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Efficient Structural Health Monitoring (SHM) is critical for ensuring safety and improving the operation and 
maintenance of aerospace structures. This study focusses on advanced shape-sensing methods, such as the 
inverse Finite Element Method (iFEM), which can estimate the complete displacement field of a structure based 
on a restricted number of strain measurements, fostering continuous and real-time monitoring. This approach 
additionally provides valuable insights into the dynamic behaviour of a structure by extracting its Frequency 
Response Functions (FRFs) and modal properties to perform vibration-based SHM. However, effectively extending 
SHM to a fleet or population of structures would require a significant amount of data for each one, which may 
be unavailable or incomplete. A population-based Structural Health Monitoring (PBSHM) strategy can solve data 
scarcity by sharing knowledge between similar structures via transfer-learning algorithms. In PBSHM, handling 
data from diverse sources is paramount for achieving accurate results. Therefore, this study integrates iFEM 
into the PBSHM framework, enhancing knowledge transfer by harmonising fibre-optic strain measurements to 
vibration-based features and providing reliable source data to inform diagnostics on similar structures. The 
proposed approach is validated on a population of laboratory-scale steel aircraft subjected to specific operating 
and damage conditions tested using three different sensor setups.

1. Introduction

The ageing of structures, along with the challenges related to fatigue 
loadings and the ongoing growth in the aerospace industry, led to the de-

velopment of advanced techniques, experimental methods, and refined 
data-processing algorithms for monitoring aircraft structural integrity, 
pushing the boundaries of durability and ensuring sustained operational 
quality. As aircraft endure prolonged service periods and face diverse 
and challenging conditions during flight, assessing their mechanical be-

haviour and identifying potential damage becomes of paramount con-

cern. These needs gave rise to the Structural Health Monitoring (SHM) 
field in aerospace engineering for early damage detection, real-time 
assessment of structural components and effective maintenance man-

agement. The SHM evolution has been significantly advanced by recent 
progress in sensor technologies and data processing capabilities, which 
have facilitated more efficient monitoring systems compared to the com-

monly adopted non-destructive tests (NDTs). Indeed, NDTs based on 
on-ground visual or ultrasonic inspections are expensive and often in-
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effective. However, the application of SHM techniques in the aerospace 
field may be limited by the complexity of geometries, the large amount 
of sensors and data required, and the feasibility of these approaches 
under different damage scenarios, and changing environmental and op-

erational conditions [1].

In this framework, significant efforts concern shape-sensing ap-

proaches, which allow reconstruction of structural displacements from 
a limited number of measurements [2,3], reducing the required eco-

nomic and human resources and leading to a condition-based main-

tenance strategy [4]. These approaches exploit distributed fibre-optic 
sensors [5], strain gauges, and computer-vision techniques [6], enhanc-

ing real-time monitoring of structural deformation. Shape sensing offers 
various applications in SHM, including anomaly detection and delami-

nation identification in composite materials [7]. In addition, algorithms 
such as Smoothing Element Analysis (SEA) [8] and inverse Finite Ele-

ment Method (iFEM) allow for studying optimal sensor placement and 
shape-morphing structures.
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Among the possible shape-sensing strategies, the current study fo-

cuses on iFEM, which has been proposed by Tessler and Spangler [9,10] 
for plates and shell structures. This method involves a least-squares min-

imisation of a functional that represents a weighted difference between 
the experimentally-measured strains and those coming from a finite-

element approximation. The discretisation of the structure is similar 
to the one proposed in the Finite Element Method (FEM). However, 
this shape-sensing approach does not need information regarding the 
material and the damping properties, or the external loadings applied 
on the structure [9]. The iFEM shape-sensing formulation has been ex-

tended for a variety of systems, including trusses, beams, and frames 
[11–13], thin-walled structures [14,15], and complex statically-loaded 
structures [16]. Recent studies implemented IFEM to perform SHM of 
an offshore wind turbine [17], monitoring its stresses and displacements 
under multiple loading conditions. Li et al. [18] proposed a damage-

identification approach based on iFEM strain data and convolutional 
neural networks to locate and quantify numerically simulated damage. 
In addition, iFEM has been proposed to automate crack size assess-

ment by introducing damage modelling within the iFEM framework and 
selecting the most accurate damage scenario with respect to the exper-

imental measurements [19]. Moreover, iFEM has been combined with 
Modal Virtual Sensor Expansion in [20] to enhance the shape-sensing 
accuracy of composite stiffened structures using a reduced number of 
strain sensors. Furthermore, recent developments proposed an exten-

sion of the iFEM methodology to also investigate dynamic responses. 
Indeed, [21] shows experimentally how the displacements reconstructed 
from dynamic strain measurements using iFEM can provide valuable 
insights into the dynamic behaviour of a structure, enabling the extrac-

tion of its Frequency Response Functions (FRFs) and modal properties. 
A similar workflow has been presented in [22], in which the dynamic 
response of a numerically simulated plate under undamaged and dam-

aged conditions is reconstructed by examining the iFEM response within 
the frequency domain.

The capability of reconstructing the classical Experimental Modal 
Analysis (EMA) features enables iFEM to be exploited in the field 
of vibration-based SHM, which includes different non-intrusive and 
damage-sensitive methodologies for assessing the behaviour of exist-

ing structures. The vibration-based approaches to SHM are commonly 
distinguished as model-based and data-driven ones. Specifically, data-

driven SHM includes a set of robust and effective algorithms, inspired by 
the fields of machine learning and pattern recognition [23,24]. These al-

gorithms are trained on sufficiently large datasets, to build SHM models 
according to the level of diagnosis required, i.e., identification models 
for damage detection, classification models for damage localisation, or 
regression models for quantification tasks [25]. However, their feasibil-

ity is often limited because of the lack of complete or sufficient data. 
Collecting labelled training data for each structure, considering various 
operational conditions and damage states, would be expensive and fre-

quently unrealistic [26]. In this framework, recent studies are develop-

ing a population-based Structural Health Monitoring (PBSHM) theory, 
intended to address the data-scarcity challenge, by sharing knowledge 
across a population of similar structures.

