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Abstract: Advancements in fuel injection systems have dramatically improved the precision of
controlling injected fuel mass or flow rate; a key factor in optimizing internal combustion engine
(ICE) performance, emissions control, and fuel efficiency. This review systematically analyzes
145 scientific research papers from the last two decades, including older foundational works, tracing
the evolution of injected mass control from early Bosch and Zeuch meters to advanced machine
learning or physical models. This study draws upon research collected from the most reputable
databases. Through both qualitative and quantitative analyses, the state-of-the-art of these systems is
presented, and key innovations are highlighted regarding advanced control algorithms and real-time
feedback mechanisms under various operational conditions such as high or transient loads and
multi-stage injection strategies. Special attention is given to challenges in maintaining precise control
with alternative fuels like biodiesel, hydrogen, or synthetic fuels, which exhibit different physical
properties compared to traditional fuels. The findings emphasize the need for further research on
injection control, especially in light of stringent emissions regulations. Improving these systems for
next-generation ICEs is a key point for achieving cleaner, more efficient combustion and bridging the
sustainability gap between traditional and future mobility solutions.

Keywords: systematic review; injected fuel mass control; internal combustion engine

1. Introduction

The automotive industry has experienced a profound transformation over the past
decade, with major shifts in both technological development and consumer perceptions.
Among the pivotal moments in this period was the 2015 Dieselgate scandal, which fun-
damentally reshaped the inclination toward diesel engines. The scandal centered on
Volkswagen’s conscious manipulation of emissions tests to present its diesel vehicles as
eco-friendly, in particular by reducing declared levels of nitrogen oxides (NOx). These
pollutants, which are connected to high environmental and health risks, have been under
regulatory measures for a long time [1,2], but the exposure of this event had extensive
consequences, from the loss of consumer trust in diesel technology to the re-evaluation of
emission standards worldwide.

Before Dieselgate, diesel engines dominated the European automotive market [3],
accounting for more than 50% of all new vehicle registrations. Their popularity derived
from their higher fuel efficiency and therefore lower CO2 emissions compared to gasoline
engines [4], making them attractive in a regulatory environment focused on reducing
greenhouse gas emissions. However, by 2023, diesel’s market share had dropped to just
13% of new vehicle registrations [5]. It is possible to appreciate the trend during the
last years in Figure 1. This decline reflects not only the erosion of consumer confidence,
but more importantly, the regulatory recoil that followed the scandal. Dieselgate catalyzed
a wave of more stringent emissions regulations, accelerating the industry’s shift away
from diesel toward alternative powertrains and technologies that promise lower tailpipe
emissions and higher local environmental sustainability.
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Figure 1. New registered cars per year in EU-27 and the percentage of diesel cars. Data from ICCT
European Vehicle Market Statistics Pocketbook [3].

The ramifications of the Dieselgate scandal are emblematic of a broader trend in the
automotive industry, but also in general toward increased environmental awareness. From
here comes the push for more efficient, lower-emission vehicles. This framework, while
not new at the time, has led to the tightening of emission standards like Euro 6-d [6] and
the impending Euro 7 regulations [7], and to the introduction of Real Driving Emissions
(RDEs) [8] type approvals in 2017, whose goal is to further reduce allowable NOx and
particulate emissions in real driving scenarios. These standards apply not only to diesel
engines but to all internal combustion engines (ICEs), driving continuous advancements
in engine technology in an attempt to remain competitive with battery or fuel cell vehi-
cles from the point of view of sustainability as well. A key area of innovation for ICEs
has been fuel injection systems, which are central to improving engine efficiency while
minimizing emissions.

Fuel injection systems, responsible for delivering fuel to the combustion chamber, play
a crucial role in determining the performance, efficiency, and emission profile of internal
combustion engines [9]. Two primary approaches in fuel injection are Port Fuel Injection
(PFI) and Direct Injection (DI), as in Figure 2. PFI involves injecting fuel into the intake
manifold, where it mixes with air before entering the combustion chamber. This method
offers simplicity, cost-effectiveness, and lower particulate emissions due to better premixing
of air and fuel [10]. These attributes make PFI systems particularly suitable for naturally
aspirated gasoline engines and hybrid powertrains, where affordability, reliability, and ease
of maintenance are critical. PFI systems are often found in economy-focused vehicles, where
low complexity and consistent performance are advantageous. However, their limitations,
such as low injection pressures and less precise fuel quantity control, restrict their ability to
support advanced combustion strategies like lean-burn or stratified charging.

In contrast, DI systems inject fuel directly into the combustion chamber at a high pres-
sure, enabling precise control of the air–fuel mixture and supporting advanced strategies
such as multiple injection events and stratified charging. These features result in improved
efficiency, power output, and reduced CO2 emissions, especially under variable engine
loads. However, DI systems come with increased costs and complexity due to the need for
high-pressure pumps, advanced injectors, and additional after-treatment systems to miti-
gate particulate emissions [10]. DI is well-suited for turbocharged and high-compression
engines, including performance-oriented gasoline and diesel powertrains. These systems
are commonly used in diesel engines, sports cars, heavy-duty trucks, and where there is a
demand for high power and efficiency while meeting stringent emissions standards.
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Figure 2. Different fuel injection arrangements—(a) single-point PFI; (b) multi-point PFI; (c) direct
in-cylinder injection (DI).

Technological advancements in fuel injection, especially in controlling the precise
mass or mass flow rate of injected fuel, have been one of the factors helping to meet more
stringent emission standards. For diesel engines, innovations like common rail injection
systems allow for high-pressure fuel delivery and multiple injection events within a single
combustion cycle. These systems provide precise control over the fuel–air mixture, enhanc-
ing combustion efficiency and reducing NOx and particulate emissions, thereby enabling
diesel engines to better compete with gasoline engines in terms of emissions [11]. However,
the post-Dieselgate shift has redirected research and development efforts toward gasoline
engines, leading to the growing adoption of gasoline direct injection (GDI) systems [12].
Similar to diesel’s common rail systems, GDI technology involves high-pressure fuel injec-
tion directly into the combustion chamber, and it has become a focal point for researchers
and manufacturers seeking to balance performance, efficiency, and emission reductions in
gasoline-powered vehicles.

Although improvements in fuel injection systems dramatically enhanced the perfor-
mance of petrol and diesel internal combustion vehicles, in order to combat climate change,
a ban on fossil fuels has been proposed by the European Union. Therefore, the automotive
industry is now being forced to adapt, moving towards alternative fuels used in internal
combustion engines. This transition is motivated by both regulatory pressures and the
growing demand for sustainable energy sources. Biofuels, hydrogen, and synthetic fuels
can be considered as promising alternatives to conventional hydrocarbons, although each of
them presents unique advantages and challenges, especially with regard to the topic of this
paper, i.e., fuel injection systems. For example, biofuels—such as the renewable origin of
biodiesel—offer potential carbon emission reductions, but due to their higher viscosity and
lower volatility, their use in existing fuel injection systems is problematic [13]. Therefore,
the research focuses on adapting injected quantity control strategies to handle the different
physical–chemical characteristics of these fuels. Hydrogen, considered a GHG-neutral fuel,
presents its own challenges, including low energy density and high combustion reactivity.
These require precise injection control to prevent pre-ignition and knocking; factors that
can compromise engine performance and durability [14].

This systematic review is justified by the growing importance of precise control over
the injected fuel mass in addressing critical global challenges related to energy efficiency
and environmental sustainability. As transportation remains a significant contributor to
greenhouse gas (GHG) emissions, optimizing fuel injection systems directly supports
reductions in CO2 and particulate emissions, particularly in high-emitting sectors like
heavy-duty transport. Improved injection control enhances combustion efficiency, which
translates to lower fuel consumption and reduced reliance on fossil fuels, aligning with
energy efficiency goals. The fuel injected mass control becomes crucial, considering that
most of the open-loop engine strategies depend on the ECU prediction of fuel flow rate.
Therefore, the effectiveness of these open-loop strategies, tuned during the dynamic test
bench calibration, depends on the accuracy of this prediction. As a consequence, closed-
loop real-time knowledge of the injected fuel quantity allows the engine to adopt the best
calibration for the actual working conditions.
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Additionally, as alternative fuels such as hydrogen, ammonia, and biodiesel gain
prominence, precise injection control is essential to managing their unique combustion
characteristics, ensuring compatibility with existing engine technologies and supporting
the transition to sustainable transportation. To this end, advanced control algorithms
are being studied, including real-time feedback systems that are capable of correcting
the injected mass quantity depending on engine operating conditions. Recent literature
reviews have provided valuable insights into existing fuel injection models and control
strategies. For example, Mata’s review [15] provides a broad overview of fuel injection
control models, particularly zero-dimensional (0-D) models, which are computationally
efficient but may lack the necessary details for predictive control under dynamic conditions.
Other previous reviews [16–19] have shed light on some types of fuel injection control
and measurements, but, being dated, lack insights into recent advances, particularly in
areas such as machine learning and adaptive control algorithms for real-time applications.
Understanding the critical role that fuel injection systems play in the evolution of internal
combustion engines in the current historical context of energy transition, this review aims
to provide a comprehensive and up-to-date summary of the latest advances in fuel mass
control in internal combustion engine vehicles. This work differs from the previous ones
both in its methodology, i.e., a systematic classification, and in the approaches analyzed,
including advancements in machine learning applications and real-time adaptive control
strategies for both conventional and alternative fuel solutions. This review will classify
current control approaches, highlight key innovations that have improved the efficiency of
combustion and emission reductions, and identify gaps in the existing literature.

