
20 January 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Advanced Routing Strategies for LEO and VLEO Constellations: Ensuring Polar Coverage / Ottaviani, Camilla;
Compagnoni, Alessandro; Fraire, Juan A.; Verardo, Giacomo; Maiolini Capez, Gabriel; Gaetano Riviello, Daniel; Stock,
Gregory; Chiasserini, Carla Fabiana; Garello, Roberto. - (2025). (Intervento presentato al convegno 2025 12th
Advanced Satellite Multimedia Systems Conference (ASMS/SPSC) tenutosi a Barcelona (Spain) nel Feb. 2025).

Original

Advanced Routing Strategies for LEO and VLEO Constellations: Ensuring Polar Coverage

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2995913 since: 2024-12-24T12:14:35Z

IEEE

Advanced Routing Strategies for LEO and VLEO
Constellations: Ensuring Polar Coverage

Camilla Ottaviani∗, Alessandro Compagnoni∗, Juan A. Fraire†‡, Giacomo Verardo¶ , Gabriel Maiolini Capez∗,
Daniel Gaetano Riviello§, Gregory Stock∥ , Carla Fabiana Chiasserini∗, Roberto Garello∗
∗Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy

†Inria, INSA Lyon, CITI, UR3720, 69621 Villeurbanne, France
‡CONICET – Universidad Nacional de Córdoba, Córdoba, Argentina
§CNR-IEIIT, National Research Council of Italy, 10129 Turin, Italy

¶KTH Royal Institute of Technology, Stockholm, Sweden
∥Saarland University, Saarland Informatics Campus, 66123 Saarbrücken, Germany

Abstract—The proliferation of mega-constellations comprising
thousands of satellites has amplified the need for efficient routing
solutions in space networks to minimize latency and ensure
robust global connectivity. This work evaluates the performance
of multiple decentralized routing algorithms within Walker-Delta
constellations, comparing their effectiveness in Low Earth Orbit
(LEO) and Very Low Earth Orbit (VLEO) configurations. Our
findings reveal that constellation geometry, such as the number of
satellites and orbital planes, shapes routing strategies more than
orbital altitude, with VLEO demanding larger fleets to maintain
seamless coverage. Furthermore, we propose PolarDisCo, a novel
routing algorithm specifically designed to provide coverage of polar
regions—a geographical area where, due to the unique coverage
and topology challenge it poses, existing decentralized routing
algorithms (e.g., DisCoRoute) exhibit a significant performance
drop. Experimental results demonstrate that PolarDisCo reduces
end-to-end delay on the polar area by 7.9 ms with respect to
DisCoRoute, thus providing a 14.8% improvement. These findings
underscore the potential of tailored routing strategies to optimize
communication in next-generation satellite networks involving
LEO and VLEO shells.

Index Terms—LEO and VLEO Satellite Networks, Routing,
Performance Evaluation

I. Introduction

The rapid advancements in aerospace technologies and the
significant reduction in satellite production costs, driven by
investments from private space companies such as OneWeb and
Starlink, have boosted the deployment of mega-constellations in
LEO and VLEO. These constellations, consisting of thousands
of satellites, aim to provide Non-Terrestrial Network (NTN)
services with global connectivity, enhanced reliability, and
low-latency communication [1], [2].

LEO constellations operate at altitudes between 500 and
2000 km, whereas VLEO between 300 and 500 km. The lower
altitude of VLEO satellites results in stronger signal strength,
reduced propagation delays, and enhanced resolution for Earth
observation [3], [4]. However, these benefits come at the
cost of increased atmospheric drag, shorter satellite lifespan,
frequent orbital adjustments, and increased fleet size to ensure
continuous coverage [5], [6]. It follows that ensuring global
satellite connectivity is still an open problem and, although
widely studied in the literature for LEO [7], routing of data

traffic in VLEO constellations [8] still poses challenges. First,
despite the frequent topology changes caused by satellite
motion, it is crucial to guarantee reliable and timely data
delivery between satellites and between satellites and ground
stations. Secondly, it is essential to offload data from isolated
regions, such as the poles, with reduced ground station coverage.
This has become even more important because of the strategic
relevance of polar areas for environmental monitoring and
recent geopolitical concerns. Third, in large fleets—e.g., in
VLEO constellations—it is critical to envision decentralized
routing schemes, which scale well with the number of satellites,
opposite to centralized approaches that instead struggle with
the signaling and computational overhead required to manage
frequent topology changes from a central ground center.

In this paper, we address the above challenges by focusing
on onboard routing over inter-satellite links (ISLs) in LEO
and VLEO constellations. We first present a thorough analysis
of state-of-the-art decentralized routing schemes on realistic
LEO and VLEO shells from Starlink. Then, we introduce
PolarDisCo, a heuristic routing algorithm specifically designed
to ensure connectivity in the polar regions, where high satellite
density and rapid topology changes at higher latitudes make
it challenging to maintain ISLs. We remark that conventional
routing algorithms struggle with the problem’s complexity and
fail to provide reliable data routing in the polar regions.

Routing research in VLEO is scarce, with [9] being the only
study proposing an RL-based approach for optical ISLs that
is centrally trained on the ground. To the best of the authors’
knowledge, our work is the first to tackle processing-efficient
onboard decentralized routing in VLEO, addressing the unique
challenges of polar regions. The main contributions of our
work are, therefore, as follows:

1) Sensitivity Analysis of Routing Algorithms: After in-
troducing key modeling concepts (Section II), we present
a comparative analysis of several routing algorithms for
Walker-Delta constellations, examining the impact of
altitude in LEO and VLEO, inclination, and processing
delays (Section III).

