POLITECNICO DI TORINO
Repository ISTITUZIONALE

Sharing GPUs and Programmable Switches in a Federated Testbed with SHARY

Original

Sharing GPUs and Programmable Switches in a Federated Testbed with SHARY / Salsano, Stefano; Mayer, Andrea;
Lungaroni, Paolo; Loreti, Pierpaolo; Bracciale, Lorenzo; Detti Marco Orazi, Andrea; Giaccone, Paolo; Risso, Fulvio;
Cornacchia, Alessandro; Chiasserini, Carla Fabiana. - (2025). (Intervento presentato al convegno 38th IEEE/IFIP
Network Operations and Management Symposium (NOMS 2025) tenutosi a Honolulu (USA) nel May 2025).

Availability:
This version is available at: 11583/2995946 since: 2024-12-27T08:10:06Z

Publisher:
IEEE

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

29 January 2025

Sharing GPUs and Programmable Switches in a
Federated Testbed with SHARY

Stefano Salsano*T, Andrea Mayer*T, Paolo Lungaroni*,
Pierpaolo Loreti*T, Lorenzo Bracciale*T, Andrea Detti*T, Marco Orazi*,
Paolo Giaccone®, Fulvio Rissof, Alessandro Cornacchia®, Carla Fabiana Chiasserini*
*University of Rome Tor Vergata, TCNIT, fpolitecnico di Torino,
SKAUST (King Abdullah University of Science and Technology)

Abstract—Federated testbeds enable collaborative research by
providing access to diverse resources, including computing power,
storage, and specialized hardware like GPUs, programmable
switches and smart Network Interface Cards (NICs). Efficiently
sharing these resources across federated institutions is challeng-
ing, particularly when resources are scarce and costly. GPUs
are crucial for AI and machine learning research, but their
high demand and expense make efficient management essential.
Similarly, advanced experimentation on programmable data
plane requires very expensive programmable switches (e.g., based
on P4) and smart NICs.

This paper introduces SHARY (SHaring Any Resource made
easY), a dynamic reservation system that simplifies resource
booking and management in federated environments. We show
that SHARY can be adopted for heterogenous resources, thanks
to an adaptation layer tailored for the specific resource con-
sidered. Indeed, it can be integrated with FIGO (Federated
Infrastructure for GPU Orchestration), which enhances GPU
availability through a demand-driven sharing model. By enabling
real-time resource sharing and a flexible booking system, FIGO
improves access to GPUs, reduces costs, and accelerates research
progress. SHARY can be also integrated with SUP4RNET plat-
form to reserve the access of P4 switches.

Index Terms—TFederated testbeds, resource sharing, GPU or-
chestration, dynamic resource allocation, Al research, virtualiza-
tion, reservation system, programmable data plane.

I. INTRODUCTION

Federated testbeds have emerged as powerful platforms for
supporting research and development in a variety of fields,
including cloud computing, networking, and artificial intelli-
gence. These testbeds allow researchers to access and use a
diverse array of resources — such as compute power, storage,
and networking devices — at geographically distributed sites.
However, despite the advantages that federated testbeds pro-
vide, managing and sharing resources effectively remains a
significant challenge. The complexity of integrating hetero-
geneous resources like GPUs, physical networking devices
such as SmartNICs or programmable switches (e.g., P4-based
switches), and general-purpose compute nodes often leads to
inefficiencies in utilization and availability.

In this work, we focus on a federated testbed within the
context of the Italian RESTART research program, “RESearch
and innovation on future Telecommunications systems and
networks, to make Italy more smart” [1]. This program is
the most significant public R&D initiative ever implemented

in the Telecommunications sector in Italy. In the context of
the RESTART program, our goal is to develop tools and
frameworks that create a more adaptive and efficient resource-
sharing ecosystem, better aligned with the needs of modern
research workflows, and to support the scientific community
in leveraging the full potential of the available infrastructure.

A. Sharing resources in federated testbeds

One of the core issues in federated environments is the
under-utilization of specialized hardware resources, such as
GPUs or programmable switches. While GPUs are crucial for
accelerating machine learning and artificial intelligence work-
loads, they are often idle when allocated exclusively to a single
researcher or project. The same applies to physical networking
devices like programmable switches and SmartNICs, which
are frequently underused due to their specificity and the lack
of tools that enable dynamic sharing among multiple users or
projects. These inefficiencies are further compounded by the
high acquisition costs associated with all these resources. The
importance of achieving high utilization is particularly critical
for smaller-sized federated testbeds and, more generally, when
the number of available resources is limited either in absolute
terms or relative to the demand.

