
19 February 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

JEM: An AI-based engine workflow to predict simulation’s execution time on HPC cluster / Vacchetti, Bartolomeo;
Cerquitelli, Tania; Nosenzo, Vladi; Capitelli, Enrica; Chiosso, Luca; Trocano, Manilo. - (2024). (Intervento presentato al
convegno 2024 International Conference on Control, Automation and Diagnosis (ICCAD) tenutosi a Paris (FRA) nel 15-
17 may 2024) [10.1109/ICCAD60883.2024.10553971].

Original

JEM: An AI-based engine workflow to predict simulation’s execution time on HPC cluster

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICCAD60883.2024.10553971

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2996187 since: 2025-01-03T17:47:02Z

IEEE

JEM: An AI-based engine workflow to predict
simulation’s execution time on HPC cluster
1st Bartolomeo Vacchetti, 2nd Tania Cerquitelli

DAUIN
Polytechnic of Turin

Turin, Italy
{bartolomeo.vacchetti, tania.cerquitelli}@polito.it

3rd Vladi Nosenzo, 4th Enrica Capitelli
IvecoGroup
Turin, Italy

5th Luca Chiosso, 6th Manilo Trocano
Doit Systems
Turin, Italy

Abstract—Within the automotive industry, numerous simula-
tions are essential for accurately modeling a vehicle’s behavior
and its components. However, these simulations entail an un-
predictable duration for execution. Providing estimates for the
required time enables users to organize their workload better and
optimize resource utilization. Furthermore, the characteristics of
submitted simulations can evolve, influenced by factors such as
the component type, final product, car model, and other variables.
In this dynamic context, staying abreast of these changes becomes
imperative.

This demo paper introduces the JEM tool, designed to accom-
plish two key tasks: (1) estimating the runtime of simulations and
(2) allowing data scientists to monitor changes in data distribution
and triggering model retraining when necessary. This tool results
from a collaborative machine learning research project involving
Iveco Group, Doit Systems, and Politecnico di Torino. Integrated
into the Iveco group’s HPC system, JEM facilitates resource
allocation.

The recorded demo of the tool, accessible at https://youtu.be/
iII-25FHqUo, provides a demonstration of how users can interact
effectively with the JEM tool.

Index Terms—HPC system, Machine learning, Drift Detection

I. INTRODUCTION

The automotive industry heavily relies on high-performance
computing (HPC) systems, both on-site and in the cloud, to
perform diverse simulations and analyses for vehicles and their
components. Users submit daily requests through the Altair
Access web portal [1]. These requests undergo processing by
the queue manager, responsible for prioritizing jobs, allocating
available resources, scheduling tasks, and generating log files.
In the automotive context, the efficiency and effectiveness
of job scheduling are critical, as they can either negatively
impact time-to-market or positively influence the performance
of the engineering department. An obstacle to organizing user
workloads is the unknown execution time of a job, which can
lead to unnecessary delays. Additionally, executing submitted
jobs often faces delays due to the unavailability of immediate
resources, thereby extending the time to achieve final results.
After monitoring job scheduling for a few months, we identi-
fied certain inefficiencies. For instance, in cases where a user
requires double the resources for a specific job compared to

the demand, the job may experience prolonged waiting times
for execution.

Machine learning algorithms can enhance resource alloca-
tion and utilization by suggesting the necessary resources to
complete a job within a specified timeframe. Moreover, pre-
dicting runtime estimates can assist users in better organizing
their activities. Additionally, machine learning could enhance
the quality control of job submissions. If the estimated job
execution significantly exceeds the user’s expectations, it may
indicate errors in job programming, warranting avoidance of
job execution. Machine learning algorithms can optimize job
scheduling, resulting in cost, time, and resource savings. With
this objective, we present the JEMtool in this demo.

JEMprovides two data-driven services. Firstly, it offers the
capability to estimate the execution time of a job. Secondly,
it can monitor changes in data distribution and initiate model
retraining if the degradation exceeds a predefined threshold.