2) Case Studies in LEO and VLEO Shells: We investigate
the performance of specific LEO and VLEO configura-

tions extracted from Starlink configurations, identifying
the key factors that affect routing efficiency (Section IV).

3) Routing Heuristic for the Polar Regions: We propose
the PolarDisCo algorithm, which overcomes the limi-
tations of the state-of-the-art DisCoRoute scheme [10],
leveraging unique polar topology features to improve
routing performance (Section V).

II. System Model
In this section, we first introduce the orbital configuration

we consider, namely the Walker-Delta constellations. Then,
we briefly describe the decentralized routing algorithms we
analyze and the tools we use to perform our analysis.

A. Walker-Delta Constellations
In a Walker-Delta constellation [11], orbits follow a flower-

like pattern and are evenly distributed along the Equator
(that is why it is also referred to as the Ballard-Rosette
configuration [12]). Constellations are expressed through the
notation 𝛼 : 𝑇/𝑃/𝐹, where 𝛼 is the inclination of orbital planes
with respect to the equatorial plane, 𝑇 is the total number of
satellites, 𝑃 is the number of planes, and 𝐹 is the phasing
factor. Orbits are circular; they all have the same inclination
and altitude from the surface of the Earth. 𝑄 satellites are
evenly distributed within each orbit, therefore 𝑇 can also be
referred as the product 𝑃 · 𝑄. The parameter 𝐹 defines the
spacing between satellites in adjacent planes, specifying how
much a satellite leads or lags its counterpart in the next plane.
When 𝐹 is zero, all satellites are aligned with their neighbors
in adjacent planes. A more detailed explanation can be found
in [10].

Each satellite is uniquely identified by the pair of indices
(𝑜, 𝑖) where 𝑜 ∈ {0, . . . , 𝑃−1} refers to the orbital plane index
and 𝑖 ∈ {0, . . . , 𝑄 − 1} refers to the 𝑖-th satellite within that
plane. Alternatively, we will refer to a satellite using a single
ID ranging from 1 to 𝑇 . Each satellite has four neighbors: two
on the same orbit (one ahead and one behind) and two on
adjacent orbits (one on the left and one on the right). The
previous neighbor within the same orbit is given by (𝑜, (𝑖 −
1) mod 𝑄) while the next neighbor is (𝑜, (𝑖 + 1) mod 𝑄). For
adjacent orbits, the satellite on the left if 𝑜 ≠ 0 is (𝑜 − 1, 𝑖)
and (𝑃 − 1, (𝑖 − 𝐹) mod 𝑄) otherwise. The right neighbor is
(𝑜 + 1, 𝑖) if 𝑜 ≠ 𝑃 − 1 and (0, (𝑖 + 𝐹) mod 𝑄) otherwise.

In the literature, when a node connects to its left or right
neighbor, it does so through an inter-plane link or horizontal
hop. If the next node is a satellite within the same orbital plane,
the hop is vertical and called intra-plane link.

B. Routing Algorithms
This section introduces the existing decentralized routing

algorithms that we consider in our sensitivity analysis (a
summary is also presented in Table I). While presenting these
strategies, we assume for simplicity a fixed pair of source and
destination satellites.

Some of the strategies that we investigate take as input
the results of the Minimum Hop Count (MinHopCount) [13],

a mathematical formulation of the minimum number of ISL
hops required to connect two satellites. MinHopCount-based
algorithms follow four possible directions to compute a route
between source and destination, without going backward: North-
West (NW), North-East (NE), South-West (SW), or South-East
(SE). For example, NE means that each satellite can forward
packets only to its successor satellite on its plane or to its
right neighbor. MinHopCount computes the number of hops
required by each of the four directions, and it returns the overall
minimum sum of vertical and horizontal hops, along with the
corresponding best direction.

Routing algorithms can use the minimum hop count to
reduce their search space to a spherical, rectangular grid with
the source and destination on opposite vertices. All possible
paths from source to destination have the same number of hops
on that grid, which is the minimum one (cf. Manhattan grid).
The resulting path may not be associated with the shortest
distance/propagation delay. Still, it always has the minimum
number of hops, often the preferred metric, as each hop adds
some additional delay for on-board processing and queuing. In
the following, we present the list of considered algorithms.

a) Dijkstra: Dijkstra [14] is a widely used routing
algorithm that guarantees the optimal, shortest-path route
selection between source and destination at convergence. In
this work, we consider:
• Dijkstra-Distance focuses on finding the shortest path in

terms of shortest distance, i.e., minimizing the overall
route propagation delay [10].

• Dijkstra-Latency is an alternative that also considers the
processing time given by intermediate nodes of the path.

While Dijkstra-based solutions do not use MinHopCount,
the algorithms below exploit it to reduce the search space:

b) Trivial: The Trivial routing algorithm, once the min-
imum number of vertical and horizontal hops and their
directions to follow are known, completes all the necessary
horizontal hops first before proceeding with all the vertical
ones. Alternatively, the algorithm performs all the vertical hops
first and then all the horizontal ones.

c) Flip-Coin: It follows a similar strategy but flips a coin
at each node to randomly decide which of the two directions
the packet should continue. When all hops of one type have
been completed, the route is filled with the remaining hops of
the other type.

d) DisCoRoute [10]: It uses a heuristic to cleverly choose
the sequence of hops according to two geometric properties of
Walker-Delta topologies: (i) all intra-plane hops have the same
length, which is constant over time, and (ii) inter-plane hops
tend to be shorter near the poles and most extended over the
Equator. Therefore, the strategy of DisCoRoute is to distribute
all horizontal hops so that they occur as close to the poles as
possible, i.e., at high latitudes (in terms of absolute values).

