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This study investigates the development of thermal caustics within particle-laden turbulent flows, a concept recently

proposed to elucidate the non-smooth behavior of particle temperature during fluid-particle thermal interactions, draw-

ing a parallel to the creation of caustics. The temperature variations observed between closely spaced particles, which

are linked to thermal caustics, stem from the history of their different paths. This work delves into the emergence of

thermal caustics by analyzing the dynamics of the gradient of particle temperature in the configuration space, highlight-

ing the influence of both particle and thermal inertia. The analysis indicates that thermal caustics arise concurrently

with caustics, with the exception of the condition of zero thermal inertia, which represents a singular scenario where

particle temperature decouples from velocity.

Turbulent particle-laden flows, ubiquitous in both environ-

mental and engineering contexts, exhibit a complex multi-

scale behaviour driven by the chaotic flow field and particle

inertia. These factors critically influence both individual and

collective particle dynamics. Numerous studies have shown

that particles denser than the fluid do not uniformly distribute

but instead cluster in high-strain regions due to various mech-

anisms. These include centrifugal forces, where particles

are expelled from rotating fluid regions1–3; the "sweep-stick"

mechanism, in which particles stick to acceleration stagna-

tion points and are swept following the local fluid velocity4;

and the path-history effect, a non-local phenomenon where

clustering arises from the statistical asymmetry in the paths of

converging and diverging particle pairs5.

Moreover, the relative velocities of particles at small sepa-

rations increase substantially as the Stokes number (the ratio

between particle relaxation time and Kolmogorov timescale)

increases, particularly when it exceeds a threshold of order

one6. Consequently, the relative velocity of inertial particle

pairs is significantly larger than the fluid’s relative velocity

at the same separation. This leads to the formation of the

so-called caustics, which arise when the phase-space man-

ifold folds, causing the particle velocity at a given point to

become multi-valued, leading to large velocity differences be-

tween nearby particles. At the edge of a caustics, the particle

velocity gradient becomes singular, with its trace diverging to

minus infinity.

The identification of caustics in particle-laden turbulent

flows has been extensively studied in recent decades using

both Eulerian-Lagrangian (e.g. ref. [7]) and Eulerian-Eulerian

simulations (e.g. ref. [8]), normally in the one-way coupling

regime, non considering particle feedback, collisions and set-

tling. The compressibility of particle velocity or particle num-

ber density in both Eulerian and Lagrangian forms is often

analysed by performing an order-of-magnitude analysis of the

divergence of the particle velocity. In numerical simulations,

caustics are typically identified when the magnitude of this

divergence significantly exceeds an assumed threshold. An

Eulerian approach was used also by Lee et al.9 to study the

effect of settling. They found that caustics are more likely to

form in regions with strong compressive and weak stretching

motion. To identify blow-ups, i.e. singularities in finite time,

they also studied the dynamics of the particle velocity gradient

tensor in terms of its eigenvalues.

Recently, the concept of thermal caustics has been intro-

duced by Carbone et al.10 and Saito et al.11 to describe the ob-

served behaviour of fluid-particle thermal interactions. From

the analysis of structure functions, it has been noted that the

temperature difference between particle pairs is significantly

larger than the fluid temperature difference at the same sepa-

ration, leading to a non-smooth behaviour in particle temper-

ature, even at moderate thermal Stokes numbers. This phe-

nomenon, which is akin to the behaviour of velocity differ-

ences between particle pairs, has been attributed to the for-

mation of thermal caustics and to the influence of the path

history on temperature differences between particle pairs. It

has been used by Li et al.12 to interpret the role of settling,

which changes the way particles sample the fluid, on particle

temperature statistics.

In this work, we discuss the formation of thermal caustics

on the basis of the dynamics of particle temperature gradient

in the configuration space, to underline the leading mecha-

nisms which lead to their formation, and the role of particle

inertia and thermal inertia in the process.

