
19 February 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Explainable AI-Based Skin Cancer Detection Using CNN, Particle Swarm Optimization and Machine Learning / Shah,
SYED ADIL HUSSAIN; Shah, SYED TAIMOOR HUSSAIN; Khaled, Roa’A; Buccoliero, Andrea; Baqir Hussain Shah,
Syed; Di Terlizzi, Angelo; DI BENEDETTO, Giacomo; Deriu, MARCO AGOSTINO. - In: JOURNAL OF IMAGING. - ISSN
2313-433X. - 10:12(2024). [10.3390/jimaging10120332]

Original

Explainable AI-Based Skin Cancer Detection Using CNN, Particle Swarm Optimization and Machine
Learning

Publisher:

Published
DOI:10.3390/jimaging10120332

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2995911 since: 2024-12-24T10:51:06Z

MDPI



Citation: Shah, S.A.H.; Shah, S.T.H.;

Khaled, R.; Buccoliero, A.; Shah,

S.B.H.; Di Terlizzi, A.; Di Benedetto,

G.; Deriu, M.A. Explainable AI-Based

Skin Cancer Detection Using CNN,

Particle Swarm Optimization and

Machine Learning. J. Imaging 2024, 10,

332. https://doi.org/10.3390/

jimaging10120332

Academic Editor: Yanfeng Li

Received: 25 November 2024

Revised: 18 December 2024

Accepted: 20 December 2024

Published: 22 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Explainable AI-Based Skin Cancer Detection Using CNN,
Particle Swarm Optimization and Machine Learning
Syed Adil Hussain Shah 1,2,†, Syed Taimoor Hussain Shah 2,*,† , Roa’a Khaled 3, Andrea Buccoliero 1,4 ,
Syed Baqir Hussain Shah 5, Angelo Di Terlizzi 1, Giacomo Di Benedetto 6 and Marco Agostino Deriu 2,*

1 Department of Research and Development (R&D), GPI SpA, 38123 Trento, Italy;
syedadilhussain.shah@gpi.it (S.A.H.S.); andrea.buccoliero@gpi.it (A.B.); angelo.diterlizzi@gpi.it (A.D.T.)

2 PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino,
10129 Turin, Italy

3 Department of Computer Engineering, University of Cádiz, 11519 Puerto Real, Spain; roaa.khaled@gm.uca.es
4 Human Science Department, Università degli studi di Verona, Lungadige Porta Vittoria, 17,

37129 Verona, Italy
5 Department of Computer Science, COMSATS University Islamabad (CUI), Wah Campus, Wah 47000,

Pakistan; bakirhussain6@gmail.com
6 7HC SRL, 00198 Rome, Italy; giacomo@7hc.tech
* Correspondence: taimoor.shah@polito.it (S.T.H.S.); marco.deriu@polito.it (M.A.D.);

Tel.: +39-351-7984023 (S.T.H.S.)
† These authors contributed equally to this work.

Abstract: Skin cancer is among the most prevalent cancers globally, emphasizing the need for early
detection and accurate diagnosis to improve outcomes. Traditional diagnostic methods, based
on visual examination, are subjective, time-intensive, and require specialized expertise. Current
artificial intelligence (AI) approaches for skin cancer detection face challenges such as computational
inefficiency, lack of interpretability, and reliance on standalone CNN architectures. To address
these limitations, this study proposes a comprehensive pipeline combining transfer learning, feature
selection, and machine-learning algorithms to improve detection accuracy. Multiple pretrained CNN
models were evaluated, with Xception emerging as the optimal choice for its balance of computational
efficiency and performance. An ablation study further validated the effectiveness of freezing task-
specific layers within the Xception architecture. Feature dimensionality was optimized using Particle
Swarm Optimization, reducing dimensions from 1024 to 508, significantly enhancing computational
efficiency. Machine-learning classifiers, including Subspace KNN and Medium Gaussian SVM, further
improved classification accuracy. Evaluated on the ISIC 2018 and HAM10000 datasets, the proposed
pipeline achieved impressive accuracies of 98.5% and 86.1%, respectively. Moreover, Explainable-AI
(XAI) techniques, such as Grad-CAM, LIME, and Occlusion Sensitivity, enhanced interpretability.
This approach provides a robust, efficient, and interpretable solution for automated skin cancer
diagnosis in clinical applications.

Keywords: transfer learning; feature extraction; feature selection; particle swarm optimization;
ablation; subspace KNN; medium Gaussian SVM; explainable-AI

1. Introduction

Skin cancer is usually caused by UV radiation from sunlight or tanning beds, which
leads to the unconstrained enlargement of unusual skin cells [1]. It is challenging to
accurately provide an exact number of skin cancerous cases, but the International Agency
for Research on Cancer (IARC) has given an estimation of around 18 million new cancer
cases and approximately 9 million cancer deaths around the world in 2018, including skin
cancer patients [2]. In addition, the four most common primary kinds of skin cells are Basal
cell carcinoma (BCC), squamous cell carcinoma (SCC), melanoma (MEL), and Merkel cell
carcinoma (MCC), which usually lead to skin cancer [3].
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Skin lesions can develop during infancy and persist into adulthood [4–8]. These
lesions often arise from infections and inflammation at an early age [4,9,10]. While some
rashes are benign, others can lead to malignant lesions, potentially causing severe issues
like neural tube defects [11,12]. Therefore, it is crucial to provide proper care for neonates
in Neonatal Intensive Care Units (NICUs) to prevent skin diseases from progressing to
dangerous malignant states that could impact the growth and development of the neonatal
brain and body [13].

The early and precise diagnosis of skin cancer is very crucial for early and effective
treatment to result in improved patient outcomes. Traditional methods of diagnosis heavily
rely on visual examination by dermatologists. Considering this, these kinds of methods of
diagnosis are time-consuming, sometimes subjective, and often require specialty for right
diagnosis [14–16]. Consequently, there is a need for an artificial intelligence (AI) tool to
detect early diagnosis and assist the dermatologists in their decisions [17–19].

For several reasons, information technology (IT) is used to identify skin cancer. It
offers sophisticated image processing methods that help with automatic lesion detection
and categorization [20,21]. The use of various features by AI-based cancer detection
algorithms can help in precise diagnosis. These characteristics can include shape features,
like the irregularity of tumors, texture features, which capture variations in tissue patterns,
intensity features, which reflect the statistical properties of pixel intensities, local features,
which concentrate on regions of interest, and contextual features, which consider spatial
relationships between various structures [22,23]. Although, conventional machine-learning
approaches in the domain of skin cancer diagnosis typically employ extracting features
from skin-disease images for the classification process [24]. For example, the seven-Point
Checklist, the ABCD Rule, and the as-well-as Menzies Method are the most conventionally
used methods for extracting various features from skin disease images [25,26].

Recent advancements in AI and machine learning (ML) have shown promising re-
sults in medical image analysis. In particular, deep learning (DL) has emerged at the
forefront of these advancements, demonstrating exceptional capabilities in object detec-
tion tasks [27–29]. Within the domain of DL, researchers have introduced numerous
convolutional neural network (CNN) architectures, such as Xception [30], VGG [31], and
GoogleNet [32]. These architectures offer various capabilities tailored to specific prob-
lems and techniques like transfer learning, which have simplified the process for both
experts and non-experts. Consequently, pretrained CNN models are increasingly being
used for tasks such as skin lesion classification, requiring fewer samples to achieve effective
results [33–37].

To address these challenges, this study aims to develop a comprehensive, interpretable,
and efficient AI pipeline for automated skin cancer diagnosis. Specifically, this research
focuses on combining transfer learning, feature optimization, and explainable AI (XAI)
techniques to enhance diagnostic performance and transparency.

The novelty of our proposed pipeline lies in its application-focused integration of
a single CNN model, Xception, with advanced feature optimization and explainable AI
techniques. This study demonstrates how combining the Xception model with an optimizer
such as PSO addresses clinical challenges like computational inefficiency, limited inter-
pretability, and inconsistent accuracy, achieving state-of-the-art classification performance.
Here, performance refers to a combination of high classification accuracy, computational ef-
ficiency, and clinical interpretability, all critical for real-world applications. The inclusion of
explainable AI techniques, including Grad-CAM, LIME, and Occlusion Sensitivity, ensures
the model’s predictions are interpretable, enhancing trust and usability in clinical settings.

The major contributions of this research are as follows:

1. Application-Oriented AI Pipeline: Developed a complete AI pipeline for skin cancer
detection, tailored to clinical needs by integrating preprocessing, Xception-based
transfer learning, feature extraction, feature selection, and conventional ML models.
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2. Optimization of Xception for Clinical Use: Enhanced the Xception model’s perfor-
mance by balancing computational efficiency and accuracy, ensuring feasibility in
resource-constrained environments.

3. Feature Space Optimization for Practicality: Applied Particle Swarm Optimization
(PSO) [38] to reduce feature dimensions from 1024 to 508, improving computational
efficiency without sacrificing critical diagnostic information.