C. Tools
We conducted experiments to collect and evaluate results

from the constellation layouts and the routing algorithms
implemented in MATLAB R2024b. The studies involved

Table I: Overview of the examined routing algorithms

Algorithm Name Objective

Dijkstra-Distance minimize route length / propagation latency
Dijkstra-Latency minimize processing/total latency
Trivial minimize number of hops only
Flip-Coin minimize number of hops only
DisCoRoute minimize hops; use heuristic to min. distance
PolarDisCo DisCoRoute + improved polar performance

building satellite scenarios using the default orbit propagator
of the Aerospace Toolbox for Satellite Mission Analysis and
the Satellite Communication Toolbox. We utilized a strategy
based on proximity within the Walker-Delta pattern to select
which Inter-Satellite Links (ISLs) to establish with neighboring
satellites. The set-up included an HP Z2 Tower G9 Workstation,
with an Intel Core i9-13900 processor and 32 GB of RAM.

III. Sensitivity Analysis Across Altitude, Inclination,
and Packet Processing Time

Most of the algorithms analyzed in this study have previously
been compared in [10] on the LEO shell 53◦ : 1584/72/39 at
550 km of the Starlink constellation. The key findings reported
in this paper are that, on this particular shell, DisCoRoute
provides running times two orders of magnitude lower than
Dijkstra-Distance while generating competitive routes in terms
of propagation delay (only 2% longer in the worst case).

In this section, we use another constellation (namely
96.9◦ : 2000/40/21) as a generic baseline to examine how
variations in inclination and altitude influence the end-to-end
routing delay over 5,000 randomly selected satellite pairs. The
altitude range varies from 360 km (a typical VLEO altitude) to
2000 km (covering most LEO ranges), while the inclinations
vary from 50◦ to 130◦. Furthermore, we analyze the impact of
processing delay (encompassing queuing, onboard computation,
and transmission delays) across a range of 0 to 100 ms on every
intermediate route hop.

A. Latency vs. Altitude, Inclination, and Processing Time
When we increase the altitude of the constellation, keeping

the inclination at 96.9◦ and the processing time at zero (thus,
Dijkstra-Distance and Dijkstra-Latency are equivalent), the
average delay grows linearly for all the routing algorithms, as
shown in Figure 1a, with Trivial and Flip-Coin performing
poorly with respect to DisCoRoute, PolarDisCo, and Dijkstra-
Distance. Instead, by increasing only the inclination, the latency
is significantly reduced. In particular, PolarDisCo and Dijkstra-
Distance perform better than the others, as highlighted in
Figure 1b. In general, DisCoRoute and all MinHopCount-based
algorithms work well when hops have similar distances. In this
scenario, minimizing the number of hops is almost equivalent
to computing the shortest distance.

The analysis presented in Figure 1c takes Dijkstra-Latency as
the baseline for performance comparison. This algorithm aims
to minimize the overall end-to-end delay. High processing time
values imply high costs for each node; hence, Dijkstra-Latency
will tend to select paths with the minimum number of hops. On

the other hand, Dijkstra-Distance still selects the shortest path
in terms of distance, which may not be the best choice since
traffic may traverse more (highly costly) nodes. Indeed, for high
processing times, MinHopCount-based algorithms, especially
DisCoRoute, perform better than Dijkstra-Distance.

B. Latency vs. Altitude: Theoretical Model
One of our main objectives is to understand how different

routing strategies behave in a VLEO scenario where the orbit
radius is smaller than in LEO constellations. However, as
already observed from Figure 1a, the average end-to-end delay
provided by different algorithms increases linearly with orbital
altitude, all with the same slope. Here, we aim to demonstrate
that different routing strategies are not affected by orbital
altitude and, as an immediate consequence, end-to-end delays
increase linearly with it. Hereafter, orbital radius and altitude
will be used interchangeably, as they differ only by the Earth’s
radius, which is constant.

Given a network with 𝑇 satellites, we denote the set
of distances with {𝑑𝑖, 𝑗 }𝑖, 𝑗=1,...,𝑇, 𝑖≠ 𝑗 , with 𝑑𝑖, 𝑗 representing
the distance between satellites 𝑖 and 𝑗 . A path connect-
ing a source and a destination node 𝑠, 𝑡 ∈ {1, . . . , 𝑇} is
described as a set of connected pairs from 𝑠 to 𝑡, i.e.,
𝑝 ≜ {(𝑠, 𝑖), (𝑖, 𝑘), . . . , (𝑗 , 𝑢), (𝑢, 𝑡)}.

Definition 1 (Distance-based routing strategy): We can think
of a Distance-based Routing Strategy (DBRS) as an algorithm
that, among some paths between two nodes, selects the one
with the shortest distance. More formally, given a network with
𝑇 nodes, and any source and destination pair 𝑠, 𝑡 ∈ {1, . . . , 𝑇},
a DBRS selects the path between 𝑠 and 𝑡 according to

𝑝∗ = arg min
𝑝∈P𝑠,𝑡

∑︁
𝑖∈𝑝

𝑑𝑝 (𝑖) (1)

where P𝑠,𝑡 is a set of paths between 𝑠 and 𝑡, and 𝑝(𝑖)
denotes the 𝑖-th pair on path 𝑝. Note that if P𝑠,𝑡 contains all
the possible paths between 𝑠 and 𝑡, then the DBRS provides
the optimal solution.