The motion of a set of small heavy spherical particles sus-

pended in a flow, much denser than the fluid and much smaller

than any relevant flow scale, can be described by a simplified

version of the Maxey-Riley equations13 where only the Stokes

drag is retained, i.e.

d

dt
Xp(t) = Vp(t), (1)

d

dt
Vp(t) =

1

τv

(u(t,Xp)−Vp(t)) , (2)

where Xp(t) and Vp(t) are the position and velocity of the

p-th particle, while u(t,Xp) is the fluid velocity at particle

position. The coefficient

τv =
2

9

ρp

ρ0

R2

ν
, (3)

where R is the particle radius and ν is the fluid kinematic vis-

cosity, is the particle momentum relaxation time. When the
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2

fluid-particle thermal interaction is taken into account, under

the same hypotheses the evolution of the particle temperature

Θp(t) is described by

d

dt
Θp(t) =

1

τϑ
(T (t,Xp)−Θp(t)) (4)

where T (t,Xp) is the fluid temperature at particle position,

and coefficient τϑ is the thermal relaxation time

τϑ =
1

3

ρpcpp

ρ0cp0

R2

κ
, (5)

where cpp and cp0 are the particle and fluid specific heat ca-

pacities at constant pressure and κ is the fluid thermal diffu-

sivity. In the dilute limit, particles are so far away that they

do not interact hydrodynamically, and for very dilute suspen-

sion, with a particle volume fraction of no more than around

10−6, particle forces and thermal feedback on the flow can be

neglected. In this situation the velocity and temperature of the

carrier flow become independent of the presence of suspended

particles and equations (1-4) become a linear system of equa-

tions with a time dependent external forcing. The dynamics of

the particle is determined by the ratio between their momen-

tum and thermal relaxation times and the flow timescale, in

particular in a turbulent flow with the Kolmogorov timescale

τη , so that in dimensionless form by the Stokes and ther-

mal Stokes numbers, St = τv/τη and Stϑ = τϑ/τη where

τη = (ν/ε)1/2.

Gradient dynamics is a convenient tool to describe the

small-scale behaviour of turbulence, and as such it has been

largely investigated in the literature due to its theoretical and

practical importance,14–16 and particle velocity gradient has

been considered to study particle clustering, collisions and

the formation of caustics.17–19 Following a well established

formalism17,20,21, we can consider Xp, Vp and Θp as state

variables for particles, and derive the field representation of

the particle phase dynamics in the configuration space, often

called a “synthetic” representation. It can be obtained under

the assumption that the probability density function of par-

ticles can be factored as P(t,x,v,ϑ) = δ (x−Xp)δ (v −
Vp)δ (ϑ −Θp), i.e. that particle velocity and temperature are

uniquely determined by the position. By introducing this fac-

torization into the transport equation22–24 for P , the result-

ing equations for the particle concentration, mean velocity and

temperature fields in the configuration space are

Dp

Dt
n(t,x),=−n∇ ·v (6)

Dp

Dt
v(t,x) =

1

τv

(u(t,x)−v(t,x)) , (7)

Dp

Dt
ϑ(t,x) =

1

τϑ
(T (t,x)−ϑ(t,x)) , (8)

where Dp/Dt = ∂/∂ t +v ·∇ is the material derivative along

particle paths, defined by

∂

∂ t
x(t,X̃) = v(t,x), x(0,X̃) = X̃.

For a generic flow the existence of v and ϑ is not guaran-

teed a priori, and it breaks when a caustics is formed. How-

ever, when these equations generate a smooth single-valued

solution (v,ϑ), then the underlying assumption is valid and

self-consistent. Moreover, caustics are concentrated in small

regions in space and have a lifetime of order τv
19,25, so that

these equations keep their validity before (and after) their for-

mation. The formation of finite-time singularities in v and ϑ
marks the formation of caustics and thermal caustics. There-

fore, the problem of the generation of caustics and thermal

caustics leads to the determination of the conditions under

which the gradient of v or the gradient of ϑ have a finite time

blow-up, so that equations (7) and (8) can still be used as a

tool to analyze the path to caustics.