For the first task, JEMrelies on the hierarchical classifi-
cation model outlined in [2]. This model consists of three
classifiers. The initial classifier performs a coarse-grained
classification, dividing jobs into two subsets. Subsequently, the
data undergoes processing by two classifiers for a fine-grained
classification. Although the final model comprises four classes
representing a broad spectrum of simulation execution times,
a binary classification problem is addressed at each node.

To address potential changes in data distribution over
time that may lead to model performance degradation,
JEMimplements the methodology introduced in [3]. This ap-
proach calculates distribution distances and visually represents
them to indicate significant changes in data distribution over
time, prompting model retraining if necessary.

Lastly, a recorded demo illustrating user and data scientist
interactions with the tool is accessible at https://youtu.be/
iII-25FHqUo.

The paper is organized as follows. Section 2 focuses on re-
lated works, while section 3 focuses on the tasks that JEMcan
address. The first part is on the job run time estimation, while
the second is on the data drift estimation. The conclusions are
drawn in Section 4.

Fig. 1. JEM’s service: Job execution time estimation.

Fig. 2. JEM’s service: Model degradation estimation.

II. RELATED WORKS

The runtime prediction of a simulation is a task that has been
addressed in different works, at different levels of complexity
and using different strategies. One branch of earlier studies
focuses on predicting whether or not a job will fail or complete
its execution [4]–[10], while a more recent branch deploys
machine and deep learning techniques to predict directly the
simulation runtime. In [2], [11] machine learning algorithms,
are used to make the runtime prediction, while in [12] the
authors present a methodology to predict the runtime of a
simulation based on transformers. In [13] in addition to predict
the runtime the authors have deployed a machine learning
based automatic workload manager, used by Amazon Redshift.
While these works achieve impressive results, they miss a
feature implemented in JEM, which is the concept drift
module, and the consequent ability to be retrained to learn
the new data distribution. Also in the filed of concept drift
detection there have been significant studies in the last years.
[3], [14]–[18]. Some are supervised and need a classifier to
learn and decide what is drift and what is not, while other
approaches are unsupervised as those shown in [15].Among
the different available techniques we decided to rely on [3],
which is able to detect drift in an unsupervised way on the
overall batch of data and on every single label.

III. THE JEMŚ SERVICES

JEM, integrated into the Altair Access Portal, offers two
valuable data-driven services, shown in Figure 1 and Figure
2, respectively. The first module facilitates the estimation of
job execution times by utilizing a trained hierarchical model.
This aids users in effectively organizing their workloads based
on the anticipated execution times of simulations.

As a secondary function, the system diligently monitors the
degradation of the data-driven model over time. This proactive
approach enables the timely identification of shifts in data
distribution, prompting the system to re-train a new data-driven
model accordingly.

To streamline the utilization of these data-driven services
and their adaptation to diverse HPC architectures, we have
proposed an automated workflow, detailed in [2]. This work-
flow encompasses an AI model evaluation process capable
of selecting optimal parameters for each integrated algorithm.
This ensures a user-friendly experience while maximizing the
effectiveness of the proposed services across various comput-
ing environments.

JEMis designed for two types of users: end users, i.e., the
engineers who submit new simulations, and data scientists,
i.e., practitioners who are responsible for data-driven modeling
and its performance over time and are therefore interested in
monitoring the changes in the data distributions to identify
when the model needs to be re-trained. End users interact with
the JEM’s service providing an estimate of the job’s runtime,
while data scientists are interested in exploiting the JEM’s
data drift estimation over time.

A. JEM’s service: estimation of the job’s runtime

In Figure 1, the primary functions of the job execution time
estimation service are depicted, illustrating enhancements to
streamline job submissions. The process begins with the queue
manager handling user-submitted jobs. Historical accounting
data and job details are stored in a database, where data-driven
algorithms analyze this information to construct a predictive
model.