Theorem 1: A DBRS does not depend on the specific values
of the distances {𝑑𝑖, 𝑗 }𝑖, 𝑗=1,...,𝑇, 𝑖≠ 𝑗 , but only on their ratios.

Proof. Given the solution 𝑝∗ of the DBRS over the set of
distances {𝑑𝑖, 𝑗 }𝑖, 𝑗=1,...,𝑇, 𝑖≠ 𝑗 , that is

𝑝∗ = arg min
𝑝∈P𝑠,𝑡

∑︁
𝑖∈𝑝

𝑑𝑝 (𝑖)

we multiply each distance by a constant 𝑎 > 0, preserving their
mutual ratios. Applying the DBRS on {𝑎 · 𝑑𝑖, 𝑗 }𝑖, 𝑗=1,...,𝑇, 𝑖≠ 𝑗
yields the same path, as the scaling factor 𝑎 does not alter the
minimization argument. □

Theorem 2: In Walker-Delta constellations, distance-based
routing strategies do not depend on the orbit radius.

Proof. In a Walker-Delta constellation, the orbits are circular
and share the same center; thus, the satellites are positioned
on the surface of a sphere with radius 𝑟 . Given any two points
on this sphere, they lie on at least one great circle (exactly one
if they are not antipodal, ∞ if they are antipodal). Therefore,

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

50

55

60

65

70

Altitude [km]

D
el

ay
[m

s]
Trivial
FlipCoin
DisCoRoute
Dijkstra-Distance
PolarDisCo

(a) Varying ℎ

50 60 70 80 90 100 110 120 130

45

50

55

60

65

70

75

Inclination [deg]

D
el

ay
[m

s]

Trivial
FlipCoin
DisCoRoute
Dijkstra-Distance
PolarDisCo

(b) Varying 𝛼

0 10 20 30 40 50 60 70 80 90 1000

2

4

6

8

10

12

14

16

Processing time [ms]

D
el

ay
[m

s]

Trivial
FlipCoin
DisCoRoute
Dijkstra-Distance
Dijkstra-Latency
PolarDisCo

(c) Varying PT (w.r.t. Dijkstra-Latency)

Figure 1: Latency vs. Altitude, Inclination and Processing Time (PT) for configuration 2000/40/21, 𝛼 = 96.9°, ℎ = 360 km

(a) 𝛼 = 96.9◦, varying ℎ (b) ℎ = 360 km, varying 𝛼

Figure 2: Number of distance occurrences for configuration 2000/40/21

their distance can be expressed as the chord length connecting
them along the great circle. Let us now consider the distance
between two satellites 𝑗 and 𝑘 . By the chord properties, we
can express it as:

𝑑 𝑗 ,𝑘 = 2𝑟 sin
(
𝜃 𝑗 ,𝑘

2

)
where 𝜃 𝑗 ,𝑘 is the central angle formed between satellite 𝑗 , the
center of the great circle, and satellite 𝑘 .

Thus, we can express the set of distances between pairs
of satellites as

{
2𝑟 sin

(
𝜃𝑖, 𝑗/2

)}
𝑖, 𝑗=1,...,𝑇, 𝑖≠ 𝑗 . Dividing each

distance by the constant 𝑟 , we get:
{
2 sin

(
𝜃𝑖, 𝑗/2

)}
𝑖, 𝑗=1,...,𝑇, 𝑖≠ 𝑗

and applying Theorem 1 proves the claim. □

Corollary 1: The end-to-end delay given by the solutions of
DBRS increases linearly with 𝑟 in Walker-Delta constellations.

Proof. Without loss of generality, assume that the path provided
by the solution of the DBRS is

{(1, 2), (2, 3), . . . , (𝐾 − 1, 𝐾)}

for some positive integer 𝐾 . Then its length is given by
𝐾−1∑︁
𝑖=1

𝑑𝑖,𝑖+1 =

𝐾−1∑︁
𝑖=1

2𝑟 sin
(
𝜃𝑖,𝑖+1

2

)
= 2𝑟

𝐾−1∑︁
𝑖=1

sin
(
𝜃𝑖,𝑖+1

2

)
.

Hence, the path length clearly grows linearly with 𝑟 , indepen-
dently of the adopted distance-based routing strategy, and so
does the propagation delay. □

Figure 2a illustrates the histogram of the distance for satellites
in the baseline constellation at various altitudes. As just
anticipated, the histogram maintains a consistent shape across
different altitudes, while shifting linearly as the altitude changes.

IV. Case Studies in LEO and VLEO Constellation Shells

This section assesses the end-to-end delay distribution of
the evaluated routing solutions in typical LEO and VLEO
configurations. To this end, we focus on two specific orbital
shells obtained from Starlink public data: 53.2◦ : 1584/72/39
at an altitude of 540 km [15], and 96.9◦ : 2000/40/21 at an
altitude of 360 km [16]. They are illustrated in Figure 3a and
Figure 3b. For simplicity, we will henceforth refer to these
configurations as “LEO” and “VLEO”, respectively.