The PBSHM theory, described in [27–30], proposes adopting some 
classes of transfer-learning algorithms, e.g., domain adaptation [26], to 
share information gathered from a source structure for improving di-

agnostic inferences on a new target structure. This approach comprises 
several phases, including identifying the degree of similarity between 
two structures [31,32], and their datasets, selecting the most suitable 
features for transfer, and investigating the most effective algorithms 
for this purpose. Therefore, it is necessary to distinguish between ho-

mogeneous and heterogeneous populations. Homogeneous populations 
comprise only nominally-identical systems [28]. For instance, these pop-

ulations could include a fleet composed of analogous aircraft, in which 
the only differences regard manufacturing variations. Instead, heteroge-

neous populations can include more diverse systems, presenting varia-

tions in their geometry, dimensions, materials or topological properties 

[29]. Heterogeneous populations distinctly require a phase of similarity 
assessment to limit the risk of negative transfer [33], the phenomenon 
occurring when the knowledge shared from a source structure lowers 
the diagnostic performance on the target structure. Different approaches 
have been proposed for assessing similarity in heterogeneous popula-

tions and to determine the value of knowledge transfer [34,35], and a 
novel possibility in this field adopts the available mode shapes to mea-

sure the similarity between source and target structures employing the 
modal assurance criterion, as shown in [36]. Afterwards, if the systems 
are defined sufficiently similar, their features can be involved in knowl-

edge sharing.

Nevertheless, when sharing data in real-life scenarios, it is neces-

sary to consider the varying experimental setups, sensors, inputs, and 
acquisition systems that may affect the resulting features. This fea-

ture variability may induce a robustness and feasibility reduction in 
the PBSHM approach. Thus, the work presented in [21] proposed an 
iFEM-based approach to reconstruct the modal parameters and pre-

sented detailed results of the experimental validation campaign. The 
experimental results showed the added value of iFEM compared to more 
classical techniques, particularly in its ability to capture the global dy-

namic response and modal parameters of the analysed structure from 
a cost-effective sensor scheme, aligning strain-based results with the 
traditional damage-sensitive features used in vibration-based SHM. In 
contrast, more classical techniques require a significant amount of sen-

sors, or can only capture the FRF at a single location, which is insuffi-

cient for analysing the structure’s overall dynamic behaviour, limiting 
the approach to a more localised perspective. Indeed, in these cases, an a 
priori knowledge of the critical location would be required. In contrast, 
the iFEM approach enables the reconstruction of displacements, FRFs 
and mode shapes globally across the structure. The current work extends 
this study by proving how iFEM can enhance knowledge transfer by har-

monising results acquired from different tests and effectively managing 
heterogeneous data types. Therefore, via iFEM dynamic displacement 
reconstruction, it is possible to provide real-time reliable source features 
which can inform diagnostics on similar structures, facilitating PBSHM 
applicability even under varying experimental approaches.

The shape-sensing methodology is integrated into the PBSHM frame-

work as a preliminary feature-harmonisation tool, to reconstruct the dy-

namic full-field displacements of a source structure and extract damage-

sensitive features, adopting the procedure described in [21]. These fea-

tures are adopted as training data in a domain-adaptation algorithm, 
i.e., the Transfer Component Analysis (TCA) [37,38]. The TCA learns 
a transformation to map the source and target features into a common 
latent space, where damage detection can be performed based on data 
from both domains, by measuring the Mahalanobis-Squared-Distance 
(MSD) between the features. This approach is validated here in two ex-

perimental case studies involving similar laboratory-scale steel aircraft 
subjected to specific operating and damage conditions tested using three 
different sensors, i.e., high-definition distributed fibre-optic strain sen-

sors, Scanning Laser Doppler Vibrometer (SLDV) and Integrated Circuit 
Piezoelectric accelerometers. The first case study regards almost iden-

tical structures and different sensors. Thus, it is possible to prove how 
iFEM can solve the issues regarding different sensors by harmonising the 
features in a homogeneous population. The second case study assesses 
more dissimilar structures to illustrate how iFEM can facilitate PBSHM 
by producing reliable source knowledge in a heterogeneous population.

The layout of the paper is as follows. Section 2 presents the adopted 
methodologies, including the iFEM formulation, its implementation in 
a dynamic framework for FRF reconstruction, and the class of domain-

adaptation algorithms, focussing on Transfer Component Analysis. Sec-

tion 3 illustrates the experimental case study regarding a population 
of aircraft tested under undamaged and damaged conditions. Section 4
presents the results of the proposed damage detection and classification 
approach. Subsequently, some discussions and conclusions are provided 
in Section 5.
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Fig. 1. Plate geometry, kinematic variables, and instrumented sensors. 

