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Abstract: Objective: In this paper, we explore the correlation between performance report-
ing and the development of inclusive AI solutions for biomedical problems. Our study
examines the critical aspects of bias and noise in the context of medical decision support,
aiming to provide actionable solutions. Contributions: A key contribution of our work is the
recognition that measurement processes introduce noise and bias arising from human data
interpretation and selection. We introduce the concept of “noise-bias cascade” to explain
their interconnected nature. While current AI models handle noise well, bias remains a
significant obstacle in achieving practical performance in these models. Our analysis spans
the entire AI development lifecycle, from data collection to model deployment. Recommen-
dations: To effectively mitigate bias, we assert the need to implement additional measures
such as rigorous study design; appropriate statistical analysis; transparent reporting; and
diverse research representation. Furthermore, we strongly recommend the integration of
uncertainty measures during model deployment to ensure the utmost fairness and inclusiv-
ity. These comprehensive recommendations aim to minimize both bias and noise, thereby
improving the performance of future medical decision support systems.
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1. Introduction
While artificial intelligence (AI) continues to make remarkable advances in medical

decision support, we argue that current approaches to ensure fairness and inclusivity
fall short when addressing the unique challenges of the medical domain. This position
paper argues that a fundamental rethinking of how we approach fairness in medical AI
is necessary due to the high stakes involved in medical judgements, the complexity of
multi-modal medical data, and the deeply embedded biases in current healthcare systems.

Achieving fairness in medical AI not only requires addressing biases but also con-
fronting the inherent complexities of real-world medical data. Engineers and computer
scientists strive to maintain control over the operating environment for their systems and
software programs. In an ideal scenario, these solutions exhibit perfect repeatability, with no
variations between operators or conditions. However, practical problem-solving inevitably
widens the gap between a system’s performance in controlled laboratory settings and its
real-world deployment performance [1]. This performance gap is particularly significant
in the context of medical decision support systems [2–4]. The extent of the performance
gap is directly linked to the level of control over the data acquisition process in the medical
environment [5]. Unfortunately, the absence of objective measures hampers the assessment
of the quality of medical data acquisition and control [6,7]. The presence of unavoidable
noise during measurements introduces uncertainty. In healthcare applications, noise can
manifest as variations in disease symptoms, which subsequently affect the measurement
data collected from patients at specific points in time.

AI models aim to emulate human decision-making processes in providing medical
decision support [8]. This approach is philosophically justified by analogies between
human thinking and machine decision-making. Medical professionals navigate uncer-
tain environments with limited control, their expertise serving as invaluable knowledge
sources [9,10]. Capturing this knowledge involves human experts labeling data, inevitably
introducing subjectivity and bias, which limits the transferability of results from medical
decision support systems [11,12]. Data and their interpretation stem from individual or
group decisions, influenced by intentions about what to measure, when to measure, and
how to interpret [13,14].

Bias, a systematic deviation from objectivity and fairness, can arise from vari-
ous sources in medical measurements, including selection bias [15,16], measurement
bias [17,18], confounding bias [19], and cultural or demographic bias [20]. AI systems
can amplify these biases if trained on biased datasets or if algorithms have inherent bi-
ases [21]. This can perpetuate existing biases, introduce new ones, and lead to unfair
outcomes in diagnostic pathways. The challenge for engineers is developing medical
decision support systems that effectively replicate professional decision-making while miti-
gating biases. This requires effective methods for assessing decision support quality [22,23],
with algorithm design and quality measures being fair, inclusive, and comprehensive [24].

In this paper, we adopt the position that quality design and reporting for AI solutions
is a multifaceted undertaking. It is necessary to incorporate mitigation measures against
bias and noise during AI development and include uncertainty measures during model
deployment to ensure fairness and inclusivity. These measures should be used to build
trust in the model so that there is a good level of confidence before the clinical validation.

The structure of this document is as follows. The next section outlines the methods
used for developing medical decision support systems, covering the basics of AI, with a
specific emphasis on state-of-the-art quality measures. Finally, we discuss the implications
of our position and provide recommendations for future research and development efforts.
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2. Methods
In this section, we provide a critical analysis of various medical decision support

technologies, and the methods used to assess their performance. While these technologies
and methods are well established, we argue that their application in medical contexts
presents unique challenges that are often overlooked in standard performance assessments.

Figure 1 presents an abstract block diagram of a medical decision support system,
encompassing crucial elements such as measurement, human-led data interpretation, AI
model creation, and model deployment. This holistic view allows us to examine how noise
and bias propagate through the entire system, affecting overall performance and fairness.