When considering routing, we should highlight that the
geometry of a specific constellation can either accentuate
or diminish the performance gap between different routing
strategies. Figure 3c underlines that the histogram of inter-
plane distances in VLEO has a larger support than that in LEO.
In fact, LEO features more orbital planes than VLEO, resulting
in neighboring satellites in adjacent orbits maintaining relatively
stable distances from one another as they travel between the
equatorial and polar regions. Hence, this reduces the range of
possible distances. In contrast, VLEO, with fewer orbital planes,
shows more pronounced variations in the distance between
satellites in adjacent orbits as they transition from the Equator
to the poles. Therefore, as a rule of thumb, there is a more

(a) 3D plot of 96.9◦ : 2000/40/21 (VLEO) (b) 3D plot of 53.2◦ : 1584/72/39 (LEO)

250 500 750 1000 1250 1500

200

400

600

800

1000

1200

1400
53.2°: 1584/72/39 (LEO)

96.9°: 2000/40/21 (VLEO)

(c) Inter-plane distance histogram

Figure 3: 3D plots of LEO and VLEO constellations with number of inter-plane distance occurrences comparison

(a) LEO (b) VLEO

Figure 4: End-to-end delay distribution for LEO and VLEO

significant performance gap between “good” and “bad” routing
strategies in constellations with fewer orbital planes.

A similar observation applies to the inclination parameter:
higher inclinations cause neighboring satellites in adjacent
orbits to be very close to each other near the poles but much
farther apart at the Equator. Since VLEO has both a higher
inclination and fewer orbital planes, we expect that an optimized
routing strategy could achieve considerable performance gains
in this scenario. Figure 2b shows the histogram of distances for
satellites in the VLEO constellation, where we tested different
inclinations. As the inclination increases, the magnitude of
the intra-plane links remains unchanged while the inter-plane
distances decrease and, as expected, the range of occurrences
increases.

The previous statements are further motivated in Figure 4,
which present the end-to-end delay distributions produced by
different routing algorithms obtained by selecting 150,000
random source-destination satellite pairs. For this analysis, we
assumed a processing time equal to zero.

In Figure 4a, representing the LEO case, the algorithms’
performance difference is minimal, as the distances between
sources and destinations exhibit little variability across different
paths. Conversely, Figure 4b reveals a marked performance
gap in the VLEO scenario, where the Dijkstra and DisCoRoute
algorithms outperform the others. This result highlights the
impact of constellation geometry on routing performance,
showing that in specific satellite scenarios, effective routing
strategies lead to better network performance and efficiency.
Comparing the two figures, it is clear that delays in VLEO are
smaller, with an average between 50 and 60 ms among different
algorithms, compared to approximately 125 ms for LEO.

V. PolarDisCo: A Routing Heuristic for Polar Coverage

In this section, we first analyze the topology of the polar
regions and identify low-cost areas that may benefit from
different types of routing. Then, we provide the conditions
of applications for our PolarDisCo algorithm, and finally,
we describe PolarDisCo and evaluate its performance against
DisCoRoute. Table II summarizes our system notation.

A. Analysis in Polar Regions
Figure 5a shows that when DisCoRoute is employed in the

96.9◦ : 2000/40/21 layout, the potential advantages of shorter
link distances in the polar regions are not realized as expected.
In the case of DisCoRoute, the chosen route avoids the light
blue area of the grid, suggesting that these regions, which
could provide more efficient connections due to shorter link
lengths, are not being utilized.

In contrast, routes passing through polar satellites do not
increase performance when the source and destination are
not in the polar region themselves. On the other hand, we
have identified two polar sub-regions near the poles where
the optimal route between two satellites in those regions
is qualitatively different. We refer to them as PolarDisCo
and Weighted Round Robin (WRR)-Polar zone, as shown in
Figure 5b.

In PolarDisCo, satellites have latitude 𝜙, which satisfies the
inequality 𝜙𝑝𝑑 ≤ |𝜙 | ≤ 𝜙wrr, i.e., they are close to the pole
but not exactly on the pole. In such an area, the path is split
into three distinct paths using two relay nodes in the pole.
The WRR-Polar area is the closest to the poles, with latitude
above 𝜙wrr in absolute value. At such high latitudes, performing
hops in a straight line between source and destination in the
same zone is sufficient to achieve a small end-to-end delay.
Hence, the WRR and PolarDisCo zones require different routing
algorithms to minimize the end-to-end delay. The color bar
in Figure 5b shows the latitude thresholds and corresponding
zones for applying PolarDisCo (𝜙pd = 60◦) and WRR routing
(𝜙wrr = 75◦). The Relay zone (𝜙𝑟 = 80◦) indicates the region
where satellites are used as a relay for the PolarDisCo zone.
The threshold latitudes were chosen empirically by evaluating
multiple combinations, as explained in Section V-C.

(a) DisCoRoute path from src (34, 23) to dst (9, 29)

0 10 20 30 40

Satellite id in Orbit

0

10

20

30

O
rb

it
 P

la
n
es

Disco

pd

PolarDisco

wrr

WRR

r

Relay

Max Lat

(b) Different zones in the polar area with our proposed algorithm.