2. Methods

2.1. Dynamic shape-sensing using iFEM and FRF reconstruction

The current section describes the iFEM shape-sensing formulation 
and its implementation for reconstructing dynamic features, such as 
FRFs and modal parameters. Consider a plate domain, Ω, defined in 
the three-dimensional Cartesian coordinate frame, Ω = (𝑥, 𝑦, 𝑧) ⊂ 𝑅3, 
of thickness 2𝑡 and mid-plane positioned at 𝑧 = 0 ((𝑥, 𝑦) ∈ 𝐴 ⊂ 𝑅2), 
where 𝐴 is the mid-plane area. The plate is subjected to external in-

plane or out-of-plane loads and information of the resulting strain field 
is obtained using sensors placed at 𝑁 discrete in-plane locations (𝑥, 𝑦)𝑖 , 
𝑖 = 1, ..,𝑁 . Each site has strain sensors instrumented on both the top 
and bottom surfaces measuring strain components 𝜺+

𝑖
= {𝜀+

𝑥𝑥
, 𝜀+
𝑦𝑦
, 𝛾+
𝑥𝑦
}𝑇
𝑖

and 𝜺−
𝑖
= {𝜀−

𝑥𝑥
, 𝜀−
𝑦𝑦
, 𝛾−
𝑥𝑦
}𝑇
𝑖

, respectively. Reconstruction of the three-

dimensional plate deformations based on the discrete strain measure-

ments, given no load or material information, is an inverse problem of 
relevance for the present work. iFEM is used to provide a variationally-

based solution to this problem and its underlying theory is briefly pre-

sented in this section. Interested readers can refer Tessler and Spangler 
[10] for more details of the iFEM formulation.

Based on the kinematic assumptions of Mindlin plate theory, the 
Cartesian components of the displacement vector of any material point 
are given as,

𝑢𝑥(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦) + 𝑧𝜃𝑦(𝑥, 𝑦),

𝑢𝑦(𝑥, 𝑦, 𝑧) = 𝑣(𝑥, 𝑦) − 𝑧𝜃𝑥(𝑥, 𝑦),

𝑢𝑧(𝑥, 𝑦, 𝑧) =𝑤(𝑥, 𝑦),

(1)

where the kinematic variables 𝑢 and 𝑣 are the mid-plane displacements 
in the 𝑥 and 𝑦 directions, respectively; 𝑤 is average transverse deflec-

tion; and 𝜃𝑥 and 𝜃𝑦 are the section rotations about the 𝑥 and 𝑦 axes, 
respectively (see Fig. 1).

The linear strain-displacement relations give rise to the following 
in-plane, bending, and transverse shear-strain relations in terms of the 
kinematic variables,

⎧⎪⎨⎪⎩
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

𝑢,𝑥
𝑣,𝑦

𝑢,𝑦 + 𝑣,𝑥

⎫⎪⎬⎪⎭+ 𝑧
⎧⎪⎨⎪⎩

𝜃𝑦,𝑥
−𝜃𝑥,𝑦

−𝜃𝑥,𝑥 + 𝜃𝑦,𝑦

⎫⎪⎬⎪⎭ = e(u) + 𝑧k(u),

{
𝛾𝑥𝑧
𝛾𝑦𝑧

}
=
{
𝑤,𝑥 + 𝜃𝑦
𝑤,𝑦 − 𝜃𝑥

}
= g(u),

(2)

where u ≡ {𝑢, 𝑣,𝑤, 𝜃𝑥, 𝜃𝑦}𝑇 is a vector of kinematic variables and e, k, 
and g are strain measures representing the in-plane stretching, curva-

ture, and transverse shear of the mid-plane, respectively.

At discrete plate locations (𝑥, 𝑦)𝑖 where sensors are used to measure 
strains on the top and bottom surfaces, the measured strains can be 
related to the mid-plane strain measures via the following relations,

e𝜀
𝑖
= 1

2

⎛⎜⎜⎜⎝
⎧⎪⎨⎪⎩
𝜀+
𝑥𝑥

𝜀+
𝑦𝑦

𝛾+
𝑥𝑦

⎫⎪⎬⎪⎭+
⎧⎪⎨⎪⎩
𝜀−
𝑥𝑥

𝜀−
𝑦𝑦

𝛾−
𝑥𝑦

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠𝑖
, k𝜀

𝑖
= 1 

2𝑡

⎛⎜⎜⎜⎝
⎧⎪⎨⎪⎩
𝜀+
𝑥𝑥

𝜀+
𝑦𝑦

𝛾+
𝑥𝑦

⎫⎪⎬⎪⎭−
⎧⎪⎨⎪⎩
𝜀−
𝑥𝑥

𝜀−
𝑦𝑦

𝛾−
𝑥𝑦

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠𝑖
, 𝑖 = 1, ..,𝑁,

(3)

where the 𝜀 superscript denotes the experimental nature of these quan-

tities.

The iFEM methodology is based on minimising, in a least-squares 
sense, the difference between the analytical and experimental strain 
measures defined in Eq. (2) and (3), respectively; it can be implemented 
in a piece-wise continuous manner based on the finite-element frame-

work. The plate domain is discretised using two-dimensional inverse 
finite elements, and for each element, 𝑒, a weighted least-squares error 
functional is formulated as,

Φ𝑒(u𝑒) ≡ w𝑒||e(u𝑒) − e𝜀||2 + w𝑘||k(u𝑒) − k𝜀||2 + w𝑔||g(u𝑒) − g𝜀||2, (4)

where w𝑒, w𝑘, and w𝑔 , are vectors of weighting coefficients that con-

trol the degree of enforcement between the analytical and experimental 
strain measures. The individual error norms (for an element with area 
𝐴𝑒) are given as,

||e(u𝑒) − e𝜀||2 = 1 
𝐴𝑒 ∫

𝐴𝑒

[e(u𝑒) − e𝜀]2𝑑𝐴,

||k(u𝑒) − k𝜀||2 = (2𝑡)2

𝐴𝑒 ∫
𝐴𝑒

[k(u𝑒) − k𝜀]2𝑑𝐴,

||g(u𝑒) − g𝜀||2 = 1 
𝐴𝑒 ∫

𝐴𝑒

[g(u𝑒)]2𝑑𝐴.

