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Abstract—Augmented and Virtual Reality (AR/VR) technolo-
gies are gaining popularity to improve healthcare professionals
training, with precise eye tracking playing a crucial role in
enhancing performance. However, these systems need to be both
low-latency and low-power to operate in real-time scenarios
on resource-constrained devices. Event-based cameras can be
employed to address these requirements, as they offer energy-
efficient, high temporal resolution data with minimal battery
drain. However, their sparse data format necessitates specialized
processing algorithms. In this work, we propose a data pre-
processing technique that improves the performance of non-
recurrent Deep Neural Networks (DNNs) for pupil position
estimation. With this approach, we integrate over time – with a
leakage factor – multiple time surfaces of events, so that the input
data is enriched with information from past events. Additionally,
in order to better distinguish between recent and old information,
we generate multiple memory channels characterized by different
leakage/forgetting rates. These memory channels are fed to well-
known non-recurrent neural estimators to predict the position
of the pupil. As an example, by using time surfaces only and
feeding them to a MobileNet-V3L model to track the pupil in
DVS recordings, we achieve a P10 accuracy (Euclidean error
lower than ten pixels) of 85.40%, whether by using memory
channels we achieve a P10 accuracy of 94.37% with a negligible
time overhead.

I. INTRODUCTION

Augmented Reality (AR) and Virtual Reality (VR) tech-
nologies [1]–[3] are revolutionizing healthcare professionals
training, driven by the important role of eye-tracking systems.
These systems capture user gaze, enabling intuitive interac-
tions which are essential for immersive learning experiences.
Ensuring low-latency, accurate and low power pupil tracking
is a crucial challenge for seamless training sessions.

A potential solution to address these requirements is rep-
resented by Dynamic Vision Sensors (DVS) or event-based
cameras [4]–[6] which are neuromorphic video recording
devices that enable low-power and high temporal-resolution
acquisition of visual information, gaining increasing popularity
in a large variety of fields, including surveillance [7], [8],
robotics [9], [10] and biomedical science [11]–[13]. The
neuromorphic sensors employed in these cameras generate
a sparse and asynchronous stream of events that indicate
the pixel-local changes in the brightness of the scene. Each
event is of the form (x, y, p, t) where x and y are the pixel
coordinates where the brightness alteration occurs, p is the
polarity of the event (i.e., the direction in which brightness
changes) and t is the detection time.

Nonetheless, DVS advantages come with a trade-off. While
traditional RGB cameras provide easily interpretable data, i.e.,
frames containing full-color information, event-based cameras
generate sparse data that encode only changes in the scene.

Time surface Memory channel
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Fig. 1. On the left, a time surface that represents the events collected in a time
range ∆t. On the right, a memory channel that integrates the information of
time surfaces over time with a defined leakage/forgetting rate. The method we
propose leverages the leaky integration of time surfaces to generate memories
channels that improve the capability of non-recurrent estimators to solve
eye-tracking tasks.

This means that the design of algorithms for DVS applications
is not as straightforward as it is for standard RGB input data.
Because of this, studying to generate meaningful representa-
tions from streams of events is of paramount importance [14],
[15]. For example, a popular strategy is to create time-
surfaces [16] where small volumes containing the events in
a short time range are represented in a image-like format.

Unfortunately, not every volume obtained in this way
contains enough information to estimate the position of the
eye’s pupil in the given time range. While enlarging the
time range for building more informative inputs seems an
intuitive solution, it negates the high-speed benefit of event-
based cameras. Possible solutions to this problem are the
usage of custom recurrent neural network models [17] which
have the drawback of being typically more complex to train
compared to non-recurrent ones or to leverage an hybrid RGB-
DVS framework to perform the eye-tracking task [18].

In this study, we adopt a middle-ground strategy to enhance
the performance of non-recurrent networks without relying on
a hybrid framework that would require RGB data. Specifically:

• we propose an event pre-processing technique based on
memory channels. Figure 1 represents the difference
between a time surface and a memory channel. The usage
of memory channels improves the performance of non-
recurrent DNNs for estimating the eye’s pupil position

• we analyze the performance of different DNN models
using memory channels compared to those that use time
surfaces only, varying the time range in which events are
grouped

• we investigate how the accuracy of the eye tracking sys-
tem changes as the number of memory channels increases
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Fig. 2. Schematic of the method used to solve the event-based eye-tracking task. Starting from a volume of events collected in the time range (t, t+∆t), a
time surface is generated and then enriched with older information within memory channels built starting from events that were collected in the time range
(0, t). From here, the input of the network is structured as the concatenation of three enriched time surfaces while the output is the pupil’s position where
x, y ∈ [0, 1]. In this work k1 = 0.8, k2 = 0.6 and k3 = 0.4.