Therefore, we define the Eulerian particle velocity gradient

tensor σ = ∇v and particle temperature gradient vector ξ =
∇ϑ , whose components are

σi j =
∂vi(t,x)

∂x j

, ξ j =
∂ϑ(t,x)

∂x j

.

An equation for the gradient of particle temperature and ve-

locity can be derived by taking the gradient of equations (7)

and (8). The gradient of (8) leads to

∂ξk

∂ t
+ v j

∂ξk

∂x j

+σ jkξ j =
Gk −ξk

τϑ

where G = ∇T is the Eulerian fluid temperature gradient, or,

in vectorial notation,

Dp

Dt
ξ =

G−ξ

τϑ
−σTξ. (9)

Analogously, the gradient of equation (7) gives the particle

velocity gradient tensor evolution equation,6,26

Dp

Dt
σ(t) =

A−σ

τv

−σ2, (10)

where A= ∇u is the fluid velocity gradient. The dynamics of

A and G can be obtained from the gradient of Navier-Stokes

equations (e.g. Zhang et al.27),

D

Dt
A=−

1

ρ0
H+ν∇

2A−A2, (11)

D

Dt
G= κ∇

2G−ATG, (12)

where D/Dt = ∂/∂ t +u ·∇ is the fluid material derivative,

and Hi j = ∂ 2 p/∂xi∂x j denotes the pressure Hessian. The ve-

locity gradient is enhanced by the non-linear and local term

−A2 stretching-tilting term in (11) and is damped by both

diffusion and the non-local pressure Hessian term, which acts

in a way to reorientate the fluid velocity gradient tensor14,28,29,

while, on the contrary, the temperature gradient is only driven

by the stretching due to the velocity gradient and the diffusion

(e.g. Xhang et al.27). Both equations are not closed from a

Lagrangian point of view, because all the spatial derivatives

are unknown, and both the diffusive terms and the pressure
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3

Hessian require modelling. Still they are they key for the

understanding of small-scale phenomena, and the basis for

stochastic models, which have been able to reproduce some

important features, like the onset of a non Gaussian probabil-

ity density function, intermittency, the average alignments of

vorticity and strain-rate.

Equations (11-12) and equations (9-10) show a fundamen-

tal difference, due to the lack of stabilizing terms in the par-

ticle gradient equations (9-10), like the diffusion and pressure

Hessian, which can prevent a finite time blow-up in the fluid

equations. The properties of equations (10) have been studied

in many papers6,20,30, which have highlighted the role of the

quadratic term on the right-hand side, which leads to singular-

ities, called also sling effect25, in which the trace of σ diverges

to −∞, producing also a singularity in particle concentration

through (6). Gustavsson et al.20 discussed how the dynamics

of σi j can explain the formation of velocity caustics through

the sling effect when particle Stokes number exceeds the unity

and becomes very large (St → ∞), a situation which allows to

use the hypothesis of random uncorrelated motion. Ravichan-

dran et al.31 related caustics with enhanced collision rates of

droplets in clouds, and Esmaily and Ali Mani32 derived an

asymptotic solution for the rate of contraction of a cloud of in-

ertial particles in regimes relevant to turbulent flows, predict-

ing a maximum rate of contraction when the Stokes number is

O(1). Recently, by using they employed optimal fluctuation,

Meibohm et al.33 found that caustics can be formed even at

the very low inertia range, when St ≪ 1, by a spatial instabil-

ity in particles neighbourhoods. Finally, Bätge et al.19 gave a

quantitative prediction of the rate of sling events based on the

velocity gradient history along particle paths.

On the contrary, equation (9), which can be used to char-

acterize the formation of thermal caustics for heavy particles,

has never been considered. Along each particle Lagrangian

path, the linearity of (9) makes that no singularity can arise in

finite time unless the coefficients, G and σ become singular.