Sensors 2025, 25, x FOR PEER REVIEW 3 of 17 

2. Methods

In this section, we provide a critical analysis of various medical decision support

technologies, and the methods used to assess their performance. While these technologies 

and methods are well established, we argue that their application in medical contexts pre-

sents unique challenges that are often overlooked in standard performance assessments. 

Figure 1 presents an abstract block diagram of a medical decision support system, 

encompassing crucial elements such as measurement, human-led data interpretation, AI 

model creation, and model deployment. This holistic view allows us to examine how noise 

and bias propagate through the entire system, affecting overall performance and fairness. 

We pay particular attention to the measurement block, which introduces noise that 

impacts AI model performance [23], and the human data interpretation block, which in-

troduces bias into decision support systems. These elements are often treated as separate 

issues in traditional AI development, but they are intrinsically linked in medical contexts 

and must be addressed simultaneously. While we discuss AI model creation and associ-

ated performance measures [24], our analysis goes beyond standard metrics. We critically 

examine how these measures may fail to capture the full complexity of medical decision-

making and propose alternative approaches that better account for the unique challenges 

in healthcare settings. 

A unique aspect of our analysis is the recognition of the cyclical relationship between 

measurement noise and interpretation bias in medical contexts. While traditional ap-

proaches treat these as independent challenges, we propose that they form a feedback 

loop: measurement noise influences human interpretation strategies, leading to compen-

satory biases, while biased interpretation affects future measurement protocols, introduc-

ing systematic noise. This interdependence creates what we term a “noise-bias cascade” 

that conventional AI evaluation frameworks fail to address. This perspective shifts the 

focus from treating noise and bias as separate technical challenges to understanding them 

as interlinked components of the medical decision-making ecosystem. 

Figure 1. Block diagram illustrating the components and steps involved in the development of a 

medical decision support system. The diagram highlights four interconnected stages: measurement 

(introducing system noise), human-led data interpretation (incorporating expert knowledge and 

potential biases), AI model creation (development and validation), and model deployment (clinical 

implementation). The connections between components emphasize how noise and bias propagate 

throughout the system, influencing both the development process and final performance. 

2.1. Measurement 

Medical data measurement is a fundamental process that involves systematically and 

quantitatively assessing various aspects of health, diseases, treatments, or other relevant 

variables within the field of medicine. It plays a crucial role in evidence-based medicine, 

clinical research, healthcare quality improvement, and personalized patient care. The ac-

curate and reliable collection, recording, and analysis of data using specific measurement 

tools, techniques, or instruments are vital for ensuring the integrity and usefulness of 

medical information. 
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medical decision support system. The diagram highlights four interconnected stages: measurement
(introducing system noise), human-led data interpretation (incorporating expert knowledge and
potential biases), AI model creation (development and validation), and model deployment (clinical
implementation). The connections between components emphasize how noise and bias propagate
throughout the system, influencing both the development process and final performance.

We pay particular attention to the measurement block, which introduces noise that
impacts AI model performance [23], and the human data interpretation block, which
introduces bias into decision support systems. These elements are often treated as separate
issues in traditional AI development, but they are intrinsically linked in medical contexts
and must be addressed simultaneously. While we discuss AI model creation and associated
performance measures [24], our analysis goes beyond standard metrics. We critically
examine how these measures may fail to capture the full complexity of medical decision-
making and propose alternative approaches that better account for the unique challenges
in healthcare settings.

A unique aspect of our analysis is the recognition of the cyclical relationship between
measurement noise and interpretation bias in medical contexts. While traditional ap-
proaches treat these as independent challenges, we propose that they form a feedback loop:
measurement noise influences human interpretation strategies, leading to compensatory
biases, while biased interpretation affects future measurement protocols, introducing sys-
tematic noise. This interdependence creates what we term a “noise-bias cascade” that
conventional AI evaluation frameworks fail to address. This perspective shifts the focus
from treating noise and bias as separate technical challenges to understanding them as
interlinked components of the medical decision-making ecosystem.

2.1. Measurement

Medical data measurement is a fundamental process that involves systematically and
quantitatively assessing various aspects of health, diseases, treatments, or other relevant
variables within the field of medicine. It plays a crucial role in evidence-based medicine,
clinical research, healthcare quality improvement, and personalized patient care. The
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accurate and reliable collection, recording, and analysis of data using specific measurement
tools, techniques, or instruments are vital for ensuring the integrity and usefulness of
medical information.