Coordinating access to shared resources in a fair and effi-
cient manner is essential to achieving these goals. Traditional
resource management approaches, such as static partitions or
fixed time slots, often fail to adapt to the dynamic nature of
research workloads, leading to resource contention or wasted
capacity. Federated testbeds need mechanisms that can dy-
namically allocate resources based on real-time demand while
ensuring that the reservation process remains transparent and
user-friendly. In practical terms, this means that the basic time-
slot-based reservation mechanisms need to be complemented
by dynamic re-allocation procedures based on actual usage and
demand. This approach ensures that critical resources (such as
programmable switches, SmartNICs, GPUs) are fully lever-
aged, maximizing the value of the investment and providing
broader access to researchers.

Another major challenge in federated testbeds is the het-
erogeneity of resources and interfaces. Each site within a
federated network may have different types of hardware,
ranging from traditional CPUs to high-performance GPUs,

specialized FPGA accelerators, and various networking de-
vices. This diversity in hardware introduces complexities in the
management of resources, as different devices often require
different drivers, software environments, and management
protocols.

A further issue to be addressed is the ability to support
experiments that span multiple types of resources, such as
combining GPUs for computation with specialized networking
devices for data transfer. These types of experiments often
require precise synchronization and integration of resources
from multiple sites, making the coordination of heteroge-
neous resources even more challenging. The complexity of
orchestrating different types of hardware and ensuring that
they work seamlessly together is crucial to enabling advanced
research scenarios, where diverse computational and network
requirements must be met simultaneously.

B. Sharing GPUs in federated testbeds

Focusing on Graphics Processing Units (GPUs), they have
become indispensable assets in the realm of artificial intel-
ligence (AI) and machine learning research. Their parallel
processing capabilities significantly accelerate the training
and inference of complex models. However, the burgeoning
demand for GPUs has outpaced their supply, resulting in a
notable scarcity and elevated costs. This situation poses a
considerable challenge, particularly for academic and research
institutions with limited budgets. Researchers typically seek to
access the latest GPU architectures to push Al performance to
their limit or faithfully reproduce production training environ-
ments. In contrast, new GPU models are provisioned gradually
and usually limited in quantity, generating substantial demand
for a largely oversubscribed pool of resources. This represents
a critical bottleneck, unlike in CPU sharing environments
where users typically show less concern about the specific
CPU model utilized.

In many scenarios, individual researchers or small teams
acquire GPUs for their exclusive use. Despite the high demand,
these GPUs often remain underutilized due to the nature of
research workflows, where periods of intensive computation
are interspersed with idle times. The implementation of a
federated system in which GPU resources can be shared
among researchers can mitigate this problem. Such a system
would enable for more efficient utilization of available GPUs,
distributing computational loads dynamically based on real-
time demand.

Current open-source virtualization solutions for GPU re-
source allocation rely predominantly on static partitioning
methods. These methods allocate fixed portions of GPU re-
sources to users or tasks, regardless of the actual computational
needs or workload variations over time. While static allocation
ensures resource isolation and predictability, it falls short in
optimizing resource usage and adapting to the fluctuating
demands typical of research activities. This inefficiency is
particularly evident when GPUs remain underutilized despite
the presence of user demands that needs additional resources.
To address these challenges, we need more flexible and

dynamic GPU allocation mechanisms that allow GPUs to be
allocated or re-allocated to users’ compute instances based
on real-time demand and workload characteristics. Once a
dynamic mechanism for GPU allocation is realized, it aligns
well with the characteristics of the adaptable calendar-based
system discussed above, further enhancing the ability to match
resource availability with users’ varying needs.

Finally, some NVIDIA GPUs support vGPU technology,
which enables multiple Virtual Machines (VMs) to share
a GPU transparently, making it suitable for research envi-
ronments where full GPU capacity is not always required.
However, vGPU licensing is not free and includes different
type of virtualization products (e.g., vApps, VPC, vWS, vCom-
puteServer) that specify user limits and features. This can
introduce additional costs and planning problem, particularly
when scaling GPU access across multiple users or nodes in
research settings.

C. Sharing programmable switches in federated testbeds

Programmable switches unveiled the ability of the network
to offload generic computation to network switches and ac-
celerate numerous tasks, a paradigm known as “in-network
computing”. In-network computing has shown dramatic im-
provements both for infrastructure-related services, such as
telemetry, as well as for several distributed applications, such
as key-values stores, consensus protocols, congestion control,
distributed deep learning, among others.

P4 [2] is a state-of-the-art abstraction to program high per-
formance switches. In the federated testbed that we consider,
described in Sec. II, P4-based switches are shared in clusters
to enable reuse across the scientific community in Italy. Given
the multi-tenancy, federated nature of the cluster, isolation
mechanisms are essential to prevent tenants from interfering
with each other and to ensure the ability to run concurrent
experiments.

Differently from general-purpose compute infrastructure,
existing programmable data-plane technologies lack the es-
sential support for multi-tenancy. This is also the case for the
Intel Tofino [3] products line, supporting P4. These switches
are equipped with multiple packet processing pipelines that
can be programmed individually, thus in principle enabling
some form of parallel program execution. However, they
do not implement any mechanism for fault, resource and
performance isolation across programs of different tenants,
which can interfere with each other, either by accident or
maliciously. For example, every time a P4 program is installed,
all pipelines undergo a complete reconfiguration, potentially
causing disruption to the operations of other tenants’ programs.

