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Abstract
This study investigates the use of electroencephalography (EEG) to characterize emotions and provides insights into the

consistency between self-reported and machine learning outcomes. Thirty participants engaged in five virtual reality

environments designed to elicit specific emotions, while their brain activity was recorded. The participants self-assessed

their ground truth emotional state in terms of Arousal and Valence through a Self-Assessment Manikin. Gradient Boosted

Decision Tree was adopted as a classification algorithm to test the EEG feasibility in the characterization of emotional

states. Distinctive patterns of neural activation corresponding to different levels of Valence and Arousal emerged, and a

noteworthy correspondence between the outcomes of the self-assessments and the classifier suggested that EEG-based

affective indicators can be successfully applied in emotional characterization, shedding light on the possibility of using

them as ground truth measurements. These findings provide compelling evidence for the validity of EEG as a tool for

emotion characterization and its contribution to a better understanding of emotional activation.

Keywords Emotion assessment � EEG � VR � Affective elicitation

1 Introduction

Emotions are dynamic multidimensional responses that

integrate physiological, psychological, and cognitive pro-

cesses, triggered by internal and external stimuli [1].

Indeed, they are involved in logical decision-making, per-

ception, human interaction, and human intelligence [2, 3].

In recent years, affective computing has emerged as a

multidisciplinary sector considering psychology, physiol-

ogy, computer sciences, and biomedical engineering [4].

As a result, the research and development of systems and

interfaces capable of recognizing and emulating human

emotions are increasingly becoming a priority [4–6]. In this

regard, affective computing can deal with both emotional

classification and elicitation, offering significant societal

benefits through the implementation of emotion recogni-

tion systems across different working environments,

including education, medicine, economics, and workload

studies, as well as assisting in the identification of cogni-

tive disorders [7], anxiety, or stress [8, 9].

Traditionally, self-reports have been developed to assess

individuals’ mental states. The most used is the Self-
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Assessment-Manikin (SAM) [10–12], a picture-oriented

instrument (Fig. 1) that allows determining emotional

states by classifying them using two dimensions, also

known as affective states or emotional dimensions/indica-

tors, on an image-based scale: Valence, i.e., pleasantness/

unpleasantness, and Arousal, i.e., how strongly the emotion

is felt. In this regard, among multiple frameworks focused

on human emotions, we adopted the Arousal Valence

Space (AVS) model proposed by Rusell [13]. The AVS

model, also known as the Circumplex Model of Affect,

serves as a fundamental structure for categorizing emotions

based on Valence and Arousal as primary dimensions. As

described by Suhaimi et al. [14] the AVS model visualizes

emotions within this two-dimensional space, allowing for a

comprehensive understanding of emotional experiences.

Emotions are positioned within this space based on their

valence and arousal characteristics, creating a map of

emotional states.

Although self-reports are commonly used for analyzing

emotions, these can introduce personal bias, which may

have a negative impact on the accuracy of emotion

detection [6].

On the other hand, EEG devices enable the measure-

ment of emotional metrics, such as Valence and Arousal,

by analyzing the brain signals in the theta (h), alpha (a),
beta (b), and gamma (c) frequency bands, making it pos-

sible to describe an individual’s affective state [15]. Thus,

the use of EEG signals in detecting and classifying emo-

tions, besides being relevant for human–computer inter-

action [16, 17], could provide a more in-depth

characterization of the emotional state.

Furthermore, emotion research has the additional pur-

pose of understanding and profiling the correct stimuli to

evoke emotions. One of the most known techniques for

emotion elicitation is visual stimulation through images

and videos; as a result, many databases containing images,

videos, and audio have been created, such as the Interna-

tional Affective Picture System (IAPS) [18], the Geneva

Affective Picture Database (GAPED) [19], and the Inter-

national Affective Digitized Sounds (IADS) [20].

In the current context, virtual environments (VE) are

gaining ground in creating immersive and interactive

experiences [21] based on virtual reality (VR), due to their

suitability to induce more emotional responses than the

previously mentioned static approaches [22, 23]. Emotions

play a crucial role in social interaction, mental health,

education, entertainment, and many other aspects of human

life. The ability to assess and monitor emotional states,

particularly in immersive virtual environments, can lead to

significant advancements in these domains. Recognizing

the pressing need for accurate emotion classification, this

study aims to analyze EEG as a method for emotion

characterization and explore how user emotions are influ-

enced by a set of VEs designed and validated to induce one

specific emotion among happiness, sadness, anger, fear and

disgust [24]. The EEG outcomes will be then associated

with those obtained from the SAM reports; firstly, a com-

parison between the results of brain activation conducted

on the separate band frequencies and the answers to SAM

questionnaires will be presented, then the brain activation

in terms of emotional indicators will be analyzed by means

of the extreme gradient boosting and the random forest

algorithms, where SAM questionnaires will be the ground

truth labels for EEG instances.

This paper is structured as follows: Sect. 2 presents the

background research on the adoption of VR for the study of

emotions, emotional assessment with brain signals and

related machine learning techniques. Section 3 explains the

methodology and the experimental setup. The results are

discussed in Sect. 4; finally, conclusions are reported in

Sect. 5.

Fig. 1 Self-Assessment

Manikin
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2 Previous works on emotional elicitation
and assessment with VEs, EEG
and machine learning

Emotion elicitation and assessment have been addressed in

the last decades thanks to the technological advancements

in VR, used as a stimulus, in assessment techniques, in

particular EEG, and in Artificial Intelligence approaches,

used for the analysis. Specifically, the adoption of non-

clinical cost-effective instruments (EEG headsets) boosted

the interest and the research in the affective computing

domain. The present section sums up the main findings of

the current literature in this area.