(5)

When experimental strain measurements are available for an inverse 
element, the corresponding weighting coefficients are set to unity. Oth-

erwise, they are set to a small value (10−5) to reduce the element contri-

bution in the global functional. As g𝜀 cannot be computed directly from 
experimental measurements, the squared-norm form of Eq. (5) is used 
and w𝑔 is set to a small value.

The element error functional of Eq. (4) is minimised with respect 
to the nodal degrees-of-freedom to obtain the element-level equation: 
k𝑒u𝑒 = f𝑒. Appropriate coordinate transformations are applied and the 
element contributions are assembled into a global system of equations. 
Problem-specific displacement boundary conditions are enforced to ob-

tain the final global matrix equation:

KU = F. (6)

The unknown nodal displacements can be computed using U = K−1F. 
As K is only a function of the sensor positions, it is only inverted once 
for a specific sensor layout. The vector F is dependent on both sensor 
positions and measurements and is recomputed for each new strain ac-

quisition step. Once F is updated at each time step, the displacement 
field can be computed with minimal computational effort, making iFEM 
appealing for dynamic applications as discussed in the present work. 
Indeed, the reconstructed displacement time history and the input sig-

nal (acquired using a load cell), can be processed via the Fast Fourier 
Transform (FFT) to compute the response and the input in the frequency 
domain. Afterwards, the output and input measurements are used to es-

timate the FRFs and identify the modal parameters. For further details of 
the reconstruction and identification of modal parameters using iFEM, 
readers can refer to [21]. This methodology facilitates the employment 
of iFEM-reconstructed parameters for vibration-based SHM and global 
damage detection. Indeed, vibration-based SHM often investigates the 
global behaviour of a structure by identifying its dynamic properties and 
extracting effective features sufficiently sensitive to the possible dam-

age scenarios, which are analysed to monitor the overall health of the 
structure [39]. In contrast, when the vicinity of the damage location is 
known a priori, strain-based approaches may be used for local damage 
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identification. In this framework, iFEM can detect local changes in-

duced by damage, but it can also provide a global analysis of a structure 
as it reconstructs its full-field displacements. Moreover, the proposed 
method gathers the global damage-sensitive features usually adopted in 
vibration-based SHM from cost-effective fibre-optic sensors. Thus, the 
current approach enhances traditional vibration-based SHM and PBSHM 
by efficiently providing global features to study the overall behaviour 
of a structure and transfer this knowledge to similar ones, while addi-

tionally providing the local insights of strain-based approaches.

2.2. Domain adaptation via transfer component analysis

The advent of machine learning and pattern recognition methods 
has facilitated the development of a range of data-based techniques 
within the SHM field. These techniques leverage dynamic features such 
as modal properties and transfer functions to enable efficient diagnostic 
performance, especially for analysing large volumes of data and identi-

fying patterns that are not easily discernible by traditional SHM methods 
[24,39]. However, sufficient training data are not often available. In ad-

dition, the training and test data should come from the same domain, 
and have the same distribution [37]. In these scenarios, transfer-learning 
algorithms can improve diagnostic inferences by sharing knowledge 
from a more comprehensive source domain to a potentially different 
target domain.

Different transfer-learning algorithms can be employed based on the 
type of features, monitoring task, and available data [40]. The current 
study considers features extracted from dynamic transfer functions. It 
assumes that the target domain does not include any samples from dam-

aged conditions in the training dataset, but only a limited number of 
samples from a healthy condition. Therefore, it is necessary to inform 
a damage-detection model using additional samples from a source do-

main, which includes a more extensive and complete training dataset. 
The algorithm that has been implemented for the purpose of this SHM 
task is the TCA. This transfer learning strategy is part of the class of do-

main adaptation, and it learns a nonlinear mapping between the features 
of the source and target structures and transforms them into a low-

dimensional latent space by minimising the difference between their 
marginal probability distributions [37,41].

In order to describe the TCA algorithm, it is necessary to define the 
concepts of domain, task and the main principles of transfer learning. 
A domain  is composed of a feature space 𝜒 , and a marginal prob-

ability distribution 𝑃 (𝑋), where 𝑋 = {𝑥1, 𝑥2, ...𝑥𝑛} ∈ 𝜒 . A task  is 
composed of a label space  , where 𝑌 = {𝑦1, 𝑦2, ...𝑦𝑛} ∈ , and a predic-

tive function 𝑃 (𝑦𝑖|𝑥𝑖), which should be estimated from the data during 
the training phases. In this study, the features are segments of an aver-

aged FRF, while the labels are indicators of damage. A transfer-learning 
algorithm is a particular machine-learning strategy which tries to accu-

rately build a predictive function on a target domain 𝑇 , exploiting the 
source domain 𝑆 and task 𝑆 , assuming that 𝑇 ≠ 𝑆 or 𝑇 ≠ 𝑆 . 
Domain adaptation is a class of transfer learning which assumes that 
𝑇 ≠𝑆 , but 𝑃 (𝑌𝑆 |𝑋𝑆 ) = 𝑃 (𝑌𝑇 |𝑋𝑇 ).