This review is organized as follows: Section 2 details the systematic approach used
to gather and analyze relevant literature on mass fuel injection control. Sections 3 and 4
provide an in-depth review of current technologies and strategies for mass fuel injection
control, with a focus on the challenges and opportunities associated with alternative fuels.
Finally, Section 5 summarizes key findings and proposes future research directions for the
optimization of fuel injection systems for next-generation ICEs.

2. Materials and Methods

A systematic literature review (SLR) is chosen as the methodology, as it is a rigorous ap-
proach designed to comprehensively identify, evaluate, and synthesize existing research on
a specific topic [20,21]. This approach is valued for minimizing bias, ensuring transparency,
and providing a structured overview of the current state of the art. By following these
principles, a SLR makes it easier to gain a more objective understanding of the literature
and points out areas where further research is needed.

This section summarizes how this review was carried out. First, the research questions
were clearly defined to guide the search process; next, the appropriate databases were se-
lected to ensure a comprehensive but meaningful coverage of the literature. The search was
made using a set of relevant keywords, which were developed to refine the results. Finally,
before starting the studying process, inclusion and exclusion criteria were established to
filter the relevant studies. This review follows the PRISMA 2020 checklist. This review has
not been registered.

2.1. Research Question Definitions

Research questions (RQs) provide a clear and focused framework for research, analysis
and synthesis of the literature. The research questions for this review were chosen to
capture the full range of advances in injected mass control technologies, encompassing
every existing approach in order to classify them and ultimately to be able to identify future
research directions. These questions ensure that the selected bibliography is relevant and
aligned with the objectives of the review.

RQ1: What is the state of the art of injected mass control in ICEs? This question aims to
provide a comprehensive overview of current advances in the field. All key technologies,



Energies 2024, 17, 6455 5 of 37

methodologies, and innovations used in injected mass control are explored so that an
overview of state-of-the-art fuel injection system control can be obtained.

RQ2: How can current approaches to injected mass control be classified? Once the state of the
art is clear, the goal is to classify the various techniques and strategies used for injected mass
control, providing a structured overview of the methods employed in ICEs. By classifying
the relevant literature, this question helps to quantify and organize the scientific publications,
providing a clearer understanding of the field and enabling statistical conclusions to be
drawn on which topics are most relevant or which techniques are most commonly used.

RQ3: What are the future research directions concerning the control of injected mass in ICEs?
The purpose of this last question is to address gaps in the current literature, with the aim of
highlighting under-researched areas and proposing potential future research directions.

2.2. Database Selection

The selection of databases used to source the cited literature ensures that the search is
comprehensive and relevant to the field of fuel injection systems in automotive engineering,
and that it responds robustly to the RQs that have been posed. Therefore, it has been
decided to use three major academic search engines for this review, which are considered
reliable due to their reputation in the scientific community and their relevance to the topics
of internal combustion engines and fuel injection systems. More precisely:

Google Scholar: Provides access to a wide range of interdisciplinary research, including
conference papers, journal articles, and patents. Its comprehensiveness makes it the most-
used tool for identifying important work in various fields.

Scopus: Offers detailed citation analysis and has a robust filtering system for high-
quality peer-reviewed articles, particularly in engineering and applied sciences.

Web of Science: Having a comprehensive indexing of high-impact journals, Web of
Science is ideal for tracking the evolution of research topics and understanding the citation
dynamics in a particular field.

2.3. Keyword Selection

To implement an in-depth query, a list of keywords was developed. They were selected
to include both broad and specific aspects of injected mass control in ICEs, with the aim of
capturing a comprehensive spectrum of papers for the search. Keywords were also created
to include terminology variations and were combined with Boolean operators to refine the
search, especially to limit the results to ICEs.

The key search words included the following:

• “Injected mass control”
• “Fuel injection systems”
• “Rate of injection”
• “Alternative fuels injection”
• “Injected mass quantity”
• “Internal combustion engines”

2.4. Inclusion Criteria

Inclusion criteria were established to ensure the quality and relevance of the selected
literature. The criteria were designed to screen the literature in order to specifically focus
on finding peer-reviewed papers that directly addressed the control of injected mass in
ICEs in a somewhat exclusive manner.

The inclusion criteria were as follows:

• Peer-reviewed articles: To ensure the quality and reliability of the results, only studies
published in reputable, peer-reviewed journals were considered, without applying a
lower threshold to the number of citations.

• Recent studies: Articles published within the last 20 years were prioritized to ensure
that this review reflects current trends and advances in the field. Foundational works
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that are frequently cited in more recent studies were included to recognize their
continued relevance.

• Focus on injected mass control: Research directly related to techniques for controlling
the mass of fuel injected into internal combustion engine vehicles, whether for petrol,
diesel, or alternative fuels, was included.

• Geographical diversity: Studies from different regions were considered to provide a
global perspective on advances in fuel injection technology.

2.5. Exclusion Criteria

Exclusion criteria were also applied for the same purpose as the inclusion criteria,
including:

• Non-peer-reviewed papers: Theses, conference papers, and results that did not un-
dergo peer review were excluded in order to maintain the integrity of the review.

• Non-English-language articles: Only studies published in English were considered,
as most high-impact research in this field is published in English.

• Obsolete research: Studies that do not reflect the current state of the art were excluded,
particularly those published before 2000, unless they were foundational works.

• Irrelevant topics: Research focusing on injection systems for unrelated applications
(e.g., turbine combustors, catalytic systems) or on aspects of fuel injection unrelated to
mass control (e.g., emission modeling or combustion optimization) were excluded.

2.6. Limitations of the Systematic Literature Review, Difficulties, and Shortcomings

Although this review uses a rigorous methodology to ensure comprehensive coverage
of relevant literature, some limitations are acknowledged. First, the inclusion criterion for
language limits the literature to studies in English, which may exclude relevant findings
published in other languages, particularly from regions where alternative fuel technologies
are heavily studied.

Furthermore, the focus on peer-reviewed articles ensures quality and reliability
but may exclude advanced developments presented in conference papers, patents, or tech-
nical reports that are not formally published. Given the strong industrialization of fuel
injection technologies, it is possible that some concepts may not have been taken into
full consideration in this review. Finally, although an attempt was made to include sem-
inal studies published before 2000, the emphasis on recent literature means that earlier
foundational work may be under-represented unless directly cited in more recent studies.

As can be appreciated in the remainder of this paper, the key step, and therefore the
one that required the most time and attention, was to define the micro and macro categories
into which each work fit. In fact, only after selecting the works to be examined was it
possible to draw borders between the various categories. It will be seen that, along with
the others, a “hybrid” approach exists; that is, one that exploits multiple methodologies.
The creation of this latter category was taken into account only after a while, as it was seen
to represent a breakthrough approach for the future of the field.

2.7. Quantitative and Qualitative Analysis

The selected literature was analyzed both quantitatively and qualitatively to ensure a
comprehensive assessment of trends, technological advances, and research gaps. A frame-
work was developed to interpret the results, linking the findings directly to the research
questions. The framework includes the synthesis of the results, in which quantitative data
are integrated with qualitative data to provide a comprehensive overview of the field.

2.7.1. Quantitative Analysis

The quantitative analysis in this systematic literature review aims to provide a statisti-
cal overview of the research on injected mass control in ICEs. The analysis will focus on
several key metrics reflecting trends in publication volume, citation impact, and geographi-
cal distribution of relevant literature.
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First, the annual number of publications will be examined to assess whether interest
in the field of fuel injection control systems has been unchanged over time. Furthermore,
citation analysis will be used to assess the impact of specific studies in the broader context
of automotive engineering. By analyzing the number of citations and the quality of the
journals, it is possible to identify the most influential papers in the field, thus highlighting
their contribution to advances in fuel-injected mass or mass flow control technologies.

In addition to examining publication and citation trends, the geographical distribution
of the research will also be analyzed in order to discover the leading regions and institutions
contributing to the development of fuel injection technologies. By analyzing publication
trends across countries, it will be possible to understand how different regulatory environ-
ments and technological priorities influence the directions and outcomes of injected mass
control research.

This multifaceted quantitative approach will facilitate a broader understanding of the
evolution of injected mass control research in recent years.

2.7.2. Qualitative Analysis

The qualitative analysis will complement the analysis performed, with a focus on iden-
tifying and synthesizing key themes, methodologies, and research gaps within the studied
field. A central aspect of this analysis will be the classification of control methodologies
employed in fuel injection systems in order to answer one of the RQs of this systematic
review. Using the above research methodology, the investigation will encompass a broad
spectrum of mass measurement or estimation techniques, ranging from traditional instru-
mental measurement to advanced approaches incorporating real-time adaptive control and
machine learning algorithms. The study of different methodologies is crucial because they
can be useful in improving engine performance and reducing emissions.

In addition, special attention will be paid to the compatibility of injection technologies
with alternative fuels, including biodiesel, hydrogen, and synthetic fuels. As the automotive
industry shifts to these new energy sources, it becomes imperative to understand how and
whether existing injection systems can adapt to different fuel properties. This analysis will
include the specific challenges related to the impact that variations in the chemical and
physical properties of the fuel have on the injected quantity.