2.1 Applications of emotional VEs

The study of emotions has practical implications that span

from mental health to marketing and human–computer

interaction. In particular, understanding and classifying

human emotions using VR opens new possibilities for

creating more personalized, compelling, and emotionally

resonant experiences in various aspects of life. One of the

primary practical applications is in the field of mental

health. The ability to accurately assess and monitor a

person’s emotional state while interacting with different

VEs can aid therapists in supporting neurocognitive ther-

apy [25, 26]. For instance, it could be used to create per-

sonalized exposure therapy programs for individuals with

specific fears or traumas [27]. Furthermore, VR has shown

promise in enhancing immersive training experiences,

enabling therapists to create controlled environments for

exposure therapy, and assisting in the early recognition of

emotional disorders. VR environments have shown pro-

mise in the treatment of conditions such as post-traumatic

stress disorder (PTSD), phobias, anxiety [28–30] and

emotion disorders in general [31]. Understanding how

specific VEs trigger emotional responses can help adapt

therapy sessions to individual needs, providing a more

personalized and effective approach.

In marketing, knowing how consumers emotionally

respond to advertisements and product displays in VR can

support marketing strategies [32, 33]. Advertisers can

design more emotional campaigns, leading to increased

customer engagement [34]. Also, in the entertainment

industry, such as the development of video games and

virtual experiences, the ability to assess and adapt content

based on users’ emotional responses can enhance the

overall experience [35–37]. For example, games can

become more immersive by adjusting gameplay and nar-

ratives according to the player’s emotions. In workplace

environments, this research could be further adapted to

assess and manage stress levels. Employers can create

stress-reducing VEs or identify situations that cause

excessive stress [38], contributing to a healthier and more

well-being-centered workforce [39, 40]. In addition,

human–computer interaction can be improved by creating

adaptive interfaces that respond to users’ emotional states

[41, 42], for instance, detecting when a user is frustrated

and offering help or suggesting breaks.

2.2 EEG contribution to emotional assessment

Within the EEG context, features such as Empirical

Wavelet Transform (EWT), Event-Related Potential

(ERPs), event-related synchronization and steady-state

visually evoked potentials, and frontal EEG asymmetry

[43–45] have been explored for their emotional character-

istics. In a EEG study regarding changes in regional brain

activity, Ekman and Davidson found that positive emotions

produce an activation of the brain’s left frontal asymmetry

[46]. Moreover, Davidson studied that the change in the a
power corresponds to a relative right frontal activation for

negative emotions (fear, disgust, and sadness), while a

relatively greater activation of the left frontal area is related

to positive emotions (joy, happiness) [47]. These obser-

vations resulted in what Davidson called ‘‘hemispheric

lateralization’’, which states that the left frontal brain

hemisphere activation is correlated with approach moti-

vation, and in contrast, the right frontal with avoidance

motivation [48].

Other studies have tried to establish a correlation

between emotions and brain signals’ band power. A

decrease in the frontal brain’s activity in people feeling

scared has been detected [49]. Another study showed that

disliking classical music corresponds to low Valence and

high Arousal, and a higher right frontal activation, while

enjoying it is related to high Valence, low Arousal, and a

higher left frontal activation, suggesting an asymmetric

frontal activation when considering the a band [50]. On the

opposite, b waves result in being more active in the frontal

cortex during intense, focused mental activity [51]. Other

studies showed that a and h bands are related to emotional

states [34, 52–54] and can be used as indicators of cogni-

tive workload. These bands are known to be associated

with a variety of mental states since a brain patterns are

related to relaxation, while h ones are commonly associ-

ated with drowsiness and deeply meditative conditions.

The study of h rhythm is still a matter of research; in

fact, studies have found that an increase in cognitive effort

is characterized by a higher h power and lower a power,

while the opposite happens during rest [8]. A higher h
activity can be associated with higher levels of task diffi-

culty and complexity in the frontal area [55]. It has been

related to inward-focused mental tasks, implicit learning,

daydreaming and fantasizing [56], and it has also been
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found to be associated with exploring unfamiliar environ-

ments [57]. Recently, a new study [58] found that h rhythm

is greatly amplified during VR applications, which implies

promising research opportunities due to the theta’s role in

neuroplasticity and memory [59].

With respect to the activation of brain regions during

emotional experiences, a waves are mainly observed in the

frontal and occipital area, h waves are commonly found in

the frontal area, b waves in the frontal and parietal as well

as in the occipital and temporal ones, and c waves are

typically observed in the temporal and occipital areas

[15, 60].

Moreover, c corresponds to high mental activity and is

linked to perception and consciousness. Its frequencies are

associated with positive feelings and Arousal increments

during high-intensity visual stimuli [53, 61, 62], while b
waves are often related to self-induced positive and nega-

tive emotions. Few studies were found on delta waves,

mainly associated with deep sleep. Figure 2 provides a

graphical summary of the most frequently reported corre-

lations between brain lobes and brain waves associated

with emotions in the literature.

2.3 Machine learning for EEG classification

Machine learning (ML) is suitable for EEG emotional

analysis due to its capability to find out patterns in data.