The diversity of medical data types (ranging from physiological measurements and
clinical observations to patient-reported outcomes, imaging data, and genetic informa-
tion [25–27]) creates a multifaceted landscape that AI models must navigate. This complex-
ity exacerbates the impact of noise and bias in ways that are distinct from other domains of
AI application. Bias in medical data collection often stems from unrepresentative or exclu-
sionary practices. For example, wearable devices calibrated primarily for lighter skin tones
may produce inaccurate readings for individuals with darker skin, introducing systematic
bias in the data [28]. Similarly, geographic disparities lead to uneven data representation,
as rural areas often lack diagnostic infrastructure, resulting in lower-quality or incomplete
datasets. To address these challenges, targeted data collection strategies, such as oversam-
pling underrepresented groups and standardizing measurement protocols, are essential.
Federated learning can help mitigate biases by training AI models across decentralized
datasets without compromising patient privacy. For example, a federated model, trained on
patient records from hospitals across diverse regions, can account for demographic and ge-
ographic variations, reducing biases in AI predictions. Privacy-preserving techniques, such
as differential privacy and secure multiparty computation, further enhance this approach
by safeguarding sensitive information during the training process. These advancements
ensure that AI models remain inclusive while maintaining compliance with ethical and
legal standards.

While strategies such as sensor fusion and uncertainty quantification [29,30] can im-
prove AI model robustness against noise, we argue that these approaches must be tailored
specifically for medical applications. Standard validation techniques for measurement tools
and data collection procedures [31–33] may not fully capture the nuanced ways in which
bias can manifest in medical contexts.

There is a need for a more comprehensive approach to ensuring the accuracy, reliability,
and validity of medical data measurement for AI applications. Upholding rigorous stan-
dards and practices in medical data measurement is not just about improving data quality,
but also about ensuring equitable and safe healthcare outcomes for all populations [34].

2.2. Human-Led Data Interpretation

The application of clinical knowledge and expertise is a crucial aspect of human-based
medical data interpretation. By drawing upon their clinical experience and understanding
of medical concepts, pathophysiology, and evidence-based practices, medical experts
provide valuable insights that complement automated approaches [35,36]. We argue that
the integration of this human expertise with AI systems in healthcare settings introduces
complexities that go beyond those seen in other domains.

While human expertise is invaluable, it also introduces bias due to subjective judg-
ments and cognitive limitations. For example, clinicians may consciously or unconsciously
interpret diagnostic data differently based on a patient’s demographic characteristics (age,
gender, ethnicity), potentially influencing subsequent AI predictions. This interpretation
bias can skew the performance of AI models if these subjective decisions are incorporated
into training datasets. Bias quantification methods, such as comparing model performance
across subgroups (e.g., by demographic), can help detect these biases. Statistical tests or
fairness metrics (such as group-specific precision, recall, or AUC) can be employed to
measure how well the model performs for different populations, highlighting potential
biases introduced by human-led interpretation.
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Another significant concern arises from the labeling of training data. Human error
or inconsistency during data labeling, especially in large-scale datasets, can create label
noise, further diminishing the model’s capacity to generalize. Therefore, it is recommended
to apply robustness measures in AI models that account for noisy labels, such as active
learning or semi-supervised learning approaches.

2.3. Model Creation

Model creation is a multi-step process that involves several key stages: preprocessing,
training, and testing. The first step in creating a model is preprocessing the data to prepare
them for analysis by filtering, cleaning, and transforming them into a suitable format for the
model. Next, the model is trained on the preprocessed data, with its parameters adjusted
iteratively to optimize its performance. Once the model has been trained, it is evaluated on
a separate set of data to test its accuracy and generalizability. This testing phase is essential
for ensuring that the model is not overfitting to the training data. Performance measures
play a crucial role in providing feedback to guide the model creation process [1,37].

2.3.1. Preprocessing

During preprocessing, careful attention must be paid to addressing the potential
for bias arising from unrepresentative or incomplete data. It is important to employ
techniques that can detect and mitigate biases in AI models [38]. One approach involves
utilizing fairness metrics and evaluation methods to identify any disparate impacts that
may exist within the system. Once biases are identified, modifications can be made to the
algorithms to reduce or eliminate the bias. This can involve adjusting the training data,
developing algorithms that are more sensitive to fairness considerations, or implementing
post-processing techniques to ensure fairness in decision-making [39]. Furthermore, it is
crucial to involve diverse and representative stakeholders throughout the development and
evaluation process. This includes considering the perspectives and expertise of individuals
from different demographic groups to ensure that potential biases are identified and
addressed comprehensively [40].