But we already know that G cannot become singular due to

the presence of the diffusive term in the fluid temperature gra-

dient equation, so that the only source of singularity is σ. In

case of slowly varying G and σ, particle temperature gradient

tends to relax to an equilibrium gradient given by

ξe =
[

I+ τϑσ
T
]−1

G. (13)

A unique equilibrium state exists, for any given temperature

gradient G, only if the operator

M = I+ τϑσ
T (14)

can be inverted, i.e. if −τϑ is not an eigenvalue of σ, which is

verified if the flow timescales are much larger than the particle

thermal relaxation time. Formally, equation (9) has an analyti-

cal solution provided that G and σ are known functions along

particle Lagrangian paths: the general solution of (9) can be

expressed as34

ξ(t,X̃) =Φ(t; t0,X̃)ξ(t0)+
1

τϑ

∫ t

t0

Φ(t;s,X̃)G(s,X̃)ds,

(15)

where Φ(t, t0) is the transfer operator, given by the solution of

d

dt
Φ(t; t0,X̃) =−

1

τϑ
M(t,X̃)Φ(t; t0,X̃), (16)

Φ(t0; t0,X̃) = I. (17)

This formal solution explicitly shows that the evolution of

ξ is driven by the fluid temperature gradient G, modulated

by the M along particle paths. Thus, the properties of the

operator M = I + τϑσ govern the dynamics of the particle

temperature gradient. Since G is a smooth field, albeit pos-

sibly strongly intermittent, M determines the possibility for

the formation of thermal caustics. Therefore, the evolution of

ξ is dictated by the interplay between the thermal relaxation

time and the particle velocity gradient which, unless buoy-

ancy forces are significant, is independent from the particle

temperature. A low but non-zero thermal inertia can mitigate

the effect of an increase in ||σ|| but cannot entirely suppress

a singularity of the particle velocity gradient.To identify ther-

mal caustics, it is more straightforward to consider the only

scalar invariant of ξ, its norm. The scalar product of equation

(9) by ξ gives

τϑ

2

Dp

Dt
||ξ||2 =−ξ · [I+ τϑσS]ξ+ξ ·G, (18)

where σS = (σ+σT )/2 is the symmetric part of the particle

velocity gradient, i.e. the strain experienced by particles.

Since σS and I commute, the eigenvectors of the symmet-

ric part of M coincide with the eigenvectors of the particle

strain rate tensor, and its eigenvalues are given by 1+ τϑ λi,

where λi are the eigenvalues of the symmetric part of par-

ticle velocity gradient tensor σS. Let us call λ1 ≥ λ2 ≥ λ3

the three real eigenvalues of σS. Their sum is the diver-

gence of the particle velocity field, which tends to be neg-

ative because particles heavier than the fluid tend to sample

regions with high strain and low vorticity — as, for small in-

ertia, ∇ ·σ ≃ −τv(||S||
2 −||Ω||2) — and tends to vanish for

τv → 0+, when particles sample uniformly the fluid. Thus,

we may assume that almost everywhere the first eigenvalue is

positive, the last one is negative and the second one can be

either positive or negative.19

In the equation (18) the alignment of ξ with σS and G plays

a crucial term in the evolution of ξ. The alignment with σS

can be computed by mustering the angel between ξ and the

principal eigenvectors of σS , similar the approach is used in

order to capture the alignment between the fluid vorticity and

the eigenvectors of fluid strain-rate tensor. Therefore, we can

assume that for three eigenvalues λ1, λ2 and λ3 which are or-

dered such that λ1 ≥ λ2 ≥ λ3, p1 p2, and p3 denote the corre-

sponding eigenvectors. Now, we are able to see the stretching

or compressing of ||ξ|| in the directions of the eigenvectors of

σS . In the principal frame of σS first term in right-hand side

of (18) is expresses as

−

[(

1

τϑ
+λ1

)

ξ 2
1 +

(

1

τϑ
+λ2

)

ξ 2
2 +

(

1

τϑ
+λ3

)

ξ 2
3

]

.