Finally, one of the main goals of the qualitative analysis is to also answer the third RQ by
identifying research gaps, particularly in under-explored areas such as adaptive control under
varying transient engine conditions, adaptability of injection system control to gaseous fuels,
and scalability of machine learning algorithms for real-time injection control. By highlighting
these gaps, this review aims to propose potential avenues for future investigations, thus
fostering the continued development of innovative fuel injection technologies.

Overall, the qualitative approach will provide a comprehensive assessment of ad-
vances and challenges in injected mass control, providing insights into how these technolo-
gies can be improved to meet future performance and regulatory requirements. Linking the
results of the quantitative and qualitative analyses to established research questions will
build a cohesive narrative that encapsulates the current state of the field and illuminates
pathways for future research efforts.

3. Results
3.1. Quantitative Analysis

The first result of this SLR is a presentation of the results of the search, as described
in Section 2. In Figure 3, the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow chart elucidates the step-by-step screening and identification
process of the literature.
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Figure 3. Flow chart adapted from PRISMA 2020 for systematic reviews, which included only
searches of databases.

The field of injection mass control in ICEs has shown consistent growth since the 1990s,
with notable spikes in research output aligning with advancements in computational tools
and machine learning capabilities. Foundational work in the 1960s and 1970s established
key measurement techniques like [22–25], providing the basis for early model-based ap-
proaches. Since then, publications have increased, particularly with the industry’s focus on
emission reductions and fuel efficiency in response to regulations like Euro 6 and Euro 7
(Figure 4).

Analyzing the journals in which the papers cited in this work were published, it can
be observed that the majority of them are first-quartile journals, denoting a high quality of
the contents (Figure 5). The journals that have historically been most interested in the topic
are Fuel, International Journal of Engine Research, and Applied Energy, as well as others
such as Energy and Measurements.

Figure 4. Number of publications considered per year.
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Figure 5. Journal rankings.

Studies like [26,27] demonstrated the validity of model-based applications, while
more recent works have leveraged machine learning for predictive models, enabling real-
time adaptive control for varied engine conditions and fuel types [28–30]. This evolution,
which is summarized in Table 1, reflects the increasing complexity to injection mass control
challenges when alternative, and not necessarily liquid, fuels are considered.

Table 1. Evolution of injected mass control methodologies by decade.

Decade Key Studies Methodologies Research Focus

1960s [22] Direct measurement using hydraulic
measuring tubes

Focused on foundational direct measurement
techniques for injection rate accuracy

1970s [31] Analytical and initial model-based estimation Introduced early model-based approaches for
estimating fuel injection parameters

1980s [32,33] Expansion of direct measurements with
advanced flow meters and pressure sensors

Improved accuracy in injection measurements,
with growing interest in transient flow dynamics

1990s [34–36] Hybrid approaches combining direct
measurement and model-based estimation

Focused on integrating real-time data from direct
measurements with early computational models

2000s [37–39] Advanced model-based methods, including 1D
and 0D simulations

Shifted towards computational simulations to
model injection systems under varying conditions

2010s [30,40]
Emergence of machine learning models,
integration of real-time feedback in
injection control

Increased focus on predictive models, feedback
mechanisms, and adapting to variable fuels

2020s [41–43] Machine learning, hybrid control strategies,
alternative fuel adaptation

Emphasis on adaptive control for alternative fuels,
with complex real-time systems for
transient conditions

Research on injection control methods is concentrated primarily in Europe, North
America, and Asia, with each region contributing distinct advancements. The first two
regions have pioneered model-based control and adaptive injection models. Contributions
like [44,45] emphasize the development of predictive control mechanisms suitable for
diverse engine loads and environmental conditions. It is interesting, in this regard, to note
that in Europe or the United States, for example, research is driven by strict environmental
policies, and the legislative framework is oriented toward emission reductions, as men-
tioned in the introduction. From this perspective, the relevant contribution of works that
are oriented toward diversified operating conditions should be identified to ensure a broad
spectrum of applicability of the increase in system efficiency. Economic constraints are
not overly demanding; instead, there is a focus on achieving sustainability goals such as
those of the Green Deal, which promotes innovation from the standpoint of new fuels and
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new hybrid systems. In the U.S., there is a duality between car manufacturers and the
still prolific oil industry versus renewable energy, hybridization, and systems to reduce
emissions. The Biden administration reinstated tighter constraints on fuel efficiency targets
(CAFE Standards) at the federal level, but some states have taken a stronger edge over
others. For example, California has a goal of having 100% of new car sales as zero-emission
vehicles (ZEVs) by 2035, implying a shift towards decarbonized fuels and electrification.

Asian research, particularly in recent years, has focused on machine learning applica-
tions aimed at enhancing fuel efficiency and enabling alternative fuel adaptability. Recent
studies [46,47] have specialized in fuel control systems tailored for specific fuel types,
underscoring the region’s emphasis on fuel flexibility. It is important to underline that this
continent is home to some of the largest and most innovative car manufacturers, always at
the forefront of hybridization and energy efficiency. In addition, countries such as China,
Japan, and South Korea have established themselves globally in research as leaders in the
fields of artificial intelligence and machine learning, with significant investments in these
areas. Governments are actively promoting AI development with strategies at the national
level as well (e.g., the Chinese case of the “next generation AI development plan”). This
environment promotes collaborations between industry and academic research, resulting in
rapid developments of new ML techniques and new applications. Lastly, ML technologies
applied to this field reduce the cost of the injection control system, as it reduces the need
for upgrades at the hardware level and accommodates retrofits.

In addition, South America and Australia have contributed to lower-cost model-based
estimations that are suitable for resource-constrained settings, focusing on high flexibility,
as shown in references [29,48,49]. Indeed, South American states have many incentives
for retrofitting ICEs to meet emission standards, also promoting the use of flex-fuel ICEs,
which can be powered by ethanol or biofuels. In this context, economic constraints have
the upper hand over environmental ones, yet these are not completely neglected. This is
where the lower cost injection control models come from, which are highly beneficial in
their intended areas. Australia is also moving on this front, as it is a small player from
a market and automotive research perspective in which the high range requirements of
vehicles tend to delay the push for electrification.

Four main categories will be used in this SLR to systematically categorize the an-
alyzed papers: direct measurements, physical model-based estimations, and machine
learning-based models. The forth category represents the hybrid approaches using direct
measurements and models to have a lower cost and better estimates during operations.
The global distribution of categories can be seen in Figure 6.

Figure 6. Global distribution of research activity based on methodology categories. The colors
represent the category for which the given country has contributed the most.
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A citation analysis reveals that influential papers typically introduce innovative
methodologies or practical applications with widespread implications. Foundational works,
particularly those focusing on common rail systems, emissions control, and model-based
injection strategies, have high citation counts, indicating their impact on the field. The high
number of citations on common rail-related works, and the fact that the peak of citations is
around 2014, as it is possible to see in Figure 7, is in line with the historical context at hand.
In fact, as already discussed in Section 1, after Dieselgate, interest in the control of injection
systems initially decreased, focusing mainly on the optimization of direct injection gasoline
systems, and then reawakened in the pursuit of alternatives to fossil fuels.

Figure 7. Citations for the papers published in a given year until now. The peak in citations is in 2014.

3.2. Qualitative Analysis
3.2.1. Definitions and Terminology

In this section, the definitions and terminology used in the context of fuel injection
system analysis are provided. This systematic review examines various fuel injection
parameters and their roles in enhancing engine performance, emissions, and combustion
efficiency. The terminology discussed here is hence foundational for understanding the
dynamics of fuel injection and its effects on combustion characteristics.

Fuel Mass Flow Rate (ṁfuel)

The fuel mass flow rate, denoted as ṁfuel, represents the amount of fuel delivered into
the combustion chamber per unit of time. Accurate control of this rate allows for regulation
of the air–fuel ratio and, subsequently, the energy release during combustion. The fuel
mass flow rate is critical for achieving precise combustion control.

The mass flow rate of fuel can be expressed as follows:

ṁfuel = ρfuel · Anozzle · vfuel (1)

where:

• ρfuel = density of the fuel (kg/m³),
• Anozzle = cross-sectional area of the injector nozzle (m²),
• vfuel = velocity of the fuel through the nozzle (m/s).

In the context of fuel injection, the mass flow rate is often referred to as the Rate of
Injection (ROI). The ROI indicates the speed at which fuel is injected into the combustion
chamber, influencing combustion efficiency and emissions [50,51]. The measurement of
the ROI for a common rail diesel injector is demonstrated in Figure 8. It quantifies the fuel
mass injected per unit of time and takes part in adaptive control strategies that optimize
engine performance based on changing conditions [32,52]. Refinements in ROI modeling,
especially under transient conditions, have improved engine responsiveness in dynamic
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load scenarios [51]. Studies highlight the ROI’s role in optimizing droplet size distribution
and fuel atomization; both critical for efficient combustion and reduced emissions [53,54].

Figure 8. Real measurement of the rate of injection for a diesel common rail injector.

Fuel Mass (mfuel)

The fuel mass (mfuel) represents the total amount of fuel injected during a single
combustion cycle. It is a fundamental factor in determining the air–fuel ratio (AFR), thereby
affecting combustion characteristics, power output, and emissions.

The total injected fuel mass is calculated by integrating the rate of injection over the
injection event duration, i.e., from t0 = start of injection to t f = end of injection.