TCA is a domain-adaptation approach which performs harmoni-

sation and dimensionality-reduction of the original features. This al-

gorithm learns a transformation 𝜓 such that 𝑃 (𝜓(𝑋𝑆 )) ≈ 𝑃 (𝜓(𝑋𝑇 )), 
and also assumes 𝑃 (𝑌𝑆 |𝜓(𝑋𝑆 )) ≈ 𝑃 (𝑌𝑇 |𝜓(𝑋𝑇 )). The distance between 
the marginal probability distributions is computed using the Maximum 
Mean Discrepancy (MMD) criterion [42], leveraging the kernel trick to 
avoid dealing with the nonlinear feature space. 
The MMD formulation specifies,

Dist(𝑝(𝜓(𝑋𝑆 )), 𝑝(𝜓(𝑋𝑇 ))) ≈ 𝑡𝑟(𝑊 𝑇𝐾𝑀𝐾𝑊 )) (7)

𝐾 represents the kernel matrix, computed using a kernel function 
𝑘(𝑥𝑖, 𝑥𝑗 ) = 𝜓(𝑥𝑖)𝑇 𝜓(𝑥𝑗 ). The features considered are given by 𝑋, 𝑋 =
(𝑋𝑆 +𝑋𝑇 ) ∈ℝN𝑥D, which is the union of the source and target features 
used during training, N = (N𝑆 +N𝑇 ) is the number of training samples 

from the two domains, and D is their initial dimension. The Radial Basis 
Function (RBF) is used for the kernel,

𝑘(𝑥𝑖, 𝑥𝑗 ) = 𝑒𝑥𝑝

(||𝑥𝑖 − 𝑥𝑗 ||
2𝑙2

)
(8)

In the kernel function, 𝑙 is the length-scale estimated using a median 
heuristic [43]. The matrix 𝑊 ∈ ℝN𝑥k is used to perform the features’ 
transformation and reduce their dimension to k. The MMD matrix, 𝑀
is defined as,

𝑀(𝑖, 𝑗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 
N2
𝑆

, if 𝑥𝑖, 𝑥𝑗 ∈𝑆
1 
N2
𝑇

, if 𝑥𝑖, 𝑥𝑗 ∈𝑇
−1 

N𝑆N𝑇
, if 𝑥𝑖 ∈𝑆 , 𝑥𝑗 ∈𝑇

−1 
N𝑇N𝑆

, if 𝑥𝑖 ∈𝑇 , 𝑥𝑗 ∈𝑆

(9)

The TCA computes the 𝑊 matrix which minimises the distance shown 
in Eq. (7). The MMD minimisation requires defining a centring matrix 
𝐻 = N𝑥N − (1∕N) ⋅ [1]N𝑥N, and a regularisation parameter 𝜇. It can be 
written as,

min 
𝑊 𝑇𝐾𝐻𝑊 = = 𝑡𝑟(𝑊

𝑇𝐾𝑀𝐾𝑊 ) + 𝜇 ⋅ 𝑡𝑟(𝑊 𝑇𝑊 ) (10)

Subsequently, the minimisation is written as an eigenvalue problem, 
employing a Lagrangian approach,

(𝐾𝑀𝐾 + 𝜇)𝑊 =𝐾𝐻𝐾𝑊𝜓 (11)

The resulting set of eigenvectors 𝑊 , can be used to transform the fea-

tures 𝑋 into their latent space representation 𝑍 ,

𝑍 =𝐾𝑊 ∈ℝN𝑥k (12)

The features in the latent space can be used to compute the MSD with 
respect to the training features in undamaged conditions, and build a 
damage indicator [23]. Subsequently, any new observation is labelled 
according to its MSD from the samples in the undamaged conditions, 
comparing this distance with a threshold, which is computed via a 
Monte Carlo method [39] based on the dimension of the target dataset. 
Thus, the samples extracted from averaged FRFs in undamaged condi-

tions can be used as training features for the source and target domains 
𝜒𝑆 and 𝜒𝑇 . These features are standardised and used during training 
to learn a nonlinear mapping. Afterwards, the samples from the target 
test dataset are transformed in the latent space and their MSD is used to 
compute their labels. The proposed approach, comprising iFEM-based 
FRF reconstruction and TCA, is summarised in the flowchart of Fig. 2.

The TCA findings are compared with those obtained via a more 
traditional approach, as shown in [23,41,44]. This benchmark novelty-

detection approach consists of using Principal Component Analysis 
(PCA) to learn a linear transformation of the features 𝑋𝑇 , considered 
separately for each domain, to extract the essential data patterns [39]. 
The FRFs in 𝑋𝑇 are transformed into a low-dimensional space. Subse-

quently, the same strategy based on the MSD is used to detect damage 
[23]. The PCA has been introduced in [45,46] for multivariate analy-

ses. It projects a dataset into a k-dimensional space, where k is lower 
than the original dimension D. The new coordinates are called prin-

cipal components, and they are defined to represent the largest part of 
the variance of the initial coordinates. Given the target features 𝑋𝑇 , and 
their covariance matrix [Σ𝑇 ], [Σ𝑇 ] is decomposed as [Σ𝑇 ] = [𝐴][Ω][𝐴]𝑇 . 
The eigenvector matrix [𝐴] ∈ ℝD𝑥D, can be truncated to [𝐴𝑟] ∈ ℝD𝑥k , 
which considers only the first k terms. Consequently, the principal com-

ponent scores are given by {𝑧}𝑖 = [𝐴𝑟]𝑇 ({𝑥𝑇 }𝑖 − {𝑥𝑇 }) for 𝑖 = 1, ...,N𝑇 , 
and [Ω] ∈ ℝD𝑥D, is a diagonal matrix and represents the contribution 
of each score to the total variance of the dataset. The simplicity of PCA 
can be leveraged for various purposes including outlier detection, clas-

sification, variable selection, and data reduction, as presented in [47]. 
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Fig. 2. Flowchart of the proposed knowledge-sharing approach, including iFEM-displacement reconstruction and FRF estimation to extract the source features. 