(19)
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4

Since λi ≥ λ3 ∀i, we obtain the following estimate for the so-

lution of the magnitude of ξ from the equation (18),

−(1+ τϑ λ1) ||ξ||
2 .

τϑ

2

d

dt
||ξ||2 −G ·ξ .−(1+ τϑ λ3) ||ξ||

2 .

(20)

The norm decays when λ3 > −1/τϑ , and a growth, bounded

by exp(−(1+ τϑ inf{λ3})(t − t0)) is possible only when λ3 >
−1/τϑ . Consequently, we can say that when σ remains

bounded, then a smooth solution of the equation (18) exists,

implying that no thermal caustics occur.

If the case a thermal caustics occurs, both ||ξ|| and its time

derivative diverge to +∞. Since G is a smooth, even if inter-

mittent, field, the bounds to the growth of ||ξ || are determined

only by λ3.

Therefore, the only way a thermal caustics can form is when

σ is not smooth and has a finite time singularity. As discussed

in Ref. [19], the dynamics of the trace of σ is dictated by the

smallest eigenvalues of A, which in turn determines the be-

haviour of the smallest eigenvalue of σ, making it diverge.

In such a case, it is possible to reduce the problem into a

one-dimensional problem, corresponding to a projection on

the smallest eigenvalue eigenvector of A. Analogously to the

onset of caustics in particle velocity field,9,19 two stages of

evolution can be individuated: until |σ | ≪ 1/τv the nonlinear

terms in the equation for σ can be neglected and its growth

can be approximated by the solution of the linearized equa-

tion. By assuming that the timescale of variation of A and

G is larger than the timescale of the variation of the particle

gradients, dictated by the Stokes relaxation time, so that it is

possible to consider a sort of "frozen" flow approximation, it

gives an exponential growth

σ ≃
∫ t

0
A(t ′)exp(−(t − t ′)/τv)dt ′. (21)

When |σ | ∼ 1/τv nonlinear terms become significant and

when |σ |≫ 1/τv they are the dominant term so that σ̇ ≃−σ2,

which leads to finite-time blowup

σ ≃C0(t − t∗)
−1. (22)

If σ(0) is given, we can determine C0, i.e. the scaling fac-

tor related to the initial value of σ and the time of blowup

t∗, by evaluating equation (22) at t = 0. Therefore, we can

have σ(0)≃−C0/t∗. If we impose the initial value as σ(0) =
−1/τv, we can have C0 = t∗/τv. Note that in the equation (22)

we assumed that the sufficient condition for caustics is met by

considering C0 > 0 leading to exponential growth of σ . This

implies that t∗ being positive ensuring the blowup occurs at

a positive time. This indicates that as t approaches t∗, σ in-

creases rapidly and diverges to −∞, leading to a blowup.

The same analysis, indeed for the first time, is performed

here for the particle temperature gradient to characterize the

thermal caustics. Accordingly, the one-dimensional version

of the temperature gradient equation is

ξ̇ =−

[

1

τϑ
+σ

]

ξ +
G

τϑ
, (23)

which could be obtained by projection onto the eigenvector

of the smallest eigenvalue of σS. In the second stage of the

caustics formation we have

ξ̇ ≃−

[

1

τϑ
+

C0

t∗− t

]

ξ +
G

τϑ
, (24)

so that from eq. (15), since |σξ | ≫ |G|/τϑ when a caustics is

approached, the particle temperature gradient is given by

ξ (t)≃ ξ0 exp(−t/τϑ ) |1− t/t∗|
−t∗/τv . (25)

Therefore any thermal inertia (whatever small) cannot prevent

the formation of a thermal caustic. However, in the limit τϑ →
0+ there is no caustic, as the solution is ξ = G and G is a

smooth, even if intermittent, field. The condition for a growth

of ξ is that σ < −1/τϑ , so that a small thermal inertia can

delay the begin of the growth dominated by σ which brings to

the blowup.