Several solutions have been adopted for EEG classification,

in terms of both emotions and affective indicators, such as

Valence and Arousal. Widely adopted traditional algo-

rithms are support vector machine (SVM) [63–67],

K-nearest neighbor (KNN) [68], Naı̈ve Bayes [69], linear

discriminant analysis (LDA) [70], quadratic discriminant

analysis (QDA) [68], decision tree (DT) [71], random

forest (RF) [71], bagged tree (BT) [72], AdaBoost [73],

extreme gradient boosting (XGBoost) [74]. SVM is one of

the most common data-driven approaches among tradi-

tional ML algorithms, proving to be successful in affective

studies [75, 76]. It is suitable for EEG classification thanks

to its capability of handling multidimensional data on the

basis of multivariate patterns. Even if originally designed

for binary classification, modifications were made to han-

dle multiclass classification. On the other hand, SVM is

prone to overfitting, making it a sub-optimal choice when

dealing with small, noisy, and complex datasets [77, 78]. In

this viewpoint, ensemble learning offers valid alternatives,

both with bagging and boosting [72–74]. RF has been used

to construct predictive models of mental states such as

meditation and concentration, reaching accuracies around

75% [79], outperforming 90% accuracy when deep learn-

ing was used for feature extraction [80], and reaching 98%

accuracy for Valence [71]. AdaBoost was successfully

applied to classify human emotions in the 2D Valence-

Arousal space, reaching on DEAP dataset [81] 97% accu-

racy [82], and outperforming 88% accuracy for binary

classification in the Dominance dimension, namely a

quantification of the level of ‘control’ and often used as a

third dimension of the AVS model, on the same dataset

[73]. BT showed high performances on DEAP dataset with

over 97% accuracy in 2D Valence-Arousal space [72].

XGBoost is less commonly used in emotion recognition,

even if noteworthy results were obtained [74], achieving

almost 95% accuracy on DEAP dataset [83].

Artificial neural networks (NNs) are gaining ground in

this panorama; shallow and deep NNs have been proposed

to classify complex data as EEG; compared to ML, NNs

require less specialized knowledge, with notable classifi-

cation accuracies, thus making NNs a wide approach to

Fig. 2 Brain lobes and

frequencies waves related to

emotions
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emotional analyses [84]. Particularly, remarkable results

are obtained when combining NNs and traditional ML, the

former for feature extraction and the latter for classification

[85, 86]. A drawback of employing NNs is that a large

amount of data are required; additionally, the high

dimensionality of EEG leads to high computational costs.

3 Materials and methods

In accordance with similar studies that conducted EEG

measurements in VR [87, 88], and considering the typical

range of 10–20 subjects in lab-based EEG studies [89], we

recruited a total of 30 participants who were involved in a

controlled experiment; the age range of the participants

was between 19 and 36. Before the start of the experiment,

all participants provided signed informed consent, indi-

cating their understanding and willingness to participate in

the study. All participants were informed about the nature

of the research, their rights as research participants, and the

ultimate use of their data. Moreover, they were informed

that they could withdraw from the study at any time

without any consequences. Inclusion criteria refer to (i) age

interval (18–40 years old); (ii) no history of neurological or

psychiatric disorders, (iii) no assumption of any medica-

tions that may affect brain function, and (iv) having normal

or corrected-to-normal vision. Participants were recruited

through flyers posted on the university campus and social

media advertisements. Overall, the study sample consisted

of young, predominantly Italian participants with an even

distribution of gender.

3.1 Experiment setup

The participants were asked to sit, one at a time, in an

adjustable chair in front of a 27-inch monitor equipped

with a mouse, a keyboard, and an external speaker (an

Ultimate Ears UE Boom). Before starting the experiment,

the EEG headset was set up, and the initial baseline in

closed-eyes condition, which lasted 15 s, was measured.

Every participant was then asked to navigate five affective

VEs selected from a total set of ten, one for each emotion

(anger, disgust, fear, joy, sadness). Every VR navigation

lasted 60 s, and we included a 90-s rest period between

each VE visit. Within the 90-s rest period, 30 s were

allocated for participants to report their Valence and

Arousal on a SAM questionnaire, inspired by the one

shown in Fig. 1 but with a 9-points scale, followed by an

additional 60-s interval before the next stimuli.

During the VE exploration, the participants’ brain

activity was measured with the EEG headset. As the

duration of rest periods in affective EEG experiments can

vary [90], our choice of a 90-s rest period was based on the

nature of our affective experiment and the need to find a

balance between emotional response capture and partici-

pant comfort.

Given that the primary focus of our study was on

assessing participants’ emotional states, we opted for pro-

viding a resting time that was similar in duration to the

stimuli. This approach allowed participants to report their

Valence and Arousal using the SAM questionnaire and

provided sufficient time for them to return to a neutral

affective state. The experimental flow can be seen in

Fig. 3.

3.2 The virtual environments

Ten validated VEs were considered in this study to create

an immersive experience for the participants. The VEs

were composed of certain elements more likely to elicit a

specific emotion: anger, disgust, fear, happiness and sad-

ness [24]. In particular, for every emotion two VEs were

designed using two layouts: indoor and outdoor spaces.

Indoor spaces are typically planned to replicate real-life

indoor settings, such as offices, living rooms, or class-

rooms. These environments often include furniture, deco-

rations, and other objects commonly found in indoor

spaces, as well as lighting and sound effects that create a

realistic atmosphere. In comparison, outdoor spaces are

designed to simulate outside settings, such as parks, forests,

or beaches. These environments often feature natural ele-

ments such as trees, waterfalls, and open sky, as well as

weather effects like rain, snow, and wind. The following is

a brief description of the selected VEs, whose realization

methodology and other details regarding their validation

are described in Dozio et al. [24].