2.3.2. Training and Testing

At an abstract level, AI algorithms in the field of healthcare are typically based on either
supervised or unsupervised learning approaches [41]. Unsupervised learning methods
discover hidden data structures and patterns within medical datasets [42], providing
insights into disease hotspots, interactions between multiple diseases in multimorbid
patients, and the socioeconomic implications. This exploration through unsupervised
learning enables knowledge generation, which has the potential to drive medical progress.
However, the interpretation of these discovered patterns requires careful consideration,
based on medical knowledge, to avoid spurious correlations or clinically irrelevant findings.

Supervised learning aims to tap into this existing knowledge by training and testing
models using labeled data [43]. These labels result from human-led data interpretation,
as discussed in Section 2.2. On a technical level, the first step in conducting supervised
learning is to divide the available data into training and test sets. The training set is utilized
by the algorithm to learn and build a model, while the test set is employed to evaluate the
model’s performance. By splitting the data in this manner, we can assess how well the
trained model generalizes to new, unseen data. However, this process tends to preserve
and sometimes exacerbate existing biases. For example, training on imbalanced datasets
without bias correction leads to models that systematically underperform for minority
groups. Similarly, validation bias—when test sets fail to represent the full diversity of
the population—can result in misleading performance metrics that may not reflect real-
world clinical performance. Recent advancements, such as federated learning [44] and
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privacy-preserving AI [45], allow the training of models across decentralized datasets while
preserving privacy. These approaches mitigate demographic biases and increase inclusivity
by incorporating data from diverse, distributed sources.

To ensure fair and inclusive model development, we advocate for the pervasive use
of fairness metrics during both training and testing. Techniques such as group-specific
accuracy, equalized odds, or demographic parity should be incorporated into the evaluation
process to identify disparities in model outcomes across subgroups. Additionally, the use
of cross-validation with demographically stratified data can ensure that the model is tested
on a broad and inclusive sample. This might result in a more accurate reflection of its
performance in diverse real-world applications.

2.3.3. Performance Measures

Performance measures play a critical role in assessing the effectiveness and efficiency of
medical AI. These measures provide quantitative evaluations of how well an AI algorithm
performs its intended task, enabling comparisons between different algorithms or variations
of the same algorithm [46,47]. The following list introduces commonly used AI performance
measures for medical applications:

1. Accuracy is a widely employed performance measure, particularly in classification
tasks. It calculates the percentage of correctly classified instances out of the total num-
ber of instances. While accuracy is essential, it may not offer a comprehensive view of
the algorithm’s performance, especially when dealing with imbalanced datasets.

2. Precision and recall are often utilized in binary classification problems. Precision
measures the proportion of correctly predicted positive instances out of all instances
predicted as positive, while recall measures the proportion of correctly predicted
positive instances out of all actual positive instances [48]. Precision and recall are
commonly combined into a single measure called the F1 score, which provides a
balanced evaluation of both precision and recall.

3. Area under the curve (AUC) is commonly employed in binary classification problems
to assess the performance of a classifier’s receiver operating characteristic (ROC) curve.
It quantifies the classifier’s ability to rank positive instances higher than negative
instances across different classification thresholds [49]. AUC values range from 0.5
(random guessing) to 1.0 (perfect classification).

4. Mean absolute error (MAE) and root mean squared error (RMSE): These measures
are frequently used in regression tasks to evaluate the prediction accuracy of contin-
uous variables. MAE calculates the average absolute difference between predicted
and actual values, while RMSE calculates the square root of the average squared
difference [50]. Lower values indicate better performance.

5. Computational efficiency: In addition to accuracy measures, assessing computational
efficiency is crucial. It evaluates the algorithm’s speed and usage of resources, such
as memory and processing power [51]. Performance measures like training time,
prediction time, and memory consumption can be employed to evaluate the efficiency
of AI algorithms.

These standard performance measures require careful interpretation based on domain-
specific factors. For instance, in many medical applications, false negatives (missed diag-
noses) may have more severe consequences than false positives, making recall potentially
more critical than precision in certain contexts. The choice of performance measures de-
pends on the specific medical problem, characteristics of the dataset, and desired outcomes.
We recommend using a combination of performance measures to establish a comprehensive
evaluation of an AI algorithm’s performance, particularly in medical applications where
multiple aspects of performance may be crucial [52].
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In the context of inclusive medical AI, it is necessary to extend performance measures
to account for fairness and bias. Metrics such as equalized opportunity and disparity impact
can measure model performance across different demographic groups, ensuring that the
decision support model does not disproportionately benefit or harm any group. Shapley
values and counterfactual fairness tests are useful in assessing whether certain input factors
(e.g., race or gender) unduly influence model predictions, providing a mechanism for bias
detection and mitigation.