Injection Pressure (∆P)

In this paper, the injection pressure, ∆P, is defined as the pressure differential be-
tween the fuel rail and the combustion chamber, which is essential for atomizing fuel and
improving spray characteristics. It is calculated as follows:

∆P = Prail − Pchamber (2)

Commonly, one refers to the rail pressure as the injection pressure, since modern
injection systems can efficiently control its value with a closed-loop strategy.

Air–Fuel Ratio (α)

The air–fuel ratio, α, is the mass ratio of air to fuel in the combustion chamber;
a parameter to act upon when dealing with combustion and emission optimization:

α =
mair

mfuel
(3)

where:

• mair = mass of air in the mixture (kg),
• mfuel = mass of fuel in the mixture (kg).

Needle Lift (hn)

The needle lift (hn) represents the injector needle’s displacement, affecting flow area
and fuel spray patterns.

Injection Timing

Injection timing is the point in the engine cycle when fuel is injected, typically mea-
sured in crank angle degrees relative to top dead center firing (TDC-f).
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Energizing Time (ET) and Dwell Time (DT)

The energizing time represents the duration of the signal that triggers the injection,
i.e., the duration of the current signal provided by the Electronic Control Unit (ECU) to
the pilot stage of a solenoid injector or to the piezo-actuator of a piezoelectric injector.
Modern injection strategies, mainly for diesel engines, are based on multiple injections over
an engine cycle, enabling efficient combustion, emission control, and performance. Each
injection (pilot, main, post) is characterized by a particular ET value, and the time interval
between consecutive shots is labeled as the dwell time (DT).

Types of Injectors and Injection Systems

The injector type influences the precision and responsiveness of fuel delivery, with each
type suited to specific applications:

• Solenoid Injector (SI): solenoid-based injectors, common in many diesel engines,
rely on magnetic solenoids to open and close pilot valves to manage the needle
movement that opens and closes the nozzle holes. While generally more cost-effective,
and with good control, they have moderate response times, which can limit precision in
applications requiring rapid adjustments, very high injection pressures, or in working
conditions featuring multiple closely coupled injections. A scheme of this injector can
be found in Figure 9.

• Piezoelectric Injectors (PI): the hydraulic circuit of these injectors features piezoelectric
crystals. Piezoelectric injectors can be driven directly, i.e., the piezo stack actuates the
needle, or indirectly, where the piezo stack acts on the pilot stage.
The main differences in the hydraulic and engine performance between the solenoid
and indirect-acting piezoelectric injectors can mainly be ascribed to the presence of
different layout solutions in the internal circuit of the injectors (such as the bypass,
the pressure-balanced pilot-valve, and the Minirail) rather than to the injector driving
system. If solenoid and indirect acting piezoelectric injectors shared the same internal
hydraulic layout, the differences in their performance would be minimal. Therefore,
since the manufacturing cost of solenoid injectors is still lower than that of piezoelectric
injectors, solenoid technology should be the preferred option when indirect acting
injectors are considered [55].
Instead, the direct acting injector, which can only be realized with piezoelectric tech-
nology, improves the control of the injection shape, enabling additional strategies
(such as boot injection [56]). Moreover, a higher hydraulic efficiency is achieved due
to the reduced static leakages. A scheme of a direct acting piezo injector can be found
in Figure 10.
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Figure 9. Scheme of a solenoid injector.

Figure 10. Scheme of a direct-acting piezoelectric injector.

• Common rail injector: found in diesel engines, this allows for precise injection timing
and pressure control. Common Rail (CR) systems regulate fuel pressure independently
of engine speed, providing adaptable fuel delivery across operating conditions [57,58].
Non hydraulically amplified common rail injection systems featuring ultra-high injec-
tion pressure, up to 3000 bar, have been developed [59] but did not reach the market.
Maximum values of the injection pressure for commercial injectors are around 2700 bar.
Most of the applications feature a solenoid-injector architecture. A schematic of the
system can be found in Figure 11.
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Figure 11. Scheme of common rail system.

• Gasoline Direct Injection (GDI): used in gasoline engines, GDI systems inject fuel
directly into the combustion chamber, enhancing fuel atomization, control, and com-
bustion efficiency, especially in lean-burn conditions [60]. The 500 bar level represents
the target for next-generation GDI systems [61]. The scheme of this system is similar to
that of the common rail. Due to the reduced injection pressure levels compared with
those of a diesel injection system, the internal architecture of a GDI injector is simpler
than that of a diesel injector. Usually, a GDI injector is a solenoid injector without a
pilot stage, and the solenoid force is high enough to move up the needle to trigger the
injection. A scheme of such injector is reported in Figure 12.

Figure 12. Scheme of a GDI injector.

3.2.2. Categorization of Approaches

Research in injected mass control can be divided into multiple core methodologies,
which are summarized in Table 2 with their primary approaches, strengths, and studies in
the field.
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Table 2. Summary of methodologies in injected mass control.

Methodology Approach Strengths List of References

Direct measurements

Utilization of test benches,
Coriolis flow meters, optical
diagnostic tools,
and high-frequency pressure
transducers for real-time data
collection

High accuracy with real-time
data collection; provides
direct, empirical
measurements of injection
dynamics; supports validation
through physical simulations

[22–25,32–
34,38,42,48,55,60,62–116]

Model-based estimation

Application of
zero-dimensional and
one-dimensional
computational models (e.g.,
thermodynamic and hydraulic
models) to simulate injection
parameters; often validated
through test bench data

Cost-effective and adaptable
to various conditions; allows
for extensive parameter
testing with minimal physical
resources; applicable in
scenarios where direct
measurements are infeasible

[26,27,31,36,39,40,44,45,49,53,
57,115,117–148]

Machine learning-based
approaches

Utilization of supervised and
deep learning algorithms to
predict injection parameters
based on large datasets of
historical injection data;
neural networks and hybrid
algorithms for predictive
accuracy

High adaptability to complex,
high-dimensional datasets;
capable of dynamic, real-time
predictive control with
minimal need for direct
physical measurement; ideal
for transient conditions

[28–30,41,43,46,47,149,150]

Hybrid approaches

Combines direct
measurement, model-based
estimations, and machine
learning techniques to harness
the strengths of each method,
allowing for enhanced
flexibility and accuracy in
variable conditions

Offers comprehensive analysis
through multiple data sources;
provides greater adaptability
and robustness, particularly
under rapidly changing
operational conditions

[35,54,91,97,148,151–168]

Table 3, instead, illustrates the distribution of research methodologies in the field.
Direct measurements techniques hold the largest share, followed by model-based and
hybrid approaches, especially in recent years. This trend highlights the need for reliable
and consistent empirical validation methods; however, it also points to the crescent need
for cost-effective solutions.

Table 3. Distribution of research approaches in injected mass control.

Category Percentage of Literature

Direct measurements 47.9%

Model-based estimation 28.7%

Machine learning-based approaches 7.6%

Hybrid approach 15.8%

Direct Measurements

Direct measurement methodologies encompass studies focused on obtaining real-time
data regarding injection systems, including parameters such as injection rate, mass flow,
spray dynamics, and pressure variations. Direct measurements rely on experimental setups,
often involving flowmeters, optical diagnostics, and pressure transducers, to capture the
system’s performance across various conditions. While these methods offer high accuracy,
they can be costly and complex to set up for dynamic engine environments [116,169].
The foundational works about direct measurements widely used to quantify injection
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rates and injected fuel mass reveal two different approaches, as explained in [34]. The
first is the Bosch method [22], introduced in the mid-20th century, which uses a hydraulic
measuring tube to measure fuel injection rate by monitoring the pressure wave propagation
triggered by the injection event, as seen in Figure 13. This method is highly accurate,
reliable, and repeatable, but it is not applicable to high-speed transient measurements due
to the inertia in the liquid column, and the pressure waves can cause signal distortion at
high injection pressures.

Figure 13. Bosch measurement device.

The second is the Zeuch method [25], which focuses on dynamic measurement using
a fuel accumulator and a pressure transducer. This setup, which is shown in Figure 14,
allows the pressure changes in the accumulator to be converted directly into injection
rate information. The pressure rise in the accumulator, measured by a high-frequency
pressure transducer, provides real-time data on the mass flow rate of the fuel being injected.
This method provides more immediate measurements, useful for transient and real-time
applications, but it is sensitive to initial pressure conditions, requiring calibration, and it
has a more complex setup with respect of the previous methodology. Measurements using
the Bosch method show slower rising slopes of the injected flow rate, an anomalous tail
at the end of injection, and a time-delay in the flow rate trace; while the Zeuch method
demonstrates superior accuracy under the conditions tested in the study [170]. These
techniques represent the state of the art of injected flow rate test bench measurements;
however, since they require that the injector tip is installed in a measuring device (a
measuring tube for the Bosch method and an accumulation volume in the Zeuch method),
they are not employed for setting up control strategies for on-engine applications, where
the injector tip is inserted in the combustion chamber or in the intake manifold.
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Figure 14. Zeuch approach measurement principle for injected mass.

DENSO technology designed the i-Art system, which has a control chamber in which
the pressure is measured via a piezoelectric pressure sensor mounted on the injector pilot
stage. In this way, a transfer function of the pressure signal is able to predict the injected
mass [80,97]. Delphi, instead, proposed the “Switch” technology. The non-ballistic needle
is placed within an electric circuit designed to detect voltage. The needle closes the circuit
in two ways: closing the nozzle or reaching the upper stroke limit. In this way, it is possible
to detect the voltage at two specific time instants, from which the injected quantity can be
estimated using a submodel based on the needle’s lift [94].