• Outdoor Happiness (OH). This VE was created to

represent a beautiful tropical beach, open and expan-

sive, conveying a sense of vastness. Set during sunny

daytime, almost sunset, the colors were warm so that a

feeling of relaxation could be felt. The sound of waves

characterized the background music (Fig. 4a).

• Indoor Happiness (IH). In this case, the VE was a

playful, colorful, and almost magical world. A starry

atmosphere decorated the room, and some festive and

bright lights lit it. The whole scenario was characterized

by different sounds: the animals and the objects

moving, but also the background music, which was an

electronic psychedelic melody (Fig. 4b).

• Outdoor Disgust (OD). This VE consisted of a grimy

picnic scene full of dirty tables, cockroaches, and trash

all over the place. There were dirty bathrooms along the

path, and a person inside was audibly vomiting

(Fig. 4c).
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• Indoor Disgust (ID). A dark grey room was designed,

representing a dirty public latrine full of excrement and

insects (Fig. 4d).

• Outdoor Fear (OF). A dark and gloomy forest was

realized for this VE, characterized by many startling

elements such as crows, red eyes peeking in the dark,

dead bodies, and zombies (Fig. 4e).

• Indoor Fear (IF). The VE was set in a haunted house,

entirely in the dark, where the only light source was the

beam of a torch. There were many frightening elements,

such as a monster appearing suddenly, a doll, creepy

music, and evil laughers (Fig. 4f).

• Outdoor Sadness (OS). The VE portrayed a desolate

and polluted city that had suffered a nuclear disaster,

with no signs of human activity present (Fig. 4g).

• Indoor Sadness (IS). The VE represented a hospital

waiting room rendered in dark grey tones, occupied by

individuals in physical distress, visibly and audibly in

pain (Fig. 4h).

• Outdoor Anger (OA). The VE consisted of an

inescapable maze with dead ends and openings that

circled back to the starting point. To further intensify

the emotional experience, a timer was implemented to

evoke feelings of anxiety and frustration at the inability

to reach the way out (Fig. 4i).

• Indoor Anger (IA). A school on fire was simulated, with

no visible human presence except for the distant sounds

of ambulance sirens and desperate screams. A timer

was added to emphasize the difficulty of reaching the

end before being exposed to danger (Fig. 4j).

3.3 EEG signal processing

This study was conducted using the Emotiv EPOC X EEG

headset composed of 14 saline electrodes positioned

according to the International 10–20 System [91]. The

sensors are placed in AF3, AF4, F3, F4, F7, F8, FC5, FC6,

P7, P8, T7, T8, O1, O2 and two additional common mode

sense (CMS) and driven right leg (DRL) reference channels

at P3 and P4 (Fig. 5). An even number means the elec-

trodes are in the right brain hemisphere, and an odd number

indicates a placement in the left hemisphere.

The EEG activity was recorded for 60 s at a sampling

rate of 128 Hz. We used fast Fourier transform (FFT) and a

bandpass filter to obtain the band powers in lV2=Hz.

Before performing the FFT, the data were high-pass filtered

to reduce noise. For data analysis and feature extraction,

we used a Hanning window size of 2 s epoch, consisting of

256 EEG data samples, and sliding this window by 16

samples to create the new window. Then, the squared

magnitude of the complex FFT value was averaged in each

frequency band (h: 4–8 Hz, a: 8–12 Hz, b:12–25 Hz, c:
25–45 Hz), and only ‘‘artifact-free’’ signals were consid-

ered during the experimental phase.

Similar to previous studies, this methodology adopted a

within-subject design experiment, meaning that

Fig. 3 Experimental procedure. Participants start with a 15-s baseline

measurement, followed by five randomly selected VE visits, each

lasting 60 s, with a 90-s rest period between visits. At the end of each

visit, the participants are asked to complete a SAM questionnaire.

EEG measurements are recorded during the VE visits

22250 Neural Computing and Applications (2024) 36:22245–22263
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independent acquisitions are performed for each subject.

Then, the EEG measurement was divided into two phases:

the EEG baseline and the EEG activity while carrying out

the task. The analysis considered the difference between

these two recordings to assess the contribution of the VE

stimuli to the emotional state [23, 92].

3.4 EEG-based affective indicators

Two affective indicators, namely Valence and Arousal,

were calculated from EEG waves, relying on formulas

available in previous literature studies.

Fig. 4 Screenshots of the

selected VEs. a Outdoor

happiness OH. b Indoor

happiness IH. c Outdoor disgust
OD. d Indoor disgust ID.

e Outdoor fear OF. f Indoor fear
IF. g Outdoor sadness OS.

h Indoor sadness IS. i Outdoor
anger OA. j Indoor anger IA
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3.4.1 Valence

Valence is known to be an indicator of the pleasantness or

unpleasantness of the perceived stimulus; the higher it is,

the more positive the emotion; otherwise, the emotion is

considered negative. Researchers have found that, accord-

ing to the International 10–20 System [91], the most ana-

lyzed EEG electrodes for the definition of Valence are in

positions F3 and F4 (frontal lobe). They are both located in

the prefrontal cortex, which is known to play a central role

in emotion regulation [93]. In addition, the main activity of

a has been registered on F3 and F4 [94]. From these

observations, valence can be estimated as an indicator of

motivational direction by computing and comparing the

hemispherical activation between the logarithmic band

power of a and b ratio in F3 and F4 (Table 1, Formula 1)

[51, 95, 96].