The goal of this contribution is to provide a solution that
allows tenants to deploy their own data-plane applications in
a secure and isolated way.

D. Existing gaps and our contributions

Based on the above analysis, we summarize the main gaps
that we address and then highlight our contributions as follows.

1) Sharing resources in general: Traditional resource man-
agement approaches based on calendars with time slots typ-
ically lead to under-utilization of resources and wasted ca-
pacity. A more adaptable calendar-based system is needed to
manage reservations. Unlike traditional time-slot-based meth-
ods, which tend to be rigid, this adaptable calendar system
can dynamical interact with users simplifying the process
of releasing unused booked resources, notifying the users
of the last minute availability of resources and continuously
monitoring that the allocated resources are being actually used.
This system allow users to book resources in advance while
still permitting the system to adjust allocations as conditions
and needs change.

2) GPU sharing: Current open-source virtualization solu-
tions for GPU resource allocation rely on static partitioning
methods. We need more flexible and GPU allocation mecha-
nisms that allow GPUs to be allocated or re-allocated to users’
compute instances (VMs and containers) dynamically on the
fly, following the real-time users’ demand.

3) Sharing programmable networking hardware: Pro-
grammable networking hardware lacks the essential support
for multi-tenancy. We need mechanisms to support a parallel
access to such resources where possible, or at least to coordi-
nate sequential (time-slot based) access in a smooth way.

4) Our contributions: In this work, we first introduce
SHARY (SHaring Any Resource made easY), a platform de-
signed to facilitate the resource reservation process in feder-
ated environments. SHARY offers a user-friendly and flexi-
ble interface for managing reservations of various resources,
including GPUs, networking devices, storage, and general
compute resources. It builds on the adaptable calendar-based
system discussed earlier, integrating dynamic allocation mech-
anisms to support a wide range of experimental requirements.
The approach combines the predictability of advance reserva-
tions with the flexibility required to adapt to varying resource
demands, ensuring an optimal balance between planning and
adaptability. We then present the Federated Infrastructure
for GPU Orchestration (FIGO), aimed at improving GPU
availability and utilization among researchers. FIGO addresses
the limitations of static allocation methods by introducing
a dynamic allocation model. This approach improves the
efficiency of GPU usage, making high-performance computing
resources more accessible to a wider range of researchers.
Last but not least, we introduce the reservation management
system of SUP4RNET cluster of programmable switches,
which permits governing the access of different tenants to a
set of shared hardware switching resources available.

By integrating SHARY with FIGO and SUP4RNET, we
strive to create a comprehensive and adaptive resource-sharing
ecosystem, meeting the evolving needs of researchers and en-
abling more effective use of federated testbed infrastructures.

II. DISTRIBUTED TESTBED IN RESTART

A motivating scenario for our work is the federated testbed
funded by RESTART project [1], whose deployment has just
began at the time of writing. We describe here the parts of the

Datacenter @ Univ. Roma Tor
Vergata

—r

GPU-equipped servers

Datacenter @ Politecnico di Torino

P4 switches

Smart NICs + servers

Fig. 1: Federated testbed funded through the RESTART project

resources that are currently included in the testbed, shown in
Fig. 1. We have currently two main sites, corrected through a
WAN network. Additional sites are planned to be connected
in the future. The first site is located in the main datacenter
of Politecnico di Torino and the second site in datacenter of
University of Rome Tor Vergata.

In the site at the Politecnico di Torino, two kinds of
resources are available: programmable switches and smart
linecards. The programmable switches are 2 Edgecore Wedge
100BF-32X, each equipped with a 2-pipelines Intel Tofino
forwarding ASIC. The switches have 32 front-panel QSFP
ports at 100Gbps link speed. The smart linecards are hosted
on high performing servers and they offer a variety of different
programmable architectures. The following smart NICs are
available: 4 NVIDIA Connect-X7, 4 NVIDIA BlueField 2, 2
NVIDIA Convergent accelerators with GPU A30X integrated
with the BlueField 2, 4 AMD Alveo U45N data center accel-
erator cards, 2 AMD VCKS5000 Versal development cards, 2
Intel Infrastructure Processing Unit F2000X-PL. The site of
University of Rome Tor Vergata hosts a cluster of 4 GPUs
NVIDIA L40S and 4 GPUs NVIDIA Al6.

Work is in progress to extend the RESTART testbed by
federating further sites and bringing their resources to be
shared.