4. Clarified Performance Outcomes: Achieved state-of-the-art classification accuracy
(98.5% and 86.1% on ISIC 2018 and HAM10000 datasets, respectively), reduced com-
putational overhead through dimensionality reduction, and ensured model inter-
pretability with Grad-CAM, LIME, and Occlusion Sensitivity, thereby demonstrating
suitability for clinical decision support systems.

In the upcoming sections, Section 2 of this paper elaborates the related works while
Section 3 discusses experimental datasets and the proposed methodology, focusing on
modifications to the pretrained CNN-based Xception network for transfer learning, robust
feature extraction and selection using the PSO algorithm, and various machine-learning
classifiers. Sections 4 and 5 present the results and discussion. Finally, the explainable
AI-based results and conclusion are provided in Sections 6 and 7.

2. Related Works

Skin cancer detection has become a focal point of research, leveraging advancements
in artificial intelligence (AI) and machine learning (ML) to address the limitations of
traditional diagnostic methods. AI-driven techniques aim to enhance diagnostic accuracy,
reduce reliance on subjective assessments, and improve clinical decision-making. This
section reviews key contributions in the field, focusing on their methodologies, datasets,
and outcomes, while identifying challenges that persist.

2.1. Transfer Learning and Pretrained Models

Transfer learning has proven effective in addressing the challenges of limited data
availability in skin cancer detection, as highlighted by various studies summarized in
Table 1. For instance, Al-Rasheed, et al. [39] introduced a novel approach combining con-
ditional generative adversarial networks (CGANs) for generating realistic dermoscopic
images with an ensemble of finely tuned transfer learning models. By training these models
on both balanced and unbalanced datasets, they addressed the challenges posed by dataset
imbalance in skin lesion classification. Individually, their models achieved accuracies of
92% for VGG16 and ResNet50, and 92.25% for ResNet101 when augmented data were
included. When these models were used collectively in an ensemble configuration, the ac-
curacy improved further to 93.5%, highlighting the benefits of combining multiple models
for enhanced performance. This strategy demonstrated superior results in skin lesion classi-
fication compared with earlier methods, emphasizing the potential of combining advanced
data augmentation and ensemble learning to improve diagnostic accuracy. However, the
approach lacked interpretability tools to explain model predictions, a critical aspect for
clinical applications, which is addressed in our proposed methodology.

Raju, et al. [40] proposed a fine-tuned deep neural networks pipeline for skin cancer
classification, utilizing the HAM10000 dataset to evaluate performance. Their methodology
employed two prominent pretrained models, InceptionV3 and DenseNet201, fine-tuning
them to adapt to the binary classification task of identifying benign and malignant lesions.
The InceptionV3 model achieved a testing accuracy of 86.82%, while DenseNet201 slightly
outperformed it with an accuracy of 87.72%. The study emphasized the importance of
transfer learning for feature extraction, particularly when dealing with imbalanced datasets.
However, while the results were promising, the models did not incorporate optimization
techniques for feature selection or interpretability tools to enhance clinical applicability.
This leaves room for further improvement in balancing performance with computational
efficiency and explainability, as demonstrated in our proposed methodology.
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Similarly, Ali, et al. [41] conducted an extensive comparison of renowned transfer
learning CNN models with a custom-designed deep convolutional neural network (DCNN)
for skin cancer classification using the HAM10000 dataset. Their study involved robust data
augmentation techniques, including rotation, flipping, and scaling, to address dataset imbal-
ances and improve the training process. Among the models tested, their custom-designed
DCNN achieved the highest accuracy of 91.43%, surpassing popular CNN architectures
such as AlexNet, ResNet, and VGG-16. The custom DCNN demonstrated enhanced per-
formance through tailored architectural adjustments, optimizing it for the specific task
of lesion classification. While the study highlighted the benefits of customization and
augmentation, it lacked advanced feature selection methods and explainable AI techniques,
which are critical for understanding model predictions in clinical settings. These limitations
underscore the significance of incorporating such tools, as demonstrated in our proposed
methodology, to build more interpretable and efficient diagnostic systems.

Akilandasowmya, et al. [42] introduced the SCSO-ResNet50-EHS-CNN pipeline for
skin cancer diagnosis, combining Sand Cat Swarm Optimization (SCSO) and ResNet50
for feature extraction with Enhanced Harmony Search (EHS) for feature optimization.
Evaluated on the ISIC 2019 dataset, the method achieved 92% accuracy, 93.9% sensitivity,
and 85.5% specificity. While the approach effectively optimized features using ensemble
classifiers like SVM and k-NN, it faced challenges in achieving balanced specificity and
lacked explainable AI tools for model interpretation. Compared with our proposed method-
ology, this work demonstrates the potential of optimization techniques but falls short in its
interpretability and generalization, highlighting the need for integrating explainability to
enhance clinical relevance.

In addition to CNN models, vision transformers (ViT) have emerged as a promis-
ing approach in medical imaging due to their ability to model long-range dependencies
within images. Unlike traditional CNNs, which rely on localized receptive fields to extract
features, ViTs employ self-attention mechanisms to capture global relationships between
image patches. This capability makes them particularly effective in tasks requiring fine-
grained feature representation, such as skin lesion classification. However, it is important to
note that both CNNs and ViTs can be computationally expensive, especially when dealing
with high-resolution medical images and large datasets. ViTs, in particular, often require
extensive pre-training on large datasets and significant computational resources during
fine-tuning, which may pose challenges for deployment in resource-constrained environ-
ments. Similarly, hybrid ViT-CNN models increase computational overhead further, as
they combine the complexities of both architectures [43–47].

In another study, Ahmad, et al. [48] utilized the HAM10000 dataset to classify benign
and malignant skin lesions, achieving over 90% accuracy on certain lesion types using ViT
and EfficientNet. However, challenges in generalization and class imbalance were noted,
emphasizing the need for fine-tuning ViT models for high-resolution medical images. The
research underscores the value of hybrid ViT-CNN approaches for improving diagnostic
performance and efficiency.

Further, Saha, et al. [49] integrated ViT with CNNs, including MobileNet and Xception,
for skin lesion classification using the ISIC 2019 dataset. By combining segmentation tech-
niques with hybrid models, the study achieved an accuracy of 91.2%, demonstrating robust
performance in distinguishing benign and malignant lesions. While effective, limitations
include computational overhead and potential challenges in scalability to larger datasets,
highlighting areas for optimization in future research.
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Table 1. Comparison of recent studies on skin cancer classification, highlighting their focus, key
contributions, datasets used, methods applied, and achieved accuracies.

Study Focus Key Contributions Dataset Methods Used Accuracy (%)

Ali, Miah, Haque,
Rahman and

Islam [41]

Enhanced deep
CNN with transfer

learning for skin
cancer

classification

Custom CNN
architecture with

data augmentation
achieves superior

performance

HAM10000
Transfer Learning,

Data
Augmentation

93

Raju, Hemalatha,
Goli, Yuvananda,

Karthik and
Krishna [40]

Transfer learning
with DenseNet201
and InceptionV3

models

Fine-tuned transfer
learning with

notable accuracy
improvements

HAM10000 Transfer Learning,
Fine-tuning 86.82–87.72

Al-Rasheed, Ksibi,
Ayadi, Alzahrani,
Zakariah and Ali

Hakami [39]

Ensemble transfer
learning models

with CGAN
augmentation

High classification
accuracy using

GAN-based
augmentation

ISIC 2019 Ensemble
Learning, CGAN 92–93.5

Akilandasowmya,
Nirmaladevi,
Suganthi and

Aishwariya [42]

Dimensionality
reduction with

SCSO and
ResNet50

Improved accuracy
with

dimensionality
reduction and

ensemble
classifiers

ISIC 2019, Kaggle
Skin Cancer

ResNet50, SCSO,
Ensemble
Classifiers

92.035–94.238

Ahmad, Alsulami
and Alqurashi [48]

Skin lesion
classification using

ViT and CNNs

Demonstrated
high accuracy with

transfer learning
and ViT; analyzed
performance on

HAM10000

HAM10000

Vision
Transformers,
EfficientNet,
MobileNet

~90%

Saha, Joy and
Majumder [49]

Hybrid approaches
for segmentation
and classification

Combined ViT
with CNNs for

improved
segmentation and

diagnostic
accuracy

ISIC 2019
Vision

Transformers,
MobileNet

91.2%

2.2. Explainable AI in Dermatology

The lack of interpretability in deep-learning models has driven research towards
explainable AI methods such as Grad-CAM and LIME. Selvaraju, et al. [50] and Ribeiro,
et al. [51] showed that these techniques enhance trust in AI models by providing visual
explanations of their predictions, a crucial feature for medical applications.