Some researchers studied a new flowmeter for monitoring high-pressure, transient
flows and validated it through 1D numerical models. It is based on measuring two pres-
sure signals and deriving the mass flow rate through an ordinary differential equation
combining continuity and momentum equations. Using this flowmeter could potentially
allow researchers to have a feedback control strategy to compensate for inaccuracies in
injected mass [42]. In fact, by installing the new flowmeter between the rail and the injector,
it is possible to monitor the flowrate and therefore the mass entering the injector during
the injection event. Extensive experimental campaigns have verified that the entering
mass is strongly correlated to the injected mass (as can be expected based on the conti-
nuity equation). Tests performed by beans of a rapid prototyping hardware have shown
promising results for on-engine applications, since closed-loop control for the injected
mass has been set up only based on signals that can be measured both at a hydraulic test
bench and at a dynamometer test ring [98,137]. When real-time evaluation of fuel mass
injected is concerned, another study proposes to install a single pressure transducer on
the pipe that connects the injector to the rail, capturing pressure time histories during the
injection process (the set up is similar to those of the Bosch measuring principle). The study
found a strong correlation between the estimated fuel flow rates and the measured volumes
of fuel during small injections. The derived relationship could be implemented in the
engine’s ECU for better control of the injected mass [93]. The precision of injection rate
measurements improved both for the piezoelectric injector, as in [86], where a system that
integrates advanced signal processing techniques and calibration algorithms can achieve
consistent and repeatable measurements across different injection phases; and for solenoid
injectors, as in [102], where closely coupled multi-injection strategies are analyzed and
critical insights are drawn regarding the influence of these strategies on fuel delivery.
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Riemann wave theory was used to enhance accuracy in [110], deriving a mathematical
relationship between injection rate and the pressure sensed at the injector inlet to be used in
real-time injection rate measurements in common rail systems. Based on Zeuch’s method,
in the study [32], a built-in device for precisely calibrating the volume elasticity of the
fuel is proposed, which would serve for capturing pressure variations and inferring the
fuel injection rate. Some researchers focused their attention on Coriolis mass flow meters,
to which they applied different signal processing techniques like the prism finite impulse
response [104,105,169]. These techniques are used for tracking the vibration modes of the
Coriolis flow tube and measure the mass flow rate of individual fuel injections, providing a
foundation for potential on-engine real-time application of fuel flow measurements.

Coriolis flow meters, together with tracer-based Laser-Induced Fluorescence (LIF), are
a benchmark for their high precision. However, their implementation implies significant
costs and limited adaptability in dynamic injection scenarios [17,23,171].

Other devices to be used in test benches, instead, are based on strain gauges which
detect the deformation of a membrane in a full Wheatstone bridge configuration. This
membrane should deform due to pressure waves generated by the rapid rise of fuel in the
measuring space, as seen in [68]. Another takes into account the electric charge generated
by liquid droplets as they impact a metal electrode. The electric charge is generated in
the nozzle due to the friction between the fuel and the metal parts [65]. When comparing
different kind of injectors, ref. [88] takes into account all the factors that the operating
conditions (i.e., back pressure, electrical pulse width, injection frequency, fuel pressure)
have on different injection strategies. For example, a failure in accounting geometry-
induced cavitation in the cylindrical nozzle causes an overestimation of the injection rate
of around 9% [103]. Important non-linear behaviors and the relationship between needle
lift and ROI are key to optimizing injector performances in [90]. Moreover, the needle
dynamics are a key factor in mass flow consistency, as can be seen in [136]. The majority of
direct measurement methodologies are applicable only in test benches, such as the ones
using laser Doppler vibrometry to measure needle displacement during operation. This is
done by pointing a laser beam onto the back surface of the needle through a quartz window,
ensuring that fuel pressurization and normal injector operation are maintained [112].

When other fuels are considered, the impacts of fuel properties have been deemed to
be of paramount importance. A cost-effective method for injection rate estimation validated
for multiple fuels is proposed in ref. [108]. A method for high-precision measurements of
transient injection rates of natural gas is proposed in [106] and validated with Schlieren
imaging. With momentum and pressure–volume methods, the gas injection rate of a
dual-fuel high-pressure direct injection is measured [116]. A study simulating real engine
environments analyses the main after injection strategy and the effects that the back pressure
and reflected compression waves from the diesel supply system have on the injected mass
of gaseous fuel.

While direct measurement methodologies provide invaluable insights into fuel injec-
tion dynamics with high accuracy and real-time data collection, they also present challenges
in terms of setup complexity, cost, and adaptability to rapidly changing engine conditions,
as it is possible to see in Table 4. As the industry continues to demand more flexible
and efficient systems, particularly with the rise of alternative fuels, direct measurement
techniques serve as a foundational yet increasingly complemented approach, paving the
way for hybrid and model-based methods that address the limitations of standalone empir-
ical measurements.
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Table 4. Comparison of some of the direct measurement techniques.

Technique Advantages Limitations

Optical diagnostics Precise visualization of spray
dynamics

Restricted to laboratory
settings

Pressure transducers Real-time data acquisition Potential sensor degradation

Coriolis flow meters Accurate mass flow
measurements

Expensive, complex
installation

Injector waveform analysis Detailed insights into injector
behavior Requires exact calibration

Model-Based Estimation

Model-based estimation techniques utilize mathematical models to predict key pa-
rameters in fuel injection, such as injection mass, timing, and needle lift. Popular methods
include zero-dimensional and one-dimensional models, which are computationally efficient
and adaptable to various conditions, though they may struggle with non-linear engine
environments. Computational fluid dynamics models provide detailed predictions but
are computationally intensive [26,124]. One of the first attempts in this matter is [36],
in which the designed system would dynamically adjust the air–fuel ratio (AFR) in SI
engines using a mathematical model that estimates the fuel injection quantity based on
engine operating conditions. The adaptive system compensates for sensor errors, engine
wear, and environmental changes, optimizing fuel delivery in real-time. Ref. [118] offers a
closed-loop real-time control solution, adjusting dynamically to operating conditions and
improving the fuel efficiency over traditional open-loop systems.

For diesel engines, ref. [117] is among the first to focus on factors such as injection
pressure, needle lift, and mass flow rate, with the aim of optimizing the fuel delivery
process. The model accounts for the dynamic behavior of the injector, incorporating both
hydraulic and mechanical effects within the fuel injection system. The mathematical model
provides an accurate estimation of injection parameters, but remains highly theoretical.
Refs. [119,172] provides a non-intrusive measurement technique through Time–Frequency
(TFA) vibration analysis, combining Wigner–Ville distribution and experimental measure-
ments, but not validating it over a wide range of operating conditions. TFA was applied also
in [142] for deriving insights into complex pressure variations for providing high-resolution
detection of injections.

Zero-dimensional models [37,40,49,139] offer a lower computational cost, which en-
ables them to run for real-time applications. Moreover, the integration with experimental
testing offers a thorough understanding of the problems analyzed.

One-dimensional models were also proposed. For example, in [124], a comprehen-
sive mathematical model was proposed for simulating the dynamics of a common-rail
injection system, focusing on the thermofluid dynamics, electromagnetics, and mechanical
behaviors of components like rails, connecting pipes, and injectors. The model incorpo-
rates one-dimensional flow equations to simulate wave propagation and includes a simple
electromagnetic circuit model to predict the solenoid forces. It also addresses fuel com-
pressibility and cavitation effects within the system. Ref. [26] offers a detailed analysis of
the hydraulic performance of injectors using biodiesel; a key aspect for adapting modern
diesel engines to alternative fuels. Other studies have the same goal of transforming in-
jector design to achieve high control in mass quantity accounting; for example, for fuel
temperature, which decreases viscosity, affecting the needle lift and the injector’s response,
pressure drops in the control volume and forces due to viscous friction [121,145,155]. Other
phenomenological models for predicting the ROI have been studied, e.g., [45], which after
calibration offer good predictive capability across a wide range of rail pressure, making
it useful for different injection strategies. As far as hydrogen is concerned, there are few
studies, and they have not been experimentally validated. It is still worth citing [141],
which, through 3D CFD simulations, analyzes the effects of injection pressure and nozzle
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diameter on the injected flow rate in hydrogen DI engines, providing some insights on the
optimization of hydrogen injection parameters for better efficiencies. While most of the
model-based estimations are well-suited to stable operating conditions, they may struggle
with the complexities of dynamic injection conditions, as highlighted in Pickl’s work on
load variations [173]. The accuracies are therefore lower with respect to direct measure-
ments, but with reasonable error margins overall, within 5%. In Table 5 it is possible to find
a brief summary of the techniques available for model-based approaches.

Table 5. Comparison of model-based estimation techniques.

Technique Advantages Limitations

1D/3D CFD models High accuracy for flow
dynamics Computationally demanding

Zero-dimensional models Quick calculations for
injection rates

Limited to simple geometries
or injection strategies

Mathematical algorithms Adaptable to different fuel
types

Requires significant
calibration

Machine Learning-Based Approaches

Machine learning has been used for decades for classifying signals, and it is becoming
increasingly relevant in a broad range of topics in science and engineering, including
fluid dynamics [29]. Fuel injection control is one of the niches in which this tool has
gained momentum, especially considering recent years. The techniques that can be used,
including supervised, unsupervised, and deep learning models, are particularly valuable in
complex automotive applications where high-density data and intricate system behaviors
need to be modeled and predicted. The adaptation to a wide range of situations, such as
variations in engine load, fuel type, and operating temperature, is one of the strength of
machine learning, which learns and adapts to changing conditions. However, despite these
advantages, real-time implementation is still a challenge because it requires a substantial
training data set and significant computational resources.