Figure 5: 2D grid of 96.9◦ : 2000/40/21 with distance-based colored links with routing paths

B. PolarDisCo Algorithm
The benefits of employing our heuristic reside in the

availability of low-cost links in the polar region. Hence, to reap
the advantages of such zones, we devise a set of conditions for
applying PolarDisCo. In particular, we employ three conditions
on either latitude of source and destination satellites (Figure 5b)
and a number of hops between them:

𝜙wrr ≥ 𝜙src ≥ 𝜙pd and 𝜙wrr ≥ 𝜙dst ≥ 𝜙pd (2)

𝜙src ≥ 𝜙wrr and 𝜙dst ≥ 𝜙wrr (3)

𝑛ℎ + 𝑛𝑣 ≥ 𝑁pd (4)

where 𝜙pd and 𝜙wrr are latitude thresholds to apply PolarDisCo
and WRR respectively (in the North Pole), while 𝑁pd is a
lower bound on the number of hops. The latitude conditions
are equivalently applied to the South Pole. Equation 2 allows
performing our heuristic only when both source and destination
are close to the poles (the edge zone in Figure 5b). Based on
Equation 3, WRR is instead applied on a deeper zone close to
the poles (an intermediate region in Figure 5b), where a straight
route between the satellites allows gaining the most from the
link in the polar region. We employ instead Equation 4 to
avoid costly back-and-forth routes from the polar region when
a limited gain could be obtained due to the negligible number
of hops between source and destination satellite.

Algorithm 2 describes the routing algorithm in the Po-
larDisCo zone, where we consider three sub-routes in the path
between source and destination: (𝑖) Paths2r between source and
source relay node, (𝑖𝑖) Pathr2r between the two relay nodes in
the pole region, (𝑖𝑖𝑖) Pathr2d between destination relay node
and destination. The relay nodes are satellites taken from the
Relay region and used as intermediate points in the route. The
path between the source and the source relay is established
with the Trivial algorithm, with all the vertical hops followed
by the horizontal ones (similarly for the destination).

For the relay-to-relay path, a combination of 𝑘×𝑘 relay nodes
are considered, where the 𝑘 closest satellites to the source and
destination are evaluated as candidates. Equation 5 measures
the gain in employing a path between the relay nodes, as it
considers both numbers of vertical and horizontal hops, where
horizontal hops are scaled by a function of the latitude of the

satellites in the path. Hence, the closer the path is in the polar
region, the lower the metric:

𝑚r2r (𝑃) = min
𝑑∈𝐷

(
𝑛𝑣 + 𝑛ℎ

1
|𝑃 |

∑︁
𝑖∈𝑃

(
1 −

���� 𝜙𝑖90

����)) (5)

where 𝐷 = {SE,NE,NW, SW} is the set of four directions
between source and destination, while 𝑃 is the path connecting
the two, and 𝜙𝑖 is the latitude of the 𝑖-th satellite in 𝑃 in degrees.
By weighting the number of horizontal hops as a function of
their latitude, we can reduce the metric corresponding to a
route with hops close to the poles. Such a route is indeed
beneficial since horizontal hops have a negligible impact on
the end-to-end delay when close to the poles.

Algorithm 1 Weighted Round Robin Routing
Require: 𝑠src: source satellite, 𝑛ℎ, 𝑛𝑣: number of horizontal

and vertical hops, 𝑑: direction
Ensure: Path: route from source to destination

1: 𝑠curr ← 𝑠src {Current satellite is the source satellite}
2: countℎ ← 0 {No horizontal hops taken at startup}
3: for 𝑖 = 1 to 𝑛ℎ + 𝑛𝑣 do
4: if countℎ

𝑖−1 <
𝑛ℎ

𝑛ℎ+𝑛𝑣 then
5: countℎ ← countℎ + 1
6: 𝑠curr ← nextℎ,𝑑 (𝑠curr) {Next H hop in direction 𝑑}
7: else
8: 𝑠curr ← next𝑣,𝑑 (𝑠curr) {Next V hop in direction 𝑑}
9: end if

10: Path← [Path, 𝑠curr]
11: end for
12: return Path

A WRR path is computed according to Algorithm 1 between
all the possible 𝑘-by-𝑘 pairs of relay satellites. The main goal
of the WRR algorithm is to generate a route that only slightly
deviates during the path. To do that, the number of horizontal
hops taken is recorded at each selection of the next satellite
node (line 5). The algorithm aims to maintain the ratio between
this number and the total number of taken hops to 𝑛ℎ

𝑛ℎ+𝑛𝑣 , thus
not deviating from the expected ratio between horizontal and
total hops. The obtained path thus stands in a straight line
between the two nodes, making the algorithm suitable when

we aim to remain in the polar region (as in the relay-to-relay
sub-route).

Equation 5 is used to evaluate the gain of using each possible
relay pair. Moreover, the number of hops between source,
destination, and relay nodes is also considered. The solution
minimizing the metric from line 12 in Algorithm 2 is selected
in line 15. The three subroutes are then concatenated, thus
providing an efficient path that transverses the polar region
with a low overall propagation time.

Table II: System Notation

Symbol Description Unit

ℎ Constellation altitude m
𝛼 Constellation inclination Deg
𝑠𝑖 Satellite 𝑖 -
𝜙𝑖 Latitude of 𝑠𝑖 Deg
𝑛ℎ Number of horizontal hops -
𝑛𝑣 Number of vertical hops -
𝜙src Source node latitude Deg
𝜙dst Destination node latitude Deg
𝜙pd Min. latitude to apply PolarDisCo Deg
𝜙wrr Min. latitude to apply WRR Deg
𝜙𝑟 Min. latitude to identify relay nodes Deg
𝑁𝑝𝑑 Min. number of hops to apply PolarDisCo -
𝑘 Number of candidate relay nodes -
𝑃 Path between nodes -
𝑑 Direction of path -
𝐷 Set of possible directions -