III. SHARY SHARING PLATFORM

SHARY (SHaring Any Resource made easY) is a tool de-
signed to facilitate the dynamic reservation of various types
of resources in a federated environment. It aims to provide a
user-friendly and adaptable system that simplifies the process
of reserving, accessing, and managing resources such as GPUs,

D77 User interaction medule SHARY

\| Tool-specific adaptation layer
Uscr;- ____________________
| SUP4RNET tool | ‘

P4 switches GPU-equipped servers Smart NICS + servers

Fig. 2: SHARY architecture to share heterogenous resources

storage, networking devices, and compute nodes. SHARY
enables researchers to interact with a web-based reservation
system or programmatically via APIs, offering flexibility while
maintaining control over resource access. The main features of
SHARY are outlined in Section III-A and the main architecture
is shown in Fig. 2.

The SHARY home page is hosted on GitHub [4]. It includes
the updated documentation, the links to the repositories for the
source code of the SHARY platform, and the links to the home
pages of the related project (e.g., FIGO, SUPARNET).

A. SHARY main features

o Web GUI for User Reservation: SHARY provides an
easy-to-use web-based interface for resource reservation,
with intuitive navigation and scheduling functionalities to
facilitate user interaction.

« User Interaction: To allow a dynamic resource allo-
cation and maximize utilization, SHARY interacts with
the users in order to incentivize the actual use of the
allocated resources during the reservation periods, and
the release of resources when not really used for the
experimentations. SHARY can interact with the users
through different communication means (email, social
networks) to guarantee a prompt reaction from the users.

o API for Programmatic Access: An API is offered to
researchers who wish to interact with SHARY program-
matically, allowing for automation and integration into
custom workflows. This enables users to script interac-
tions with the reservation system, adapt it to their spe-
cific needs, and integrate SHARY into larger automated
research setups.

« Standardized Batch Workload Procedures: SHARY
provides a standardized approach for managing batch
workloads, ensuring consistency in submitting, queuing,
and executing large-scale computational tasks. This sim-
plifies the process for researchers to handle batch jobs,
making it easier to manage their computational workloads
efficiently.

« Language to Express Reservation Policies: A specific
language should be provided to allow users and adminis-
trators to define reservation policies, including rules for
access priority, availability, and preemptions. A web GUI
front-end should complement this language, especially
to enable end users to define and adjust these policies
through an intuitive interface, making policy management
accessible even for those without advanced technical
skills.

« Language to Describe Resources: SHARY should sup-
port a standardized language that administrators can use
to describe and enroll resources into the system. This
language should be mapped into a user-friendly format
to help users discover and understand the types of re-
sources available for reservation. A web GUI front-end
should complement this language, providing an intuitive
interface that allows users to explore resource details
visually. For advanced users, the same language should

be accessible through the API, allowing them to specify
detailed resource requirements when making reservations
programmatically.

Differentiation Between Batch and Interactive Ses-
sions: SHARY can differentiate between batch and in-
teractive sessions to better align with the needs of differ-
ent research activities, enabling suitable scheduling and
prioritization for each type of session.

Ownership Awareness: SHARY can take into account
the ownership of resources, ensuring that resource owners
have priority and control over their assets, including the
ability to reclaim resources when needed.

Prioritization with Reservation Advance Intervals:
The system enables prioritization of users by providing
different reservation advance intervals, allowing users
with higher priority or longer-term projects to book
resources further in advance.

Notification of Last-Minute Availability: SHARY can
provide mechanisms to notify users if resources become
available at the last minute, helping them seize opportu-
nities for using newly freed-up resources.

Auction-like Mechanism: The system can include an
auction-like mechanism for resource allocation, allowing
users to bid for access to limited resources based on their
priority or urgency.

Tokens for Matching Actual Usage with Requested
Usage: To encourage users to request resources more
accurately, a token system can be implemented where
users gain tokens for aligning their actual usage with their
reserved time, incentivizing efficient use of resources.
Smart Monitoring System: SHARY integrates smart
monitoring capabilities that can distinguish between de-
velopment, batch workloads, and periods of inactivity
across all types of resources. This monitoring system can
provide valuable insights into current utilization patterns,
helping to inform decisions that optimize resource allo-
cation based on the nature of the task.

Comprehensive Accounting System: SHARY integrates
a detailed accounting system that tracks resource uti-
lization, including GPU, CPU and programmable switch
usage, disk space, and energy consumption. This ensures
accurate monitoring, billing, and transparency in resource
usage for all types of resources.

Visualization Front-end for Accounting: A visualiza-
tion tool is available for users and administrators to easily
monitor resource usage and analyze data for optimization.
This allows stakeholders to identify usage patterns and
make data-driven decisions about resource allocation.
User Education and Training: SHARY will include
comprehensive user documentation and training modules
to educate users on effectively utilizing the reservation
system, the API, and the languages for resource descrip-
tion and policy definition. This will ensure that users at
all skill levels can take full advantage of the system’s
capabilities and reduce the learning curve for new users.
Modular control of heterogenous resources: SHARY

Main Node

CLI FIGO
Web Incus BT GPUs
GUI Instances
\J T T
Remote Node 1 l Remote Node 2 Remote Node 3 l

Compute
Instances

Compute

“ Incus { H»{ GPUs H‘ ‘ Incus H
T T T

Instances

Compute
m GPUs H “ Incus { |nstances m GPUs H‘
Q T <

Fig. 3: FIGO architecture - Each Remote Node runs an instance of incus, coordinated by the Main Node

provides an adaptation layer to drive the specific man-
agement tools adopted to each kind of resource. E.g., in
the Fig. 2 we show SHARY controlling the reservation on
three kinds of resources: GPUs (throughout FIGO tool),
P4 switches (throughout SUPARNET tool) and smart
NICs (the design of the related tool is ongoing).

