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Abstract

At the extreme densities reached in the core of neutron stars, it is possible that deconfined quark matter is produced.
The formation of this new phase of strongly interacting matter is likely to occur via a first-order phase transition for
the typical temperatures reached in astrophysical processes. The first seeds of quark matter would then form
through a process of nucleation within the metastable hadronic phase. Here, we address the role of the thermal
fluctuations in the hadronic composition on the nucleation of two-flavor quark matter. At finite temperature, the
thermodynamic quantities in a system fluctuate around average values. Nucleation being a local process, it is
possible that it occurs in a subsystem whose composition makes the nucleation easier. We will consider the total
probability of the nucleation as the product between the probability that a subsystem has a certain hadronic
composition different from the average in the bulk, and the nucleation probability in that subsystem. We will show
how those fluctuations of the hadronic composition can increase the efficiency of nucleation already for tem-
peratures ∼(0.1−1) keV. However, for temperatures (1−10)MeV, the needed overpressure exceeds the max-
imum pressure reached in compact stars. Finally, for even larger temperatures the process of nucleation can take
place, even taking into account finite-size effects.

Unified Astronomy Thesaurus concepts: Neutron star cores (1107); Neutron stars (1108); Compact objects (288);
Nuclear physics (2077); Nuclear astrophysics (1129)

1. Introduction

Quantum chromodynamics (QCD), namely the theory that
describes strongly interacting matter, predicts that at suffi-
ciently high baryonic densities, hadronic matter undergoes a
phase transition to deconfined quark matter. The order of this
phase transition and its critical density are, however, totally
unknown. Neutron stars (NSs), being the densest stellar objects
in the Universe, are the most promising sites for this transition
to occur, and in recent years several studies have shown that by
using the presently available observational data, the core of
NSs is very likely to be formed by deconfined quark matter
(see, e.g., Annala et al. 2020). The more extreme scenario in
which stars entirely formed by quark matter exist, namely
quark stars, is also viable and actually favored by recent data
indicating that the maximum mass of compact stars could be
larger than ∼2.6 Me (Bombaci et al. 2021).

A crucial question concerns the astrophysical evolutionary
paths that lead to the formation of deconfined quark matter. A
possible scenario has been proposed in Fischer et al. (2018):
Deconfinement already occurs during the initial stages of the
core-collapse supernovae (CCSNe) associated with blue
supergiant stars. Actually, it is the formation of quark matter
itself that provides the necessary energy output that leads to the
explosion; see Sagert et al. (2009). Another possibility is that
deconfinement occurs after a proto-neutron star (PNS) has been
formed, and specifically only when neutrino untrapping sets in
(Pons et al. 2001). Finally, binary neutron star mergers
(BNSMs) could also possibly produce quark matter inside the

hot and fast-rotating post-merger remnant (Bauswein et al.
2019; Prakash et al. 2021). In all these studies, quark matter is
assumed to be produced in thermodynamic equilibrium with
the hadronic phase, and the microphysics of the production of
finite-size quark matter structures is neglected.
However, if deconfinement is a first-order phase transition,

the process of nucleation of quark matter droplets within the
metastable hadronic phase must be taken into account in order
to provide a complete description of the system. By considering
that in CCSNe, PNSs, and BNMs temperatures up to a few tens
of MeV can be reached, thermal nucleation is most likely the
more efficient mechanism at work for the formation of quark
matter droplets. Nucleation of quark matter in NSs has been
studied in a number of papers and within two approaches: (i)
nucleation of β-stable quark matter within β-stable hadronic
matter (see, e.g., Berezhiani et al. 2003; Drago et al. 2004;
Mintz et al. 2010a, 2010b), and (ii) nucleation of the quark
phase out of chemical equilibrium within β-stable hadronic
matter (see, e.g., Iida & Sato 1997; Olesen & Madsen 1994;
Iida & Sato 1998; Bombaci et al. 2004, 2009, 2016). The
second approach, in particular, is based on the following
argument: The nucleation of quark matter is a process mediated
by the strong interaction, whose typical timescale (∼10−23 s) is
much smaller than that of the weak interaction. Thus, during
the formation of the first seeds of quark matter, weak interac-
tions do not have sufficient time to change the flavor compo-
sition of matter. The nucleation process, therefore, is calculated
by using an out-of-equilibrium quark phase whose flavor
composition is identical to that of the β-stable hadronic phase
and not by taking into account the quark phase already in β-
equilibrium. Only after the creation of the first seed of quark
matter do weak interactions have time to change the compo-
sition of quark matter and bring it to β-equilibrium.
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NS matter is a multicomponent system in which thermal
fluctuations in the number densities of the different particles
could be significant, at least at high temperatures. In the first of
the two approaches outlined above, it is assumed that those
fluctuations are so efficient that quark matter is produced
already at chemical equilibrium, while in the second approach
the role of those fluctuations is completely disregarded. The
aim of this work is to address quantitatively the role of the
thermal fluctuations of number densities on the nucleation of
quark matter. To this purpose, we will develop a general fra-
mework for dealing with the nucleation associated with first-
order phase transitions in multicomponent systems. In this
paper, we will limit the discussion to the case of two-flavor
quark and hadronic matter (i.e., nucleonic matter), thus to a
two-component system, and we leave the study of the three-
flavor case for a forthcoming paper.5

The paper is organized as follows. In Section 2, a brief
theoretical background for calculating fluctuations and
nucleation is presented. The description of the nucleation
process in the presence of thermal fluctuations is detailed in
Section 3. The equations of state (EOSs) for nucleons, quarks
and electrons are given in Section 4. Results of our calculations
are presented in Section 5. A summary and the conclusions are
presented in Section 6.

2. Background

In this section, we present a brief theoretical background on
thermal fluctuations in the hadronic phase and on nucleation.

2.1. Thermal Fluctuations

Let us consider a closed macroscopic system. Let us focus on
a certain subsystem, small compared to the whole system, in
which the thermodynamic quantities fluctuate. According to
Boltzmann’s principle, the probability of a fluctuation of one or
more thermodynamical quantities is

[ ] ( )K W Texp , 1min 0 = -

where Wmin is the minimum work needed to produce a certain
variation of the thermodynamic quantities in the considered
subsystem (namely the work needed if the transformation is
reversible) and K the normalization factor (Landau & Lifshitz
1969). The work done is equal to the variation of the total
internal energy of the whole system:

( )W E E , 2min 0= D + D

where E is the internal energy of the small subsystem and E0 is
the internal energy of the surrounding part, which plays the role
of a reservoir (of energy and/or particles). Since the reservoir is
much larger than the subsystem, we can assume that the
intensive thermodynamic quantities such as the pressure P0, the
temperature T0, and the chemical potentials {μi,0} of all the
particle species i remain constants. Note that no assumptions at
this stage are made on the thermodynamic quantities in the
subsystem. These considerations allow us to substitute the

following relation:

( )E T S P V N . 3
i

i i0 0 0 0 0 ,0 ,0å mD = D - D + D

in the minimum work formula, leading to

( )W E T S P V N . 4
i

i imin 0 0 0 0 ,0 ,0å m= D + D - D + D

Using the reversibility of the process ΔS=−ΔS0, the con-
servation of the total volume ΔV=−ΔV0, and the conserva-
tion of the number of particles for each species ΔNi=−ΔNi,0,
we obtain (Landau & Lifshitz 1969)

( )W E T S P V N . 5
i

i imin 0 0 ,0å m= D - D + D - D

Note that the conservation of the number of particles for each
species used in the previous step is not necessarily true. For
example, in the case in which weak interactions play a role, the
number of particles in the system is not conserved for all the
species i independently. However, we can in principle rephrase
the above discussion by considering Ni as being the (net)
numbers of the globally conserved charges (e.g., if weak
interactions occur the baryon number B and the electric charge
C are conserved while the strangeness S and the isospin I
are not).