As described in [2], the adopted hierarchical approach
employs a tree structure, shown in Figure 3. Each node
in the structure features an XGBoost classifier [19], with
the leaves representing final classes. The hierarchical model
employs a two-layered classification process. The initial layer
categorizes input data into coarse subsets, and the subsequent
layer refines the classification using new classifiers for each
subset. Although each classifier addresses a binary classifica-
tion problem, the overall model considers four classes. This
hierarchical model inputs job features and produces one of the
four classes as output. Each label is a time range in which the
estimation of the job’s runtime falls.

The hierarchical model was trained using data provided by
Iveco Group. As various solvers representing distinct software
and tools were employed for diverse simulations, a dedicated
classifier was trained for each solver. Each job is characterized
by multiple input parameters, with the solver name being one
such feature. While certain features are standard across all

Fig. 3. Hierarchical model architecture.

solvers, others are unique to specific solvers or shared by
multiple ones.

To ensure balanced classes before feeding the data into the
classifier, we employed the K-means-constrained clustering
algorithm [20]. This clustering approach assigned labels to
each job based on its duration. Although the ideal output for
the model would be an execution time, making regression a
more fitting choice, the limited data availability prevented us
from identifying a regression model that achieved satisfactory
performance. Consequently, we treated the task as a classifi-
cation problem.

When a new job is submitted, the input file characterizes the
request regarding requested resources and simulation specifics.
The prediction model then estimates the runtime, informing
PBS of the predicted runtime and notifying end users of the
expected job completion time.

Figure 4 illustrates the graphical interface integrated into
the Altair Access Portal to obtain job simulation runtimes
predictions. When users submit a new job, they are required to
upload a file containing simulation parameters and specify the
desired number of cores for simulation execution. Users who
want to estimate a job’s running time can utilize the ”Predict
Walltime” checkbox on the Altair submission portal.

The job parameters are then extracted, and depending on the
solver employed, they are forwarded to a hierarchical model
trained on all past simulations utilizing the exact solver. The
hierarchical model processes the job parameters and predicts
a class. The end-user receives the predicted class’s upper
and lower bounds as output. Figure 5 provides a snippet
of the submission interface, offering details on the ”Predict
Walltime” option. The user can select different simulations to
feed the prediction model during the demo and analyze the
output provided by JEM.

The interface is an extension of the one used by the user to
submit a new job. It contains the option ”Prediction Walltime,”
which estimates the simulation run time. The prediction can
help users to organize their workload according to the job’s
execution time. More importantly, users can decide to change
some parameters, such as the number of cores, and see if the
job will require less time to be executed before submitting it.
All the different options can be tested during the demo.

Fig. 4. Graphical interface for job submission and run-time prediction.

B. JEM’s service: data drift estimation

A concept drift management module was integrated into
JEM to mitigate potential performance degradation of the
predictive model caused by temporal shifts in the input data.
This service identifies and monitors the drift and initiates a
new training phase, as shown in Figure 2. In addition, it
ensures the ongoing adaptability and precision of the predictive
model.

The methodology relies on an adaptation of DriftLens [3],
an unsupervised data drift detection approach that leverages
the FID score [21] for calculating the distance between embed-
ding distributions (training data versus real-time data). In our
specific scenario, where embeddings are absent, the FID score
was used to measure the distance between data distributions.
To achieve this, each data feature underwent a transformation
into a normal distribution to simulate a multivariate Gaussian
distribution.

Then JEM proceeds as follows: i) it characterizes the data
distribution of the training data and calculates a threshold, and
ii) it evaluates the data distribution of the new incoming data
with respect to the threshold. The user can set the threshold
experimentally. JEM suggests whether the real-time data has
changed consistently over time by comparing the distribution
distance of the new incoming jobs with the threshold. The
proposed interface provides a graph over time that allows

Fig. 5. Snippet of the Predicting request.

Fig. 6. JEM’s service: data drift estimation: Configuration settings.

the user to quantify how much the data distribution has
changed compared to the training data. If the distribution
distance between the new data and the training data exceeds
the threshold, this indicates the presence of a concept deviation
in the upcoming data and thus JEMneeds to retrain the model.

