn(x̂) 2 {ai, a j}; IC - number

of inputs for which no equilibrium point satisfies sgn(x̂) 2 {ai, a j}.

involved, it is feasible to precisely compute all equilibria,
whether stable or unstable. This computation is achieved by
systematically inspecting the 310 linear cells comprising the
state space.

We have trained the network by exploiting both the La-
grangian multipliers (LM) approach synthesized by (7) and
(8) and the modified equilibrium propagation (MEP) method
described by (17). When applying these learning rules, the
resulting matrix W may exhibit slight asymmetry. In most
cases, the overall system remains stable, although this cannot
be rigorously proved. To avoid this problem and make our
analysis robust, we have symmetricized matrix W at each
update, so to ensure the network’s complete stability.

Through the investigation of the equilibria distribution,
summarized in Tables I and II, it is observed that the proposed
modified equilibrium propagation method demonstrates a no-
tably high level of accuracy, closely approaching the results
achieved through Lagrangian optimization.

Table I provides evidence that, when considering input
patterns with a Hamming distance (dH ) of 1 from the target
patterns ai, the system trained through equilibrium propaga-
tion, typically exhibits a single stable equilibrium point corre-
sponding to the correct output. As a result, it converges to the
correct output from any initial condition. In some instances, a
limited number of stable equilibrium points emerge, but they
consistently include the correct output. Notably, no cases were
found where the correct output was absent among the stable

Method h b dH = 2 dH = 2
from one target from two targets

C AC IC C AC IC

0.3 � 135 23 21 15 2 5Lagrangian
Multipliers 0.5 � 113 53 13 15 4 3

0.5 0.2 42 133 4 12 8 2Modified
Eq. Prop. 2 0.2 66 108 5 14 6 2

Table II: Network trained through the LM and the MEP approach.

Equilibrium point analysis, considering inputs I with dH = 2 from

one of more patterns ai (excluding two inputs that also have dH = 1
from some target patterns, there are 179 inputs which exhibit dH = 2
from a single pattern ai and 22 inputs with dH = 1 from two patterns

ai, a j). The numerical values have the same meaning of Table I.

equilibria of the network. Moreover, extensive simulations
revealed that when multiple equilibria exist, the basin of
attraction associated with the correct output is substantially
larger compared to others. Consequently, the overall accuracy
of the network for inputs with dH = 1 is nearly 100%.

Table II illustrates the scenario encountered when analyzing
inputs with a Hamming distance (dH ) of 2 from the target
patterns ai. It is observed that in the vast majority of cases, the
correct output is included within the stable equilibrium points,
with occurrences where it is absent being exceedingly rare,
amounting to less than 3.1% of the total cases (specifically,
7/223). This outcome underscores the system’s noteworthy
accuracy.

Finally, a comparison with [7] shows that presenting the
input patterns as external inputs, not only is more feasible for
practical implementations, but also enables a comprehensive
dynamic analysis, that in most cases does not require to
estimate the basins of attraction of multiple equilibrium points.

IV. CONCLUSION

In this manuscript, we have thoroughly investigated the
overall performances of continuous-time networks trained via
equilibrium point propagation from a nonlinear dynamic per-
spective. We have focused on networks in which the target
patterns are introduced as external inputs. In relatively straight-
forward yet highly significant cases, we have demonstrated
that the network’s performance can be precisely assessed
through a detailed analysis of the equilibrium point distribution
for each input pattern. Extensive simulations, that for lack of
space are not reported in this paper, have revealed that the
identical key dynamic properties observed in small networks
offer profound insights into the overall behavior and the
performances of large-scale networks.
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