2.2. Nucleation

Nucleation can be considered as a particular case of fluc-
tuation, and thus it can be studied within the same formalism
introduced before. In a homogeneous phase, small localized
fluctuations in the thermodynamical variables can give rise to
the appearance of virtual drops of a new phase (e.g., a liquid
droplet in a vapor phase or a quark droplet in a hadronic phase).
If the homogeneous phase is stable, these droplets are unstable
and disappear. However, if the homogeneous phase is meta-
stable (i.e., if it is not the most energetically convenient bulk
phase) when the fluctuation generates a droplet large enough to
be stable, this first seed could trigger the transformation of all
or part of the homogeneous system into the new phase (Landau
& Lifshitz 1969). In order to trigger the phase transition, a
droplet of the new phase in the metastable homogeneous phase
has to be “large enough,” since the gain in terms of volume
energy (i.e., in terms of bulk energy) has to be able to over-
come the energy needed to create the interface between the two
phases. Assuming that the seed is spherical, the critical radius
Rc is the minimal radius for a droplet of the new phase to be in
unstable equilibrium with the homogeneous phase, leading then
to the phase transition. The conditions for the existence of a
seed of the new phase “II” in (unstable) equilibrium with the
old homogeneous phase “I” are the following (Landau & Lif-
shitz 1969):

( )P P
R

2
, 6

c
I II

s
= -

( ) ( ) ( )P T P T, , , 7k kI, I I II, II IIm m=

( )T T , 8I II=

namely the mechanical, chemical, and thermal equilibrium
conditions, where σ is the surface tension and μk the conserved
chemical potentials, one for every globally conserved charge.

5 The two conserved charges in the system are the baryonic and the electric
charges, which can be mapped into the conservation of up and down quark
flavors. Electrons are also included in the calculations but their density is fixed
by the requirement of charge neutrality.

2

The Astrophysical Journal, 974:45 (16pp), 2024 October 10 Guerrini et al.



The presence of a finite-size term in the mechanical equili-
brium condition implies that PII> PI. This also implies that
the transition will start at a pressure PI> Px, where Px is the
equilibrium pressure when σ→ 0. We will call overpressure
the difference PI− Px.

3. Framework

At finite temperature, the thermodynamic quantities in a
system fluctuate around average values. In particular, let us
consider a hadronic system at fixed temperature and pressure. It
is possible to compute the average values of the particle frac-
tions in β-equilibrium { }yi

Hb .6 The values obtained, however,
are just average values. We will call Hβ a hadronic system in β-
equilibrium. If we divide the system into several small sub-
systems, we cannot assume that the actual composition { }yi

H* in
each of these subsystems is identical to the average one. We
will call H* an out-of-equilibrium hadronic subsystem having
the composition { }yi

H* .
We expect that the higher the temperature, the more likely it

is to find subsystems with compositions that significantly
deviate from the averages. Since nucleation is a local process, it
is possible that it occurs in a subsystem whose composition
makes the formation of a seed of the new phase more con-
venient than if average values are taken into account.

In this scheme, the probability of generating a seed of the
new phase is the product of two probabilities, 1 2 , where 1
is the probability that a certain subsystem of the hadronic phase
is in the H* state, whose particle fractions { }yi

H* are different

from the average fractions { }yi
Hb by {Δyi}:

( )y y y , 9i
H

i
H

i
* = + Db

and 2 is the probability that a critical droplet of Q* quark
matter is nucleated from a subsystem in which the hadronic
phase is in a H* state. The flavor composition { }yi

Q* of Q* is

“frozen,” namely it corresponds to { }yi
H* for the same argument

as to the strong and weak interaction timescales reported in
Section 1:

( )y y . 10i
Q

i
H* *=

Thus, we define Q* as an out-of-equilibrium quark phase
having the same flavor composition of H*.

3.1. Nucleation (H*→Q*)

Let us start by computing the probability 2 . The first key
element is the work W2, namely the minimum work needed to
generate a seed of quark matter Q* from a subsystem H* of the
hadronic system. As discussed above, and following Bombaci
et al. (2016), the flavors are conserved during nucleation. For

example, in the two-flavor case,

( )N N N N2 , 11u
Q

u
H

p
H

n
H* * * *= = +

( )N N N N2 , 12d
Q

d
H

p
H

n
H* * * *= = +

( )N N . 13e
Q

e
H* *=

This implies also that the total baryonic number is conserved
( )N N N N N N N3p

H
n
H

B
H

B
Q

u
Q

d
Q

B
* * * * * *+ = = = + = , thus

( )y y y y2 , 14u
Q

u
H

p
H

n
H* * * *= = +

( )y y y y2 , 15d
Q

d
H

p
H

n
H* * * *= = +

( )y y , 16e
Q

e
H* *=

where yi= Ni/NB are the particle fractions that we will use in
the following calculations. Note that H* is in principle an out-
of-equilibrium phase, thus μe≠−μC. By using Equation (5)
and by introducing the free energy F= E− ST and the Gibbs
free energy Φ= F+ PV, we obtain

( )
( )

( )
( ) ( )

W F F P V V

V P P

V P P

V P P , 17

Q H H Q H Q

Q H Q Q H

H H H Q

Q H Q Q H Q

2 




* * * * *

* * * *

* * *

* * * * * *

s

s
s

= - + - +
= F - F - -

+ - +
= F - F - - +

b

b

b

where σ is the surface tension and Q * the surface area of the
quark matter droplet (see Landau & Lifshitz 1969). We have
assumed the temperature to be constant in the whole system
during the process T T TH H Q* *= =b and that the surrounding
part “0” is in the hadronic phase. Moreover, P P PH H H* = =b

since we are assuming that the hadronic matter fluctuation
occurs at constant pressure (see Section 3.2). The surface ten-
sion between the hadronic and quark phases σ plays a key role
in the phase transition by increasing/decreasing the work
required to form a quark matter droplet. If too large, it can even
prevent quark nucleation (see, e.g., Mintz et al. 2010a, 2010b).
However, its value is poorly known at present and estimates for
its value are strongly model dependent. In Heiselberg et al.
(1993), it was found that σ∼ (10−100)MeV fm−2. In Iida &
Sato (1997, 1998), a value of σ∼ 10 MeV fm−2 was estimated
by using a Fermi-gas model for a quark matter droplet in
vacuum. In Fraga et al. (2019), lower values were obtained,
σ∼ (2−10) MeV fm−2, by using a chiral nucleon-meson
model (without quark degrees of freedom) in which the chirally
restored phase is identified with quark matter. Moreover, σ
could also depend on the temperature. For instance, in Bessa
et al. (2009), the temperature dependence of σ is consistently
computed within a general framework in which a potential for
the order parameter is introduced to describe first-order phase
transitions. In the present work, we will assume σ to be a
density- and temperature-independent input parameter. Its
impact will be investigated by using two different values
σ= 10, 30 MeV fm−2.
The “local” compositions { }yi

H* and { }yi
Q* are related to the

average compositions by Equations (9)–(10) and, under the
assumption that the temperature T is the same in all the phases,
we are left with the following independent variables: the
composition fluctuations {Δyi}, the temperature T, the quark

6 Here, i labels all the particle species in the hadronic phase (i.e., i = p, n, e in
the two-flavor case) or, equally, a set of a linear combination of them. For
example, in the two-flavor case, one can use yp, yn as independent variables or
yu = 2yp + yn, yd = yp + 2yn, namely the quark flavor composition. The frac-
tion of a particle species i is yi = Ni/NB where Ni and NB are the numbers of
particles i and the baryon number. If not otherwise specified, Ni and yi will stay,
respectively, for the net number and fraction of i (e.g., y y ye e e= -- +) while
the other thermodynamic quantities for the sum of the two contributions
(e.g., P P Pe e e= +- +).
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seed volume and surface VQ* and Q *, and two more intensive
variables, one for each phase (e.g., PQ* and PH* or nB Q, * and
nB H, *, K). However, we want to rewrite the system only in
terms of hadronic quantities as independent variables. The idea
is then to use the equilibrium conditions to connect the inten-
sive independent quark variable with the hadronic one. We will
follow the approach of Bombaci et al. (2016; see also Landau
& Lifshitz 1969), where a low degree of metastability
P PH Q* *» is assumed. We will say that the system has a “low
degree of metastability” if

∣ ∣ ( )P P P P , 18H H x x** d = -

∣ ∣ ( )P P P P , 19Q Q x x* * d = -

where Px is, again, the pressure at the equilibrium when
Rc→+∞ (plane surface) or σ→ 0, so that

( ) ( ) ( )P T P T, , , 20H k x Q k x, ,* *m m=

where k labels every globally conserved charge. That is, Px is
the common pressure of the two phases in an ordinary first-
order phase transition at temperature T. In other words, a sys-
tem has a low degree of metastability if the overpressure nee-
ded in the metastable phase to balance the finite-size effects due
to the surface tension is relatively small.