2.3. Challenges Identified

Despite significant advancements in AI-based skin cancer detection, several challenges
persist. One major issue is the limited availability of diverse datasets, which often leads to
overfitting and hinders the generalization of models to new cases. Class imbalance further
exacerbates this problem, as the underrepresentation of certain lesion types can result in
biased predictions. Additionally, hyperparameter optimization remains a computationally
intensive and time-consuming process, making it challenging to fine-tune models effectively.
The inherent complexity of deep-learning models, with their multi-layered architectures,
complicates interpretability, making it difficult to explain classification outcomes and build
trust with clinicians. Moreover, many models struggle with generalization, performing well
on training data but failing to maintain accuracy on unseen datasets, particularly in medical
imaging. The lack of explainability in AI models further limits their clinical adoption, as
their “black-box” nature raises concerns among healthcare practitioners. Finally, ensuring
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the seamless integration of AI systems into clinical workflows remains a significant hurdle,
requiring compatibility with existing diagnostic processes and tools. Addressing these
challenges is essential to fully harness the potential of AI in skin cancer detection and
enhance its utility in real-world clinical settings.

3. Materials and Methods

The main objective of this study was to develop a robust approach for classifying skin
cancer into benign and malignant categories. This research emphasizes the importance
of transfer learning, feature extraction, and selection techniques to enhance classification
accuracy. Three experimental studies were conducted to achieve this goal, each addressing
different aspects of skin disease classification:

• Experiment 1: The architecture of a pretrained Xception-Net was modified by adding
global average pooling and dense layers with varying neuron configurations. This
enhanced architecture was used for direct classification of benign and malignant
lesions using transfer learning.

• Experiment 2: Features were extracted from the trained Xception-Net, and these feature
sets were evaluated using multiple machine-learning classifiers, including SVM, KNN,
and ensemble models. This experiment provided insights into the effectiveness of
integrating deep feature extraction with conventional classifiers.

• Experiment 3: Robust feature sets extracted from the Xception-Net were further refined
using Particle Swarm Optimization (PSO) [38] to reduce dimensionality. The optimal
feature sets were then classified using Subspace KNN, demonstrating significant
improvements in accuracy, sensitivity, and specificity.

The proposed methodology was further validated using the HAM10000 dataset as
a holdout set, showcasing its generalization capabilities. Explainable AI techniques such
as Grad-CAM, LIME, and Occlusion Sensitivity were employed across all experiments
to enhance model interpretability and transparency. Figure 1 provides a comprehensive
overview of the experimental setup, including dataset preparation, augmentation, network
modification, feature selection, and classification strategies.J. Imaging 2024, 10, 332 7 of 26 
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3.1. Dataset Collection, Preprocessing, and Augmentation
3.1.1. ISIC Skin Cancer: Malignant vs. Benign

The dataset used in this study for skin cancer detection and recognition was obtained
from the ISIC 2018 dataset [52], publicly available on Kaggle data repository, and designed
specifically for malignant vs. benign skin lesion classification. This dataset comprised a
total of 3297 images, with a total memory size of 340 MB. Each image is in RGB format,
measuring 224 × 244 pixels, and is categorized into either the benign or malignant class.
The benign class encompasses 1800 images, while the malignant class contains 1497 im-
ages. To facilitate model training and evaluation, the dataset was meticulously divided
into training and testing subsets. The training dataset comprised 1440 benign images
and 1197 malignant images, while the testing dataset included 360 benign images and
300 malignant images. To address class imbalances, we applied data augmentation tech-
niques mentioned in Section 2.1, ensuring equivalent distribution of augmented sam-
ples. This process generated a balanced dataset of 10,548 images, with 5760 benign and
4788 malignant samples as elaborated in Table 2. This meticulous data collection and divi-
sion strategy ensured a balanced and comprehensive approach to training and accurately
testing deep-learning-based classification models for skin cancer diagnosis and recognition.

Table 2. Number of training samples before and after augmentation.

Classes Before Augmentation After Augmentation

Benign 1440 5760
Malignant 1197 4788

total 2637 10,548

3.1.2. Human Against Machine Dataset

The HAM10000 (Human Against Machine with 10,000 images) [53] dataset is openly
accessible on Kaggle platform and is extensively utilized for tasks including binary classifi-
cation, skin lesion segmentation, and benchmarking the performance of human experts
and machine-learning models in dermatology. It comprises 10,015 dermoscopic images
designed to train and evaluate machine-learning models for skin lesion diagnosis. The
original dataset is categorized into seven classes—actinic keratoses and intraepithelial
carcinoma (akiec), Basal cell carcinoma (bcc), benign keratosis-like lesions (bkl), dermatofi-
broma (df), melanoma (mel), melanocytic nevi (nv), and vascular lesions (vasc)—and have
been grouped into two broader categories in our research: benign (bkl, df, nv, vasc) and
malignant (akiec, bcc, mel). The dataset includes metadata such as patient age, gender, and
lesion location and is imbalanced, with common classes like “nv” dominating. The detailed
distribution of the samples across these categories is shown in Table 3.

Table 3. Detailed distribution of the HAM10000 dataset, showing the original seven skin lesion
classes, their respective number of samples, and their grouping into two merged categories (benign
and malignant) for binary classification.

Classes No. of Samples Merged Classes No. of Samples

HAM1000

bkl 1099

benign 8061
df 115

nv 6705

Vasc 142

Akiec 327

malignant 1954Bcc 514

mel 1113
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3.1.3. Data Augmentation

The data augmentation [54] strategy employed aimed to augment the dataset’s diver-
sity and robustness to enhance the performance of the model. Initially, the original images
were preserved, ensuring a reference point for comparison. Subsequently, three primary
augmentation techniques were applied with specific parameter configurations.

Random rotation, ranging from −180 to 180 degrees, introduced variations in object
orientations, essential for capturing a broad spectrum of viewpoints and perspectives
computed by following mathematical equations.[

u′

v′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
u Centeru
v Centerv

]
+

[
Centeru
Centerv

]
(1)

In the image rotation operation, u′ and v′ represent the coordinates of the rotated pixel,
while u and v denote the original coordinates of the input image pixel. The rotation angle
θ, randomly generated within the range of −180 to 180 degrees, was measured in radians.
(Centeru, Centerv) refer to the coordinates of the rotation center.

Gaussian blur, utilizing a standard deviation of 2, effectively smooths images by dimin-
ishing high-frequency noise while retaining critical features, thereby bolstering the model’s
resilience to noise and minor variations. The Gaussian blur operation was implemented
using the following equation:

Ig_blur(u,v) = ∑∞
i=−∞ ∑∞

j=−∞ I(u + i, v + j) . G(i, j) (2)

The value of Ig_blur(u,v) represents the pixel value at coordinates (u, v) in the blurred
image. While I(u + i, v + j) denotes the pixel value at coordinates (u + i, v + j) in the
original image. G(i, j) represents the Gaussian kernel value at coordinates (i, j), calculated
using a standard deviation of 2.

The Gaussian kernel G(i, j) is computed as follows:

G(i, j) =
1

2πσ2 . e−
i2+j2

2σ2 (3)

where σ is the standard deviation, which in this case is 2.
Furthermore, image sharpening augmentation was applied to enhance edge sharpness

and detail prominence within the image, crucial for accurately capturing fine-grained
features and textures. The parameters set for this operation included an ‘Amount’ of 2,
indicating a strong sharpening effect, a ‘Radius’ of 1 for enhancing finer details, and a
‘Threshold’ of 0, meaning all pixels will undergo sharpening without a minimum change
in intensity requirement. Through the meticulous adjustment of augmentation param-
eters, the dataset was enriched with a diverse array of visual characteristics, empower-
ing the model to generalize more effectively and achieve superior performance across a
spectrum of real-world scenarios. The augmentation procedure was only undertaken to
train images to improve the model’s accuracy. Figure 2 illustrates the visual represen-
tation of the augmented data, while Table 2 displays the number of images before and
after augmentation.

Overall, we considered only a few simple augmentation techniques to minimize
computational complexity. We determined that these techniques were sufficient, as they
provided a high enough number of samples, which we found adequate based on an analysis
of the experimental results.
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3.2. Transfer Learning

Transfer learning often involves pre-training the network on a large dataset and then
fine-tuning it on a specific task allowing the model better generalization and improved
performance, especially when limited labeled data are available [55].

In this study, we employed a pre-trained CNN-based model known as Xception [30].
The Xception-Net, developed by Francois Chollet in 2016, is a CNN model derived from In-
ception architecture consisting of 36 convolutional layers integrating depth-wise separable
convolutions for efficiency. The network excels in classification and feature extraction tasks
due to its innovative architecture, which incorporates depth-wise separable convolutions.
This design reduces the number of parameters while capturing spatial and channel wise
dependencies effectively. Xception’s hierarchical feature representation enables it to learn
intricate details at different levels of abstraction, contributing to its strong performance in
image classification benchmarks. Additionally, its transfer-learning capabilities allow for
efficient fine-tuning on specific tasks, making it a preferred choice for various computer
vision applications where accuracy and efficiency are paramount.