Notwithstanding these obstacles, ongoing research on these methods show promising
results in terms of accuracy and robustness. An example of this can be a recent work by
Lu et al. [150], which shows that incorporating hybrid learning models enables improved
prediction accuracy. In particular, the study uses Generalized Regression Neural Networks
(GRNNs) combined with Particle Swarm Optimization (PSO), achieving a mean absolute
percentage error of 1.10% and a determination coefficient R2 of 0.997 on injected fuel
quantity. GRNNs have good appeal, as they are a particularly advantageous type of
artificial neural network (ANN): they have a simple network structure, with only one
hidden layer, and the number of neurons is equal to the number of training samples (which
can be a disadvantage because they could be large in size and hence computationally
expensive); they are a universal approximation function with just one tuning parameter;
they are always able to converge globally without being trapped into local solutions; and
they are fast to train, not requiring different iterations but just one pass, which classifies
them as a special type of feed-forward ANN. Moreover, it can be easily implemented in
widely used programming environments and languages like MATLAB or Python.

Traditional statistical approaches, including linear regression, could struggle to accu-
rately model the complex interactions between fluid dynamics, injector design, and various
operating conditions. In contrast, artificial neural networks (ANNs) in general, but par-
ticularly those using a multilayer perceptron (MLP) architecture [149], offer a powerful
solution by more effectively modeling nonlinear relationships.

Recent advances [47] have demonstrated the ability of ANNs to effectively predict ROI
in GDI systems. These networks are trained using experimental data (4200 entries), allowing
them to model the complex relationships among various input factors, including injection
pressure, chamber pressure, chamber temperature, and control signal duration. Using
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a feed-forward neural network with two hidden layers, optimized with the Levenberg–
Marquardt algorithm, the ANN model was able to predict the ROI with a high accuracy.
The model demonstrated a high coefficient of determination R2 of more than 0.99 on
various experimental datasets, indicating its ability to generalize well and provide accurate
predictions for ROI under different engine operating conditions. In particular, the total
injected mass is inferred to exhibit non-linear behavior, which is primarily attributed to the
non-linear relationship between the injection duration and pressure. This non-linear trend
is attributed to the fact that the effective fuel velocity approaches the theoretical maximum
Bernoulli velocity, resulting in the mass flow rate not increasing proportionally with the
injection pressure for a given rate of increase. Moreover, the intensity of the ROI oscillations
and initial drop in the ROI diminished at lower injection pressures, and finally, the ML
model accurately predicted the transient acoustic behavior of the injection.

Other studies, such as [30], apply an integrated ANN code that uses the Bayesian
regularization algorithm. Bayesian regularization is a mathematical process that transforms
a nonlinear regression into a well-defined statistical problem, similar to ridge regression.
This algorithm is known to be more robust than traditional back-propagation methods,
reducing the need for a lengthy cross-validation process. For this reason, it is frequently
used in engineering problems. An ANN, whose structure is visible in Figure 15, is made
up of layers and neurons that constitute the smallest processing element. For each neuron,
it is possible to have one or more inputs from outside or from other neurons. These inputs
in each neuron are multiplied by a weight and shifted by a bias, providing an intermediate
value of the processed variable. Then, this value is transferred through an activation
function (linear, Gaussian, ramp, sigmoid, Heaviside) to provide the output of the neuron.
In this particular case, the sigmoid activation function is used for both the hidden layers and
the linear activation function for the output layer. In this case, a dataset of 570 conditions
with 100 injections each was used for training, validating, and testing purposes, and the
optimal ratio between the dataset split was 70–20–10%, respectively. A comparison of
ROI prediction using the ANN algorithm with experimental results shows that the model
is able to predict ROI characteristics not only under quasi-steady-state conditions but
also during transient dynamics. The ANN algorithm is able to accurately detect Start of
Injection (SOI) and End of Injection (EOI) moments, showing close correspondence with
experimental times, regardless of injector pressure difference, coil activation time, fuel
temperature, and static flow. It managed to capture detailed features in the ROI and coil
voltage signal with four input variables: pressure difference, coil activation time, fuel
temperature, and static injector flow. In this way, it is possible to significantly reduce the
input information and the computational requirements compared with the CFD approach.

More complex NNs have been used [28], pertaining to the deep learning techniques, us-
ing more hidden layers and a longer and iterative learning process. With respect to GRNNs,
which are wider, deep learning models make use of Deep Neural Networks (DNNs), allow-
ing for capturing of more complex patterns and connections between data. This comes at
the expense of explainability and more abstract and computationally intensive calculations.

Figure 15. Schematics of the regression modeling using artificial neural networks.



Energies 2024, 17, 6455 23 of 37

It is yet apparent that, in order to use these neural networks, which could be imple-
mented on easy-to-use tools (and MATLAB here is the most widespread environment used
by engineers in this field), a huge amount of data is required. One potential solution to this
challenge could lay in the use of reinforcement learning, which allows systems to learn
optimal actions based on feedback from the environment without requiring large data
sets, going from data-drivento goal-driven. Reinforcement learning models could be used
to continuously optimize fuel injection parameters by learning from real-time data and
adapting to new conditions.

In addition, hybrid models that combine machine learning with traditional engineer-
ing approaches, as explained in the following section, can provide an effective path to
overcome the limitations of current ML models. By combining the strengths of both meth-
ods, such models could reduce dependence on large training datasets while maintaining
high levels of prediction accuracy and adaptability to different engine conditions. More-
over, hybrid models could improve the interpretability of fuel injection systems, making
them more transparent and understandable, avoiding the "black-box" effect of traditional
neural networks.

Hybrid Approaches

Hybrid approaches in injected mass control combine elements from direct measure-
ment, model-based estimation, and machine learning techniques to leverage the strengths of
each method. These systems are designed to provide both high precision and adaptability to
varying engine conditions, especially under high-pressure and dynamic injection scenarios.

Early works, such as [35], explored indirect sensing techniques for closed-loop diesel
fuel quantity control, setting the stage for integrating real-time monitoring with control algo-
rithms. Real-time monitoring has since advanced, as demonstrated in [151], where injector
waveforms are tracked to accurately meter fuel and adapt injection timings, enhancing
precision under transient conditions.

Subsequent developments in hybrid systems, particularly in solenoid and piezoelec-
tric injectors, have focused on improving the energy efficiency and dynamic response
of injectors through innovations in hardware and software. For instance, studies on
next-generation solenoid injectors with pressure-balanced pilot valves [153] highlight ad-
vancements in both mechanical and electronic control to improve injector responsiveness.
Additionally, hybrid approaches address challenges associated with variable injection
strategies. Works like [54] analyze different injector types’ responses to dwell time vari-
ations, optimizing rate shaping for continuous and closely coupled injections. Studies
investigating the impact of injector thermal conditions on injection performance [76] fur-
ther show the importance of hybrid methodologies in adapting injection rates to real-time
environmental and operational variations. A hybrid approach for indirectly measuring
fuel consumption rates under transient operating conditions was proposed in [158]. This
method combines signal measurements with parameter modeling to develop a simplified
residual gas fraction model. Unlike the complex three dynamic pressure transducer method,
the method utilizing two steady pressure sensors is applied, making it suitable for onboard
vehicle applications with errors within 3%.

A unique feature of hybrid systems is their ability to integrate high-fidelity simula-
tions and empirical data, enabling robust injection control. Studies such as [26] employ
simulation-driven approaches alongside experimental validation to explore injection dy-
namics under multi-fuel conditions, enhancing versatility in injector designs. The dual
focus on numerical analysis and empirical data also extends to managing injection rate lim-
its under ultra-high pressures [103] and investigating complex interactions within injector
nozzles using advanced flow analysis [38]. A recent work [145] introduces feedback-control
algorithms that adapt injection parameters based on mass flow fluctuations, optimizing
injection processes across varied operational states. Ref. [168] bases its feedback control on
two measured pressures, and through the momentum balance and the continuity equation,
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it finds the instantaneous flow rate, showing an error reduction in real-time conditions for
both single and multiple-injection strategies.

As hybrid methodologies continue to evolve, their applications are broadening to
include alternative fuels like biodiesel and GTL (gas-to-liquid) fuels, and studies like [163]
explore the injector’s response to different fluid properties on the injection process, fuel flow
condition, and cavitation in CR systems. In newer studies, advanced control algorithms
provide continuous real-time adaptation, making hybrid approaches increasingly integral
in next-generation ICEs. By incorporating feedback systems, hybrid methods bridge the
gap between model-based precision and empirical validation [166], showing promise in
achieving optimal injection control under complex conditions.

3.2.3. Micro-Categories

To provide a more detailed perspective on injected mass control, the literature can
be divided into three micro-categories: methodology applicability, fuel type, and injector
type. Each micro-category provides unique insights into specific approaches, consider-
ations, and adaptations required across different experimental setups, fuel variations,
and injector designs.

Methodology Applicability

The methodology applicability describes the various approaches to data collection,
system monitoring, and analysis of fuel injection. The primary classifications include
real-time systems, test bench experiments, and post-processing techniques. An overview of
these three classifications is given in Table 6.