However, this approach can be outperformed by nonlinear methods 
[39].

3. Experimental analysis of a population of aircraft structures

The proposed approach is analysed via two PBSHM tasks, involving a 
population of similar laboratory-scale aircraft, made of beam and plate 
components joined together via bolted connections. These structures, 
shown in Figs. 3 and 4, are designed according to a benchmark geometry 
investigated by the Structures and Materials Action Group (SM-AG19) 
of the Group for Aeronautical Research Technology in EURope (GAR-

TEUR) [48]. Each structure consists of a rectangular fuselage and a 
rectangular plate connected to the fuselage for realising the wings. Two 
shorter plate elements are applied at the wingtips to simulate winglets. 
Finally, the model includes similar plate elements to realise the vertical 
and the horizontal tail. However, some sources of heterogeneity are in-

troduced in the population by altering some materials, dimensions and 
geometrical details, to create a comprehensive dataset. The structures 
are tested with a single-input multi-output EMA approach, providing 
the excitation using a shaker connected to the rear of the fuselage by 
means of a stinger. The input is measured by a load cell at the junction 
between the stinger and the structure, while the responses are acquired 
using three different sensor setups. The tests are performed considering 
a baseline undamaged condition, and multiple damage conditions. The 
damage conditions are simulated by applying additional masses (around 
2% of the aircraft mass), in multiple positions, as described in [49]. This 
technique induces a decrease in eigenfrequencies, which is analogous to 
the effect of a local stiffness loss [50,51]; thus, the discrete masses can 
be adopted as a reversible method for simulating damage. Indeed, the 
mass effect has been analysed in a finite-element model of the first steel 
laboratory-scale aircraft by imposing a reduction in Young’s modulus of 
a small region on the wing, as stated in [52]. The FEM analysis found 
that the additional mass on the wing reduces the first natural frequency 
similarly to a 50% stiffness reduction of corresponding elements over 
20 mm. Six damage locations are considered in the classical EMA tests: 

one at the wing tip, two along the wing, one on the horizontal tail and 
two on the fuselage, at the tip and the end. Instead, the strain-based 
EMA has been performed considering only the third mass location on 
the wing, and the damage location on the horizontal tail.

The first PBSHM case study involves two laboratory-scale steel air-

craft, shown in Fig. 3. The first one (Fig. 3a) has a 2.0 m wingspan, and 
its fuselage is built using a thin-section Fe360 profile, with a length of 
1.5 m and a thickness of 3.0 mm. The wings and the other elements are 
built using S235JRC + C steel plate elements, 8.0 mm thick and 100.0 mm 
wide. This structure is tested twice, adopting a periodic chirp excitation 
and acquiring the response via high-definition distributed fibre-optic 
strain sensors and SLDV, producing two dissimilar datasets from the 
same system. The second structure (Fig. 3b) is almost identical to the 
first one. The only differences regard the fuselage profile - which is solid 
- and manufacturing variations in the plates’ thickness. This aircraft is 
tested by adopting ICP accelerometers, producing a third dataset. Sub-

sequently, these three datasets are used to perform knowledge transfer 
in a homogeneous framework, because the systems are almost identical. 
In particular, iFEM is used to harmonise the features extracted from the 
strain-based EMA, as presented in [21], and the resulting features are 
used as a source domain for enhancing damage detection on the other 
two datasets, solving the issue of different experimental setups.

The second PBSHM case study includes a different aircraft model 
(Fig. 4), which differs from the first one in terms of materials, scaling 
and winglet configuration. To ensure clear and consistent identification, 
the name of each model is defined by its size, material, and a numer-

ical identifier to differentiate models of the same material and scale. 
This convention supports a systematic expansion of the aircraft popu-

lation, as developed in [53]. This structure is made of aluminium, it 
has a wingspan of 1.0 m and it does not have winglets. Instead, this 
structure includes some additional elements connected to the wings 
to simulate the engine’s weight. Additionally, this aircraft is tested by 
adopting the SLDV in a classical EMA setup. This task adopts the iFEM-

reconstructed features as a source domain, and the SLDV features from 
the aluminium aircraft as a target domain. Each test provides the FRF at 
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Fig. 3. Pictures of the aircraft structures for the homogeneous case study. 

Fig. 4. Picture of the small aluminium aircraft (#1) for the heterogeneous case 
study.

all the measurement points and the summed FRF. The features are com-

puted from the normalised amplitude of the summed FRFs to consider 
global quantities. The iFEM-reconstructed transfer function is shown in 
Fig. 5, and the corresponding dataset is computed from the measure-

ments by polluting the normalised FRFs with 𝜎 = 0.1 Gaussian noise 
relative to the normalised amplitude. The tests have been carried out in 
the “LAQ-AERMEC Aeromechanical Structural Systems” laboratory of 
the Department of Mechanical and Aerospace Engineering, Politecnico 
di Torino, and the “Laboratory for Verification and Validation ” (LVV), 
The University of Sheffield.