3.3. Modification of the Xception Network Architecture

To train the network for skin cancer classification and feature learning, we modified
the architecture by excluding pre-trained layers including the last dense, softmax, and
classification layer. Additionally, we froze the weights of the upper layers of the model to
follow up the training mechanics of the transfer-learning approach. Then we modified the
architecture to include a global average pooling (GAP) layer followed by a fully connected
layer with 1024 neurons. This modification enables the network to extract more abstract and
high-level features from the input features matrix. Additionally, we employed a dropout
layer with a probability score of 0.5 which prevented overfitting by randomly deactivating
neurons during training. Finally, the addition of a fully connected layer with 2 neurons for
classification allows the network to predict benign and malignant skin cancer detection. In
summary, the modifications and learning parameter configuration enhanced the network’s
adaptability and performance for skin cancer detection.

After the training process, we utilized a trained model and used it with two different
aspects focused on feature importance and skin cancer detection.

3.4. Feature Selection Using PSO

In this step, a trained Xception network was utilized to extract a training feature
set from a dense layer comprising 1024 neurons, yielding 1024 features per image. The
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PSO [38] features’ selection method was subsequently applied. Originally proposed by
Kennedy and Eberhart in 1995, the PSO algorithm operates by simulating the movement of
a group of particles in a search space, with each particle representing a potential solution
to the optimization problem. These particles navigate through the search space based on
their current position, velocity, and the optimal positions discovered by themselves and
their neighbors. A major advantage of this technique is its ability to autonomously deter-
mine the optimal feature dimensions, eliminating the need for trial-and-error approaches
commonly used in conventional methods. This ensures a more efficient and robust feature
selection process.

In the process of optimizing feature selection for robust feature selection, the k-Nearest
Neighbors (KNN) classifier serves as the fitness function within the PSO algorithm, where k
is 5. This fitness function evaluates the performance of selected image features in classifying
skin lesions. Specifically, the KNN classifier is trained on the subset of features chosen by
the PSO algorithm and subsequently measures its accuracy in predicting the labels (benign
or malignant) of skin lesions. The fitness value calculated by the KNN classifier serves as
a metric for assessing the effectiveness of the selected features in distinguishing between
benign and malignant lesions. Through this iterative evaluation process, the PSO algorithm
dynamically adjusts the selection of features to optimize the classification performance of
the KNN classifier. In Figure S1, located in Section S3.4 of the Supplementary Material,
the performance of learning and selection stages of features have been shown in terms
of fitness values across iterations. Ultimately, the collaborative effort between the PSO
algorithm and the KNN fitness function aimed to identify the most informative features for
accurate skin cancer detection, thereby facilitating early diagnosis and treatment.

The PSO learning process begins with the definition of key parameters, each accompa-
nied by its explanation, as detailed in Table 4.

Table 4. Initial learning parameters of the PSO algorithm.

Parameter Initial Value Description

T 100 Maximum number of iterations
C1 2.5 Cognitive factor
C2 2.5 Social factor

Vmax 7 Maximum velocity
Wmax 0.95 Maximum bound on inertia weight
Wmin 0.35 Minimum bound on inertia weight

After the PSO operation was concluded, the optimal feature set comprised 508 features
for individual samples. The total feature dimension is represented by a matrix of size 10,548-
by-508. These selected features have been utilized for training and classification within
a machine-learning model for skin disease detection, as elaborated upon in subsequent
sections.

3.5. Classification

Following the feature selection step, we conducted a two-way classification. Initially,
we performed classification using a trained CNN model with a softmax function. Sub-
sequently, we employed various machine-learning classifiers, each with their respective
base function. These classifiers encompass Linear SVM (L-SVM), Quadratic SVM (Q-SVM),
Cubic SVM (C-SVM), Fine Gaussian SVM (FG-SVM), Medium Gaussian SVM (MG-SVM),
Coarse Gaussian SVM (CG-SVM), Fine KNN (F-KNN), Medium KNN (M-KNN), Coarse
KNN (C-KNN), Cosine KNN (Cos-KNN), Weighted KNN (W-KNN), Boosted Trees En-
semble (BT-Ensemble), Bagged Trees Ensemble (BT-Ensemble), Sub-space Discriminant
Ensemble (SD-Ensemble), Subspace KNN Ensemble (SK-Ensemble), and RUSBoosted Trees
Ensemble (RBT-Ensemble). These classifiers were utilized for both training and validation,
employing a 5-fold cross-validation process.
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4. Results

We begin the results section by evaluating multiple pretrained CNN models using
the same transfer learning setup over five epochs to identify the most suitable model for
our study. This initial step was critical to ensure optimal CNN model selection. Among
the tested models, including InceptionV3, MobileNet, and EfficientNet, Xception emerged
as the best-performing architecture based on its balance of computational efficiency and
classification accuracy. The detailed comparison of these models, including their accuracies
and parameter complexities, is provided in Table S1 under Supplementary Section S4.2.
This selection formed the foundation for the subsequent experiments, where we further
performed the Xception network-based experiments for robust skin cancer classification.

Overall, we employed transfer learning techniques, utilizing an enhanced Xception
network for both features extraction and classification tasks. Subsequently, we applied
features selection algorithms to identify a subset of discriminative features. These selected
features were then utilized to train SVM, KNN, and Ensemble classifiers, allowing the
evaluation of the system’s performance comprehensively.

All experiments described were implemented and executed using MATLAB 2023b
(Version 23.2) software on a Windows operating system. The system was equipped with
an Intel Core i7 10th generation processor with 8GB of memory. Additionally, an NVIDIA
RTX 2060 GPU with 6GB of dedicated RAM was utilized for accelerated computations.

The proposed methodology utilized the ISIC-2018 dataset consisting of 11,208 der-
moscopy images showing various skin illnesses. The dataset was predefined into training
and testing sets. Further, training samples of the dataset were separated by K-fold at
runtime by maintaining an equitable 70:30 ratio into training and validation, respectively.

On training data, different types of augmentation were also implemented, named
rotation, blurred, and sharpening in the x–y axis (briefly discussed in Section 3.1.3). Further,
the Adam optimizer [56] was utilized for optimization, with training execution set to GPU
to leverage parallel processing. Mini-batch size was defined as 16, determining the number
of samples processed together in each iteration. The training continued for a maximum of
30 epochs, with an initial learning rate of 1 × 10−4. Data shuffling occurred before each
epoch to prevent overfitting. Validation data, used to evaluate model performance, was
provided every 50 mini-batches. The verbose output was suppressed, and training progress
plots were generated to monitor performance throughout the training process, as shown in
Figure 3.
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training process of the proposed model. The gray bars indicate specific epochs of interest, highlighting
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Performance Evaluation Metrics

To assess the classification results of the proposed technique, this study employed vari-
ous performance assessment metrics, including accuracy (Acc), sensitivity (Sen), specificity
(Spe), precision (Pre), and F1-Score in Seq 1 to 5 in the Supplementary Materials under
Section S4.1.
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Overall, we carried out three experiments to assess the effectiveness of our proposed
methodology for skin cancer detection. We employed a transfer-learning approach and
machine-learning algorithms in two experiments: one with optimal feature selection and
one without. Our aim was to highlight the significance of optimal feature selection in
achieving higher accuracy scores while reducing computational costs and training time.
The overall explanation of the conducted experiments is mentioned below.

1. Experiment # 1: (skin cancer classification by improved Xception network)

In the first experiment, we modified the pretrained Xception model by incorporating
global average pooling layers and several dense layers with varying neuron configurations
to enhance its capability for transfer learning. This modification allowed the network
to better adapt to the binary classification task of distinguishing between benign and
malignant skin lesions. Training was focused on the newly introduced layers while freezing
the pretrained layers to preserve the general features learned from the original dataset.
The model training was performed for five epochs, during which, the model reached its
optimal learning stage, and training was manually stopped to avoid overfitting.

The trained model was then evaluated on a test set comprising 660 unseen images to
assess its performance on independent data. The results demonstrated an accuracy rate
of 94.15% on the validation dataset and 89.24% on the testing dataset, showcasing the
model’s generalization ability. Figure 4 provides a detailed visualization of the distribution
of positive and negative predictions using confusion matrices for both the validation and
testing datasets. Furthermore, an ablation study was conducted to validate the effectiveness
of the transfer learning approach, confirming that the chosen architecture and training
strategy were optimal. Detailed findings from this study are provided in Table S2 and
Figures S2–S5 under Section S4.3 of the Supplementary Materials.
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2. Experiment # 2: (skin cancer classification by robust feature extracted and machine-
learning classifiers)

In the second experiment, the extracted features from the Xception model were used
to train various machine-learning classifiers to evaluate their performance in classifying
skin lesions as benign or malignant, as shown in Figure 5, Figures S2 and S3 and Table 5.
Among the SVM classifiers, the Linear SVM (L-SVM) achieved an accuracy of 89.2% on
the testing dataset, with sensitivity and specificity values of 92.8% and 85.4%, respectively.
The Cubic SVM (C-SVM) also exhibited comparable results, achieving a testing accuracy of
89.2%, with sensitivity and specificity of 92.6% and 85.4%, respectively.
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Table 5. Performance Metrics, Computational Costs, Training Times, and Prediction Speeds of
Machine-Learning Classifiers for Skin Cancer Classification Using Features Extracted from the
Transfer-Learned Xception Network.