Under the condition of low metastability, the quark Gibbs
energy ( )P T,Q Q* *F can be expanded around P :H*

( ) ( ) ( )

( ) ( ) ( )

P T P T
P

P P

P T V P P

, ,

, . 21

Q Q Q H
Q

Q T

Q H

Q H Q Q H

* * * *
*

*
* *

* * * * *





F F +
¶F

¶
-

F + -

By substituting Equation (21) in Equation (17), we obtain

( ) ( ) ( ) ( )W P T P T P T, , , . 22H Q H H H Q2 * * * * * *s= F - F +

Note that Q*F is computed at the hadronic pressure PH*. Using
Φ=∑iμiNi, we have

⎡
⎣⎢

⎤
⎦⎥

( ) ( )

W N N

N y y

n V , 23

i
i
Q

i
Q

i
i
H

i
H

Q

B
i

i
Q

i
Q

i
i
H

i
H

Q

B Q Q Q H Q

2

,







* * * *
*

* * * *
*

* * * * *

å å

å å

m m s

m m s

m m s

= - +

= - +

= - +

where

( )
N

P s T

n
y 24H

H

B

H H H

B H i
i
H

i
H

,
*

* * * *

*

* *åm
e

m=
F

=
+ -

=

is the average chemical potential (or Gibbs energy per baryon) of
the hadronic phase, and a similar expression holds for the Q*

phase. It is important to note that in Equation (23) the thermo-
dynamic quantities are computed at the same (external) pressure.
Another possible approach is presented in Mintz et al. (2010a,
2010b), where the low degree of metastability is not assumed,
but the hadron and quark phases are computed at the same
Gibbs energy per baryon. In that case, we would obtain W2 =

( )V P PQ Q H Q* * * *s- - + . Finally, note that Equation (23) can
also be obtained starting from a free energy functional of the
order parameter with an effective potential having a global
minimum and a local minimum (metastable phase; Langer 1969;
Scavenius et al. 2001; Bessa et al. 2009; Mintz et al. 2010b). For

example, in Bessa et al. (2009), in the spirit of the Landau–
Ginzburg theory, an effective potential is introduced for the
order parameter (modeled as a scalar field). By solving the
corresponding Euler–Lagrange equation, under the assumption
of a rapid variation of the field within the region separating the
metastable phase from the stable phase, Equation (23) is
obtained. That corresponds to the so-called thin-wall approx-
imation, which we also assume here, that allows one to neglect
the width of the surface separating the two phases with respect to
the radius of the quark matter droplet. Moreover, in Bessa et al.
(2009), the thin-wall approximation is applied using both a
constant and a temperature-dependent surface tension, σ(T). In
particular, it has been shown that if the temperature dependence
of σ is neglected, the nucleation rates are overestimated. This
could indeed affect our results, which are instead obtained with
constant σ. This issue needs to be investigated in future works.
Assuming that the quark seed is a sphere of radius R, we

obtain

( ) ( )W R n R
4

3
4 . 25B Q Q H2

3
,

2
* * *p m m ps= - +

The free variables are then PH, {Δyi}, T, and R. As reported in
Section 4, the used EOSs are in the form

( { } ) ( )X X n y T, , , 26B i=

where X= ε, P, μ,K is a generic thermodynamic quantity. The
Gibbs energies per baryon of Q* and H* are then computed as

( { } ) [ ( { } ) { } ]
( )

P y T n P y T y T, , , , , , ,

27
Q H i Q B Q H i

Q
i
Q

,*
* *m mD =

( { } ) [ ( { } ) { } ]
( )

P y T n P y T y T, , , , , , ,

28
H H i H B H H i

H
i
H

,*
* *m mD =

where ( { } )n n P y T, ,B Q B Q H i
Q

, ,*
*= and ( { } )n n P y T, ,B H B H H i

H
, ,*

*=
are the baryon densities in the quark and hadron phases at
which the pressure is PH. The free variables {Δyi} are impli-
citly contained in { }yi

Q* and { }yi
H* . The particle fractions are

computed at the same pressure:

( { } ) ( { } )

( { } ) ( )

y P y T y P y T

y P y T

, , 2 , ,

, , , 29

u
Q

H i p
H

H i

n
H

H i

* *

*

D = D

+ D

( { } ) ( { } )

( { } ) ( )

y P y T y P y T

y P y T

, , , ,

2 , , , 30

d
Q

H i p
H

H i

n
H

H i

* *

*

D = D

+ D

( { } ) ( { } ) ( )y P y T y P y T, , , , . 31e
Q

H i e
H

H i
* *D = D

The work has two terms: a volume term ∝R3 that can be both
positive and negative, and a surface term ∝R2 that is always
positive and is due to the finite-size effects. The workW2 is then
positive and growing for all R if ( ) ( )P T P T, ,Q H H H* *m m> ,
while it reaches a maximum and then decreases if

( ) ( )P T P T, ,Q H H H* *m m< , i.e., if the hadronic phase is meta-
stable. In such a case,W2 is a potential barrier. The critical radius
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is the radius at which W2 has a maximum:

( { } )
( { } )

( { } ) ( { } )
( )

R P y T

n P y T

P y T P y T

, ,

2 , ,

, , , ,
. 32

c H i

B Q H i

H H i Q H i

,
1
*

* *

s

m m

D

=
D

D - D

-

The work at the critical radius is

( { } )
( { } )

[ ( { } ) ( { } )]
( )

W P y T

n P y T

P y T P y T

, ,

16

3

, ,

, , , ,
. 33

c H i

B Q H i

H H i Q H i

2,

3
,
2

2

*

* *

p s

m m

D

=
D

D - D

-

We want now to compute the probability of overcoming the
potential barrier and generate the first seed of quark matter.
There are two possible mechanisms: thermal fluctuations or
quantum tunneling.

The thermal nucleation probability (Langer 1969; Langer &
Turski 1973; Landau & Lifshitz 1969), namely the probability
of generating a critical seed of quark matter via thermal
nucleation, reads

⎡
⎣

⎤
⎦

( { } )
( { } )

( )P y T
W P y T

T
th , , exp

, ,
. 34H i

c H i
2

2, D = -
D

The quantum tunneling nucleation will be treated within a
semiclassical approach (Iida & Sato 1998). First, we will
compute the ground-state energy E0 of the drop in the potential
barrier W2 in the Wentzel–Kramers–Brillouin (WKB) approx-
imation. Then, the probability of tunneling will be given by

( { } ) [ ( { } )] ( )P y T A P y T, , exp , , , 35H i H i2
qt

2 D = - D

where A2(PH, {Δyi}, T) is the action under the barrier com-
puted at the ground-state energy E0(PH, {Δyi}, T):

( ) [ ( ) ( )][ ( ) ]

( )

A E R E W R W R E dR2 2 ,

36
R

R

2 2 2ò= + - -
-

+

where R− and R+ are the classical turning points and  the
droplet effective mass. All details can be found in Iida &
Sato (1998).