In Carbone et al.10 a lower intermittency at small Stϑ has

been observed from the probability density function of the

particle temperature and in the exponents of the structure

functions, which can be seen as a signature of the fact that

thermal caustics have a lower impact on the statistics in this

range of thermal inertia. Note that the exp(−t/τϑ ) factor in

eq. eq. (25), even if it cannot suppress the formation of ther-

mal caustics, can reduce the duration of the caustics event,

i.e. the time during which ||ξ|| has a high value (e.g. above

a predetermined threshold in numerical simulations), thus re-

ducing the intermittency observed in simulations. Thus a low

but non zero thermal inertia reduces the impact of caustics

on the statistics of particle temperature by reducing the life

of thermal caustics. However, the thermal caustics formation

rate remains the same, because it is equal to the caustics for-

mation rate, which depends only on the Stokes and Reynolds

numbers19.

To verify the validity of our conclusions we have analyzed

the data from direct numerical simulations of homogeneous

and isotropic turbulence, in the same flow configuration as

Ref. [10], i.e. with a Taylor-microscale Reynolds number

around 90 and unit Prandtl number. The flow is solved with

the same code, which uses a pseudo-spectral method with a

second order exponential Runge-Kutta time integration and

fourth order B-spline interpolations35,36. A double spatial and

temporal resolution has been used to improve the numerical

accuracy of the solution of the small-scales of the flow. Al-

though only the solution of the equations (9) and (10) for par-

ticle gradients along particle paths would give a complete pic-

ture of the statistical behaviour of ξ, and show that a thermal

caustics occurs whenever a caustics occurs if τϑ > 0, but can-

not occur when τϑ = 0, some conclusions can be drawn just

looking at the temperature difference between colliding parti-

cles. Indeed, since a collision is a caustic, collisions can be

used as indicators of the occurrence of caustics, without the

need to track ξ along particle trajectories. If there would be

no thermal caustics when a caustics occurs, then the particle

temperature field would be smooth and the temperature differ-

ence between colliding particles would approach zero.

Figure 1 shows the probability density function of the tem-

perature difference at various Stokes and thermal Stokes num-
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FIG. 1. Probability density function of particle temperature difference ∆Θp between colliding particles at different Stokes numbers and thermal

Stokes numbers, normalized with the carrier fluid temperature standard deviation σT : (a) St = 0.2, (b) St = 0.5, (c) St = 1, (d) St = 3. The

black lines correspond to thermal tracers, τϑ = 0.

ber in the one-way coupling regime, normalized with the stan-

dard deviation of fluid temperature fluctuations. According

to the previous discussion, for any positive thermal Stokes

number a caustics is always associated to a thermal caustic.

Therefore, as expected, all the pdf shows a wide tail, which

widens for increasing St and Stϑ , indicating the relatively

high probability of large temperature differences during col-

lision. To remove any bias due to numerical approximations

in the trajectories and temperatures of colliding particles, we

have considered also the case of thermal tracers, i.e. of parti-

cles with no thermal inertia (τϑ → 0 and Stϑ → 0) but finite

non-zero inertia (τv > 0 and St > 0) (black curves). Since

a collision occurs when the particles are at a distance equal

to their diameter, in case of thermal tracers, whose tempera-

ture is equal to the fluid temperature, the temperature differ-

ence ∆Θp = |Θ1 −Θ2| between two colliding particles with-

out thermal inertia is ∆Θp ≃ |∇T · (X1 −X2)| ≤ 2R ||∇T ||,
so that is at most of order 2R ||∇T ||, and thus its should follow

closely the statistics of the fluid temperature gradient. In fact,

the pdf of the thermal tracer is much narrower than the one at

any Stϑ for the same St. They closely resemble the ones of the

fluid temperature derivatives (see Ref. [10]), and widen with

St as, all the other parameters being equal, R ∝ St1/2.