• we compute the time overhead introduced by our input
pipeline and we compare it to various DNNs inference
time

The rest of this paper is structured as follows. In Section II,
we present the methodology we propose based on memory
channels while in Section III the datasets used to validate our
methodology are presented. In Section IV, the DNN models
together with the description of the training approach and the
metrics used to evaluate the results are discussed. In Section V,
the results are discussed. Finally, the conclusion is drawn.

II. PROPOSED METHOD: THE MEMORY CHANNELS

We present a methodology that employs an input prepro-
cessing pipeline based on memory channels, i.e., we integrate
over time the input events to obtain enriched input data.

We use time surfaces [16] as the inputs of this pipeline,
generated by means of the Tonic framework [19]. These time
surfaces are sampled within time intervals of size ∆t over all
the sensor area. They are defined as Sn

p for positive events
and Sn

n for negative events, where n = 1, 2, 3, . . . are the
discrete time-step at times t = ∆t, 2∆t, 3∆t, . . . to which
they are associated. The way in which they are calculated can
be summarized as

Sn
p (x, y) = e−

n∆t−T n
p (x,y)

τ (1)

indicating the pixel of the time surface at position (x, y) at
time t = n∆t with polarity p ∈ {p, n}, with

T n
p (x, y) = max

e∈En
p (x,y)

t ∈ e (2)

where e = (x, y, t, p) is an event included in the set
En
p (x, y) of the events located at pixel (x, y) in the time range

t ∈ [n∆t −∆t, n∆t]. In this work, we use a time constant
τ = 7× 10−1 s.

These time surfaces are integrated over time into multiple
memory channels as

Mn
i =

[
kiM

n−1
i +

Sn
p + Sn

n

2

]1

0

(3)

where matrix Mn
i indicates the i-th memory channel at time-

step n, ki ∈ (0, 1) is the leakage/forgetting factor of the i-th
channel, Sn

p and Sn
n are the positive and negative time surfaces

at time n and operator [·]10 saturates the argument between
0 and 1. M0

i are defined as all-zero matrices. When ki is
close to 1, the information is kept for long periods of time,
so the newest data has less relevance, while when ki is close
to 0, data is quickly forgotten and so the newest data has a
stronger impact on the estimator. By using multiple memory
channels with different values of ki, we leverage both short
and long-term memory information. The memory channels are
combined together in a multi-channel tensor which is then sent
to the estimator model.

With this input pipeline, it is possible to use any non-
recurrent vision model as the estimator that solves the task.
This effectively moves the time dependency of the model
entirely to the input pipeline and simplifies the optimization
process, since the forward and backward passes through the
model depend only on the current time step. Furthermore, this
approach allows ∆t, i.e., the distance between two discrete
time instants n and n + 1, to be taken as small as desired.
This would not be possible by simply using time surfaces as
inputs, since they would not contain enough information for
the vision model to produce meaningful output, limiting the
frequency at which the output could be generated. Figure 2
graphically summarizes the proposed approach.

III. DATASETS

In this section, we present the two datasets we use in this
work to validate the methodology we propose:

• 3ET Dataset [17]: the Efficient Event-based Eye-tracking
(3ET) derives from the transformation of the RGB LPW
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TABLE I
P10 ACCURACY AND MEAN EUCLIDEAN DISTANCE OF DIFFERENT CONFIGURATIONS OF THE EYE-TRACKING SYSTEM, WITH ∆t = 50ms. WE USE AS

INPUT EITHER THE POSITIVE AND NEGATIVE TIME SURFACES OR THREE MEMORY CHANNELS.

3ET EET

P10 accuracy Mean Euclidean
distance P10 accuracy Mean Euclidean

distance

TS only Ours TS only Ours TS only Ours TS only Ours
LeNet-5 81.1% 91.9% 7.2 4.9 89.8% 95.0% 5.3 4.3

MobileNet-V3S 84.9% 92.3% 6.4 4.6 93.8% 97.3% 4.3 3.5
MobileNet-V3L 86.5% 94.6% 5.6 4.6 94.9% 99.1% 3.7 3.2

ResNet-50 90.4% 96.9% 5.1 3.9 95.1% 98.9% 3.4 2.4

dataset [20] using the V2E DVS simulator [21]. The
resulting dataset comprises recordings from 22 subjects.
Each recording lasts approximately 20 s and target labels
representing the (x, y) coordinates of the center of the
pupil are provided at a frequency of 100Hz and at a
resolution of 640×480 pixels. While the original dataset
counts 62 events videos with the corresponding labels,
the authors discard videos that do not generate events
over a prolonged period of time (following the criterion
highlighted in [17]) and they consider only 16 videos for
the training set and 2 for the validation. To compensate
for the lack of a test set, we test the accuracy on the
validation set, while two registrations from the training
set are used instead for the validation process.