3.2. Composition Fluctuation (Hβ→H*)

Finally, let us compute the probability 1 . Following Landau
& Lifshitz (1969), we will compute the probability that at
constant pressure and temperature and for a fixed number NB of
baryons in the subsystem, the local particle composition of
hadronic matter differs from its average values by {Δyi}. As
reported in Section 2.1, this probability is

⎡
⎣

⎤
⎦

( )K
W

T
exp , 371

1 = -

where K is the normalization factor. The work W1 is the
minimum work needed to change the hadronic composition by
a set {Δyi}:

( ) ( )W F F P V V N y , 38H H H H H B
i

i
H

i1 * * å m= - + - - Db b b
b

where we have used Equation (5) and y y yi i
H

i
H*D = - b. Then,
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H

i1 * å m= F - F - Db
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( ) ( )N y , 40B
i

i
H

i
H

i
H* *å m m= - b

where we used P P PH H H*= =b since we are computing the
fluctuations at a given constant pressure and Φ= F+ PV=
∑iμiNi. The chemical potentials μi in H* and in Hβ are com-
puted at the same fixed pressure and temperature:
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H
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H
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H
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,
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where ( { } )n n P y T, ,B H B H H i
H

, ,*
*= and ( { } )n n P y T, ,B H B H H i

H
, ,=b

b

are the baryon densities computed at the same pressure and
temperature but at different particle fractions (i.e., different
compositions). Again, y y yi

H
i
H

i
* = + Db . The independent

variables at this stage are then NB, PH, T, and {Δyi}. The
quantity W1(NB, {Δyi}, PH, T) is always positive, and it is zero
when Δyi= 0 (i.e., when the composition of the considered
subsystem is equal to the average composition of the bulk,
thus i

H
i
H*m m= b).

The greater the number of particles fluctuating {ΔNi}=
{NBΔyi}, the greater the work needed for such a fluctuation W1

and the lower the probability ( )W Texp 1- for it to occur. For
vanishingly small temperature, ( )W Texp 01- ¹ only if
{Δyi}→ 0, thus the role of thermal fluctuation in the hadronic
composition is negligible. Moreover, it can be shown that in the
small fluctuation limit ({Δyi}= 1, {ΔNi}=NB), ( )W Texp 1-
is a multivariate Gaussian (see Appendix A).
The number of baryons NB we are interested in is the one that

is contained in the seed of quark matter. Note that NB H, =b

N N NB H B Q B, ,* *= = by construction, but V V VH H Q* *¹ ¹ =b

R4 3 3p . We fix NB by using the volume of the first quark
droplet:

( { } ) ( { } ) ( ) ( )N R P y T n P y T V R, , , , , . 41B H i B Q H i Q, * *D = D

Thus,
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In the thermal nucleation case, the first droplet of quark matter
has a critical radius Rc, thus

( { } ) [ ( { } ) { } ]
( )

W P y T W R P y T P y T, , , , , , , ,

44
c H i c H i H i1, 1D = D D

where the critical radius Rc is computed in Equation (32).
Whereas, in the quantum nucleation case, the first droplet of
quark matter is generated with a radius R+, namely the classical
turning point, thus

( { } ) [ ( { } ) { } ]
( )

W P y T W R P y T P y T, , , , , , , .

45
H i H i H i1, 1D = D D+ +

The classical turning point is computed as shown in Iida &
Sato (1998).
We finally need to identify the normalization factor. In

principle, K(PH, T) should be computed by imposing the
multidimensional integral of ( { } )P y T, ,H i1 D (Equation (37))
in −∞< {Δyi}<+∞ (i.e., a multidimensional integral where
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the integrating variables are all Δyi) be equal to 1. An esti-
mation of the normalization factor will be provided in
Appendix A. However, as will be shown in Section 5, the
nucleation probability varies exponentially as pressure and
temperature change, while the normalization factor K(PH, T)
has a much weaker dependence on them. The role of the nor-
malization factor is then negligible in order to identify the
temperature and pressure conditions at which nucleation
occurs. Thus, we will set K(PH, T)= 1 for simplicity:
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1
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D+

3.3. Total Process (Hβ→H*→Q*)

The total probability to generate a seed of Q* matter in a
hadronic matter with a certain pressure PH and temperature T is
thus given by the product between the (quantum or thermal)
nucleation probability 2 and the probability 1 that the con-
sidered hadronic subsystem, characterized by a number of
baryons NB, has a composition { }yi

H* . The number of baryons
NB in Equation (40) is fixed by the critical radius Rc or by the
classical turning point radius R+ in the thermal and quantum
nucleation, respectively, as shown in Equations (44) and (45).

A useful quantity to compute is the nucleation time, namely
the typical time needed to generate a critical seed of quark
matter. In the case of thermal nucleation (Langer 1969; Langer
& Turski 1973), it reads

⎡
⎣

⎤
⎦

( { } ) ( )P y T V, ,
2

th th , 48H i
th

nuc 0 1 2

1

 t
k
p

D = W
-

where κ is the so-called dynamical prefactor, which is related
to the growth rate of the drop radius R near the critical radius
Rc, and Ω0 is the so-called statistical prefactor, which measures
the phase-space volume of the saddle-point region around Rc.
The result of multiplying 2 by the prefactors is the thermal
nucleation rate, namely the number of critical quark seeds
generated in one cubic femtometer per second. Here, Vnuc is the
volume inside which the values of PH and T are approximately
equal to the ones used in the calculation and where the
nucleation has the highest probability of taking place. Usually,
for compact objects (Bombaci et al. 2016), this region is
assumed to be a sphere of ∼100 m in the center of the star.

If, instead, quantum nucleation is the fastest process (Iida &
Sato 1998), the nucleation time reads

( { } ) [ ] ( )P y T N, , , 49H i
qt

nuc 0 1
qt

2
qt 1 t nD = -

where Nnuc∼ 1048 is the number of nucleation centers expected
in the same innermost region of the compact object discussed
above (Iida & Sato 1998; Bombaci et al. 2016) and ν0 is the
oscillation frequency computed in the WKB approximation.
The details are reported in Iida & Sato (1997, 1998). In the
nucleation time, the exponential dominates with respect to the
prefactors. For that reason, in many works the prefactors are
replaced by simple expressions as T4 or μ4 (in units of
s−1 fm−3; see, e.g., Di Toro et al. 2006; Mintz et al. 2010a,
2010b) due to dimensional arguments. In this paper, we will

follow the latter approach and calculate nucleation times as

( { } ) [ ] [ ] ( )P y T V, , th th s , 50H i H
th

nuc
4

1 2
1 *t mD = -

( { } ) [ ] [ ] ( )P y T V, , s . 51H i H
qt

nuc
4

1
qt

2
qt 1 *t mD = -

Of course, the real nucleation time is the minimum between
the one calculated by using thermal nucleation or by using
quantum nucleation:

( { } ) [ ] ( )P y T, , min , . 52H i
qt tht t tD =

The idea is that sets of fluctuation {Δyi} can exist for which
nucleation is more favorable than in the case in which only the
average composition { }yi

Hb is considered. To allow such a
process, however, it is necessary to “pay the price” of produ-
cing a fluctuation in the composition, { }yi

H* , whose probability
strongly decreases as {Δyi} increases. Clearly, the larger the
temperature, the more likely the fluctuations corresponding to
large values of {Δyi}. Thus, nucleation can be much more
efficient with respect to the scenario considered in Bombaci
et al. (2016). On the other hand, at small temperatures, 1
becomes vanishingly small except for very small values of
{Δyi}. The contribution of thermal fluctuations in the compo-
sition of the hadronic phase becomes negligible, and we thus
expect to return to the case analyzed in Bombaci et al. (2016),
in which the composition of the quark matter seed is identical,
in terms of flavors, to the average composition of the hadronic
phase at equilibrium { }yi

Hb .
In principle, a complete discussion of the role of fluctuations

should consider all the possible sets {Δyi}, and the nucleation
time should be computed by integrating over all those sets.
However, this approach is computationally very time intensive.
Therefore, in this work, we will focus only on two extreme
cases. The first one, indicated with β*, corresponds to
{Δyi= 0} (i.e., no fluctuations in the hadronic composition, as
done in Bombaci et al. 2016). The second one, (ββ), is based
on a choice of {Δyi} such that { } { }y yi

Q
i
Q* = b , namely in the

hadronic subsystem, the flavor composition is identical to the
flavor composition of quark matter in β-equilibrium. Thus, in
the two-flavor case, the former (β*) corresponds to
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while the latter (ββ) corresponds to
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, 56p
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H d
Q
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-b b
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Q

H* =
-b b

( ) ( ) ( )y P T y P T, , , 58e
H

H e
Q

H
* = b

where all the fractions are computed at fixed temperature
and pressure. Let us motivate our choice of the ββ case as the
most relevant over all possible fluctuations in {Δyi}. The (ββ)
case is the one corresponding to the minimal value of

( { } )P y T, ,Q H i*m D , namely Qm b
. By integrating over all possible

sets of {Δyi}, we expect that the probability associated to the
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ββ fluctuation is overwhelming (due to the exponential
dependence of the probability of nucleation on W2,c).