These functions are extracted from the strain time histories measured 
by the high-definition distributed fibre-optic sensors. Specifically, iFEM 
is adopted to reconstruct the displacement time histories at each mea-

surement point, the response is evaluated in the frequency domain via 
FFT, and the FRF is computed by means of the H1 estimator, exploiting 
the load-cell input measurements. Further details on the experimental 
campaign and the strain-based features before and after iFEM-based 
displacement reconstruction can be found in [21]. Analogously, it is 
possible to create the dataset and extract the displacement FRFs mea-

sured in the classical EMA tests. These features are shown in Fig. 6. The 
FRFs shown in Figs. 5 and 6 are computed over 2048 spectral lines, 
and the analysed frequency range depends on the specific case study. 
Specifically, a 0-50 Hz range is analysed for the large steel aircraft, to 
represent the first main flexural vibration modes and the first torsional 

modes of the wings. Instead, a wider range (0-320 Hz) is analysed for the 
small aluminium model to analyse corresponding vibration modes. The 
extracted features consist of FRF segments, being equivalent in terms of 
the number of spectral lines, evaluated around the peaks of the main vi-

bration modes identified in the measured frequency range. Thus, only 
the most significant parts of the FRFs are considered and the dimension-

ality of the extracted features is reduced from 2048 to 861.

4. Results

The current section describes the damage detection results obtained 
using TCA on the three analysed target domains, sharing the knowledge 
acquired from the iFEM-reconstructed features of the large steel aircraft 
(#1). The first two pairs of source and target domains represent anal-

ogous structures, to focus on harmonising different sensor setups; the 
third transfer learning case study considers two dissimilar source and 
target structures, to extend the application of iFEM-reconstructed fea-

tures for heterogeneous problems. Additionally, the transfer-learning re-

sults are compared to the benchmark novelty-detection approach based 
on PCA and MSD to highlight how knowledge transfer and the PBSHM 
approach can improve damage identification.

4.1. Baseline damage detection on the individual datasets

The PCA is applied to the individual FRFs of each target for un-

derstanding the achievable performance in the absence of knowledge 
transfer. A dataset is produced for each domain by splitting its features 
into a training and a test set. Assuming that only a few experimental data 
can be measured in the potential target, the training set only includes 
five samples from the undamaged condition, and the test set comprises 
five samples from the undamaged condition and one sample for each 
damaged condition. The PCA produces a feature transformation into 
a 𝑘-dimensional space, with 𝑘 = 2 to aid visualisation. This transfor-

mation is applied to the test data, and the MSD from the samples in 
the undamaged conditions provides the damage indicator. The MSD be-

tween the PCA-transformed samples is shown in Fig. 7. The results can 
be presented in terms of the undamaged condition samples, True Nega-

tive Rates (TNR), and True Positive Rates (TPR), i.e., correctly labelled 
samples from the damaged conditions. These results are presented in 
Fig. 7d, showing how, although the undamaged condition samples are 
correctly identified, the TPRs are significantly lower. Fig. 7d shows the 
averaged performance over 100 repetitions, computed to reduce the in-

fluence of the sampling process on the findings.
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Fig. 5. Normalised noisy displacement FRF, extracted from the strain measurements via iFEM-displacement reconstruction on the large steel aircraft with end winglets 
(#1). The extracted features are shown in shaded grey.

Fig. 6. Normalised noisy displacement FRFs of the target domains, computed by polluting the measurements with Gaussian noise, and extracted features in shaded 
grey.

4.2. Knowledge sharing between analogous structures and different sensor 
setups

The current section includes the first two knowledge-sharing tasks, 
in which the iFEM-reconstructed features (Fig. 5) are exploited as the 
source dataset to improve damage detection performance on two analo-

gous structures (Figs. 6a and 6b). The target domain refers to the dataset 
presented for the baseline comparison. Instead, the source dataset is ex-

tracted analogously from the displacement FRFs, but that is assumed to 
be twice as large as the target dataset. Therefore, only samples collected 
from undamaged conditions are employed during the training process. 
The number of components 𝑘 in the TCA is defined as equal to the num-

ber of components evaluated in the PCA to aid comparison. The TCA is 
adopted to map the normalised features in a common latent space, as 
shown in Fig. 8a for the first target structure and Fig. 9a for the second 
target structure. The new samples are labelled according to the MSD 
between the test samples and the transformed training features in the 
undamaged condition. The MSD results are shown in Fig. 8b for the first 
target structure and Fig. 9b for the second target structure. 

The results of this task, which focussed on a homogeneous case study, 
show that including the iFEM-reconstructed source data in the proposed 
transfer-learning strategy can create a valuable latent representation of 
features. This representation enables the source and target samples from 
normal conditions to form a single cluster. In contrast, the samples from 
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Fig. 7. Results of the benchmark PCA and MSD analysis applied on the individual datasets. The label “0-0” refers to the undamaged condition, and the label “1-n” 
refers to a damaged condition, where n defines the damage location.

Fig. 8. Results of the TCA and MSD analysis applied using the iFEM-reconstructed features as the source domain and the SLDV FRFs acquired from the large steel 
aircraft (#1).

damaged conditions deviate significantly from this cluster, facilitating 
their identification. As a result, the MSD of these samples is much higher 
than the defined threshold, leading to improved outlier detection per-

formance.

4.3. Knowledge sharing between heterogeneous structures and different 
sensor setups

The third knowledge-sharing task exploits the previously-seen iFEM-

reconstructed dataset as the source domain to improve damage-detection 
performance on a dissimilar structure, i.e., the small aluminium aircraft 
(Fig. 6c). The target data refer to the dataset already presented for the 

baseline comparison. The source and target features are transformed to 
a common latent space by means of TCA, as shown in 10a. Subsequently, 
the transformed samples from the test dataset of the target domain are 
labelled according to the MSD from the transformed training features in 
the undamaged condition. The MSD results are shown in Fig. 10b. 

Similarly to the previous case study, the knowledge-sharing process 
outperforms the baseline damage detection. In this case, not only the 
sensor setups but also the geometrical and material properties of the 
target structure differ from those of the source. Regardless, the iFEM-

reconstructed features are accurately harmonised with the segments of 
displacement FRFs acquired from the small aluminium aircraft model. 
Consequently, the samples from undamaged conditions are mapped in 
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Fig. 9. Results of the TCA and MSD analysis applied using the iFEM-reconstructed features from the large steel aircraft (#1) as the source domain and the FRFs 
acquired from the large steel aircraft (#2).