Other studies focused on frontal asymmetry as an

expression of emotional states [53] and detected activity

mainly in the a band. Therefore, the change in the a power

corresponds to a relative right frontal activation for nega-

tive emotions (fear, disgust, and sadness). In contrast, rel-

atively greater activation of the left frontal area is

associated with positive emotions [47]. Accordingly,

Valence (Table 1, Formula 2) has been as well studied by

subtracting the natural logarithm of the left hemisphere a
power (aF3) from the natural logarithm of the right

hemisphere a power (aF4) and comparing their difference

[23, 55, 94, 97].

In the literature, other Valence formulas have been

proposed which quantifies Valence as the difference

between the power ratios of b/a measured in prefrontal and

frontal electrodes AF3, AF4, F3, and F4. (Table 1, Formula

3) [55].

3.4.2 Arousal

Arousal expresses the intensity of the emotion. It can also

be described as the psychological and physiological state of

being proactive (activation) or reactive (deactivation) to

some stimuli. Since a waves are associated with states of

relaxation and b waves with states of alertness, researchers

have established that these waves are correlated through an

inverse relationship. In addition, a link was found between

brain inactivation and a activity. This suggests that the

ratio b/a can express a person’s arousal state. In Formula 4

listed in Table 1, the arousal is expressed as the ratio

between b/a concerning electrodes AF3, AF4, F3, and F4

[97]. Likewise, Arousal (Table 1, Formula 5) can also be

expressed in terms of power measured in F3 and F4

[23, 95]. A summary of the most relevant formulas found

in literature is reported in Table 1.

Given the prevalence of Formulas 2 and 5 in the existing

literature, these formulas were selected as the preferred

method for this study.

3.5 The classifiers

For the classification task, gradient boosted decision tree

(GBDT) and random forest (RF) were adopted.

Fig. 5 International 10–20 EEG Electrode Placement System. Blue

electrodes denote the left hemisphere, green the right hemisphere, and

yellow designates reference channels (color figure online)

Table 1 EEG-based affective

indicators
Reference Affective indicator EEG-based indicator Bibliographical references

(1) Valence aF4
bF4 � aF3

bF3
[51, 95, 96]

(2) Valence aF4� aF3 [23, 55, 94, 97]

(3) Valence bðAF3;F3Þ
aðAF3;F3Þ �

b AF4;F4ð Þ
a AF4;F4ð Þ

[55]

(4) Arousal bF3þbF4þbAF3þbAF4
aF3þaF4þaAF3þaAF4

[97]

(5) Arousal bF3þbF4
aF3þaF4

[23, 95]

The formulas adopted in this study are in bold
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Gradient boosting [98] is one among the implementa-

tions of ensemble learning, where the prediction of more

than one model is involved [99]; it is a widespread

supervised approach in multiclass classification tasks, and

it is suitable for missing data [100] as some EEG data were

lost after the removal of artifacts. GBDT sequentially adds

classifiers aimed at correcting the prediction made by the

previous classifiers and outputs a weighted average of the

predictions. To correct the previous predictions, at each

training step, the correct observations have a lower impact

than those misclassified. The GBDT implements a series of

decision trees that are considered as weak classifiers; their

predictions are combined for votes or average, and the final

output is weighted on the contributions of each model

based on its performances. For each tree, nodes are added

to optimize a nonlinear objective, in this case the square

error. Extreme gradient boosting (XGBoost) implementa-

tion of GBDT was applied [101]. Previous literature

adopted supervised ensemble machine learning for senti-

ment classification with encouraging results [2, 102, 103].

In particular, gradient boosting is suitable when dealing

with missing values and outliers and when numerous

environmental variables are present [104]. Recent works

involving VEs as mean of elicitation, adopted this last to

classify the evocated emotional state, showing its feasi-

bility in the problem of classification of EEG data

[105, 106]. In fact, the process of acquisition and cleaning

of brain activity data suffers from artifacts due to move-

ment and environmental factors, eventually leading to data

missing; XGBoost offers some extensions to GBDT as

sparsity awareness, that allows handling missing values in

data without imputation first [101, 107].

XGBoost Python Package (xgb package version 1.7.4)

was used in this study. The functioning of XGBoost is

based on the minimization of an objective function that

combines the training loss and the regularization term; the

former evaluates the training data, while the latter prevents

overfitting. The objective function can be represented by

(6):

Objective Tð Þ ¼
Pn

i¼1

l yi;ypred i
� �

þ
PK

k¼1

X fkð Þ; ð6Þ

where n is the number of training samples, ypred is the

prediction made for the i-th sample, l yi;ypred i
� �

is the loss

function, k is the number of trees of the ensemble, and

X fkð Þ is the regularization term. The regularization term is

defined as follows (7):

X fkð Þ ¼ cT þ 1

2
k
XT

j¼1

x2
j : ð7Þ

The Hessian is used to manage the nonlinearity of the

objective since the second order derivative allows a more

precise approximation of the direction of the maximum

decrease in the loss function. A schematization of the

XGBoost classifier is reported in Fig. 6.

A second classification on the same dataset was per-

formed using the random forest algorithm. A different

classification approach was adopted to generalize the

results obtained in the experiment, and to reduce the risk of

biased results due to the use of a single specific classifier.