Classifier Acc (%) Sen (%) Spe (%) Pre (%) F1 (%) Total Cost Training Time
(s)

Prediction
Speed

~(obs/s)

L-SVM [57] 98.5/89.2 98.8/92.8 98.9/85.4 98.2/86.9 98.5/89.8 163/71 76.868 3900

Q-SVM [57] 98.4/89.2 98.8/92.8 98.0/85.4 98.3/86.9 98.5/89.8 164/71 76.142 3600

C-SVM [57] 98.5/89.2 98.8/92.6 98.0/85.4 98.3/86.9 98.6/89.6 162/72 167.31 1100

FG-SVM [57] 87.6/75.2 82.2/72.0 97.7/81.4 98.5/88.9 89.6/79.6 1305/164 1069.8 100

MG-SVM [57] 98.4/89.5 98.7/93.4 98.0/85.5 98.3/86.9 98.5/90.0 165/69 166.2 1300

CG-SVM [57] 98.2/89.4 98.4/93.4 97.9/85.2 98.3/86.6 98.3/89.9 188/70 230.94 600

F-KNN [58] 98.2/88.6 98.3/92.5 98.0/84.6 98.3/86.1 98.3/89.2 190/75 1108.4 51

M-KNN [58] 98.2/88.9 98.8/94.1 97.4/83.8 97.8/85.0 98.3/89.3 187/73 933.71 50
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Table 5. Cont.

Classifier Acc (%) Sen (%) Spe (%) Pre (%) F1 (%) Total Cost Training Time
(s)

Prediction
Speed

~(obs/s)

C-KNN [58] 98.2/88.8 98.4/93.6 97.8/84.0 98.2/85.2 98.3/89.2 190/74 1146.8 45

Cos-KNN [58] 98.3/89.4 98.8/95.0 97.6/84.0 98.0/85.0 98.4/89.7 179/70 1286.7 43

W-KNN [58] 98.2/89.1 99.0/94.7 97.2/83.7 97.6/84.7 98.3/89.4 187/72 1497.3 93

BT-Ensemble [59] 98.3/89.1 98.5/93.1 97.9/84.9 98.2/86.3 98.4/89.6 181/72 2190.2 4600

BAGT-Ensemble [59] 98.3/89.1 98.4/93.4 98.1/85.8 98.3/87.2 98.4/90.2 183/68 3515.8 8600

SD-Ensemble [60] 98.3/88.3 98.7/91.7 97.7/84.7 98.0/86.3 98.4/88.9 181/77 1881.9 360

RUSBoosted Trees [61] 98.1/88.8 98.4/93.6 97.7/84.0 98.1/85.2 98.2/89.2 198/74 2526.8 6900

The bold values in the table highlight the best-performing metrics within each group of classifier models. For
instance, MG-SVM has performed better among the SVM classifiers, Cos-KNN has shown superior perfor-
mance among the KNN classifiers, and BT-Ensemble has achieved the highest metrics among the bagged and
tree-based classifiers.

In the KNN group, as shown in Figure S2, the Cosine KNN (Cos-KNN) model outper-
formed others, achieving a testing accuracy of 89.4%, a sensitivity of 95.0%, and a specificity
of 84.0%. The Weighted KNN (W-KNN) also showed robust performance, with testing
accuracy, sensitivity, and specificity values of 89.1%, 94.7%, and 83.7%, respectively.

The ensemble classifiers provided notable results, as displayed in Figure S3, with the
Boosted Trees (BT-Ensemble) classifier achieving a testing accuracy of 89.1%, a sensitivity of
93.1%, and a specificity of 84.9%. Similarly, the Bagged Trees Ensemble (BAGT-Ensemble)
achieved an accuracy of 89.1%, a sensitivity of 93.4%, and a specificity of 85.8%.

Across all classifiers, the Medium Gaussian SVM (MG-SVM) demonstrated one of
the highest performances, achieving a testing accuracy of 89.5%, a sensitivity of 93.4%,
and a specificity of 85.5%. The confusion matrices and ROC curves, illustrated in Figure 5,
highlight the effectiveness of these classifiers in distinguishing between benign and malig-
nant lesions. These results underscore the capability of integrating extracted features with
robust machine-learning classifiers to achieve high classification performance.

3. Experiment # 3: (skin cancer classification by selective feature set and machine-
learning classifiers)

In Experiment 3, the integration of deep feature extraction, Particle Swarm Opti-
mization (PSO)-based feature selection, and machine-learning classifiers was employed
to evaluate their impact on skin cancer classification. Deep features extracted from the
transfer-learned Xception network were reduced from 1024 to 504 dimensions using the
PSO algorithm, ensuring computational efficiency without compromising accuracy. Us-
ing this reduced feature set, multiple machine-learning classifiers were trained and eval-
uated using a 5-fold cross-validation strategy as results are displayed in Table 6 and
Figures 6, S4 and S5. Among the classifiers, Cubic SVM achieved the highest testing accu-
racy of 98.0%, with a sensitivity of 98.2%, a specificity of 97.5%, and an F1 score of 98.0%,
as shown in Figure S4. The Fine-KNN classifier performed comparably with a testing
accuracy of 98.2% and demonstrated robust sensitivity (98.0%) and specificity (98.3%), as
displayed in Figure S5.

Table 6. The classification results of Experiment 3 with respect to multiple machine-learning classifier
with the use of 504 selective features.

Classifier Acc (%) Sen (%) Spe (%) Pre (%) F1 (%) Total Cost Training Time
(s)

Prediction
Speed

~(obs/s)

L-SVM [57] 97.8/97.3 98.3/96.7 97.1/97.9 97.5/98.3 97.9/97.5 237/10 72.871 7600

Q-SVM [57] 97.8/97.6 98.3/97.2 97.2/97.9 97.6/98.3 98.0/97.7 230/16 72.151 7500

C-SVM [57] 97.9/98.0 98.2/97.5 97.4/98.3 97.8/98.6 98.0/98.0 243/13 67.656 4900
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Table 6. Cont.

Classifier Acc (%) Sen (%) Spe (%) Pre (%) F1 (%) Total Cost Training Time
(s)

Prediction
Speed

~(obs/s)

FG-SVM [57] 86.4/87.4 81.1/81.8 96.5/98.2 97.8/98.8 88.7/89.5 1436/83 1085.1 160

MG-SVM [57] 97.8/97.6 98.4/96.7 97.0/98.6 97.5/98.8 98.0/97.8 236/16 81.589 4400

CG-SVM [57] 97.7/97.4 98.1/96.2 97.1/98.9 97.5/99.1 97.8/97.6 244/17 122.22 1200

F-KNN [58] 97.3/98.2 97.7/98.0 96.8/98.3 97.3/98.6 97.5/98.3 283/12 376.01 130

M-KNN [58] 97.6/97.7 98.4/98.3 96.6/97.0 97.1/97.5 97.8/97.9 247/15 403.3 140

C-KNN [58] 97.6/97.7 98.3/97.2 96.7/98.3 97.2/98.6 97.6/97.9 246/15 396.93 140

Cos-KNN [58] 97.6/97.8 98.5/97.7 96.6/97.9 97.1/98.3 97.8/98.8 243/14 542.63 100

W-KNN [58] 97.7/97.7 98.8/98.3 96.4/97.0 97.0/97.5 97.9/97.9 246/15 615.33 190

BT-Ensemble [59] 97.6/97.8 97.9/97.0 97.0/98.9 97.5/99.1 97.7/98.0 250/14 797.69 11,000

BAGT-Ensemble [59] 97.7/97.4 98.0/96.7 97.2/98.2 97.7/98.6 97.9/97.6 253/13 1427.2 14,000

SD-Ensemble [60] 97.7/97.7 98.3/97.0 96.9/98.6 97.4/98.8 97.8/97.9 248/15 720.25 1000

RUSBoosted Trees [61] 97.6/98.5 98.2/98.0 97.2/98.9 97.6/99.1 97.9/98.6 257/10 2005.4 34

The bold values in the table represent the best-performing metrics within each group of classifier models.
Specifically, C-SVM has shown the highest performance among the SVM classifiers, F-KNN has excelled
among the KNN classifiers, and RUSBoosted Trees has achieved the best results among the bagged and
tree-based classifiers.
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Figure 6. Confusion matrix and ROC curve of Experiment 3 by Ensemble Subspace KNN classifier:
(A) confusion matrix and ROC curve on training dataset; (B) confusion matrix and ROC curve on
testing dataset. Additionally, the dashed line in the ROC curve represents the reference line for
random classification (AUC = 0.5).

The ensemble classifiers also showcased high performance, with the Subspace KNN
ensemble achieving the best results across all metrics, including an accuracy of 98.5%, a
sensitivity of 98.0%, a specificity of 98.9%, a precision of 99.1%, and an F1 score of 98.6%.
These results highlight the advantage of combining optimized feature sets with advanced
machine-learning models. Computational metrics, including total costs, training times,
and prediction speeds, were also evaluated, with the Subspace KNN ensemble achieving
optimal efficiency and predictive power. Figure 6 illustrate the confusion matrices and ROC
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curves for the top-performing classifiers, which demonstrated excellent discriminative
capabilities, as evidenced by their AUC values exceeding 0.99.