• Real-time systems: These systems monitor and adjust fuel injection parameters dy-
namically during engine operation. Real-time systems allow for immediate feedback
and adjustments for optimized fuel delivery under varying conditions, enhancing
system responsiveness and adaptability (e.g., [93] and others).

• Test bench experiments: These controlled experimental setups allow for precise mea-
surement of fuel injection parameters, injector dynamics, or spray behavior. By isolat-
ing variables, test benches provide high-quality data, which are useful for validating
models and refining engine control systems (e.g., [87] and others).

• Post-processing techniques: Data collected during experiments can be analyzed after
testing using statistical models or computational techniques to identify trends, verify
results, and further develop models. These techniques are valuable in drawing insights
from high-fidelity data without the constraints of real-time adjustments (e.g., [128]
and others).

Table 6. Methodology applicability in injected mass control.

Methodology Type Description

Real-time
systems [27,35,36,41,46,110,118,119,127,131,
137,144,145,147,149,151,158,161,162,167,168]

Dynamic adjustments during operation for
optimized fuel delivery

Test bench experiments [22–24,28,31–33,62–
66,68,70,73–76,78,79,81,84,89,90,96,98,106,120,
123,125,138,142,155,166]

Controlled environments for precise data
collection on injection dynamics

Post-processing
techniques [9,44,50,60,67,70,128,130,148]

Analyzes experimental data post-testing using
statistical models

Fuel Type

Fuel type significantly influences injection dynamics and emission profiles. The most-
investigated fuels are summarized in Table 7. Research varies widely based on fuel, each
presenting unique challenges and opportunities in terms of injection control, combustion,
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and emissions. Studies in this category often focus on fuel properties and the necessary
adjustments of ROI for efficient and clean combustion:

• Diesel: Diesel fuels require high-pressure systems and are often studied for their
nozzle cavitation, atomization patterns, and impact on emissions such as NOx and
soot. Research highlights the need for precise mass control to reduce emissions
while maintaining efficiency. Most of the work before the 2010s focused on diesel
applications (e.g., [120,123,127] and others), mostly delivered with the CR system.
A new common feeding fuel injection system integrating a delivery chamber into the
high-pressure pump and eliminating the traditional common rail, thus simplifying
the hydraulic circuit, was more recently designed [164].

• Gasoline: Gasoline direct injection (GDI) and port fuel injection are two common
approaches. Studies explore air–fuel mixture formation and its effects on combustion
efficiency and emissions (e.g., [27,43,50,60,87,88] and others).

• Alternative fuels: Renewable fuels like biodiesel or rapeseed oil introduce unique chal-
lenges due to differences in viscosity and spray behavior [26,28,83,108,126,140,165].
They will require nozzle and pressure adaptation to maintain mixing quality and min-
imize incomplete combustion. Hydrogen or hydrogen–ammonia blends are studied
for their GHG emission reduction potential. One aspect to take into consideration
is that precise control of the air-to-fuel ratio, in this case, is critical for lowering
NOx [46,141,174].

It is evident that while the chemical composition of the fuel is relevant, the state of mat-
ter undoubtedly has a more significant impact in terms of control strategies. In fact, some of
the works (e.g., [157]) analyzed suggest that the fuel type (gasoline, diesel, or biofuels) has
no influence on the methodology, although this latter factor has been validated with specific
fuel types. In general, however, gaseous fuels require considering that density cannot be
assumed to be constant throughout the injection system hydraulic circuit: in this case, the
mass conservation equation, the momentum balance equation, and the energy equation,
coupled with a state equation, must be taken into account. Concerning liquid fuels, these
can be efficiently analyzed only using the continuity equation and the momentum balance
equation, together with a thermodynamic state equation for the specific process that the
fluid is subjected to [175].

Table 7. Fuel types in injected mass control.

Fuel Type Description

Diesel High-pressure systems with focus on atomization, NOx, and soot emissions

Gasoline Direct injection (GDI) and port fuel injection; focus on air–fuel mixture

Alternative fuels Renewable fuels like biodiesel and hydrogen–ammonia blends, emphasizing
emission reduction (especially NOx)

Injector Type

The type of injector has a major impact on fuel injection precision, rate, and control.
This category focuses on the differences between piezoelectric injectors and solenoid injec-
tors, examining their respective performance and compatibility with advanced fuel control
systems. The definitions of these two architectures were already given in Section 3.2.1, and
a summary is given in Table 8.
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Table 8. Injector types in injected mass control.

Injector Type Description

Piezoelectric injectors [47,83,86,90,95,176] Fast response and precise control, ideal for
high-precision applications

Solenoid injectors [46,79,89,133,137,149,177] Good control; moderate response time may
limit precision at high pressures

4. Discussion

Table 2 summarizes the strengths and key references of the primary methodologies
used in fuel injection control, serving as a foundational reference for identifying open
research points in this field.

The literature reviewed indicates that direct measurement remains central for accurate
fuel mass estimation, because the adaptability of model-based approaches, which have
progressed significantly in recent decades, is still weak. Incorporating machine learning
techniques enhances this adaptability, especially in the context of different fuel types.
Hybrid models that merge the advantages of each approach can lay the foundation for
more robust control systems. Concerning machine learning techniques, which are becoming
increasingly used, as they have great predictive power, an urgent need exists to make them
transparent and interpretable. Their integration into practical applications would benefit
from aligning these techniques with a broader physical and scientific framework, allowing
their outputs to be more intuitively understood by engineers and researchers.

While considerable progress has been made, some limitations still exist in the control of
injected fuel mass. Indeed, although machine learning models are flexible, they require large
data sets for training, which can be resource-intensive to gather and process [28]. While zero-
dimensional models offer computational efficiency and are grounded in physical equations,
their oversimplification limits their applicability in complex, real-world conditions [139],
emphasizing the need for models that balance granularity with computational feasibility.

Research into alternative fuels, such as hydrogen, ammonia, and biodiesel, is another
area where injected mass control systems must adapt to accommodate distinct combustion
characteristics. Foundational studies on this matter [39,178] demonstrate that modifications
in common rail systems and injection techniques are necessary to address the unique
properties of these fuels. These studies reveal gaps in the flexibility of system designs,
particularly for engines that aim to achieve optimal fuel combustion with alternative fuels.

The qualitative analysis aimed at identifying recurring themes, methodological ap-
proaches, and gaps in the literature highlighted two main themes: the impact of technologi-
cal innovation on fuel injection accuracy and the challenges of incorporating alternative
fuels into existing injection systems. Recent advancements in real-time injection control,
particularly in high-pressure common rail systems and gasoline direct injection (GDI) tech-
nologies, underscore the innovation potential. Integrating advanced sensors and feedback
systems into injectors facilitates real-time adjustments in fuel quantity, contributing to
improved emission control and fuel efficiency thanks to closed-loop control systems.

Despite these advancements, significant research gaps remain, particularly in the
optimization of injected mass control for both liquid and gaseous fuels under real-world
conditions. Real-time adaptability and precision control of injection mass for gaseous
fuels, such as hydrogen [179,180] and CNG [41], present ongoing challenges due to the low
density and high compressibility of these fuels, which lead to temperature- and pressure-
dependent flow dynamics. These properties necessitate robust, pressure-based control
systems that can adjust rapidly to transient engine conditions. Additionally, gaseous fuel
injectors must be designed to withstand high flow velocities and pressures, with finely
tuned valve actuation and needle lift dynamics to ensure stable delivery [113]. Injector
durability, especially under the embrittlement effects of hydrogen at high pressures, adds
to these challenges, with concerns over long-term wear of the injector and its precision
during the life cycle, as it already does in traditional injection systems [181].
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Real-time adaptability remains a research priority, as rapid adjustments in response
to fluctuating pressures and temperatures are still underdeveloped, especially in multi-
fuel configurations where both gaseous and liquid fuels are used simultaneously [116].
Comprehensive control strategies that accommodate a range of fuel properties and different
injection timings must be developed. While initial studies have explored the co-injection of
gaseous and liquid fuels, further research is needed to refine these strategies, particularly
for improving combustion and minimizing emissions.

Table 9 summarizes these findings across methodologies.
This exploration of advancements in fuel injection technology and methodologies high-

lights the critical need for further research to overcome limitations, particularly concerning
adaptability and integration. Addressing these challenges will facilitate the development
of more efficient and sustainable fuel injection systems, paving the way for the broader
implementation of alternative fuels.

Future research in fuel injection control systems should prioritize advancements
in real-time adaptability and model transparency, especially in machine learning (ML)
applications. Integrating ML within control systems has shown significant promise for
enhancing adaptability in high-speed and dynamic conditions. Studies [30,50] demonstrate
the potential of ML algorithms to improve system adaptability. However, a key challenge
persists in making these models interpretable: as ML techniques become more complex,
understanding their decision-making processes becomes increasing difficult, yet this is
important for practical application. Thus, future efforts should focus on creating models
that balance real-time responsiveness with interpretability. Developing hybrid neural
networks that combine the predictive power of ML with the clarity of traditional modeling
approaches, as suggested in [28,29], could be a promising path forward.

Enhancing the transparency of ML models is critical for broader application, particu-
larly in contexts where safety and reliability are paramount. Limited interpretability in ML
decision-making can hinder the integration of these models into the fuel injection control.
Building frameworks that clarify how ML models reach their conclusions will be essential
for regulatory compliance and operational acceptance.