𝑑hop (𝑠𝑖 , 𝑠 𝑗) Min. number of hops between 𝑠𝑖 and 𝑠 𝑗 -

Algorithm 2 PolarDisCo Routing
Require: 𝑠src, 𝑠dst: source and destination satellites, {𝜙𝑖}:

satellite latitudes, 𝜙𝑟 : latitude threshold for relay satellites,
𝑘: number of candidate relay satellites

Ensure: Path: route from source to destination
1: 𝑆𝑟 = {𝑠𝑖 s.t. |𝜙𝑖 | > 𝜙𝑟 } {Set of relay satellites}
2: 𝑆𝑟 ,src = arg min 𝑠𝑖∈𝑆𝑟

|𝑆𝑟,src |=𝑘
𝑑hop (𝑠src, 𝑠𝑖)

3: 𝑆𝑟 ,dst = arg min 𝑠𝑖∈𝑆𝑟
|𝑆𝑟,dst |=𝑘

𝑑hop (𝑠dst, 𝑠𝑖)

4: 𝑀 ∈ R𝑘×𝑘 initialized to 0
5: {Iterate over all the relay pairs}
6: for 𝑠𝑟 ,src ∈ 𝑆𝑟 ,src do
7: for 𝑠𝑟 ,𝑑𝑠𝑡 ∈ 𝑆𝑟 ,𝑑𝑠𝑡 do
8: 𝑚s2r ← 𝑑hop (𝑠src, 𝑠𝑟 ,src)
9: 𝑚r2d ← 𝑑hop (𝑠𝑟 ,dst, 𝑠dst)

10: 𝑃← Algorithm 1 between 𝑠𝑟 ,src and 𝑠𝑟 ,dst
11: 𝑚r2r ← Equation 5 over P
12: 𝑀

(
𝑠𝑟 ,src, 𝑠𝑟 ,dst

)
← 𝑚s2r + 𝑚r2r + 𝑚r2d

13: end for
14: end for
15: 𝑠∗𝑟 ,𝑠𝑟𝑐, 𝑠

∗
𝑟 ,𝑑𝑠𝑡

← arg min𝑠∈𝑀 {Select best relay pair}
16: Paths2r ← trivial(𝑠src, 𝑠

∗
𝑟 ,src) {Source to relay}

17: Pathr2r ← WRR(𝑠∗𝑟 ,src, 𝑠
∗
𝑟 ,dst) {Relay to relay}

18: Pathr2d ← trivial(𝑠∗
𝑟 ,dst, 𝑠dst) {Relay to destination}

19: Path← [Paths2r,Pathr2r,Pathr2d]

C. PolarDisCo Evaluation
We evaluate the delay of PolarDisCo and DisCoRoute for

5,000 pairs of satellites in the polar area when we set a

28.9%

2.1%

69.0%

33.0%

1.1%

66.0%

32.9%

0.8%

66.3%

57 58 59 60 61 62 63 64 65 66 67 68

pd
 [Deg]

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y

PolarDisCo < DisCo

PolarDisCo > DisCo

PolarDisCo == DisCo

(a) Probability of applying PolarDisCo

60 65 70 75 80 85

Latitudes Threshold [Deg]

-8

-6

-4

-2

0

2

4

D
el

ay
 d

if
fe

re
n

ce
 [

m
s]

pd

wrr

r

(b) PolarDisCo vs. DisCoRoute

Figure 6: PolarDisCo and DisCoRoute delay comparison when
applied to source and destination pairs of satellites in the polar
region: (a) the probability of applying PolarDisCo depends
on the latitude threshold of the considered polar region and
amounts to up to 33.0% of the number of tested source-
destination pairs; (b) PolarDisCo outperforms DisCoRoute in
the polar region in most of the cases.

zero processing delay on the 96.9◦ : 2000/40/21 constellation.
To perform a fair comparison, we select random pairs that
satisfy the conditions from Equation 2 and Equation 4 so that
PolarDisCo does not revert to DisCoRoute. Our evaluation
shows that we can achieve down to 7.9 ms, corresponding
to 14.8% gain in delay. In the following, we analyze the
performance of our approach when we relax the constraints on
the selection of pairs.

a) Frequency of Application of PolarDisCo: In Figure 6,
we evaluate the probability of applying PolarDisCo in the
polar region when we increase the latitude 𝜙 of the considered
satellites while ignoring the hops condition Equation 4 in the
pair selection. Although in most cases, PolarDisCo reverts
to DisCoRoute, as explained in Section V-B, the benefits of
PolarDisCo are evident in up to 33.0% of the polar cases.

b) Robustness to Hyper-parameters Choice: We evaluate
the robustness of the proposed PolarDisCo algorithm concern-
ing the following hyper-parameters: (𝑖) latitude threshold of
application of PolarDisCo, (𝑖𝑖) latitude threshold of application
of WRR routing, (𝑖𝑖𝑖) latitude threshold for relay satellites
in the polar region. Our analysis in Figure 6b shows that

(a) Outside Polar Zones (b) WRR zone (c) PolarDisCo zone

Figure 7: Computational time in different regions

PolarDisCo achieves consistent performance while varying
such thresholds in an interval of 5 degrees around the chosen
metric. In particular, PolarDisCo provides more than 2 ms
decrease in average delay compared to DisCoRoute in such
settings.

c) Computational Time: Here, we evaluate the compu-
tational time of the different proposed algorithms on the
machine described in Section II-C. The distribution of the
algorithms’ execution time has been estimated by selecting
150,000 random source-destination satellite pairs outside the
polar area, in the PolarDisCo area, and in the WRR zone, as
depicted in Figure 7. Despite DisCoRoute being slightly more
complexity demanding, all the MinHopCount-based algorithms
exhibit much lower complexity than Dijkstra-Distance, with
their worst-case execution times reaching only about 1.2% of
Dijkstra-Distance’s. PolarDisCo provides lower computational
times in the WRR zone, since it employs WRR to connect
source and destination. However, it needs higher computational
resources in the PolarDisCo zone since it requires computing
a metric for each pair of 𝑘 relay nodes.