• EET Challenge Dataset: the Event-based Eye-Tracking
(EET) dataset has been presented for the CVPR 2024
EET challenge [22]. It comprises 52 videos entirely
captured by means of an event-based camera at a res-
olution of 640 × 480. The videos are acquired from 13
different subjects performing different activities such as
saccades movement, smooth pursuit, and blink. Data of
the training and the validation set are labeled at 100Hz,
except for the test set where the frequency is 20Hz. The
annotations include the coordinates (x, y) of the center of
the pupil. The dataset is split into 59% of the recordings
for training, 18% for validation, and 23% for testing.

IV. EMPLOYED ESTIMATORS, TRAINING AND METRICS

In this section we briefly describe the non-recurrent DNN
models we use to estimate the eye pupil’s center, their training
and the metrics used to validate our approach.

A. Employed architectures

• LeNet-5 [23]: we test this model on the event-based
eye-tracking task because of its simplicity. The model is
composed of two convolutional layers followed by three
linear ones with 200, 84, and 2 neurons, respectively.
Given an input size of 80 × 60, the LeNet model we
employ has about 670 000 parameters.

• MobileNet-V3 [24]: a widely known lightweight DNN
already used in production-grade applications and tuned
for edge CPU-based devices.We experiment both with the
small (≈ 2.5 million parameters) and large (≈ 5 million
parameters) versions of this model, both pre-trained on
ImageNet-1k [25].

• ResNet-50 [26]: this is the largest model we test in this
work and it contains around 25 million parameters. In
this work, we use the ResNet-50 model, pre-trained on
ImageNet-1k [25].

B. Training
The training sets of the two employed datasets are both

composed of many recordings/events streams. Each event
stream is divided into small chunks containing events in a
time range ∆t. From each chunk, a time surface is generated.
In order to train the DNN models with the methodology we
propose, we create sub-sequences of time-consecutive time
surfaces. Sub-sequences are then fed to the model in random
order during training. Conversely, the validation and the test
sets are fully fed to the estimator in a single, chronologically-
ordered sequence to emulate the behavior of the system.

Each network is trained for 200 epochs, the batch size is set
to 32 and the length of each sub-sequence used during training
is 30, with stride 15 over the full recorded sequence. The loss
function employed is the Mean Squared Error (MSE). We also
use the Adam optimizer [27] with an initial learning rate of
2.8 × 10−4. For both datasets, the input is down-sampled to
60 × 80. To ensure robustness and avoid over-fitting of the
model, we use data augmentation on the training set. Each
sub-sequence used to train the model undergoes a random
horizontal/vertical flip and a random horizontal/vertical shift.
Furthermore, white Gaussian noise is added to 10% of the
input instances.

C. Metrics
In this work, we employ as metrics the mean Euclidean

distance and the P10 accuracy. The former is merely the
distance between the estimated pupil center and the ground
truth, while the latter indicates whether the Euclidean distance
of a prediction from the ground truth is below ten pixels.

V. RESULTS

In this section, we report the results obtained using our
approach based on memory channels analyzing the improve-
ments in accuracy and the associated time overhead.

A. Accuracy
We first evaluate the effectiveness of our input pipeline

based on memory channels against the use of simple time
surfaces as inputs. When using time surfaces only, the input
of the estimator is composed of three channels, which are Sp,

3
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TABLE II
P10 ACCURACY OF THE EYE-TRACKING SYSTEM EMPLOYING VARIOUS
DNNS ON THE EET DATASET, BOTH WITH THE USE OF TIME SURFACES

ONLY OR INCORPORATING THE INPUT PIPELINE BASED ON THREE
MEMORY CHANNELS WITH DIFFERENT VALUES OF ∆t .