When evaluating the model performance based on noisy data, traditional error met-
rics such as mean absolute error (MAE) or root mean squared error (RMSE) should be
complemented with uncertainty quantification and noise-tolerant measures. Continuous
evaluation and refinement of these performance measures is necessary to ensure accu-
rate and meaningful assessments of AI algorithms, considering both potential biases and
real-world impact on patient outcomes.

2.4. Deployment

Medical decision support systems are created by deploying a trained AI model into a
production environment within a healthcare system. This process involves making the AI
model operational and accessible to healthcare professionals for use in diagnosing diseases,
predicting outcomes, assisting in treatment decisions, or other relevant applications. By
providing a second diagnostic opinion or automating screening processes, these systems
have the potential to free up resources and make decision processes more coherent. The
deployment of an AI model in the medical domain typically follows these steps:

1. Model selection: The performance measures, discussed in Section 2.3.3, provide an
objective basis for selecting a model for deployment.

2. Infrastructure setup: The necessary infrastructure is established to support the de-
ployment of the AI model in the medical setting. This includes ensuring compliance
with privacy regulations [53], implementing data security measures, and addressing
any specific requirements for handling sensitive patient information [54].

3. Integration with healthcare systems: The AI model is integrated into existing health-
care systems, such as electronic health record (EHR) systems, medical imaging plat-
forms, or clinical decision support tools. This integration enables seamless data
exchange and interaction between the AI model and healthcare professionals [55].

4. Data access and pre-processing: The AI model is connected to relevant data sources,
such as patient records, medical imaging archives, or real-time monitoring devices.
Data preprocessing steps may be implemented to standardize, clean, and anonymize
the data while preserving their integrity and privacy [56–58].

5. Testing and validation in the real-world setting: The deployed AI model undergoes
extensive testing and validation in real-world medical scenarios. Its performance,
accuracy, and safety are evaluated, and necessary adjustments are made to ensure
optimal performance and patient safety.

6. Regulatory compliance and ethical considerations: Compliance with regulatory re-
quirements, such as those set by medical authorities or data protection regulations, is
addressed to ensure the responsible and ethical deployment of the AI model. Patient
consent, privacy, and ethical considerations are given utmost importance [59].

7. Monitoring and maintenance: Deployed AI models are continuously monitored
to assess their performance, detect any anomalies, and identify opportunities for
improvement [60,61]. Regular maintenance activities, including updating the model
with new data, retraining, or refining its algorithms, are carried out to keep the model
up-to-date and effective.
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8. Collaboration and feedback: Collaboration between AI experts, healthcare profes-
sionals, and stakeholders is encouraged to gather feedback, address concerns, and
optimize the AI model’s performance for better patient outcomes and clinical decision-
making [62].

The deployment strategy must ensure the transparency, interpretability, and safety of
AI systems in healthcare while also maintaining the expertise and judgment of healthcare
professionals in the decision-making process. Continuous bias monitoring is essential
as deployment conditions differ from training environments, where demographic and
socioeconomic factors can reintroduce biases. We propose post-deployment fairness audits
and feedback loops incorporating healthcare professionals and patients to identify and
correct discrepancies between model predictions and real-world outcomes, particularly for
underrepresented populations.

3. Discussion
AI solutions for biomedical problems are developed within scientific, commercial,

and ethical frameworks, which influence their design, deployment, and outcomes [63].
These systems are shaped not only by scientific interest, but also by practical constraints,
including data availability and ethical considerations such as fairness and privacy. For
example, models that perpetuate biases risk harming marginalized populations and under-
mining trust in AI-driven healthcare. Ethical AI design mandates participatory approaches,
involving diverse stakeholders—patients, clinicians, and policymakers—in every stage of
development. Transparency is equally crucial, with open reporting on model limitations
and potential biases.