Finally, we specify that our approach, even in the (ββ) case,
is also different with respect to the one presented in Mintz et al.
(2010a, 2010b). There, the authors include the effect of fluc-
tuations in the hadronic composition by computing W2 between
the phases Hβ and Qβ, while W1= 0. On the other hand, in our
approach, W2 is computed between the phases H* and Q* (that
is equivalent to Qβ in the (ββ) case), and W1 is computed
between the phases Hβ and H*. In general, our approach in the
(ββ) case leads to a smaller critical radius (and thus a smaller
W2,c) than the one that can be obtained in Mintz et al. (2010a,
2010b), since ( ) ( )P T P T, ,H H*m m

b
(see Equations (32) and

(33)), and thus a higher 2 . However, in our approach, we still
have the 1 contribution to be taken into account. At high
temperature, we expect 1 to be high enough to make the
nucleation faster within our approach. At low temperature, 1
decreases, and we thus expect a slower nucleation with respect
to Mintz et al. (2010a, 2010b).

4. Equation of State

In this section, we report the EOSs used for nucleons,
quarks, electrons, and respective antiparticles. All the models
reported here are characterized by a single-particle energy
spectrum (quasiparticle energy) for the species j having the
functional form7
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E U n y

,

, . 59
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k j B j

2 2 1 2
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j
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º +

It can be shown (C. Constantinou et al. 2024, in preparation)
that the energy density of a particle or antiparticle species j is
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e
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, 60j j
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kj K j,òe g
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-

where γj is the degeneracy factor (spin, isospin, color, etc.).
The first term is the Fermi integral of a free fermion gas that
represents the kinetic term. The second term is the contribution
of the interaction potential to the energy density. The kinetic
chemical potential is μK,j= μj−Uj.

Similarly, the number densities are
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where yj is the particle fraction, i.e., the ratio between the
number density nj of the particle or antiparticle species j and the
baryon density nB. The pressure is
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where the first term is the kinetic contribution of particles or
antiparticles, while the second term is the contribution of the
interaction potential to the pressure. All the other

thermodynamic quantities can be computed using the standard
thermodynamic relations, e.g.,
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. 64B
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While at T= 0 the Fermi integrals can be computed analyti-
cally, the generalization to the finite-temperature case needs a
numerical approach. In this work, we used the “JEL” numerical
approach (Johns et al. 1996). Details of the numerical setup can
be found in C. Constantinou et al. (2024, in preparation).
Moreover, the temperature only affects the kinetic terms (i.e.,
the Fermi integrals) since we are considering models with a
moment-independent potential-energy spectrum Uj. Particles
and antiparticles will be considered in equilibrium, thus

( )¯ 0. 65j jm m+ =

These conditions allow one to use as independent variables the
net fractions (e.g., y y ye e e= -- +). All the thermodynamic
quantities have the form X= X(nB, {yi}, T), where X= P, ε,
s, μj.

4.1. Nucleons

Hadrons will be described by the Zhao–Lattimer (ZL) EOS
model (Zhao & Lattimer 2020; Constantinou et al. 2021). The
ZL is a schematic nucleonic model based on the following
energy density functional with an interaction potential between
baryons that reads
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where n0; 0.16 fm−3 is the nuclear saturation density. The
sum of the Fermi integrals of protons and neutrons gives the
kinetic contributions. Although not based on microscopic
physics, the interaction potential is similar to what can be
obtained from a relativistic Lagrangian with vector interactions
(but not scalar interactions) at the mean-field level. The ZL
model allows one to reproduce several bulk nuclear properties
by using only six parameters (a0, b0, a1, b1, γ, and γ1). In
particular, with a proper choice of parameters, this EOS is
consistent with laboratory data at nuclear saturation density and
with recent chiral effective field theory (CET) calculations up
to nB< 2n0. Moreover, the ZL EOS can reproduce results that
are consistent with recent astrophysical data (Constantinou
et al. 2021).

4.2. Quarks

Quark dynamics will be described by the vMIT model
(Klähn & Fischer 2015; Gomes et al. 2019; Constantinou et al.
2021). This differs from the traditional MIT bag model because

7 In the EOS section, we will call j all the particles and antiparticles species
separately and i the net or total values as reported in footnote 6. That is,

¯ ¯ ¯j p n u d s u d s e e, , , , , , , , ,= - + and i = p, n, u, d, s, e. Antiprotons and
antineutrons do not play a relevant role at T  100 MeV, and thus they will not
be considered.
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the QCD perturbative terms are dropped and replaced by a
repulsive vector interaction among quarks via the exchange of a
vector-isoscalar meson. The potential contribution to the
energy density is
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where ¯ ¯ ¯q u d s u d s, , , , ,= and ( )a G

m

2
V

V
= , where GV is the

coupling constant and mV the mass of the meson. The sum of
the ¯ ¯ ¯u d s u d s, , , , , Fermi integrals gives the kinetic contribu-
tions for quarks.

4.3. Leptons

The leptons (electrons and positrons) are considered as a free
Fermi gas. Thus, V V 0e e= =- + and the thermodynamic
quantities are expressed in terms of Fermi integrals.

4.4. Equilibrium Phases

The hadronic matter in β-equilibrium Hβ is characterized by
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namely the baryon number conservation, the charge neutrality,
and the equilibrium with respect to β-reactions, where
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where h= p, n.
The three-flavor quark matter in β-equilibrium, Qβ,3flav, is

characterized by
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namely the baryon number conservation, the charge neutrality,
and the equilibrium with respect to all weak reactions, where
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where q= u, d, s. In the two-flavor case, Qβ,2flav, Equation (74)
is replaced by the condition y 0s

Q =b . Since in this work we are
focused mainly on the two-flavor case, we will usually simply
refer to it as Qβ.

The parameters used are reported in Table 1. In Appendix B,
we show a comparison between the EOS models used in this
work and some other possible models.

5. Results and Discussion

Figure 1 shows the Gibbs energy per baryon as a function of
the pressure at T= 20, 50MeV for hadronic matter in β-
equilibrium Hβ (that is, H* (β*)), out-of-equilibrium hadronic
matter H* (ββ), two-flavor quark matter in β-equilibrium Qβ

(that is, Q* (ββ)), out-of-equilibrium quark matter Q* (β*), and
two-flavor quark matter in β-equilibrium Qβ,3flav. The defini-
tions of these phases are reported in Section 3. At fixed pres-
sure and temperature, the favored phase is the one with the
lower Gibbs energy per baryon. As expected, the equilibrium
phases (Hβ and Qβ) are favored with respect to the out-of-
equilibrium phases (H* and Q*, respectively). Moreover, the
three-flavor quark matter in equilibrium is energetically favored
with respect to the two-flavor due to the appearance of new
degrees of freedom associated with strange quarks. At low
pressure and temperature, the hadronic phase is stable. When
the curve for the quark phase crosses the hadronic curve, the
latter becomes metastable. In the ββ case, the hadronic phase
becomes metastable with respect to the quark phase at
P; 478MeV fm−3 and at P; 427MeV fm−3 for T= 20,
50MeV, respectively. Instead, in the β* case, the hadronic
phase becomes metastable at P; 1802MeV fm−3 and
P; 1709MeV fm−3 for T= 20, 50MeV, respectively. Thus,
in the case a small hadronic subsystem is in a H*(ββ) phase due
to a thermal fluctuation, such a subsystem would become
metastable with respect to the Qβ quark phase at much lower
pressures and temperatures in comparison to the ones at which
a subsystem in the Hβ phase will become metastable with
respect to Q*(β*). Once the hadronic phase becomes meta-
stable, fluctuations can generate a critical droplet of the new
stable quark phase, leading then to deconfinement.
Moreover, Figure 1 also shows the flavors composition of Q*

in the ββ and β* cases as a function of the pressure. In the two-
flavor Qβ phase (and thus in Q*(ββ)) the quark fractions are
nearly constant, with y y2d