« Interoperability with External Tools: (nice to have, for
further study) it should be possible to integrate SHARY
with other resource reservation systems and testbed plat-
forms, such as FABRIC, CloudLab, and Fed4FIRE+. This
interoperability would ensure that SHARY can be part of
a larger ecosystem of federated research infrastructure,
allowing users to access a broader range of resources
and enabling collaborative experiments across different
platforms.

IV. FIGO: FEDERATED INFRASTRUCTURE FOR GPU
ORCHESTRATION

FIGO (Federated Infrastructure for GPU Orchestration) is
a specialized system designed to optimize the sharing and
utilization of GPUs within a federated research environment.
Building upon the dynamic reservation capabilities provided
by SHARY, FIGO focuses specifically on addressing the chal-
lenges of managing GPU resources across multiple sites. Its
goal is to ensure that GPUs are allocated efficiently, enabling
researchers to maximize the availability and performance of
high-performance computing resources for Al and machine
learning tasks. The requirements detailed in Section IV-A
describe the specific capabilities that FIGO must support to
achieve effective GPU orchestration. FIGO is an open source
project, the repository is on github [5]. The FIGO online
documentation is available at [6].

A. Main features of FIGO

FIGO builds upon the dynamic reservation and resource
management capabilities provided by SHARY (see Sec-
tion III-A), focusing on the specialized needs of GPU or-
chestration within the federated environment. While SHARY
provides the foundational features such as the comprehensive

accounting system, batch workload procedures, and smart
monitoring for various resources, FIGO extends these capa-
bilities to address GPU-specific challenges. The main features
of FIGO are:

o Pre-built Images of VMs and Containers: FIGO of-
fers access to pre-built VM and container images with
Al tools pre-installed, simplifying the setup process for
GPU-based research and reducing setup time for re-
searchers.

« Adaptation and Management of Heterogeneous GPU
Resources: FIGO manages the integration of different
types of GPUs, varying numbers of GPU cores, memory
capacities, and specific hardware features, ensuring that
these resources are optimally allocated and utilized across
the federated network.

« Enhanced Smart Monitoring for GPUs: Building on
SHARY’s smart monitoring capabilities, FIGO includes
GPU-specific monitoring features that track GPU perfor-
mance metrics, utilization patterns, and temperature. This
helps to identify bottlenecks and optimize the allocation
of GPUs based on the specific requirements of Al and
machine learning tasks.

« GPU-Specific Batch Workload Optimization: While
SHARY provides standardized batch workload proce-
dures, FIGO focuses on optimizing these procedures for
GPU-intensive workloads, ensuring that large-scale GPU-
based batch jobs are executed efficiently, with consider-
ations for GPU parallelism and load balancing.

« Support for Seamless Remote Interconnection: FIGO
facilitates seamless remote interconnection of GPUs with
other resources, enabling distributed GPU workloads
across different sites, and enhancing collaboration and
computational capacity for Al research.

B. FIGO Architecture and CLI commands

Figo is based on the Incus [7] manager of containers and
virtual machine. Figo provides a coordination layer on top of
Incus. Figo is based on a straightforward architecture as it is
running on a single main node, controlling a set of remote

RSV db

Access reservations server

Web Ul dashboard

B RSV broker
watch
0 ©oo apply

HTTP V ssh config
[7
€ ssh ssh——> x86 CPU + control-plane OS
Tofino SW model

P4 SDE
drivers
Tofino ASIC data-plane

SUPER Wedge 100BF-32X
P4 switches

libvirt QEMU/KVM

[€—ssh “ ssh—>» x
Tofino SW model

SUPER
tenants

Fig. 4: Architecture of the SUP4ARNET P4 cluster and enabled
P4 development workflow.

nodes through Incus; in fact, an instance of Incus is running
both on the main node and on all the remote nodes. The
architecture of FIGO is shown in Fig. 3.

FIGO has been implemented as a command-line tool de-
signed to manage federated testbeds that combine CPU and
GPU resources. It supports both virtual machines (VMs) and
containers, making it suitable for distributed computing envi-
ronments where centralized control is needed. FIGO simplifies
tasks such as starting, stopping, and managing instances,
integrating remote servers, and configuring user access through
SSH and VPN setups. It is particularly useful for research
and development scenarios requiring high-performance com-
puting, like AI and machine learning, as it offers advanced
GPU management and profile configuration features. FIGO’s
comprehensive command suite helps reduce administrative
overhead and ensures optimal use of computational resources.