RF was chosen for the possibility of efficiently handling

missing data with imputation that makes this algorithm

generally robust [108]. As XGBoost, RF is an ensemble

learning algorithm and is constructed upon a multitude of

trees, where each tree outputs the best solution to fit the

problem. The algorithm seeks the characteristics that

enable the input observations to be randomly divided into

groups with the greatest difference between them and the

least difference within each group. The randomness of the

splits is a critical point, as it provides a low correlation

between the trees. The mathematical representation can be

expressed as in (3):

Ypred ¼ aggregation f1 Xð Þ; . . .; fk Xð Þð Þ; ð8Þ

where fk Xð Þ is the prediction made by the kth decision tree

and the aggregation function is here represented by the

majority of votes (as defined for the classification

problems).

The RF Python implementation (scikit-learn package

version 1.1.3) was used. A schematization of the random

forest classifier is reported in Fig. 7.

4 Results and discussion

After the experiment development, the EEG data were

processed, and found artifacts were removed leading to the

exclusion of 3 subjects due to detrimental noise or missing

data. A total of 27 datasets free of artifacts were consid-

ered. Then, Valence and Arousal were extrapolated from

the EEG data for each participants’ experience. The med-

ian was analyzed to determine the central tendency of the

dataset. In addition, measuring the band power of a, b, h,
and c at each sensor’s location made it possible to deter-

mine the most active brain areas for each brain wave.

Furthermore, data from each participant were analyzed by

means of two different machine learning algorithms,

namely the extreme gradient boosted decision tree and the

random forest.

4.1 Results on EEG waves and affective
indicators

By analyzing the resultant EEG activity in each VE, the

perceived emotion can be characterized in terms of
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Valence and Arousal, obtained using formulas 2 and 5.

Figure 8 provides an instance of an individual’s EEG

activity with respect to the dimensions of Valence and

Arousal, as observed during their interaction with the VE

of both IH and OF. The images on the left-hand side of the

graph correspond to the participant’s Valence and Arousal

behavior during the IH scenario, while the images on the

right-hand side correspond to the OF. Particularly, it can be

observed that at approximately 2 s into the OF scenario, the

participant experienced a sharp increase in Arousal coupled

with a simultaneous decrease in Valence. Specifically, in

this sample it can be observed that the IH scenario elicited

a higher Valence compared to the OF, which was pre-

dominantly characterized by negative Valence.

The overall activation response in terms of band power

for the ten VEs is presented in Fig. 9. For each VE, the

median powerband values of h, a, b, and c frequencies are

displayed. The data reflect the EEG band power activation

responses of 27 participants, providing insights into the

variations in band power activation across the different

VEs and frequency bands.

The results made evident the strong activation of h
rhythms in all the VEs, which supports the recent findings

about the ability of VR to boost h frequencies [58]. In

addition, one of the most effective VE in terms of neural

Fig. 6 Schematic representation

of the XGBoost classifier

Fig. 7 Schematic representation

of the random forest classifier
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stimuli activation was the Indoor Fear, as it produced the

highest c and b frequencies, reflecting alertness and a high

level of focus.

For all the scenarios, the highest measured band power

in all locations was h. In terms of brain areas activation, the

frontal lobe was found to be the most active across all

scenarios, specifically in the h, a, and b frequency bands,

while for c frequency band, the activation was observed in

either the frontal or temporal lobes (OH, IH, ID, IF). These

results were expected since these areas of the brain have

been particularly linked with emotion perception [61].

The levels of b increased noticeably, mostly in temporal

and parietal lobes, along with the occipital one. This fre-

quency band is commonly associated with alertness and

concentration [55, 109] and is predominantly active in the

frontal area, while also being present in the temporal,

parietal, and occipital lobes. These lobes’ primary func-

tions are processing auditory and visual stimuli and

memory formation [61].

Due to the association between h and daydreaming

mental states [109, 110], the high activation of h in all the

scenarios suggests that participants were mindful while

navigating imaginary worlds. While our study primarily

focused on the a, b, and c frequency bands for EEG-based

affective indicators, it is crucial to acknowledge the sig-

nificance of h frequency in understanding emotional

experiences. It is worth noting that h frequency has also

been linked to states of emotional regulation, playing a

crucial role in the modulation of emotional responses,

Fig. 8 15-s windows sample of one participant’s resulting activity during the interaction with the IH and OF VRs, in terms of Valence and

Arousal

Fig. 9 EEG band power medians ðlV2=HzÞ in the ten VEs analyzed

across 27 participants
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particularly in contexts where relaxation and emotional

regulation are essential [111, 112]. The observations of h
frequency in our EEG data suggest that participants in our

study were in a condition conducive to emotional

regulation.

Although the established EEG-based affective indica-

tors, as defined in Table 1, did not originally incorporate h
frequency as a direct input, our data analysis, motivated by

the recognition of the significant implications of h fre-

quency, has extended its scope to include the computation

of h frequency power for all the VEs. This approach pro-

vided a holistic view of EEG activity in the h range and its

variations in response to different emotional stimuli

throughout the participants’ interactions with the VEs.

In detail, h was the highest at frontal sensors, corre-

sponding to increasing cognitive attention in the frontal

area [8, 55]. The strong activation of h frequency in our

study is consistent with the recent findings of Safaryan and

Mehta [58] regarding the ability of VR to amplify h
rhythm. These results are promising since the enhancement

of h through dedicated VEs could support the studies on

deep relaxation, memory and emotion regulation, as VR

can be used to boost and benefit individuals’ neural

dynamics.