Table 9. Key findings in injected mass control.

Finding Implications Future Research Directions

Need for hybridization of
methodologies

Enhances adaptability and
robustness

Investigate integration
techniques across
methodologies

Limitations in real-time data
processing

Impacts accuracy under
dynamic conditions

Develop efficient algorithms
for real-time data integration,
find the balance between
computation intensity and
accuracy

Requirement for extensive
training data in ML models

Constrains practical
applications

Explore other learning
techniques (semi-supervised,
PINN)

Complexity of gas dynamics
in fuel injection systems

Necessitates specialized
approaches for gaseous fuels

Investigate alternative injector
designs for precision control

Furthermore, integrating advanced sensor technologies—such as optical and acoustic
sensors—alongside ML algorithms offers the potential for improving control accuracy
across varied operating conditions [169]. This combination could enable richer data streams,
supporting more precise real-time control adjustments and enhancing system performance.

Another pressing area for future research involves adapting injection control systems
for alternative fuels, including biodiesel and hydrogen. These fuels present unique chal-
lenges due to their distinct chemical and physical properties. Some researchers emphasize
the need for optimizing injection strategies to improve emissions control and efficiency
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with these fuels [179,180]. Additional studies focused on fuel-specific injection control,
providing critical insights into adapting systems for alternative fuels [52,113].

In summary, the evolving landscape of fuel injection control demands hybrid methods
that merge machine learning with traditional techniques, enhancing their interpretability,
and adapting to the specific characteristics of alternative fuels. Addressing these challenges
not only enhances system performance but also supports the automotive industry’s tran-
sition toward more sustainable fuel sources. Table 10 outlines key findings from current
research and highlights gaps that merit further investigation. A full list of papers for each
methodology can be found in Table 2.

Table 10. Research gaps for each research approach.

Research Approach State of the Art Challenges and Gaps

Direct measurements
(e.g., [17,23,171,182])

High precision in fuel
injection measurement

High cost due to hardware requirements in
most cases; high complexity, especially in
dynamic conditions; limited generalization
possibility; usually hard to employ when
the injector is installed on a engine; not
always validated for different engine
operating conditions.

Model-based
estimation (e.g.,
[26,49,139])

Effective for control
systems; cost-effective;
adaptable

Limited real-time adaptability; may not
capture full dynamics; may require a large
amount of data for setup.

Machine learning
(e.g., [28,29,92,180])

Predictive, adaptable
across various fuel
types

High data demands; accuracy depends on
the size and quality of the dataset; limited
interpretability

Practical Implications and Prospective Solutions

Hybrid models present a promising avenue for advancing adaptive injection control
in internal combustion engines. By combining machine learning with model-based esti-
mations, these control systems achieve the adaptability necessary for diverse operating
conditions. This approach enhances system performance while maintaining interpretabil-
ity; a key element for diagnostics and real-time adjustments. Fuel injection technology’s
continued evolution necessitates further research to tackle key challenges, particularly in
cost-effective real-time measurement, transparency in ML models, and adaptive control
tailored for alternative fuels.

One notable barrier to the widespread adoption of ML techniques in injection con-
trol is their limited transparency, which complicates real-time diagnostics and system
adjustments. Future research should address this by focusing on improving model inter-
pretability, potentially through hybrid approaches that integrate ML with zero-dimensional
models. Such methods could retain ML’s predictive capabilities while ensuring trans-
parent, understandable decision-making processes, fostering greater trust among users
and regulators.

With the automotive industry’s shift toward alternative fuels, research on injection
control systems for fuels like hydrogen and biodiesel is increasingly critical. However,
adapting these systems requires rigorous validation under diverse operating conditions.
Existing studies emphasize the need for refined injection control frameworks tailored to the
specific properties and combustion characteristics of these fuels. Achieving good injected
mass control for alternative fuels remains an ongoing research area, as most current systems
are optimized for conventional gasoline and diesel engines. While evidence suggests that
CR systems could be adapted for non-traditional fuels, modifications have to be considered
to obtain a system with high performance.

Real-time control is a long-standing goal for high-speed engine applications, and ad-
vancements in measurement technologies, such as Coriolis flow meters, have made substan-
tial strides in this direction. However, inconsistent integration across different platforms
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and the high operational costs associated with these technologies remain obstacles to
broader adoption. Increasing demand for real-time responsiveness in control systems
underscores the need for further research, especially to embed machine learning models
that improve adaptability while addressing interpretability challenges.

In conclusion, this study highlights the importance of hybrid models that utilize direct
measurements, model-based estimations, and ML techniques. Future research should
focus on overcoming challenges related to transparency, cost-effectiveness, and adaptability
across diverse fuel types. By addressing these issues, we can unlock the full potential
of advanced fuel injection control technologies, paving the way for more efficient and
sustainable engine operations.

5. Conclusions

This review provided a comprehensive analysis of the state-of-the-art injected mass
control methodologies in ICEs, answering the three primary research questions stated in
the Section 2.

RQ1: What is the state of the art of injected mass control in internal combustion engines? The
analysis revealed a diverse landscape of technologies and methodologies that have evolved
to improve the accuracy and efficiency of fuel injection systems. The key approaches
identified—direct measurement, model-based estimation, machine learning, and hybrid—
each exhibit unique strengths and limitations. Direct measurement techniques offer high
accuracy but often involve significant cost and complexity, especially in dynamic settings,
making them much more suitable for test benches, although there is some evidence of
experimentation for engine applications. Model-based methods, while more cost-effective,
both in terms of instrumentation and computation, are suitable for stationary or simpler
conditions, and they often encounter difficulties when dealing with transients in engine
operation. Machine learning features a potential to adapt to various fuel types, providing
predictive capabilities; however, issues such as data dependency and transparency remain
significant obstacles to its integration into broader sci-tech frameworks.

RQ2: How can current approaches to controlling injected mass be classified? This review has
allowed for a classification of methodologies into three main types: direct measurement,
model-based estimation, and machine learning. There is also the fourth, increasingly
used category of hybrid approaches. This classification provides a structured overview
that facilitates a clearer understanding of the field. Moreover, as each category has been
analyzed, there is still room for the joint use of these techniques in future research.

RQ3: What are the future research directions regarding the control of injected mass in ICEs?
The findings suggest that research in the future could focus on two critical areas: improv-
ing the interpretability of machine learning models and optimizing control systems for
alternative fuels. The development of interpretable machine learning models is crucial to
ensure that advanced control technologies can be practically applied in real-world scenarios,
where safety, regulatory compliance, and operational reliability are paramount. Hybrid
modeling approaches that combine data-driven predictions with physics-based insights
seem to be a potential solution to close the gap between complexity and interpretability.
Furthermore, now that the automotive industry is moving towards sustainable practices,
it is essential to optimize injection strategies for alternative fuels, such as biodiesel and
hydrogen. Conventional control systems often struggle to adapt to specific chemical and
physical properties of these fuels, causing inconsistencies in performance, especially when
switching to gaseous fuels where different control systems are needed to effectively capture
the impact of fluid compressibility on the injected mass. Therefore, research may be aimed
at the development of advanced control algorithms for different fuel types that would effec-
tively balance emission reduction with performance goals, satisfying both environmental
and industrial needs.

In addition to these focal points, the integration of cost-effective real-time measurement
technologies will be fundamental to the advancement of fuel injection control systems.
Some of the innovations presented, such as the addition of a single pressure sensor to
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monitor the amount of mass injected, have the potential to improve the accuracy and
reliability of control mechanisms, enabling a wider application of closed-loop controls in
the automotive sector, at least for liquid fuels.

However, research should always prioritize the principle of minimum cost–maximum
benefit by proposing high-accuracy injected mass control systems that do not require
expensive external hardware. Hybrid approaches that leverage machine learning can
assist in identifying correlations between various quantities, but efforts should be made
to enhance the interpretability of results and their generalizability. By integrating ma-
chine learning-based predictive control with advanced sensor integration, manufacturers
can substantially enhance the accuracy of fuel injection timing and quantity, resulting in
measurable improvements in fuel efficiency across diverse engine platforms. Implement-
ing specific injection strategies tailored to alternative fuels, such as those optimized for
biodiesel, hydrogen, or ammonia blends, enables the reduction of NOx and particulate
emissions while complying with stringent regional emission standards.

These results hold particular relevance for hybrid powertrains, as precise fuel injection
ensures a seamless transition between ICE and electric operation, abating fuel consumption.

Future research should explore injection technologies that dynamically adapt to alter-
native fuels, addressing challenges such as the varying viscosity of biofuels or the flame
speed of hydrogen. Collaborative efforts between academia, industry, and policymak-
ers can establish standardized methodologies for machine learning-based control and
compatibility with alternative fuels, accelerating their real-world deployment. Support-
ive regulations and incentives can drive the adoption of cleaner injection technologies,
particularly in markets with stringent emission targets.

In conclusion, this review underlines the central role that injected mass control has
in improving engine performance, reducing emissions, and meeting European and global
regulatory standards. As the automotive industry accelerates toward sustainable practices,
the transformational potential of advanced methodologies is evident, and ongoing research
must continue to fill the gaps that have been highlighted so far. Improving the understand-
ing and control of fuel injection systems may bring about a step towards the realization of
sustainable, responsible, and high-performance automotive technologies that are capable
of meeting the challenges of the eclectic mobility of the future.
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