The table below summarizes the key commands available
in FIGO:

TABLE I: FIGO Command-Line Interface (CLI) Commands

Command Description

figo instance | Manage instances (VMs and containers), including
starting, stopping, creating, and deleting.

figo gpu Manage GPU profiles, such as adding or removing

GPU resources to instances.

Manage instance profiles, including listing, copying,
and deleting profile configurations.

figo profile

figo user Handle user management, including adding new
users, editing details, and managing access.
figo remote Manage remote servers, including enrolling new

nodes for centralized control.

figo project Manage projects, such as creating and deleting iso-

lated environments for different users or groups.

figo Configure VPN routes for secure communication

between nodes in the federation.

vpn

Table I provides a summary of the available FIGO com-
mands and their functions, illustrating the tool’s versatility in
managing a federated compute infrastructure.

V. FEDERATING P4 SWITCHES WITH SUP4RNET

We now describe the solution we adopted to permit gov-
erning the access of different tenants to the shared hardware
switching resources available in the SUPARNET cluster.

Fig. 4 shows the components we configured to allow tenants
to experiment with P4, and the interactions among them in a
typical development workflow. The cluster readily supports the
creation of per-tenant VM(s) pre-configured with Intel P4 Soft-
ware Development Environment (SDE). We used 1ibvirt to
manage QEMU/KVM [8], [9] virtual machines.

From a tenant’s standpoint, compiling the P4 code and
verifying its correctness for a Tofino target can be done entirely
within a VM, even without accessing the physical switch.
Indeed, the Intel P4 SDE provided within the base VM image
provides a software behavioral model of the Tofino chip,
implementing most of the Tofino functionalities and repro-
duces the pipeline behavior at register-level. When desired,
tenants can run experiments on one or both the physical Tofino
switches, by explicitly reserving their access via a dedicated
reservation web-site we developed. The Wedge 100BF-32X
switches comes with a control-plane CPU where we installed
a standard Linux-based distribution (i.e., Ubuntu), to serve as
the switch OS. The switch OS manages the Tofino ASIC using
the drivers provided with the Intel P4 SDE, which we installed
in the switch CPU. Every tenant is provided with a standard
Linux user account on the switch OS, thus it can use this
account to access the switch via ssh. Permissions to login
to the switch OS are dynamically granted and removed based
on the reservations made by the tenants. A reservation (RSV)
broker agent watches for changes to the RSV database and
enforces a consistent configuration of the ssh permissions on
the target switches. The RSV broker decouples the web server
logic from the application of the permission configuration:
manual changes to the RSV database entries are applied to
the switches, independently of the web server component.
Users ssh session and processes running after the end of the
reserved time slot are considered as best effort, and can be
terminated at any time by the RSV broker once a new valid
reservation is made. We used standard Linux groups and sshd
configuration to implement the access control mechanism, and
the utility entr to watch for changes to the RSV database.

We implemented an initial, but already operational solution
to manage the access to Tofino switches in the SUPARNET
cluster. The SUPARNET cluster is currently managed with
Ansible, which fully automate VM creation, network config-
uration and user permissions.

VI. RELATED WORK
A. Federated Testbed Initiatives

FABRIC (Adaptive ProgrammaBle Research Infrastructure
for Computer Science and Science Applications) supports
large-scale, advanced experiments in networking, cybersecu-
rity, distributed computing, and other fields [10]. Launched in
2019, FABRIC builds on the GENI (Global Environment for
Network Innovations) testbed, offering expanded capabilities
[11]. GENI, operational for over a decade, enabled extensive
research in networking and distributed systems before ending
in August 2023 [12]. FABRIC’s infrastructure includes 29 sites
with substantial compute and storage resources, connected
through high-speed optical links across commercial colocation

facilities, national labs, and universities [10]. It integrates with
specialized testbeds (e.g., SG/IoT PAWR) and HPC centers,
offering a rich environment for diverse research [13].

Fed4FIRE+ is an EU-funded federation of testbeds, active
since 2017, that provides access to various networking testbeds
across Europe [14], [15]. It supports research in wireless
networks, cloud computing, and IoT, offering tools for or-
chestration and monitoring, which help automate experiments
and gather data. Its federated approach allows researchers to
use resources across multiple sites, simplifying large-scale
experimentation [16].

Emulab, active since 2000, offers controlled environments
for network research [17]. In 2014, it was extended through
CloudLab, a virtualized platform for cloud computing exper-
iments [18]. Both platforms integrate with GENI, providing
broader experimental capabilities [19].

B. Specialized Platforms for 5G Research

Colosseum is a large-scale wireless network emulator, spe-
cializing in 5G and Open RAN research [20]. It allows
high-fidelity simulation of radio environments and supports
collaborative research across other testbeds [21]. Colosseum’s
capabilities extend to emulating complex radio scenarios, pro-
viding a virtual environment that can mimic diverse conditions,
such as urban or rural mobile networks.