Holdout results based on all Experiments
The holdout experiments on the HAM10000 dataset evaluated the performance of the

three approaches, highlighting the strengths of the proposed methodology, as shown in
Figure 7 and Table 7. The baseline Xception model (Experiment 1) achieved high sensitivity
(94.2%) but struggled with specificity (49.8%) and overall accuracy (80.3%). Adding a
Gaussian SVM in Experiment 2 slightly improved accuracy (81.05%) and specificity (51.3%)
but still fell short of optimal performance. The best results were obtained in Experiment
3, where Xception was combined with Particle Swarm Optimization (PSO) for feature
selection and was classified using Subspace KNN. This approach achieved an accuracy of
86.1%, a sensitivity of 91.42%, and a specificity of 64.31%, demonstrating a better balance
in distinguishing benign and malignant lesions. The integration of PSO and Subspace
KNN significantly enhanced feature discrimination and classification performance, as illus-
trated by the confusion matrix and ROC curve. These results validate the robustness and
generalization capability of the proposed methodology in handling imbalanced datasets
like HAM10000.
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Table 7. Performance metrics for the best experiment SK-Ensemble classifier on the HAM10000
dataset, including accuracy, sensitivity, specificity, precision, and F1 score. The results highlight the
model’s high sensitivity in detecting malignant lesions but lower specificity for benign cases.

Classifier Acc (%) Sen (%) Spe (%) Pre (%) F1 (%)

Xception (Experiment 1) 80.3 94.2 49.8 80.5 86.8

Xception + Gaussian SVM (Experiment 2) 81.05 89.1 51.3 87.1 88.0

Xception + PSO + Subspace KNN (Experiment 3) 86.1 91.42 64.31 91.3 91.3

The bold values in the table represent the best-performing metrics across all experiments. Specifically, Xception +
PSO + Subspace KNN (Experiment 3) has achieved the highest performance, demonstrating superior accuracy,
sensitivity, specificity, precision, and F1-score compared to the other approaches.

5. Discussion

1. Experiment 1: Transfer-Learned Xception with Softmax Classifier

In the first experiment, the pretrained Xception model was modified with a global
average pooling layer and multiple dense layers to enhance its feature representation. This
experiment achieved a training accuracy of 98.4% and a testing accuracy of 89.7% on the ISIC
2018 dataset. The results highlighted the capability of the Xception network to differentiate
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between benign and malignant skin lesions effectively. As shown in Table 8, the model
performed well in sensitivity (93.9%) but exhibited moderate specificity (84.6%), indicating
its strength in detecting malignant cases but room for improvement in distinguishing
benign cases.

Table 8. The best three performed models’ performances in three experiments where Acc, Sen, Spe,
Pre, and F1 means Accuracy, Sensitivity, Specificity, Precision, and F1-Score, respectively.

Exp # Classifier Validation Test

Acc Sen Spe Pre F1 Acc Sen Spe Pre F1

Exp1 Softmax 94.2 95.9 92.2 93.3 94.6 89.7 93.9 84.6 85.8 89.7
Exp2 Medium Gaussian-SVM 98.6 98.8 98.0 98.4 98.6 89.6 93.4 85.5 86.9 90.0
Exp3 Subspace-KNN 97.6 97.9 97.1 97.5 97.8 98.5 98.1 98.9 99.2 98.6

2. Experiment 2: Deep Features with Machine-Learning Classifiers
The second experiment leveraged deep feature extraction from the transfer-learned

Xception network and evaluated various machine-learning classifiers. Among the classi-
fiers, the Medium Gaussian SVM (MG-SVM) achieved the best performance with a testing
accuracy of 89.6%, a sensitivity of 93.4%, and a specificity of 85.5%. These results emphasize
its ability to detect malignant lesions effectively, which is critical for early intervention.
In the KNN group, the Cosine KNN (Cos-KNN) demonstrated strong sensitivity (95.0%),
further minimizing false negatives. Ensemble classifiers, such as Boosted Trees Ensemble,
provided balanced performance, achieving a testing accuracy of 89.1% and a sensitivity
of 93.1%. Figure 5 illustrates the confusion matrices and ROC curves for the top clas-
sifier, which validate their ability to distinguish between classes effectively. While the
performance was slightly lower than Experiment 3, the results highlighted the value of
machine-learning classifiers in enhancing the predictive power of deep feature extraction.

3. Experiment 3: Feature Selection and Subspace KNN Ensemble
The third experiment integrated deep feature extraction, PSO-based feature selection,

and advanced machine-learning classifiers to optimize skin cancer classification. Using the
PSO algorithm, feature dimensions were reduced from 1024 to 504, significantly improv-
ing computational efficiency without sacrificing accuracy. The Subspace KNN ensemble
emerged as the top-performing model, achieving a testing accuracy of 98.5%, a sensitivity
of 98.1%, a specificity of 98.9%, and a precision of 99.1%. These results validate the superi-
ority of the optimized pipeline in handling complex decision boundaries and achieving
high predictive accuracy. Figure 6 showcases the confusion matrices and ROC curves for
the Subspace KNN classifier, demonstrating minimal false positives and false negatives.
Compared with previous methodologies, such as DenseNet201 and SCSO-ResNet50-EHS-
CNN, the proposed approach outperformed them on the ISIC 2018 dataset in all metrics,
underscoring the importance of feature selection and ensemble learning.

4. Comparison with Previous Works
The comparison with previous works highlights the efficacy and limitations of the

proposed methodology when benchmarked on both the HAM10000 and ISIC-2018 datasets,
as illustrated in Table 9. On the ISIC-2018 dataset, the proposed methodology demon-
strated state-of-the-art performance, achieving 98.5% accuracy, 98.1% sensitivity, and 98.9%
specificity with the Xception + PSO + Subspace KNN pipeline (Experiment 3). This sig-
nificantly outperformed prior studies, such as [39] and Akilandasowmya, Nirmaladevi,
Suganthi and Aishwariya [42], who achieved 92% accuracy using DenseNet201 and SCSO-
ResNet50-EHS-CNN, respectively. Although Akilandasowmya, Nirmaladevi, Suganthi
and Aishwariya [42] achieved a higher sensitivity of 93.9%, their specificity of 85.5% was
notably lower compared with the proposed method’s superior balance of sensitivity and
specificity. Additionally, Saha, Joy and Majumder [49], integrating ViT and MobileNet with
segmentation techniques on ISIC 2019, achieved an accuracy of 91.2%, with an approximate
sensitivity and specificity of 93% and 90%, respectively. While their results show competi-
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tive performance, the proposed method still leads in accuracy and specificity, crucial for
reducing false positives and enhancing diagnostic reliability in clinical settings. This under-
scores the superiority of the proposed pipeline, which combines deep feature extraction,
PSO-based feature optimization, and ensemble classifiers to provide a robust diagnostic
tool for skin cancer detection, especially well-suited for settings that demand high accuracy
and detailed lesion analysis. Further, earlier experiments in this study, such as Experiment
1 (standalone Xception) and Experiment 2 (Xception + Gaussian SVM), achieved accuracies
of 89.7% and 89.6%, respectively, further highlighting the incremental benefits of feature
selection and ensemble learning. The proposed approach’s ability to optimize performance
through PSO-based feature reduction and ensemble classifiers emphasizes its potential
for clinical application, providing accurate and reliable predictions for both benign and
malignant skin lesions.

Table 9. Comparison of various methodologies for skin cancer classification across HAM10000
and ISIC datasets, showcasing accuracy, sensitivity, and specificity metrics for different pipelines,
including the proposed Xception-based approaches.