Q
u
Q~b b and y 0e

Q ~b . At the same
time, the flavor composition in the Hβ phase (and thus in
Q*(β*)) becomes more symmetric at high pressures due to the
high symmetry energy at high densities obtained within the
ZL EOS.
Figure 2 shows the mass–radius diagram and central pressure

as a function of the mass of compact objects (purely hadronic
stars, hybrid stars with Gibbs construction for two- and three-

Table 1
Parameter Sets Used in the Present Work

Model Parameter Value Units

a0 −96.64 MeV
b0 58.85 MeV

ZL γ 1.40 K
a1 −26.06 MeV
b1 7.34 MeV
γ1 2.45 K

mu 5 MeV
md 7 MeV

vMIT ms 150 MeV
a 0.2 fm2

B1/4 165 MeV

ÿc 197.3 MeV fm
Constants mp, mn 939.5 MeV

me 0.511 MeV
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Figure 1. Upper panels: Gibbs energy per baryon vs. pressure for two values of the temperature (T = 20, 50 MeV). The hadronic phase in β-equilibrium (Hβ,
equivalent to H* (β*)), out-of-equilibrium hadronic phase (H* (ββ)), two-flavor quark matter in β-equilibrium (Qβ, equivalent to Q* (ββ)), out-of-equilibrium quark
matter (Q* (β*)), and three-flavor quark matter in β-equilibrium (Qβ,3flav) are reported. Lower panels: flavor fractions of the quark phase vs. pressure for two values of
the temperature (T = 20, 50 MeV). The continuous and dashed lines refer to two-flavor quark matter for the case of Q*(ββ), namely Qβ, and of Q*(β*), respectively.

Figure 2.Mass–radius diagram (left) and central pressure vs. mass (right) for the pure hadronic EOS (NS) at T = 0 and S = s/nB = 2, and for the hybrid hadron-quark
EOS using a Gibbs construction using the two-flavor (HS 2 flav) and the three-flavor (HS 3 flav) quark phase at T = 0.
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flavor quark phases). All the configurations with the used EOS
models used support masses greater than 2Me. In the core of
PNSs, with entropy per baryon S= s/nB= 2, the pressure
reaches P∼ 51MeV fm−3 for 1.4Me and P; 550MeV fm−3

for the maximum mass configuration M 2.26max  Me. Note
that the three-flavor β-equilibrium EOS will not play a role in
nucleation calculations; it only describes (strange) quark matter
at the end of the evolution, once the weak interaction has had
sufficient time to minimize the energy of the system, changing
the flavor composition via the reaction u+ d→ u+ s.

Figure 3 shows the probability of fluctuations (see
Equation (40)) of a certain fraction of protons, neutrons, and
(net) electrons Δyp, Δyn=−Δyp, and Δye=Δyp with respect
to the average β-equilibrium matter both in linear and loga-
rithmic scale. The higher the temperature and pressure, and the
lower the baryon number, the more probable the fluctuation of
the composition with respect to the average values in a
subsystem.

Figure 4 shows the works W1 and W2 for ββ and β* at
P= 470MeV fm−3 as a function of a droplet radius R for
T= 20, 50MeV and σ= 10, 30MeV fm−2. When the hadronic
phase is stable, W2 always increases as the radius increases.
When the hadronic phase becomes metastable, W2 reaches a
maximum at the critical radius Rc, and can be interpreted as a
finite potential barrier. The higher the pressure and temperature
(and the lower the surface tension), the lower the potential
barrier. In the β* case, the hadronic matter is stable in all the
conditions reported in the plots. Thus, the corresponding work
is constantly increasing as a function of the seed radius. In the
ββ case, at P= 470MeV fm−3, the hadronic phase is stable at
T= 20MeV and metastable at T= 50MeV. Thus, at
T= 20MeV the works W2 are increasing as a function of the
droplet radius, while at T= 50MeV they reach a maximum.
Finally,W1 is always positive since it represents the energy cost
needed to change the hadronic composition from the
equilibrium.

Figure 5 shows the critical and turning point radius and the
work at the critical radius as a function of the pressure. At the
pressure and temperature at which the hadronic phase becomes
metastable, the critical radius and the work W2 at the critical
radius diverge. By increasing the pressure and temperature, we
obtain a smaller radius. The critical radius in the ββ case is
much smaller than in β*. At P 577 MeV fm−3 and P 533
MeV fm−3 for T= 20, 50MeV, respectively, the turning points
radii are equal to the critical radius R−= R+= Rc. That means
that the WKB semiclassical ground state’s energy is equal to
the maximum of the potential barrier. Thus, at fixed temper-
ature, at pressures higher than the ones reported above, the
action under the barrier (Equation (36)) is zero, and the prob-
ability of quantum tunneling through the barrier 2

qt becomes 1.
Thus, at such conditions, the only contribution to the total
quantum nucleation probability is given by 1

qt . Finally, a
much lower critical radius in ββ leads to a much lower critical
work W2(Rc) (i.e., the maximum of the potential barrier). At the
reported temperatures, the work W1(Rc) (ββ) is greater than
W2(Rc) (ββ) but much lower than W2(Rc) (β

*). This is a first
indication that by allowing the hadronic composition to fluc-
tuate, the gain in nucleation probability from a convenient out-
of-equilibrium subsystem of the hadronic phase is greater than
“the cost to be paid” to have such a subsystem with compo-
sition different form the average ones.

Figure 6 shows the number of baryons in a critical radius and
turning point radius droplet as functions of the pressure and for
different values of the temperature. These baryon numbers
identify the hadronic subsystems in which the composition
differs from the average values. The figure also displays the
difference in terms of the number of protons in the subsystem
to obtain the case ββ. Obviously, ΔNp= 0 in β*. Let us focus,
for example, on the set of parameters σ= 30MeV fm−2,
P= 500MeV fm−2, and T= 50MeV. In a critical radius seed,
there are ∼43 baryons; to obtain the ββ configuration in this
subsystem, ∼13 protons should be replaced by neutrons,
namely the proton fraction should be reduced by ∼0.3. The
probability of such a fluctuation in the hadronic composition is
very low, 101