Concerning b activations, the results show that the

participants were actively engaged in their task, attentively

processing sensory information; in fact, b is associated

with alertness and concentration [55]. The results obtained

from the SAM questionnaires and the EEG outcomes have

been found to be consistent with the evaluated environ-

ments. The SAM questionnaires showed a high intensity of

emotions in response to stimuli that were designed to elicit

specific emotional states. The EEG outcomes demonstrated

significant changes in the brain activity patterns that are

known to be associated with various emotional states. The

most stimulating VE was Fear (IF), reflecting a high

activity in b and c rhythms and positive Valence. On the

contrary, the Anger (IA) produced the lowest c and b
activity from all the VEs, possibly because of the uniform

and uninterrupted stimuli it provided. As expected, the

most active brain lobe for all the VEs was the frontal one,

including the prefrontal cortex, since the frontal lobe is the

most involved in emotion perception. The sensors’ acti-

vation highlighted that the highest measured bands’ power

was those of h and b, which means that increasing cogni-

tive attention, processing, and elaboration of sensory

stimuli was achieved with the VR.

The main findings of this study in terms of wave

behaviors endorsed by previous studies in literature are

summarized in Table 2.

4.2 Classification results

The analysis of the EEG data was conducted on disag-

gregated data using the XGBoost and RF classifiers.

Valence and Arousal EEG indices were calculated for each

participant throughout the entire duration of the VEs nav-

igation; thus, a sample vector was obtained for each of the

participants’ experiences. In detail, 134 samples were

considered, with a sample length of 537 elements. SAMs

rates were used to label the data. As SAMs were rated on a

9-points scale, three ranges were defined corresponding to

three classes of activation for both Arousal and Valence:

the first class collected the rates from 1 to 3, the second

class the rates from 4 to 6, and the third class the rates from

7 to 9. Thus, the first class was labeled as ’low’, the second

class as ’neutral’, and the third class as ’high’. To evaluate

the classification results, f-1 score metrics were adopted.

Concerning the Arousal, the f1- scores obtained with the

XGBoost classifier on the test dataset (0.3 of the complete

dataset) were 0.77, 0.94, and 0.97 for class ’low’, ’neutral’,

and ’high’, respectively. Due to imbalance in the class

observations, instances of class ’low’ in the test dataset

were half those of the other two classes. Concerning the

Valence, the f1-scores on the test dataset were 0.97, 1.00,

and 0.93, for class ’low’, ’neutral’, and ’high’, respectively.

In this case, the class ’high’ had the lowest number of

instances, as most of the participants rated their experi-

ences in the ’low’ and ’neutral’ ranges. Figure 10 provides

a graphical representation of the XGBoost classifier’s

performance metrics, a tabular visualization is presented

reporting the confusion matrices from which precision and

recall were computed for Arousal and Valence.

The classification results obtained with the RF algorithm

were consistent with those obtained with the XGBoost for

the Arousal, while XGBoost performed better for the

Valence. In detail, concerning the Arousal, the f1-scores on

the test dataset were 0.77, 0.94 and 0.97 for class ’low’,

’neutral’, and ’high’, respectively. Concerning the Valence,

the f1-scores were 0.91, 0.95 and 0.86. As done for the

XGBoost, a tabular visualization of the classification

results is provided; thus, Fig. 11 reports the confusion

matrices for Arousal and Valence obtained with the RF

classifier.

In Table 3, precision, recall and f1-score are reported for

the two adopted classifiers. In the case of the Arousal, the

two algorithms attained nearly identical performances. On

the contrary, in regard to Valence and the emotional state

labeled as ‘neutral,’ the f1-score was similar for both

XGBoost and RF, with XGBoost having a slightly higher

score (1.00 and 0.95, respectively); however, for the ‘low’

and ‘high’ classes, XGBoost yielded significantly better

outcomes. The RF results remain satisfactory with 91% of
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overall accuracy, consistent with the literature [113, 114].

Lower accuracies were obtained in previous studies in

which RF was adopted to classify mental states; the pre-

viously mentioned work by Edla et al. [79] obtained

accuracies of around 75%, while in this work the lowest

result was 77% on ‘low’ Arousal. Significantly high

accuracies were obtained previously with the adoption of

deep learning for feature extraction; as an example, the

work by Kumar et al. [80] reached accuracies of over 90%,

while the work of Ramzan et al. [71] reached 98% accu-

racy specifically on Valence. This last result is higher than

the accuracy obtained in this study, but considerations can

be made on the fact that the involvement of deep learning

algorithms for feature extraction means computational

costs higher than the adoption of traditional machine

learning with Arousal and Valence as input features. This

consideration is supported by the fact that training time for

RF in this study was approximately below two minutes;

with RF the most time-consuming phase were the labeling

phase and the signal processing, but that did not represent a

limit concerning the computational costs related to hard-

ware limits. For the XGBoost, the training time was below

five minutes; the identification of the best hyper-parameter

ranges to search in was the most time-consuming phase,

with approximately 40 min. On the other hand, XGBoost

obtained in this study 97% accuracy, thus slightly lower

than the 98% accuracy reached by Ramzan et al. [71]. The

study by Liu et al. [83] reached accuracies slightly lower

than 95% on Valence and Arousal from DEAP dataset. It is

remarkable that XGBoost fed with the 537-sample length

Valence and Arousal described in this study obtained

accuracies of 93% and 97%, respectively. More in detail,

highest values were obtained for ‘high’ and ‘neutral’

Arousal, and ‘low’, ‘neutral’, and ‘high’ Valence.