Simply stating that biased data affect model outcomes is insufficient for understanding
the full impact on medical decision support. Biases in data often mirror societal inequities,
such as underrepresentation of minority groups in clinical trials, geographic disparities
between urban and rural healthcare facilities, and socioeconomic barriers to accessing
medical care. These variations in data collection methodologies and healthcare access create
systemic biases that affect different regions and socioeconomic groups disproportionately.
These biases can lead to algorithmic discrimination, where AI models perpetuate existing
inequities by providing inaccurate or less effective recommendations for marginalized
populations. Therefore, addressing bias requires a more holistic approach that goes beyond
technical fixes in data preprocessing or performance metrics. It involves rethinking how
data is collected, curated, and applied to ensure more equitable AI outcomes.

3.1. Intelligent Decision Support Systems: Beyond Model Deployment

While our initial recommendations focused on trustworthy AI model evaluation and
deployment, we acknowledge that this approach does not fully encompass the complexity
of intelligent decision support systems (IDSSs) in healthcare. An IDSS integrates multiple
components beyond a deployed model, including data preprocessing pipelines, human–
computer interfaces, knowledge bases, and reasoning engines, creating an adaptive, context-
aware system for complex decision-making environments. A well-designed IDSS must
incorporate mechanisms for integrating clinical expertise, patient data, and real-time
feedback from healthcare professionals. It should facilitate collaborative decision-making by
providing interpretable results, confidence scores, and clear reasoning pathways. Moreover,
an IDSS should account for the dynamic nature of medical practice, where new data,
evolving guidelines, and individual patient preferences.

To address these requirements, we propose expanding our design methodology to
include the following components:
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• Knowledge management systems: To store and update clinical guidelines, medical
literature, and historical patient outcomes.

• Clinical workflow integration: To ensure that the AI’s outputs are seamlessly inte-
grated into the medical professionals’ workflow, providing recommendations at the
point of care.

• Interactive user interfaces: Allow clinicians to understand the model’s reasoning and
adjust parameters or provide feedback, enhancing trust and interpretability.

• Patient-centric components: Such as decision aids that provide patients with under-
standable explanations of their options, fostering shared decision-making between
patients and healthcare providers.

While the traditional steps for deploying an AI model are necessary, they are just one
part of the broader ecosystem required for a truly intelligent medical decision support
system. By refining our design methodology to include these additional elements, we can
create systems that not only improve decision accuracy, but also ensure that medical AI is
both transparent and adaptable to the complex realities of healthcare.

3.2. Expanding Bias Mitigation Beyond Model Performance

Addressing structural biases inherent in the healthcare system is essential when
deploying AI systems. These systems interact with biased policies, organizational practices,
and resource disparities, necessitating a multi-dimensional approach to bias mitigation:

• Auditing data sources for systemic biases (e.g., underrepresentation of certain popula-
tions).

• Tracking performance across subgroups to ensure that models perform equitably for
all patients.

• Contextualizing AI outputs within the broader healthcare environment to ensure that
recommendations align with ethical and clinical best practices.

• Engaging diverse stakeholders, including patients and healthcare providers from
underrepresented groups, in the development and evaluation of AI systems.

• Implementing ongoing monitoring and feedback mechanisms to identify and address
emergent biases in real-world settings.

Furthermore, we propose that bias mitigation should be integrated into every stage of
the AI lifecycle, from problem formulation and data collection to model deployment and
ongoing evaluation. This holistic approach requires collaboration between AI developers,
healthcare professionals, policymakers, and patient advocates to ensure that AI systems
contribute to fairer and more inclusive medical decision support.

3.3. Algorithm Sharing and Technology Reuse

The sharing of algorithms and trained models has gained significant traction in ma-
chine learning and deep learning, offering potential for accelerated progress and efficient
resource utilization [64]. However, this practice presents ethical and intellectual property
(IP) concerns that require careful consideration, particularly in the context of medical
decision support systems [65].

Sharing algorithms can have profound consequences for privacy, bias, and discrim-
ination [66]. In medical contexts, where decisions can directly impact patient outcomes,
these concerns are particularly acute. An algorithm trained on biased medical data could
perpetuate health disparities if shared and implemented widely [67]. Moreover, the use of
shared algorithms in sensitive medical decision-making raises issues of transparency and
accountability.

Algorithms, like any other software, can be protected by copyright, patents, and trade
secrets, potentially leading to conflicts regarding ownership and licensing. Open-source
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licenses offer one effective approach, enabling algorithm sharing while protecting creators’
rights [68]. For example, the GPL license requires that any derivative works of the original
code must be licensed under the same terms, ensuring that the code remains free and open.
Several organizations, such as the IEEE, ACM, and Partnership on AI, have formulated
guidelines for ethical AI development and deployment [69]. These guidelines cover aspects
such as transparency, accountability, fairness, and privacy, providing a framework for the
responsible sharing of algorithms.