A simple quantitative evaluation of the qualitatively differ-

ent behaviour at Stϑ = 0 and Stϑ > 0 can be obtained from

the non centered moments of the temperature difference at

collision. Figure 2 shows the variance 〈∆Θ
2
p〉 as a function

of Stϑ for different values of St. The horizontal lines indi-

cate the maximum possible value of this variance for a ther-

mal tracer for the different Stokes numbers, 4R2〈||∇T ||2〉 =
12R2〈(∂T/∂x1)

2〉, which is the reference threshold for iden-

tifying caustics from collisions. While the simulated thermal
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FIG. 2. Second order moment of the temperature difference at colli-

sion, normalized with the carrier fluid temperature standard deviation

σT . The thick horizontal lines correspond to the limit finite size ther-

mal tracers for each Stokes number.

tracers remain all below this threshold (within numerical un-

certainty), all simulations with a finite thermal inertia show

a higher variance. At St = 0.5 and above, it appears as a sort

of discontinuous behaviour, whereas a smoother transition ap-

pears only at the lowest simulated St. However in this case the

caustics frequency is much lower19 and, consequently, caus-

tics contribute less to the variance, which, anyway, still al-

ways remains above the threshold for any τϑ > 0, indicating

the presence of multivalued regions.

In conclusion, we have shown that caustics inherently

lead to the formation of thermal caustics, except in the limit

case of zero thermal inertia, because in such a case particle

temperature becomes independent of particle velocity. This is

a sort of singular limit in the sense of asymptotic perturbation.

This is in agreement with the attribution of the formation of

thermal caustics to the influence of the path history on the

temperature difference between particles,10 particularly pro-

nounced at higher thermal Stokes numbers. In fact, particle

temperature is determined by its interaction with the carrier

fluid, and particles keep memory of the fluid temperature

they encountered along their path up to times O(τϑ ) in the

past. As a result, necessary condition to have a thermal

caustics is that a caustics occurs and that τϑ > 0, so that

the two colliding particles have experienced different fluid

temperatures in a O(τϑ ) time before the collision, making

the particle temperature multivalued in correspondence of the

caustics.

Data availability — The data that support the findings of this

study are available from the authors upon reasonable request.
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25G. Falkovich, K. Gawȩdzki, and M. Vergassola. Particles and fields in fluid

turbulence. Rev. Mod. Phys., 73:913–975, Nov 2001.
26Jan Meibohm, Vikash Pandey, Akshay Bhatnagar, Kristian Gustavsson,

Dhrubaditya Mitra, Prasad Perlekar, and Bernhard Mehlig. Paths to caustic

formation in turbulent aerosols. Phys. Rev. Fluids, 6:L062302, Jun 2021.
27Xiaolong Zhang, Maurizio Carbone, and Andrew D. Bragg. Lagrangian

model for passive scalar gradients in turbulence. Journal of Fluid Mechan-

ics, 964, jun 2023.
28Charles Meneveau. Lagrangian dynamics and models of the velocity gra-

dient tensor in turbulent flows. Annual Review of Fluid Mechanics, 43(Vol-

ume 43, 2011):219–245, 2011.
29M. Carbone, M. Iovieno, and A. D. Bragg. Symmetry transformation and

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
4
5
2
4
3



7

dimensionality reduction of the anisotropic pressure Hessian. Journal of

Fluid Mechanics, 900:A38, 2020.
30Gregory P Bewley, Ewe-Wei Saw, and Eberhard Bodenschatz. Observation

of the sling effect. New Journal of Physics, 15(8):083051, aug 2013.
31S. Ravichandran, P. Deepu, and Rama Govindarajan. Clustering of heavy

particles in vortical flows: a selective review. Sādhanā, 42:597–605, 2017.
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