Methodology Pipeline Dataset Accuracy (%) Sensitivity (%) Specificity (%)

Raju, Hemalatha, Goli,
Yuvananda, Karthik and

Krishna [40]

CGAN + Ensembled
models HAM10000 86 84 88

Ali, Miah, Haque,
Rahman and Islam [41] Custom CNN HAM10000 93 91 94

Ahmad, Alsulami and
Alqurashi [48]

Skin lesion classifi-cation
using ViT and CNNs HAM10000 ~90 ~92 ~89

Proposed Method
Xception + PSO +
Subspace KNN
(Experiment 3)

HAM10000 86.1 91.42 64.31

Al-Rasheed, Ksibi, Ayadi,
Alzahrani, Zakariah and

Ali Hakami [39]
DenseNet201 ISIC 2019 92 90 93

Akilandasowmya,
Nirmaladevi, Suganthi

and Aishwariya [42]

SCSO-ResNet50-EHS-
CNN ISIC 2019 92 93.9 85.5

Saha, Joy and
Majumder [49]

Integration of ViT and
MobileNet with

segmentation techniques
ISIC 2019 91.2 ~93 ~90

Proposed Method Xception (Experiment 1) ISIC 2018 89.7 93.9 84.6

Proposed Method Xception + Gaussian SVM
(Experiment 2) ISIC 2018 89.6 93.4 85.5

Proposed Method
Xception + PSO +
Subspace KNN
(Experiment 3)

ISIC 2018 98.5 98.1 98.9

On the HAM10000 dataset, the proposed Xception + PSO + Subspace KNN method
achieved an accuracy of 86.1%, a sensitivity of 91.42%, and a specificity of 64.31%. This
performance highlights a strong ability to detect malignant cases effectively, as evidenced
by its high sensitivity, which surpasses Raju, Hemalatha, Goli, Yuvananda, Karthik and
Krishna [40] (84% sensitivity) who employed CGAN with ensemble models, and is com-
parable to the sensitivity (~92%) reported by Ahmad, Alsulami and Alqurashi [48] using
ViT and CNNs. However, the lower specificity of the proposed approach indicates room
for improvement in reducing false positives. In comparison, Ali, Miah, Haque, Rahman
and Islam [41] demonstrated superior balance, achieving 93% accuracy, 91% sensitivity,
and 94% specificity with their custom CNN. It is worth noting that the proposed method
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evaluated HAM10000 as a completely unseen holdout set, unlike other studies that used it
for training and validation. This underscores the robustness and generalization potential of
our methodology, while also identifying the need to enhance specificity for better clinical
alignment in future iterations.

6. Visual Representation of Model Attention Using Grad-CAM, LIME, and
Occlusion Sensitivity

Gradient-Weighted Class Activation Mapping (Grad-CAM) [62], Local Interpretable
Model-Agnostic Explanations (LIME) [51], and Occlusion Sensitivity [63] are powerful
tools used to visualize and interpret deep-learning models’ attention to regions of interest
(ROI) within images. These techniques help to identify the areas in an image that contribute
the most to the model’s decision-making process, thereby enhancing the interpretability
of predictions.

The visualization process involves passing an input image through the pretrained
Xception model, predicting the label, and mapping the attention regions. Grad-CAM
highlights the pixels of the last convolutional layer corresponding to significant features,
with red areas indicating regions of highest importance. LIME generates explanations by
perturbing image pixels and evaluating their impact on the predictions, providing inter-
pretable feature importance maps. Occlusion Sensitivity further validates the predictions
by systematically masking parts of the image and observing changes in the output.

As illustrated in Figure 8, we applied these methods to samples from the ISIC and
HAM10000 datasets. For benign and malignant cases, Grad-CAM heatmaps show distinct
areas of focus, with red indicating critical lesion regions. LIME explanations overlay rele-
vant pixel clusters, providing a fine-grained interpretation. Occlusion Sensitivity comple-
ments these methods by visualizing the impact of occluding different regions on prediction
confidence. Together, these approaches reveal the decision-making process of the Xception
model, enhancing its transparency and reliability.

The proposed methodology makes the approach suitable for deployment in resource-
constrained settings. The integration of explainable AI techniques, such as Grad-CAM,
LIME, and Occlusion Sensitivity, provided insights into the model’s decision-making
process, fostering trust among medical practitioners by highlighting critical regions in
skin lesions. These results have significant implications for clinical practice, including
improving diagnostic accuracy, reducing misdiagnoses, and supporting early treatment
through reliable, interpretable tools. The methodology also aligns with clinical workflows
by acting as a decision-support system, ensuring that AI complements rather than replaces
human expertise. Its scalability and transparency make it a promising tool for telemedicine
and rural healthcare, potentially democratizing access to advanced diagnostic technologies.
Future research can build upon these findings by exploring diverse datasets, expanding the
approach to other skin diseases, and further refining interpretability techniques to enhance
its clinical applicability.

Further, different XAI techniques suit different clinical contexts. For example, Grad-
CAM is better suited to providing an intuitive and quick overview for decision-making,
while LIME and Occlusion Sensitivity are more appropriate for detailed validation and in-
depth analysis of specific cases. This versatility ensures that the explainability framework
aligns with varying diagnostic behaviors and preferences of medical practitioners.
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Figure 8. Visualization of the proposed Xception-based pipeline applied to ISIC and HAM10000
datasets for skin cancer classification. Input images are classified as benign or malignant with confi-
dence scores. Grad-CAM highlights critical regions, LIME provides pixel-level interpretations, and
Occlusion Sensitivity validates predictions, enhancing model transparency for clinical applications.
Additionally, the color legend bars indicate the intensity of contribution, with “min” and “max”
representing low to high importance, enhancing the model’s transparency and interpretability for
clinical applications.

7. Conclusions

This study explored the effectiveness of a CNN-based Xception network, deep feature
extraction, and optimal feature selection for skin cancer detection, with the primary goal of
improving classification accuracy and computational efficiency. Three distinct approaches
were examined: classification using transfer learning with the Xception network, deep
feature extraction paired with machine-learning classifiers, and feature extraction combined
with Particle Swarm Optimization (PSO) for dimensionality reduction and subsequent
classification. The integration of data augmentation techniques, including image rotation,
Gaussian blur, and sharpening, allowed for the preparation of a robust training dataset
using the ISIC and HAM10000 dataset as a holdout. Our results demonstrated the high-
est testing accuracy of 98.5% on the ISIC dataset by combining Xception-based feature
extraction, PSO-based feature selection, and Subspace KNN classifiers. On the HAM10000
holdout dataset, the methodology achieved an accuracy of 87.1%. The Grad-CAM, LIME,
and Occlusion Sensitivity explainable-AI technique were employed to visualize the model’s
attention, enhancing interpretability and providing insights into the classification process.

In the future, we aim to validate the model’s adaptability to diverse skin types and
imaging conditions by using larger and more heterogeneous datasets. Efforts will focus
on enhancing data diversity through GANs, expanding the methodology to cover other
dermatological diseases, and improving interpretability with advanced explainable AI tech-
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niques. Collaboration with dermatologists will also be prioritized to evaluate the model’s
practical utility as a clinical decision support tool, ensuring its outputs are interpretable,
relevant, and seamlessly integrated into real-world clinical workflows.

Scientific Insights: This research not only aims for a technically robust AI pipeline
but also contributes significant scientific insights that enhance the understanding of AI’s
role in medical imaging and its real-world applications.

• Enhanced Diagnostic Accuracy: By integrating transfer learning with PSO, this study
achieves high classification accuracy while reducing computational costs, fulfilling the
aim of building an efficient diagnostic tool.

• Adaptability Across Clinical Datasets: The generalization of the proposed pipeline on
ISIC 2018 and HAM10000 datasets demonstrates its ability to address diverse clinical
and demographic challenges.

• Interpretability for Clinical Decision Support: The inclusion of Grad-CAM, LIME,
and Occlusion Sensitivity aligns with this paper’s focus on explainability, bridging the
gap between AI predictions and clinical trust.

• Scalability in Resource-Limited Settings: The computational efficiency achieved
through dimensionality reduction ensures the pipeline’s suitability for real-world
deployment, particularly in resource-constrained environments.

• Framework for Expanding Medical Image Applications: The interdisciplinary im-
pact of the optimized pipeline serves as a foundation for diagnosing other medical
conditions, aligning with the broader aim of enhancing AI’s role in healthcare.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jimaging10120332/s1, Figure S1: The Evolution of fitness values
throughout the PSO learning.; Table S1: Performance comparison of various pre-trained CNN models
(EfficientNet, Inception-V3, MobileNet, and Xception) for skin cancer classification, including metrics
(Acc, Sen, Spe, Pre, F1) for validation and testing datasets, along with the number of layers.; Table S2:
Ablation study results for freezing different percentages of Xception’s 173 layers, with metrics (Acc,
Sen, Spe, Pre, F1) for validation and testing datasets. The 100% freezing configuration was chosen for
its comparable performance and reduced computational cost.; Figure S2: Confusion matrix and ROC
curve of experiment 2 by Cosine-KNN classifier: (A) Confusion matrix and ROC curve on training
dataset (B) confusion matrix and ROC curve on testing dataset. Additionally, the dashed line in the
ROC curve represents the reference line for random classification (AUC = 0.5).; Figure S3: Confusion
matrix and ROC curve of experiment 2 by Ensemble-Boosted tree classifier: (A) Confusion matrix and
ROC curve on training dataset (B) confusion matrix and ROC curve on testing dataset. Additionally,
the dashed line in the ROC curve represents the reference line for random classification (AUC = 0.5).;
Figure S4: Confusion matrix and ROC curve of experiment 3 by Cubic SVM classifier: (A) Confusion
matrix and ROC curve on training dataset (B) confusion matrix and ROC curve on testing dataset.
Additionally, the dashed line in the ROC curve represents the reference line for random classification
(AUC = 0.5).; Figure S5: Confusion matrix and ROC curve of experiment 3 by Fine-KNN classifier:
(A) Confusion matrix and ROC curve on training dataset (B) confusion matrix and ROC curve on
testing dataset. Additionally, the dashed line in the ROC curve represents the reference line for
random classification (AUC = 0.5).
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6. Janušonytė, E.; Buyck, M.; Merat, R.; Tehrany, Y.A. Action during childhood for lifelong primary skin cancer prevention. Lancet

Child Adolesc. Health 2024, 8, 5–7. [CrossRef]
7. Teoh, J.; Gan, A.; Ramalingam, J.; Elsheikh, S.; Jerrom, R. Papular lesion occurring within a longstanding warty plaque, in skin of

colour Fitzpatrick type 4–5. Ski. Health Dis. 2024, 4, e328. [CrossRef]
8. Bhatia, S.; Maheshwari, A. Skin Disorders inNewborn Infants. In Principles of Neonatology; Elsevier: Amsterdam, The Netherlands,

2024; pp. 862–879.
9. Asif, M.; Yousuf, M.H.; Farooqui, U.S.; Nashwan, A.J.; Ullah, I. Cutaneous signs of selected cardiovascular disorders: A narrative

review. Open Med. 2024, 19, 20240897. [CrossRef]
10. Borghesi, A. Life-threatening infections in human newborns: Reconciling age-specific vulnerability and interindividual variability.