In healthcare, these approaches must be tailored to address the unique challenges of
medical data, including patient privacy, regulatory compliance, and the potential impact
on human life. Striking the right balance between openness and protection in medical
algorithm sharing is crucial for advancing healthcare innovation while safeguarding patient
interests [70].

3.4. Recommendations

Our discussion on the model creation process has highlighted that traditional methods
alone are inadequate in addressing challenges stemming from bias and noise in medical
AI. Model creation, performance measurements, and benchmarking heavily rely on data
availability, which can perpetuate existing biases. We propose moving beyond purely data-
driven approaches to incorporate a problem-solution design methodology for fairer and
more inclusive AI solutions. We formulate this as a design problem, aiming to reduce biases
arising from data, algorithms, and user interaction. The innovation is that data-driven AI
model creation is just the first of three steps in a more comprehensive process, requiring
continuous refinement toward a practical, trustworthy, and clinically validated solution.

Figure 2 depicts our proposed design methodology. The “Model design and testing”
block represents the data-driven approach outlined in the previous section. Empirical
performance evaluation and benchmarking will help us to determine if the model is
promising and if we can progress in the design methodology. If this is not the case, it
is necessary to go back and refine the data-driven AI model. The “Trust building” step
transitions into social and clinical science through explainability analysis, testing if the AI
model aligns with human mental models. Only trustworthy models progress to clinical
validation, where we establish if the model provides efficient medical decision support.
Passing these tests indicates sufficient uncertainty reduction for practical deployment.

After outlining the general steps to design fairer and more inclusive medical decision
support systems, we now focus on specific design patterns and best practices that should be
followed during the design process. Good documentation is essential for successful system
design because it enables reproducibility and helps to assess noise and biases, which builds
trust in the system. The creation of the AI model should be described in detail, including
the technical implementation and performance testing. During the deployment phase, it
is crucial to validate the performance of the model in a practical setting. The processes
underlying the block descriptions should be clearly explained, specifying the methods
employed. Failure to provide detailed descriptions of the methods utilized constitutes a
distinct limitation of any study on medical decision support, and it should be explicitly
acknowledged.
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Figure 2. Flow diagram of the proposed AI model design methodology for medical decision support
systems. The process consists of three major stages: (1) Model Design and Testing, which involves
iterative data-driven development and empirical performance evaluation; (2) Trust Building, where
explainability analysis is used to verify alignment between AI decisions and human mental models;
and (3) Clinical Validation, which assesses the model’s effectiveness in providing medical decision
support. The feedback loops indicate that failing to meet criteria at any stage requires returning to
previous stages for refinement.

We recommend incorporating the following features into the training and testing processes:

• Multicenter data: Utilizing data from multiple centers can enhance the model’s gen-
eralization and make it more robust to variations in data collection protocols and
equipment. Applying this technique can reduce measurement bias [71].

• Standardization of preprocessing reporting: Documenting the preprocessing steps
employed in preparing the data for model training is important. Standardization of
preprocessing reporting ensures the reproducibility of experiments. This can help to
explain and subsequently address data-related bias.

• Annotated data from multiple operators: Multiple experts or operators in the process
of annotating or labeling medical data for training machine learning models or decision
support systems. This approach is utilized to mitigate bias, increase accuracy, and
ensure diverse perspectives in the annotation process [72].

• Performance reporting standards: Using standard performance metrics relevant to the
specific task is crucial for assessing the level of noise in a given dataset and reporting
the performance accurately [73].



Sensors 2025, 25, 205 12 of 17

• Reproducibility: Sharing the source code alongside the dataset, if feasible, can enhance
AI methods [74]. By openly providing the source code, researchers and practitioners
can replicate and validate the results, ensuring transparency and promoting scien-
tific rigor. Furthermore, sharing the dataset enables other researchers to evaluate
and compare different algorithms on the same data, facilitating a comprehensive
understanding of the methods’ performance and potential biases.

• Explainability: To foster trust and confidence in the model, it is essential to provide
explanations for its predictions. Methods such as LIME, SHAP, and Grad-CAM [75]
can be employed for explainability [76]. Explainable AI models aid in identifying
biases and understanding the decision-making process, enabling stakeholders to
effectively address potential biases.

• Uncertainty quantification: Estimating uncertainty in the model’s predictions is crucial,
especially in medical applications where incorrect predictions can have serious conse-
quences. Recent papers addressing uncertainty quantification [77,78] offer valuable
insights into this domain.