C. Experimental Platforms for Wireless and LTE Research

CorteXlab [22] and the NITOS Future Internet Facility
[23] offer specialized environments for indoor Wi-Fi and LTE
research. These platforms enable controlled testing of wireless
protocols and network behaviors, providing detailed insights
into signal propagation and interference patterns. CorteXlab
focuses on software-defined radio experiments, while NITOS
is equipped for evaluating next-generation wireless networks
and IoT applications. Their emphasis on controlled, small-
scale wireless experimentation makes them essential tools for
advancing indoor network research.

D. GPU Resource Management for Collaborative Research

TensorHive [24] is an open-source tool for managing and
monitoring GPU resources in multi-user environments. It
enables efficient scheduling and reservation of GPU resources,
allowing researchers to manage compute tasks collaboratively.
TensorHive supports functionalities such as job scheduling,
automated notifications, and access management. It is particu-
larly suitable for research institutions where effective sharing
and monitoring of high-performance computing resources are
critical.

E. Multi-tenancy Support in Programmable Switches

Several prior works, such as P4Visor [25] and others [26],
adopt compile-time merging to address the multi-tenancy
challenge. With these approaches, the P4 programs of different
tenants are statically combined and compiled to a single P4
binary, later installed on the target switch. The main chal-
lenge lies in the logic partitioning and the resource allocation

for programs of different tenants, which may require active
coordination cycles across tenants.

HyPer4 [27] is an example of solutions that use a
hypervisor-like P4 program to dynamically emulate, i.e., be-
ing functionally equivalent to, other P4 programs. These
approaches give the illusion of multiple data plane programs
but incur significant overheads, limiting their applicability to
software and FPGA targets.

Menshen [28] and P4VBox [29] propose extensions of the
reconfigurable match-action (RMT) hardware architectures for
data-plane multitenancy. Menshen adds an indirection layer,
in the form of small tables, to lookup and load different per-
tenant configurations dynamically for the same RMT resource,
using a configuration identifier contained in the packets. These
solutions allow running per-tenant packet processing logic;
however, they are not designed for Tofino hardware.

A recent work is SwitchVM [30], which introduces a
runtime interpreter to allow the execution of Data Plane Filters
(DPF) in a P4 sandbox environment. SwitchVM has been im-
plemented on a Tofino target, making it a relevant approach for
SUP4RNET. It enables time-sharing of the pipeline hardware
across multiple tenants while ensuring strict resource isolation
between DPFs. However, users must write in a DPF-custom
syntax rather than P4.

VII. CONCLUSION

Federated testbeds play a crucial role in advancing research
across cloud computing, networking, Al, and related fields
by providing access to diverse resources across multiple
sites. However, efficiently managing these resources presents
challenges, particularly with high-demand assets like GPUs
and specialized networking devices such as programmable
switches. This work addresses these challenges within the
RESTART research program in Italy, aiming to improve
resource-sharing adaptability and efficiency.

We highlighted key issues, including underutilization of
specialized hardware, the need for dynamic resource alloca-
tion, and the complexity of coordinating diverse resources.
Traditional methods like static partitioning for GPUs and time-
based access for switches often lead to inefficient resource
use. To overcome these, we introduced SHARY, a platform for
flexible resource reservations, integrating dynamic allocation
with an adaptable calendar system.

FIGO further enhances GPU orchestration, increasing avail-
ability and utilization across the research community by dy-
namically adapting to varying demands. In parallel, our ap-
proach to manage programmable switches in the SUP4ARNET
cluster enables better coordination, supporting both parallel
and sequential access where needed.

By integrating SHARY, FIGO, and SUP4RNET manage-
ment tool, this work creates a cohesive and adaptive resource-
sharing ecosystem that aligns with the needs of researchers,
optimizing the use of valuable infrastructure. This approach
benefits Italy’s scientific community and serves as a model
for improving resource management in federated environments
worldwide.

VIII. ACKNOWLEDGEMENTS

This work was supported by the European Union - Next
Generation EU under the Italian National Recovery and Re-
silience Plan (NRRP), Mission 4, Component 2, Investment

1.3,

CUP E83C22004640001, partnership on “Telecommuni-

cations of the Future” (PEO0000001 - program “RESTART”)

[1

—

[2]

[3

[t

[4]

[6

i}

[7

—

[8]
[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

RESTART - RESearch and innovation on future Telecommunications
systems and networks, to make Italy more smART. Accessed: October
18, 2024. [Online]. Available: {https://www.fondazione-restart.it/}

P4 open source programming language. https://p4.org/. Accessed: Oc-
tober 25, 2024.