∆t = 20ms ∆t = 40ms

TS only Ours TS only Ours
LeNet-5 73.8% 85.5% 78.3% 86.3%

MobileNet-V3S 80.9% 90.6% 84.1% 92.4%
MobileNet-V3L 85.4% 94.4% 93.2% 98.6%

ResNet-50 84.1% 93.1% 94.8% 98.8%

TABLE III
PERFORMANCE OF THE EYE-TRACKING SYSTEM EMPLOYING LENET-5 ON

THE EET DATASET, USING AS INPUT AN INCREASING NUMBER OF
MEMORY CHANNELS WITH ∆t = 50ms.

# of memory P10 accuracy Mean Euclidean
channels distance

1 92.7% 4.6
2 93.4% 4.5
3 95.0% 4.3
4 95.1% 4.4

Sn and their average. Conversely, when using the memory
channels, we employ 3 different channels with k1 = 0.8,
k2 = 0.6 and k3 = 0.4. Table I compares the performance
of the estimators described in Section IV on the 3ET and
EET datasets, measured by means of the P10 accuracy and
the mean Euclidean distance and with ∆t = 50ms. The
results consistently demonstrate a significant improvement
when using memory channels over simple time surfaces.

In Table II, we report the performance of the estimators
on the EET dataset with varying values of ∆t, namely
∆t = 20ms and ∆t = 40ms. Since, at this values of ∆t, the
ground truth labels are not available for the test set, we test the
accuracy on the validation set, while two registrations from the
train set are used instead for the validation process. The results
show that the use of memory channels is required to obtain
good performance when lowering ∆t from ∆t = 40ms to
∆t = 20ms. In fact, the reduction of ∆t negatively affects the
amount of information contained in the time surfaces, but, by
integrating them over time, this problem is strongly alleviated.

Finally, we report in Table III the performance of the
LeNet-5 model on the original test set of the EET dataset with
a varying number of memory channels. The memory channels
are defined by the forgetting factors k1 = 0.8, k2 = 0.6,
k3 = 0.4 and k4 = 0.2. When one channel is employed,
we use only k1, when two are employed, we use k1 and
k2, and so on. These results show that in order to get the
highest performance, multiple memory channels with different
forgetting factors are to be used, so that the estimator can
discern the recent information from the old one. Additionally,
even by using a single memory channel, we achieve better
results compared to the use of simple time surfaces.

TABLE IV
NUMBER OF FLOPS AND COMPUTATIONAL TIME REQUIRED BY THE

MEMORY CHANNELS UPDATE COMPARED TO THE COMPLEXITY AND THE
INFERENCE TIME OF THE ESTIMATORS. RESULTS ARE COMPUTED USING

THE JETSON ORIN NANO SINGLE BOARD COMPUTER SYSTEM

FLOPS Latency
Memory update 24.00 k 0.23 ms (CPU)

LeNet-5 1.64M 1.40 ms (GPU)
MobileNet-V3S 0.12G 20.04 ms (GPU)
MobileNet-V3L 0.23G 24.26 ms (GPU)

ResNet-50 4.00G 23.59 ms (GPU)

B. Computational efficiency
The methodology that we propose is able to enrich the

event-based input information that is required by conventional
non-recurrent DNNs. However, this step involves the update
of multiple memory channels through a leaky integration
process described in (3) that inevitably adds a computational
overhead to the deployed system. To estimate this overhead,
we evaluate the amount of Floating Point OperationS (FLOPS)
to be performed by the execution of the memory channels
update and by the inference through the various estimators
tested in this work. Additionally, we measure the time latency
introduced by each of the parts of the estimation model on the
Jetson Orin Nano single computer board system. We report
these values in Table IV. The inference time is unvarying with
respect to the number of channels employed, since the Jetson
Orin GPU computes them in parallel. The latency introduced
by the memory update process is only a fraction compared to
the total inference time. As an example, the memory update
latency is 16.4% of the inference time of LeNet-5 (i.e., the
smallest model under test) and only 0.9% of the inference
time of MobileNet-V3L.

VI. CONCLUSION

In this work, we introduced an input pipeline to improve
the performance of non-recurrent neural models for event-
based eye-tracking tasks. In particular, we employed memory
channels that integrate with a leakage multiple time surfaces
of events over time. In order to differentiate recent informa-
tion from the old, multiple memory channels are used, with
different leakage/forgetting factors. In this way, it is possible
to improve the performance of the neural estimators on this
event-based task, resulting in a non-recurrent, straightforward
structure compatible with low-power, production-grade models
such as MobileNet. We performed multiple tests, both on
synthetically generated and recorded datasets and with mul-
tiple well-known estimators, namely LeNet, MobileNet, and
ResNet. All tests showed improvements when the memory
channels pre-processing pipeline is employed.
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