If data scientists want to analyze to what extent the data
distribution of the newly submitted simulations differs from
the historical simulations, the graphical interface shown in
Figure 6 can be used. During the demo, the user can try out the
software by setting a specific solver from the available solvers
and a particular number of jobs to be analyzed. For each
configuration setting, two diagrams are provided as output.
The diagrams in Figure 7 and Figure 8 show the output
provided by JEMin two different settings. The FID per class of
the new incoming data is shown in the last three timestamps.

Figure 7 shows the most recent 200 jobs executed using
the Radioss solver. In this scenario, the jobs exhibit subtle
variations in their data properties without significant changes.
On the left side of the figure, there is a slight increase in
the data associated with class labels 0, 1, and 2, whereas the
plot for label 3 remains unchanged. On the right, the graph
illustrates the distribution distance plotted for the entire batch
of data without segregating the labels.

The second scenario is characterized by 150 jobs executed
using the Abaqus solver. The data distribution undergoes
significant alterations compared to previous instances. Notably,
label 3 experiences the most pronounced change in distri-
bution, followed by label 1, while labels 0 and 2 are only
mildly impacted or remain unchanged from their usual trend.
Moreover, the overall data distribution has shifted slightly

Fig. 7. JEM’s service: data drift estimation - Solver: Radioss, #jobs: 200
.

Fig. 8. JEM’s service: data drift estimation - Solver: Abaqus, #jobs:150.

compared to historical patterns, as illustrated in the right plot
in Figure 8.

IV. CONCLUSIONS

This paper introduces JEM, an integrated tool within the
Altair Access Portal, designed to accomplish two primary
objectives: (i) estimating the runtime of a simulation at the
time of job submission and (ii) monitoring changes in data
distribution, with the capability to retrain hierarchical models
when necessary. Moreover, users have the option to monitor
data distribution changes through JEMindependently.

As future work, we aim to (i) enhance and broaden the
applicability of JEMby incorporating it into heterogeneous
High-Performance Computing (HPC) environments, be it in
the cloud or a blended setup involving both on-premises and
cloud resources; (ii) diversify the array of solvers (software
employed for simulations) to evaluate the potential of JEMin
evolving into a more versatile and general-purpose model-
based framework.

Furthermore, we are also working to expand the dataset uti-
lized for analysis, thereby refining the accuracy of estimating
simulation execution time. Achieving these objectives has the
prospect of bolstering the capabilities of JEM, subsequently
enhancing the support it offers to its designated users (i.e.,
engineers and data-scientists) in their daily and weekly pro-
fessional activities.

REFERENCES

[1] Altair access web portal. https://altair.com/access.

[2] Paolo Bethaz, Bartolomeo Vacchetti, Enrica Capitelli, Vladi Nosenzo,
Luca Chiosso, and Tania) Cerquitelli. Predicting job execution time on
a high-performance computing cluster using a hierarchical data-driven
methodology. In Proceedings of the Workshops of the EDBT/ICDT 2022
Joint Conference, Edinburg, UK, 2022. Proceedings of the Workshops
of the EDBT/ICDT 2022 Joint Conference.

[3] Salvatore Greco and Tania Cerquitelli. Drift lens: Real-time unsuper-
vised concept drift detection by evaluating per-label embedding distri-
butions. In 2021 International Conference on Data Mining Workshops
(ICDMW), pages 341–349, 2021.

[4] Chunhong Liu, Liping Dai, Yi Lai, Guinbing Lai, and Wentao Mao.
Failure prediction of tasks in the cloud at an earlier stage: a solution
based on domain information mining. Computing, 102:2001–2023, 2020.

[5] M. Jassas and Q. H. Mahmoud. Failure analysis and characterization
of scheduling jobs in google cluster trace. In IECON 2018 - 44th
Annual Conference of the IEEE Industrial Electronics Society, pages
3102–3107, Omni Shoreham, United States, 2018. IECON 2018 - 44th
Annual Conference of the IEEE Industrial Electronics Society.