• Continuous monitoring and evaluation: Regular monitoring of the system’s perfor-
mance and evaluation for potential biases is crucial [79]. Ongoing assessment can help
identify and rectify any bias that emerges over time, enabling the system to adapt and
improve its fairness and accuracy.

By incorporating these features, the model development process can be enhanced,
resulting in more reliable and accountable AI systems in the medical domain. Figure 2
displays the development diagram of an AI model incorporating all the mitigation measures
proposed in this work.

3.5. Limitations and Future Work

Some paragraphs in our position paper may appear vague due to the necessary
abstraction required to address broad, systemic issues. Introducing specific technical or
methodological details would lead to incompleteness and inconsistency. For instance,
discussing CT-based lesion detection would necessitate focusing on a particular medical
field—such as oncology, neurology, or pulmonology—each requiring detailed exploration
which exceeds the scope of this manuscript. The abstraction enables us to highlight
important challenges of bias and noise in biomedical AI. Historically, progress in medicine
relied on standardization and education, both subject to systemic noise and bias. AI models,
however, allow us to simulate “what-if” scenarios, providing some insights that might
help to quantify and mitigate these challenges in contexts like medical decision support.
By maintaining this level of abstraction, we aim to provide a clearer reflection on the
limitations and opportunities of AI in fostering fair and inclusive biomedical solutions.

In future we anticipate that understanding data sources in terms of noise and bias will
become increasingly crucial. Different measurement environments introduce varying levels
of noise and bias. For example, clinical measurements of the electrical activity of the human
heart using a 12-lead ECG exhibit less noise compared to a 1-lead pickup system commonly
utilized for ECG measurements in home environments. However, clinical measurements
are often shorter, leading to the introduction of selection bias. Therefore, future studies
should prioritize quantifying the disparities between measurement environments with
standardized measures for bias and noise.

The development of new AI algorithms is an ongoing process, encompassing both
domain-specific and general-purpose approaches. Moving forward, it is crucial to continue
exploring a wide range of AI algorithms rather than confining ourselves to dedicated
solutions solely for medical decision support. For instance, it may be feasible in the future
to provide medical decision support in home environments by executing lightweight AI
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models on edge devices. This approach offers potential benefits, such as reducing selection
bias through prolonged observation durations. However, if the edge device operates on
battery power, the runtime will be influenced by the computational complexity of the
AI model. Opting for a lightweight model would result in a longer runtime, thereby
enhancing the usability of such solutions. An illustrative example is the development
of an AI model for predicting cardiovascular risk. Incorporating federated learning en-
abled the use of data from multiple regions while preserving privacy. Stratified sampling
helped address geographic disparities, ensuring that the model performed equitably across
diverse populations.

From a medical perspective, disease-specific decision support systems within diag-
nostic pathways require tailored solutions with significant implications for noise and bias.
Unfortunately, research exploring disease-specific bias and noise remains limited. Different
performance measures can impact the trustworthiness and deployability of AI models in
diverse ways, necessitating detailed examination of these aspects.

Considering individual diseases as isolated occurrences is a simplistic approximation
of medical scenarios. Many clinical scenarios involve co-morbidities, which makes disease
diagnosis more complex. Therefore, future studies should incorporate co-morbid data
in the testing and evaluation of AI models, such that the training and testing regime
reflects complex clinical scenarios. This enables more comprehensive evaluation of model
capabilities and potential biases while acknowledging that multiple diseases often coexist.
This framework leads to a crucial extension for medical decision support systems: the
ability to identify multiple conditions simultaneously. For example, it might be feasible
to identify cardiovascular diseases and sleep disorders by observing the electrical activity
of the human heart. The task of multi-disease classification could be facilitated by using
multi-modal data [80]. Such data can be captured with a wireless body area network that
integrates a wide range of physiological sensors.

4. Conclusions
The development of fair and inclusive AI for medical decision support systems is

a complex challenge that requires a multifaceted approach. Throughout this paper, we
have explored the various sources of noise and bias in medical data and AI models, and
proposed strategies to mitigate these issues.

We conclude that the validity and usefulness of medical data can be significantly
enhanced by implementing a comprehensive set of measures such as study design, appro-
priate statistical analysis, transparent reporting, and promoting diverse representation in
research. Moreover, our proposed design methodology, which extends beyond traditional
data-driven approaches, offers a framework for creating more robust and reliable AI models
for medical decision support.
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