35 ~ - , but, as we will see later, not low enough
to compensate for the huge advantage of nucleating the quark
phase starting from a ββ subsystem with respect to a β* one.
Figure 7 shows the nucleation time as a function of the

pressure for different temperatures in the ββ and β* cases. It is
useful to note that the nucleation time varies very quickly with
pressure and temperature. For instance, at T= 50MeV, a
pressure difference of ∼20 MeV fm−3 is enough to vary the
nucleation time by a hundred orders of magnitude (thus much
larger than the age of the Universe, ∼1017 s).
Within the temperature conditions shown in the plots, the

nucleation time in the ββ case is much shorter than in the β*

case at fixed temperature and pressure (or, equivalently, for the
same temperature and nucleation time, the pressure in the ββ
case is much lower). Thus, the role of fluctuations in hadronic
phase composition is crucial. In the β* case, thermal nucleation
dominates over quantum nucleation at high temperatures. By
decreasing the temperature, the thermal nucleation time
increases faster than the quantum nucleation time, which in
turn becomes almost temperature independent (note that the
blue, green, and black dashed lines in the left plot are very
close). Thus, the quantum nucleation is dominant in the low-
temperature regime. In particular, at a temperature of
T; 5.4 MeV, the curves corresponding to the quantum and to
the thermal nucleation times cross at τ∼ 1 s. We can then
consider this “crossover temperature” as the one separating the
thermal and the quantum nucleation regimes (at σ=
30 MeV fm−2). In the ββ case, the crossover temperature is
;7.8 MeV. Again, thermal and quantum nucleation dominate
at high and low temperatures, respectively.
Notice that quantum nucleation remains temperature

dependent even at low temperatures and large pressures, since
under such conditions Rc= R+ and, thus, the quantum tun-
neling probability 2

qt is 1, but the probability of a thermal
fluctuation (of the hadronic phase composition) 1

qt remains
temperature dependent. This feature corresponds to the change
in the slope of the quantum nucleation time for pressures larger
than PH∼ 578 MeV fm−3 (see the green dashed line in
Figure 7).
In Figure 8, the thermodynamic conditions (pressure and

temperature) at which the nucleation time is 1 s are shown for
the ββ and β* cases. The two-flavor Gibbs mixed-phase
boundaries are also reported for comparison. Notice that the
choice of 1 s for the nucleation time is just arbitrary. Indeed, as
shown before, for a fixed value of the surface tension, one
could obtain a nucleation time varying in a very wide range,
∼(10−20−1017) s, by slightly changing the pressure and
temperature conditions as reported above. Our main result is
that, according to what was shown before, the ββ case allows
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the nucleation of quark matter at much lower pressures and
temperatures than the β* case (namely the case in which fluc-
tuations are not considered). Also, thermal nucleation at high
temperatures is faster than the quantum tunneling nucleation, as
expected. By decreasing the temperature, the thermal nuclea-
tion is suppressed faster than the quantum nucleation, since in
the former the temperature appears explicitly in the exponen-
tial, while in the latter the temperature is only (implicitly)

present in W2. As explained before, while at temperatures
below ∼10MeV the quantum nucleation of the β* case is
almost temperature independent, the quantum nucleation of the
ββ case has two components: 2

qt is nearly temperature inde-
pendent (and, in particular, is 1qt

2 ~ if R+ = Rc, namely for
PH 512, 580 MeV fm−3 for σ= 10, 30 MeV fm−2, respec-
tively), but 1 , (i.e., the probability of finding a subsystem with
the composition ββ) drops as the temperature decreases. The

Figure 3. Probability (not normalized) that at fixed pressure P, temperature T, and baryon number NB, the net fraction of protons, neutrons, and electrons differs from
the average ones by Δyp (notice that Δyn = −Δyp and Δye = Δyp). Both linear (left) and logarithmic (right) scales are shown. The three curves correspond to
different values of T at P = 500 MeV fm−3 and NB = 10 (first row), P = 1000 MeV fm−3 and NB = 10 (second row), and P = 500 MeV fm−3 and NB = 50
(third row).
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role of the fluctuations in the hadronic composition becomes
negligible for T 0.1, 1 keV for σ= 10, 30 MeV fm−2,
respectively. As expected, the higher the surface tension, the
higher the pressure needed to start the nucleation process at a
fixed temperature, the larger the difference between thermal
and quantum nucleation, and the larger the temperature at

which hadronic composition fluctuations become negligible.
The fluctuations in the hadronic composition thus substantially
increase the nucleation efficiency in the high- and intermediate-
temperature regimes.
Let us discuss now the normalization factor K(PH, T)

introduced in Section 3.2. At fixed pressure, temperature,

Figure 4. Work vs. quark droplet radius at T = 20 MeV (left) and T = 50 MeV (right) and σ = 10 MeV fm−2 (top) and σ = 30 MeV fm−2 (bottom) in the ββ and β*

cases. For ββ both W1 and W2 are reported, while for β* W = W2, W1 = 0. The pressure is fixed at P = 470 MeV fm−3.

Figure 5. Critical Rc and turning point R+ radius (left) and work at the critical radius (right) for the ββ and β* cases.
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number of baryons, and surface tension, K(PH, T) is the inverse
of the integral of the curves shown in Figure 3. By numerically
calculating these integrals along the pressure and temperature
curves corresponding to τ= 1 s shown in Figure 8, we note that
K(PH, T) turns out to be approximately constant and of the
order of ∼20. It can be seen from Figure 7 that a constant shift
of an order of magnitude in nucleation time, all other condi-
tions being equal, would not have a qualitative impact. In
particular, Figure 8 would not show qualitatively significant
changes. Thus, we consider the approximation K(PH, T)= 1 to
be reliable.

Let us now consider the typical thermodynamic conditions
(of pressure and temperature) that are realized in compact stars.
Consider, for example, a newly born hadronic PNS formed
following a CCSN. Qualitatively, we can approximate the
thermal evolution of the PNS as follows (Prakash et al. 1997).
About ∼0.5 s after the explosion, the PNS is characterized by
an entropy per baryon of about ∼1−3, and neutrinos are in
thermodynamic equilibrium with the system (neutrino trap-
ping), resulting in a lepton fraction of YLe; 0.4. At this stage,
nucleation is suppressed due to the aforementioned neutrino

trapping, as found in Bombaci et al. (2016). After ∼(5−10) s,
the PNS is deleptonized: Neutrinos are no longer in thermo-
dynamic equilibrium with the rest of the system (i.e., the
neutrino mean free path is much larger than the size of the
PNS) and they freely stream out of the star. Thus, at this stage,
the matter of the PNS is approximately in β-equilibrium, the
chemical potential of the neutrinos is zero, and the entropy per
baryon reaches a value of about ∼2. During the next ∼60 s, the
PNS rapidly cools down by emitting neutrinos and the core
temperature drops to a few MeV (see, e.g., Pons et al. 1999).
By comparing the nucleation curves in Figure 8 with the purple
curve (i.e., the s/nB= 2 neutrino-less hadronic PNS profile) of
the same figure, one can notice that a PNS with a central
pressure P 465, 505MeV fm−3 (with corresponding mass
∼2.26 Me) can nucleate quark matter (assuming σ= 10,
30 MeV fm−2, respectively).
Another interesting scenario in which our scheme can be

applied corresponds to the situation in which deconfined quark
matter is produced in a failed CCSN explosion (see, e.g.,
Fischer et al. 2018). In their analysis, they assume that a stable
mixed phase is generated without any delay. The approach by

Figure 6. Baryon number (left) and fluctuation in the number of protons (right) in a droplet of quark matter with a critical Rc or turning point R+ radius in the ββ case.

Figure 7. Logarithm of (thermal and quantum) nucleation time vs. pressure in the ββ (left) and β* (right) cases. In both cases the temperatures T = 1, 20, 50 MeV are
shown. Moreover, T ; 7.8, 5.4 MeV are reported to show the conditions at which quantum nucleation becomes faster in the plotted range for ββ and β*, respectively.
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Bombaci et al. (2016, corresponding to the β* case), does not
allow the formation of quark matter before reaching densities
so large that the collapse to a black hole is triggered. Instead,
taking into account the composition fluctuations, the formation
of the first droplet of quark matter is delayed, but the needed
overpressure is not so large as to be associated with the col-
lapse to a black hole.

In contrast, nucleation cannot occur in a cold NS when only
two flavors are considered.

6. Conclusions

The main contribution of this work has been to set a new
framework for the study of the nucleation of quark matter
within metastable hadronic matter at finite temperature which
takes account the thermal fluctuations in the hadronic compo-
sition. Indeed, a standard recipe is to consider β-stable hadronic
matter and to impose the condition that the flavor content of the
newly formed quark matter droplets is equal to the one of the
initial hadronic phase, due to the different timescales associated
with the weak and strong interactions. However, at finite

temperatures, the unavoidable occurrence of thermal fluctua-
tions of the hadronic composition can lead to a faster nucleation
process. We have taken into account these effects by comput-
ing the nucleation probability as the product between two
terms:

1. The probability that in a hadronic system at chemical
equilibrium, a small subsystem containing a certain bar-
yon number is in a phase H* characterized by a compo-
sition that differs from the average one by a set of
fluctuations {Δyi}.