Fig. 10. Results of the TCA and MSD analysis applied using the iFEM-reconstructed features from the large steel aircraft (#1) as the source domain and the FRFs 
acquired from the small aluminium aircraft (#1).

Table 1
Results summary for the knowledge-transfer tasks: TNRs, TPRs and F1 score.

Source Target TNR TPR F1 score 
Large steel a. (#1)- iFEM Large steel a. (#1) - SLDV 1.00 0.98 0.99 
Large steel a. (#1)- iFEM Large steel a. (#2) - Accels. 1.00 0.92 0.95 
Large steel a. (#1)- iFEM Small aluminium a. (#1) - SLDV 1.00 0.94 0.97 

a single cluster, and the MSD of the samples acquired from damaged 
conditions are higher than the identification threshold.

The overall performance of the two case studies can be analysed in 
terms of TNRs, TPRs and F1 score, which measures the accuracy of the 
test. These results, shown in Table 1, regard the averaged performance 
over 100 repetitions, computed to reduce the influence of the sampling 
process on the findings. The three transfer-learning tasks correctly iden-

tify all the samples in the undamaged conditions. Additionally, TCA 
significantly improves the detection of samples from damaged condi-

tions (TPRs) with respect to the baseline approach (Fig. 7d), leading to 
high accuracy, as shown by the F1 scores.

5. Discussions and conclusions

This study proposes including the iFEM shape-sensing method in the 
PBSHM approach to facilitate data-driven damage detection. Indeed, PB-

SHM exploits transfer-learning algorithms to leverage knowledge from 
similar structures in a population and perform efficient SHM. In this 
framework, iFEM is exploited preliminarily for reconstructing the dy-

namic features from a strain-based EMA, harmonising the experimental 
findings to the classical features adopted in vibration-based SHM. The 

iFEM capability of extracting displacement FRFs and modal properties 
from dynamic strain measurements has already been presented in the 
first part of this study [21]. Accordingly, the current work focusses on 
the knowledge-sharing process, exploiting iFEM-reconstructed features 
as a source domain.

This approach is implemented on an experimental population of sim-

ilar laboratory-scale aircraft, measuring their dynamic response with 
three different sensor setups and simulating different damaged condi-

tions. The iFEM-reconstructed FRFs from the first large steel aircraft 
model are used to extract damage-sensitive features and build a source 
domain. These features are transferred to a different target domain em-

ploying the TCA algorithm. TCA maps the features into a common space, 
where damage detection is performed by computing the MSD to the clus-

ter of undamaged condition samples. The knowledge-sharing process is 
investigated via two different tasks. First, it is applied to almost identical 
structures (with manufacturing variations only). Subsequently, the same 
strategy is applied to a new target structure, a small aluminium aircraft 
model with no winglets, exploiting the same iFEM-reconstructed source 
dataset. In addition, the approach based on iFEM and PBSHM is com-

pared to a baseline damage-detection strategy based on PCA. The overall 
findings illustrate that the proposed approach can improve damage de-
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tection compared to the baseline strategy, as shown by the performance 
indicators in Table 1. Specifically, the first two tasks study the prob-

lem of knowledge transfer within a homogeneous population, tested 
via three different types of instrumentation (high-definition distributed 
fibre-optic strain sensors, SLDV and ICP accelerometers), showing that 
iFEM can be used to deal with results obtained from varying experi-

mental setups, sensors, inputs, and acquisition systems. The third task 
extends this approach to a more heterogeneous knowledge-sharing prob-

lem, including multiple differences between the source and the target 
structures (i.e., topological, material and geometrical properties). The 
significant improvement in the damage-detection performance obtained 
in this case shows that the features extracted from dynamic strain mea-

surements employing iFEM can provide reliable datasets.

Embedding iFEM in this strategy enhances estimating the global dy-

namic response and modal parameters of an analysed structure from 
a cost-effective sensor scheme, producing a comprehensive dataset of 
damage-sensitive features without a priori knowledge of the critical lo-

cations. In contrast, traditional techniques often require a greater num-

ber of sensors or may only capture the FRF at a single location. These 
configurations may result in insufficient data for analysing the overall 
dynamic behaviour of the structure, limiting the approach to a more 
localised perspective. Moreover, this methodology can be efficiently 
integrated into PBSHM, providing real-time features for monitoring 
fleets or populations of similar structures via similarity assessment and 
domain-adaptation algorithms. While the current work focusses on the 
challenges related to knowledge transfer, both the two PBSHM phases 
are crucial to deal with heterogeneous structures, and iFEM can pro-

vide added value in both. The ability of iFEM to reconstruct full-field 
mode shape data across the structure allows for a richer dataset that 
can enhance similarity assessment, providing a physics-based approach 
to measure the similarity within the population and reducing the risk of 
negative transfer. Subsequently, the harmonised damage-sensitive fea-

tures can provide reliable source information to inform new monitoring 
tasks, as shown by the experimental results. Therefore, the proposed 
strategy extends PBSHM feasibility in real-world applications by man-

aging heterogeneous data types produced by different experimental se-

tups, sensors, inputs, and acquisition systems in the knowledge-sharing 
process and enhancing damage detection performance. Further devel-

opments may concern using these comprehensive and detailed features 
in the similarity assessment process and more complicated tasks such 
as damage localisation and quantification across heterogeneous popula-

tions of structures.
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