[6] C. Liu, J. Han, Y. Shang, C. Liu, B. Cheng, and J. Chen. Predicting of
job failure in compute cloud based on online extreme learning machine:
A comparative study. IEEE Access, 5:9359–9368, 2017.

[7] A. Rosà, L. Y. Chen, and W. Binder. Failure analysis and prediction for
big-data systems. IEEE Transactions on Services Computing, 10(6):984–
998, 2017.

[8] P. Li, B. Zhang, Y. Weng, and R. Rajagopal. A sparse linear model
and significance test for individual consumption prediction. IEEE
Transactions on Power Systems, 32(6):4489–4500, 2017.

[9] S. Ganguly, A. Consul, A. Khan, B. Bussone, J. Richards, and A. Miguel.
A practical approach to hard disk failure prediction in cloud platforms:
Big data model for failure management in datacenters. In 2016 IEEE
Second International Conference on Big Data Computing Service and
Applications (BigDataService), pages 105–116, Oxford, United King-
dom, 2016. 2016 IEEE Second International Conference on Big Data
Computing Service and Applications.

[10] J. M. Navarro, G. H. A. Parada, and J. C. Dueñas. System failure
prediction through rare-events elastic-net logistic regression. In 2014
2nd International Conference on Artificial Intelligence, Modelling and
Simulation, pages 120–125, Madrid, Spain, 2014. IEEE.

[11] Kenneth Lamar, Alexander Goponenko, Omar Aaziz, Benjamin A Allan,
James M Brandt, and Damian Dechev. Evaluating hpc job run time
predictions using application input parameters. In Proceedings of
the 17th ACM International Conference on Distributed and Event-
Based Systems, DEBS ’23, page 127–138, New York, NY, USA, 2023.
Association for Computing Machinery.

[12] Fengxian Chen. Job runtime prediction of hpc cluster based on pc-
transformer. The Journal of Supercomputing, 79:1–27, 06 2023.

[13] Gaurav Saxena, Mohammad Rahman, Naresh Chainani, Chunbin Lin,
George Caragea, Fahim Chowdhury, Ryan Marcus, Tim Kraska, Ip-
pokratis Pandis, and Balakrishnan (Murali) Narayanaswamy. Auto-wlm:
Machine learning enhanced workload management in amazon redshift.
In Companion of the 2023 International Conference on Management
of Data, SIGMOD ’23, page 225–237, New York, NY, USA, 2023.
Association for Computing Machinery.

[14] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan
Zhang. Learning under concept drift: A review. IEEE Transactions on
Knowledge and Data Engineering, 31(12):2346–2363, 2019.

[15] Rosana Noronha Gemaque, Albert França Josuá Costa, Rafael Giusti,
and Eulanda Miranda dos Santos. An overview of unsupervised drift
detection methods. WIREs Data Mining and Knowledge Discovery,
10(6):e1381, 2020.

[16] Hanqing Hu, Mehmed Kantardzic, and Tegjyot S. Sethi. No free lunch
theorem for concept drift detection in streaming data classification: A
review. WIREs Data Mining and Knowledge Discovery, 10(2):e1327,
2020.

[17] Firas Bayram, Bestoun S. Ahmed, and Andreas Kassler. From concept
drift to model degradation: An overview on performance-aware drift
detectors. Know.-Based Syst., 245(C), jun 2022.

[18] Pingfan Wang, Hang Yu, Nanlin Jin, Duncan Davies, and Wai Lok Woo.
QuadCDD: A quadruple-based approach for understanding concept drift
in data streams. Expert Systems with Applications, 238:122114, 2024.

[19] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting
system. CoRR, abs/1603.02754, 2016.

[20] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Con-
strained k-means clustering with background knowledge. In Proceedings

of the Eighteenth International Conference on Machine Learning, ICML
’01, page 577–584, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[21] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, Günter Klambauer, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a nash equilibrium. CoRR,
abs/1706.08500, 2017.