Intel Tofino. Accessed: October 25, 2024. [Online].
Available: {https://www.intel.com/content/www/us/en/products/details/
network-io/intelligent-fabric-processors/tofino.html }

SHARY - Github page. Accessed: 2024-10-25. [Online]. Available:
https://www.github.com/netgroup/shary/

FIGO documentation home page. Accessed: 2024-10-25. [Online].
Available: https://figo-testbed.readthedocs.io/

FIGO - Github code page. Accessed: 2024-10-25. [Online]. Available:
https://github.com/StefanoSalsano/figo
Incus project. Accessed: 2024-10-25.
/Mlinuxcontainers.org/incus

QEMU - a generic and open source machine emulator and virtualizer.
Accessed: 2024-10-25. [Online]. Available: https://www.qemu.org/
Kernel Virtual Machine. Accessed: 2024-10-25. [Online]. Available:
https://www.linux-kvm.org/

M. Yankov, D. Smith, B. Azad, J. Kong, M. Swany, and I. Baldin,
“FABRIC: A national-scale programmable research infrastructure,” in
IEEE HPSR, 2021.

1. Baldin and M. Berman, “From GENI to FABRIC: Evolution of a
research infrastructure for networking and computer science,” in ACM
SIGCOMM Workshop on Computer Networking Research in the 5G Era,
2020.

FABRIC: Adaptive programmable research infrastructure for computer
science and science applications. Accessed: 18-Oct-2024. [Online].
Available: https://fabric-testbed.net/

G. MacCartney, A. A. Zaidi, T. S. Rappaport, Z. Wang, Q. Gu,
and L. F. Mollenauer, “Overview of the NSF platforms for advanced
wireless research (PAWR) program,” in IEEE International Symposium
on Antennas and Propagation, 2021.

F. De Turck, M. Serrano, P. Papadopoulos, A. Gavras, and G. Tychogior-
gos, “Fed4FIRE+: The largest federation of testbeds for experimentation
in next generation Internet research,” IEEE Communications Magazine,
vol. 57, no. 6, 2019.

M. Serrano, S. Van Rossem, D. Papadimitriou, and F. De Turck,
“Experimentation-as-a-Service: An overview of Fed4FIRE+ testbeds,”
in IEEE TridentCom, 2017.

Fed4FIRE+: Federation for future Internet research and experimentation.
Accessed: October 18, 2024. [Online]. Available: https://www.fed4fire.
eu/

J. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, C. Newbold,
M. Hibler, G. Barb, and A. Joglekar, “Anatomy of a large-scale experi-
mental research testbed,” USENIX OSDI, 2002.

R. Ricci, L. Stoller, and E. Eide, “Introducing CloudLab: Scientific in-
frastructure for advancing cloud architectures and applications,” USENIX
and SAGE, vol. 39, no. 6, 2014.

GENI: Global environment for network innovations. Accessed: October
18, 2024. [Online]. Available: https://www.geni.net/

D. Villa, M. Tehrani-Moayyed, C. P. Robinson, L. Bonati, P. Johari,
M. Polese, and T. Melodia, “Colosseum as a digital twin: Bridging
real-world experimentation and wireless network emulation,” [EEE
Transactions on Mobile Computing, 2024.

Colosseum: The Open RAN digital twin. https://www.colosseum.net/.
Accessed: October 18, 2024.

A. Massouri, L. Cardoso, B. Guillon, F. Hutu, G. Villemaud, T. Risset,
and J.-M. Gorce, “CorteXlab: An open FPGA-based facility for testing
SDR & cognitive radio networks in a reproducible environment,” in
IEEE INFOCOM Workshop, 2014.

[Online]. Available: https:

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

K. Pechlivanidou, K. Katsalis, I. Igoumenos, D. Katsaros, T. Korakis,
and L. Tassiulas, “NITOS testbed: A cloud based wireless experimen-
tation facility,” in IEEE ITC, 2014.

P. Rosciszewski, M. Martyniak, and F. Schodowski, “TensorHive: Man-
agement of exclusive GPU access for distributed machine learning
workloads,” Journal of Machine Learning Research, vol. 22, no. 215,
2021.

P. Zheng, T. Benson, and C. Hu, “P4Visor: lightweight virtualization
and composition primitives for building and testing modular programs,”
in ACM CoNEXT, 2018.

R. Parizotto, L. Castanheira, F. Bonetti, A. Santos, and A. Schaeffer-
Filho, “PRIME: Programming in-network modular extensions,” in
IEEE/IFIP NOMS, 2020.

D. Hancock and J. van der Merwe, “HyPer4: Using P4 to virtualize the
programmable data plane,” in ACM CoNEXT, 2016.

T. Wang, X. Yang, G. Antichi, A. Sivaraman, and A. Panda, “Isolation
mechanisms for high-speed packet-processing pipelines,” in USENIX
NSDI, 2022.

M. Saquetti, G. Bueno, W. Cordeiro, and J. R. Azambuja, “P4VBox:
Enabling P4-based switch virtualization,” IEEE Communications Letters,
vol. 24, no. 1, 2020.

S. Khashab, A. Rashelbach, and M. Silberstein, “Multitenant in-network
acceleration with SwitchVM,” in USENIX NSDI, 2024.