2. The probability to nucleate from the subsystem H* a
quark seed Q* having the same flavor composition.

In this first work, we have limited the discussion to the case
of two-flavor quark matter (thus only nucleons in the hadronic
phase and up and down in the quark phase). A complete dis-
cussion of the presented framework should consider all the
possible sets of fluctuations {Δyi} and the nucleation time
should be computed by integrating over all these sets. How-
ever, in this work, we focused on two extreme cases, namely

Figure 8. Temperature and pressure (of the hadronic phase) at which the (thermal and quantum) nucleation time is 1 s. Both the linear (left) and logarithmic (right)
scales for σ = 30 MeV fm−2 (top) and σ = 10 MeV fm−2 (bottom) are shown. The thermal and quantum nucleation are reported for the ββ and β* cases. The mixed-
phase boundaries of the two-flavor Gibbs construction are reported for comparison. The purple dotted–dashed curve in the right panel represents the pressure and
temperature of the core of PNSs, assuming a s/nB = 2 hadronic and neutrino-free matter (i.e., approximately the conditions 10−60 s after the core collapse). The end
point of this curve corresponds to the PNS maximum mass configuration. The gray dotted–dashed curve in the right panels indicates the range of pressures reached in
the core of cold NSs (assumed to have a uniform temperature T = 1 keV).
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β*, characterized by { } { } { }y y yi
Q

i
H

i
H* *= = b (i.e., no fluctua-

tions in the hadronic composition {Δyi}= 0) and ββ, char-
acterized by { } { } { }y y yi

Q
i
H

i
Q* *= = b (i.e., the hadronic flavor

composition fluctuations are chosen in order to match the β-
equilibrium quark composition).

Our results could be important for numerical studies on the
formation of quark matter in astrophysical processes. Indeed, it
is common to assume that quark matter is produced in equili-
brium (mechanical, chemical, and thermal) with the hadronic
phase; that is, quark matter is promptly formed once the central
density of the star reaches the critical density for the formation
of the mixed phase, within the Gibbs construction (Sagert et al.
2009; Fischer et al. 2018). This approach neglects finite-size
effects (namely the nucleation process) that would unavoidably
delay the formation of quark matter. While in the scheme
presented in Bombaci et al. (2016, corresponding to the β*

case), the delay could be sizable enough to prevent the for-
mation of quark matter in astrophysical systems (at least in the
two-flavor case), in the scheme here developed the effective
threshold for the appearance of quark matter is still reachable in
compact stars under specific conditions. In particular:

1. At low temperatures T (0.1−1) keV, the role of fluc-
tuations of the hadronic composition is totally negligible
and our results do not differ from those of Bombaci
et al. (2016).

2. At intermediate temperatures (0.1−1) keV T
(1−10)MeV, the fluctuations of the hadronic composi-
tion increase the efficiency of nucleation but, at least for
the EOSs discussed in this work, the pressure needed to
nucleate cannot be reached in (cold) compact stars.

3. At high temperatures T (1−10) MeV, the process of
nucleation can take place in the pressure regime of
astrophysical phenomena related to compact objects (e.g.,
very massive PNSs, CCSNe, or BNSMs).

We emphasize again that our work has focused only on the
two-flavor case (specifically nucleons in the hadronic phase
and u and d quarks in the quark phase, using specific EOS
models for the different phases) and thus does not consider
any kind of interaction concerning strangeness. In a forth-
coming paper, we will also include hyperons (and thus strange
quarks) and investigate the effect of the nucleation process on
the phenomenology of the two-families scenario, namely the
scenario in which hadronic stars and strange quark stars
coexist (Drago et al. 2014, 2016; Drago & Pagliara 2016).
Similarly, color superconductivity and boson condensates are
not included in this work and their effects will be investigated
in the future. It is important to remark that the formalism here
developed for dealing with nucleation in multicomponent
systems could also be applied in other physical systems in
which a phase transition to or from quark matter occurs, as,
for instance, in heavy ions collisions (Di Toro et al. 2006;
Bonanno et al. 2007).

Appendix A
Fluctuations as a Multivariate Gaussian

It is interesting to note that in the small fluctuation
limit ({Δyi}= 1, {ΔNi}=NB), ( )W Texp 1- is a multiva-
riate Gaussian. Let us expand, up to second order,
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By replacing in Equation (40), we obtain
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Note that Equation (A1) does not contain any term linear in
ΔNi. This is expected since we are considering fluctuations
around the state of minimal energy. Thus,
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One can note that Equation (A2) indeed corresponds to a
multivariate Gaussian distribution. In order to estimate the
contribution to the probability given by this dimensionless
normalization factor, let us consider the multivariate Gaussian
reported in Equation (A2). The normalization factor of a
multivariate Gaussian is analytically known (Landau & Lifshitz
1969):

( )
∣ ∣

( )
( )K P T,

det

2
, A4H m 2


b

p

where m is the number of flavors (or conserved charges) con-
sidered and ∣ ∣det b is the determinant of the matrix having as
elements βij, as defined in Equation (A3).

Appendix B
More on EOS Models

In Figure 9, we report some more information regarding the
used EOS models (see Section 4). In the left panel, we display
the pressure as a function of the energy density for the ZL
model, for the mixed phase of the Gibbs construction (see
Constantinou et al. 2021) between the ZL and vMIT models,
for the vMIT and for the simple bag model (i.e., vMIT with
a= 0) in the case of cold matter in β-equilibrium. The gray
shaded area represents the region excluded by Komoltsev &
Kurkela (2022) using theoretical considerations arising from
CET and perturbative QCD (pQCD). The used models are
compatible with such constraints in the plotted region. The
models are no longer compatible with such constraints at much
higher pressure and energy density. Notice, however, that the
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vMIT model provides an EOS for quark matter suitable for the
typical thermodynamical conditions reached in compact objects
(i.e., approximately up to the black dots shown in the plot,
which represent the conditions in the center of the maximum
mass configurations of NSs and hybrid stars). At the same time,
it does not aim to describe deconfined quark matter up to the
perturbative regime (while, for example, models such as Fraga
et al.'s 2014 are built to be compatible with the perturbative
regime). The density-dependent repulsive interaction between
quarks in the vMIT model makes the EOS much stiffer with
respect to the one obtained within the simple bag model,
allowing 2 Me hybrid stars. In the right panel, the pressure as
a function of the baryon density for pure nucleonic symmetric
matter in the ZL model is compared with the SFHO EOS model
(Steiner et al. 2013), and it is shown to be compatible with the
constraints from heavy-ion collisions provided by Danielewicz
et al. (2002).8 Moreover, the ZL model with the para-
meterization used is compatible with the CET calculations
available at nB 2n0 and reported in Drischler et al. (2021),
and with the nuclei properties at zero temperature as shown in
Constantinou et al. (2021).
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Figure 9. Left panel: pressure vs. energy density for neutrino-less cold matter in β-equilibrium (i.e., NS matter). The pure nucleonic ZL case, the Gibbs construction
(GC) mixed phase between nucleonic matter and three-flavor quark matter, the pure three-flavor quark phase using the vMIT model, and a simple bag model are
reported. The black points identify the pressure and the energy density in the center of the maximum mass configurations in the cold NS and hybrid star. The gray
shaded area represents the theoretical constraints to the energy density and pressure arising from CET and pQCD (Komoltsev & Kurkela 2022). Right panel: pressure
vs. baryon density for cold symmetric matter. The used hadronic EOS ZL is compared with the SFHO EOS (Steiner et al. 2013). The orange shaded area shows the
baryon density and pressure region compatible with the nuclear collision experiments (Danielewicz et al. 2002). The mixed quark-hadron phase does not appear in the
plot since for two-flavor matter it starts at very large baryon densities (nB ; 1.58 fm−3).
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