VI. Conclusion
In this work, we analyzed routing algorithms tailored for

LEO and VLEO satellite constellations. Our sensitivity analysis
across multiple parameters demonstrated the critical impact
of constellation geometry on routing efficiency, highlighting
unique opportunities for low-latency paths, particularly for
constellations in VLEO. Furthermore, we have demonstrated
that while the routing solution does not directly depend on the
constellation’s altitude, the average end-to-end delay increases
linearly with it. Also, the increased fleet size required for con-
stellations in VLEO plays a crucial role, arguing for processing-
efficient decentralized routing routines. Specifically for the
critical polar regions, we introduced the PolarDisCo algorithm,
designed to overcome the limitations of existing solutions like
DisCoRoute. Experimental results revealed that PolarDisCo
reduces end-to-end delay by up to 14.8%, underscoring its
potential for enhancing communication efficiency in these
challenging environments. These findings pave the way for
more effective routing strategies in next-generation satellite
networks spanning LEO and VLEO shells, particularly for
applications requiring reliable polar coverage.

References
[1] W. Chen, X. Lin, J. Lee, et al., “5G-advanced toward 6G: Past, present,

and future,” IEEE Journal on Selected Areas in Communications,
vol. 41, no. 6, pp. 1592–1619, 2023. doi: 10.1109/JSAC.2023.3274037.

[2] 6G: The next horizon, White Paper, Huawei, Jan. 2022. [Online].
Available: https://www.huawei.com/en/huaweitech/future-technologies/
6g-white-paper.

[3] N. Crisp, P. Roberts, F. Romano, et al., “System modelling of very
low earth orbit satellites for earth observation,” Acta Astronautica,
vol. 187, pp. 475–491, 2021. doi: 10.1016/j.actaastro.2021.07.004.

[4] H. Luo, X. Shi, Y. Chen, et al., “Very-low-earth-orbit satellite networks
for 6G,” 2022. [Online]. Available: https: / /www.huawei .com/en/
huaweitech / future - technologies / very - low - earth - orbit - satellite -
networks-6g.

[5] N. H. Crisp, P. C. E. Roberts, S. Livadiotti, et al., “The benefits of very
low earth orbit for earth observation missions,” Progress in Aerospace
Sciences, vol. 117, p. 100 619, 2020. doi: 10.1016/j.paerosci.2020.
100619.

[6] V. Ray, T. E. Berger, Z. C. Waldron, et al., “The impact of space
weather on very low earth orbit (VLEO) satellites,” in Advanced Maui
Optical and Space Surveillance Technologies Conference (AMOS),
2022.

[7] Q. Xiaogang, M. Jiulong, W. Dan, L. Lifang, and H. Shaolin, “A
survey of routing techniques for satellite networks,” Journal of
Communications and Information Networks, vol. 1, no. 4, pp. 66–85,
2016. doi: 10.11959/j.issn.2096-1081.2016.058.

[8] G. Chen, S. Wu, Y. Deng, J. Jiao, and Q. Zhang, “VLEO satellite
constellation design for regional aviation and marine coverage,” IEEE
Transactions on Network Science and Engineering, vol. 11, no. 1,
pp. 1188–1201, 2024. doi: 10.1109/TNSE.2023.3321600.

[9] Z. Niu, H. Yang, Q. Yao, et al., “Reliable low-latency routing for
VLEO satellite optical network: A multi-agent reinforcement learning
approach,” IEEE Internet of Things Journal, 2024. doi: 10.1109/JIOT.
2024.3457498.

[10] G. Stock, J. A. Fraire, and H. Hermanns, “Distributed on-demand
routing for LEO mega-constellations: A starlink case study,” in
ASMS/SPSC 2022, 2022, pp. 1–8. doi: 10.1109/ASMS/SPSC55670.
2022.9914716.

[11] J. G. Walker, “Satellite constellations,” Journal of the British Inter-
planetary Society, vol. 37, no. 12, pp. 559–572, 1984.

[12] A. H. Ballard, “Rosette constellations of earth satellites,” IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-16, no. 5,
pp. 656–673, 1980. doi: 10.1109/TAES.1980.308932.

[13] Q. Chen, G. Giambene, L. Yang, C. Fan, and X. Chen, “Analysis of
inter-satellite link paths for LEO mega-constellation networks,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 3, pp. 2743–2755,
2021. doi: 10.1109/TVT.2021.3058126.

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959. doi: 10.
1007/BF01386390.

[15] Space Exploration Holdings, LLC, SpaceX non-geostationary satellite
system: Attachment A, FCC IBFS SAT-MOD-20190830-00087, Aug.
2019. [Online]. Available: https : / / fcc . report / IBFS / SAT- MOD -
20190830-00087/1877671.

[16] Space Exploration Holdings, LLC, SpaceX non-geostationary satellite
system: Attachment A, FCC IBFS SAT-AMD-20210818-00105, Aug.
2021. [Online]. Available: https : / / fcc . report / IBFS / SAT- AMD -
20210818-00105/12943362.