Table 2 Main literature-confirmed findings of this study

Finding Literature endorsement

Strong activation of h rhythms in all the VEs Ability of VR to boost h frequencies [58]

h frequency has also been linked to states of emotional regulation,

playing a crucial role in the modulation of emotional responses,

particularly in contexts where relaxation and emotional regulation are

essential [111, 112]

The frontal lobe was found to be the most active across all VEs,

specifically in the h, a, and b frequency bands, while for c frequency

band, the activation was observed in either the frontal or temporal

lobes

These areas of the brain have been particularly linked with emotion

perception [61]

The levels of b increased noticeably, mostly in temporal and parietal

lobes, along with the occipital one

b is commonly associated with alertness and concentration [55, 109]

and is predominantly active in the frontal area, while also being

present in the temporal, parietal, and occipital lobesb activation shows that the participants were actively engaged in their

task, attentively processing sensory information

Fig. 10 Confusion matrix of XGBoost classification computed on the test dataset for Arousal (left) and Valence (right). Label 0 stands for ’low’,

label 1 stands for ’neutral’, and label 2 stands for ’high’
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Moreover, in the current study, class-specific results are

reported in terms of f1 score, allowing a more objective

evaluation of the classification performances. Finally, it is

important to stress that most previous work has used

datasets where elicitation means differ significantly from

the current study’s VEs.

The comparison between the outcomes of the XGBoost

and RF classifiers and the SAMs rates shows there is

consistency between self-assessments and EEG responses.

This provides evidence that EEG has the capacity to

effectively characterize Valence and Arousal dimensions,

as Arousal and Valence affective indicators reflect the

SAMs rates given by the participants. In fact, the

notable results obtained in the classification task, particu-

larly with XGBoost that outperformed 90% of accuracy for

both the indicators, suggest a consistency between the

labels extrapolated from the SAMs and the EEG records.

The coherence observed between questionnaires and EEG

implies that EEG-based emotional indicators could be

taken into consideration as a complementary tool for the

emotional assessment, at least for Valence and Arousal

quantification. Nonetheless, the preliminary nature of this

research suggests that further studies are needed to explore

and detail this possibility.

5 Conclusions

Emotion recognition is becoming crucial for developing

machines to be integrated for the benefit and application in

society. In fact, it could be helpful in education to observe

students’ mental state toward teaching materials, or in

medicine to allow doctors to assess their patients’ mental

states and to get better treatments for their psychological

Fig. 11 Confusion matrix of RF classification computed on the test dataset for Arousal (left) and Valence (right). Label 0 stands for ’low’, label 1

stands for ’neutral’, and label 2 stands for ’high’

Table 3 Precision, recall and f1-score of the two classifiers for each of the three classes (‘low’, ‘neutral’ and ‘high’) for Arousal and Valence

indicators

Low Neutral High

Precision Recall f1 score Precision Recall f1 score Precision Recall f1 score

XGBoost Arousal 1.00 0.62 0.77 0.89 1.00 0.94 0.94 1.00 0.97

Accuracy 0.93

Valence 0.94 1.00 0.97 1.00 1.00 1.00 1.00 0.88 0.93

Accuracy 0.97

RF Arousal 1.00 0.62 0.77 0.89 1.00 0.94 0.94 1.00 0.97

Accuracy 0.93

Valence 0.84 1.00 0.91 1.00 0.91 0.95 1.00 0.75 0.86

Accuracy 0.91
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conditions, or more generally to understand a worker

cognitive state during ordinary and stressful situations. In

addition to self-reports, it is possible to examine comple-

mentary techniques for detecting and classifying emotions.

In this context, this study aimed to explore the interpreta-

tion of emotional states using EEG. To do this, an exper-

iment was conducted to investigate the emotional response

of participants interacting with validated affective VEs, by

employing a portable EEG headset to record the subject

data during the experiment. The analysis has been con-

ducted considering the aggregated data for the VEs and

separately on the affective indicators computed from the

EEG acquisition of each participant.

The main findings of this study show that a coherence

between EEG affective indicators of Valence/Arousal and

the respective values in the SAM-based self-assessment

exists. In particular, the noteworthy results of the XGBoost

and RF classifiers show that these EEG indicators are

reliable, at least for experimentations where the navigation

in VEs is involved. The strengths of this study rely both on

the adoption of validated VEs for eliciting basic emotions

and on the self-reporting-based labeling of data; these

conditions guarantee a desired (and diverse) level of

Valence and Arousal, and an appropriate consistency

between EEG emotional indicators and what the partici-

pants really felt. Future analyses are needed to evaluate the

efficacy of the affective indicators and their applicability in

a broader sense. Also, while this study has examined five

basic emotions (happiness, disgust, fear, sadness, anger)

and Valence/Arousal EEG affective indicators, further

exploration of additional emotions, including surprise and

stress, and other EEG-based indicators, such as Stress and

Dominance, remain a topic for future research.

This research underscores the need for a more compre-

hensive understanding of human emotions, utilizing the

potential of VR settings. By accurately assessing emotional

states, researchers and practitioners can offer tailored

solutions in different domains. This, in turn, paves the way

for more emotionally aware technology and applications

that can enhance individuals’ quality of life. In the context

of disorder recognition, our research could have implica-

tions for early diagnosis and monitoring of emotional dis-

orders. By continuously monitoring emotional states, we

may be able to detect subtle changes in emotions that could

signal the onset of a mood disorder, allowing for timely

intervention and support.
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26. Cieślik B, Mazurek J, Rutkowski S et al (2020) Virtual reality in

psychiatric disorders: a systematic review of reviews. Comple-

ment Ther Med 52:102480. https://doi.org/10.1016/j.ctim.2020.

102480
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