Cell. Immunol. 2024, 397, 104807. [CrossRef]
11. Marsden, P.J. Medical complications of pregnancy. In Obstetrics by Ten Teachers; CRC Press: Boca Raton, FL, USA, 2024;

pp. 145–171.
12. Kensington, M.; Davis, C. Pediatric Section. In Collins-Bride & Saxe’s Clinical Guidelines for Advanced Practice Nursing; Jones &

Bartlett Publishers: Burlington, MA, USA, 2024.
13. Rallis, D.; Baltogianni, M.; Kapetaniou, K.; Giapros, V. Current Applications of Artificial Intelligence in the Neonatal Intensive

Care Unit. BioMedInformatics 2024, 4, 1225–1248. [CrossRef]
14. Loescher, L.J.; Janda, M.; Soyer, H.P.; Shea, K.; Curiel-Lewandrowski, C. Advances in skin cancer early detection and diagnosis.

In Seminars in Oncology Nursing; WB Saunders: Philadelphia, PA, USA, 2013; pp. 170–181.
15. Heibel, H.D.; Hooey, L.; Cockerell, C.J. A review of noninvasive techniques for skin cancer detection in dermatology. Am. J. Clin.

Dermatol. 2020, 21, 513–524. [CrossRef] [PubMed]
16. Jerant, A.F.; Johnson, J.T.; Sheridan, C.D.; Caffrey, T.J. Early detection and treatment of skin cancer. Am. Fam. Physician 2000, 62,

357–368.
17. Dulmage, B.; Tegtmeyer, K.; Zhang, M.Z.; Colavincenzo, M.; Xu, S. A point-of-care, real-time artificial intelligence system to

support clinician diagnosis of a wide range of skin diseases. J. Investig. Dermatol. 2021, 141, 1230–1235. [CrossRef] [PubMed]
18. Du-Harpur, X.; Watt, F.; Luscombe, N.; Lynch, M. What is AI? Applications of artificial intelligence to dermatology. Br. J. Dermatol.

2020, 183, 423–430. [CrossRef] [PubMed]
19. Li, C.-X.; Shen, C.-B.; Xue, K.; Shen, X.; Jing, Y.; Wang, Z.-Y.; Xu, F.; Meng, R.-S.; Yu, J.-B.; Cui, Y. Artificial intelligence in

dermatology: Past, present, and future. Chin. Med. J. 2019, 132, 2017–2020. [CrossRef]
20. Gupta, P.; Nirmal, J.; Mehendale, N. A survey on computer vision approaches for automated classification of skin diseases.

Multimed. Tools Appl. 2024, 1–33. [CrossRef]

https://parenth2020.com/
https://parenth2020.com/
https://doi.org/10.1016/j.clindermatol.2007.09.013
https://www.ncbi.nlm.nih.gov/pubmed/18472055
https://doi.org/10.3322/caac.21492
https://www.ncbi.nlm.nih.gov/pubmed/30207593
https://doi.org/10.2174/1567201820666230726150642
https://www.ncbi.nlm.nih.gov/pubmed/37496132
https://doi.org/10.1111/ddg.15344
https://doi.org/10.3390/jcm13041126
https://doi.org/10.1016/S2352-4642(23)00252-3
https://doi.org/10.1002/ski2.328
https://doi.org/10.1515/med-2024-0897
https://doi.org/10.1016/j.cellimm.2024.104807
https://doi.org/10.3390/biomedinformatics4020067
https://doi.org/10.1007/s40257-020-00517-z
https://www.ncbi.nlm.nih.gov/pubmed/32383142
https://doi.org/10.1016/j.jid.2020.08.027
https://www.ncbi.nlm.nih.gov/pubmed/33065109
https://doi.org/10.1111/bjd.18880
https://www.ncbi.nlm.nih.gov/pubmed/31960407
https://doi.org/10.1097/CM9.0000000000000372
https://doi.org/10.1007/s11042-024-19301-w


J. Imaging 2024, 10, 332 23 of 24

21. Bizel, G.; Einstein, A.; Jaunjare, A.G.; Jagannathan, S.K. Machine Learning Study: Identification of Skin Diseases for Various Skin
Types Using Image Classification. J. Big Data Artif. Intell. 2024, 2. [CrossRef]

22. Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.
Artificial intelligence in cancer imaging: Clinical challenges and applications. CA A Cancer J. Clin. 2019, 69, 127–157. [CrossRef]

23. Zhang, Y.-P.; Zhang, X.-Y.; Cheng, Y.-T.; Li, B.; Teng, X.-Z.; Zhang, J.; Lam, S.; Zhou, T.; Ma, Z.-R.; Sheng, J.-B. Artificial
intelligence-driven radiomics study in cancer: The role of feature engineering and modeling. Mil. Med. Res. 2023, 10, 22.
[CrossRef]

24. Hussain, S.I.; Toscano, E. An extensive investigation into the use of machine learning tools and deep neural networks for the
recognition of skin cancer: Challenges, future directions, and a comprehensive review. Symmetry 2024, 16, 366. [CrossRef]

25. Sonia, R.; Joseph, J.; Kalaiyarasi, D.; Kalyani, N.; Gopala Gupta, A.S.; Ramkumar, G.; Almoallim, H.S.; Alharbi, S.A.; Raghavan, S.
Segmenting and classifying skin lesions using a fruit fly optimization algorithm with a machine learning framework. Automatika
2024, 65, 217–231. [CrossRef]

26. da Silva, J.O.L.; Matioli, L.; Santos, P.; Alves, A. A new SVM solver applied to Skin Lesion Classification. Stat. Optim. Inf. Comput.
2024, 12, 1149–1172. [CrossRef]

27. Rana, M.; Bhushan, M. Machine learning and deep learning approach for medical image analysis: Diagnosis to detection.
Multimed. Tools Appl. 2023, 82, 26731–26769. [CrossRef] [PubMed]

28. Castiglioni, I.; Rundo, L.; Codari, M.; Di Leo, G.; Salvatore, C.; Interlenghi, M.; Gallivanone, F.; Cozzi, A.; D’Amico, N.C.;
Sardanelli, F. AI applications to medical images: From machine learning to deep learning. Phys. Medica 2021, 83, 9–24. [CrossRef]

29. Chan, H.-P.; Samala, R.K.; Hadjiiski, L.M.; Zhou, C. Deep learning in medical image analysis. Deep Learn. Med. Image Anal. Chall.
Appl. 2020, 19, 221–248.

30. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

31. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
32. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

33. Goyal, V.S. Classification of Melanoma Using Transfer Learning and Deep Learning Neural Networks; National College of Ireland:
Dublin, Ireland, 2020.

34. Abbas, Q.; Daadaa, Y.; Rashid, U.; Ibrahim, M. Assist-Dermo: A Lightweight Separable Vision Transformer Model for Multiclass
Skin Lesion Classification. Diagnostics 2023, 13, 2531. [CrossRef]

35. Swetha, R.N.; Shrivastava, V.K.; Parvathi, K. Multiclass skin lesion classification using image augmentation technique and transfer
learning models. Int. J. Intell. Unmanned Syst. 2024, 12, 220–228. [CrossRef]

36. Meswal, H.; Kumar, D.; Gupta, A.; Roy, S. A weighted ensemble transfer learning approach for melanoma classification from skin
lesion images. Multimed. Tools Appl. 2024, 83, 33615–33637. [CrossRef]

37. Hussain, L.; Ansari, S.; Shabir, M.; Qureshi, S.A.; Aldweesh, A.; Omar, A.; Iqbal, Z.; Bukhari, S.A.C. Deep convolutional neural
networks accurately predict breast cancer using mammograms. Waves Random Complex Media 2023, 1–24. [CrossRef]

38. Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [CrossRef]
39. Al-Rasheed, A.; Ksibi, A.; Ayadi, M.; Alzahrani, A.I.; Zakariah, M.; Ali Hakami, N. An ensemble of transfer learning models for

the prediction of skin cancers with conditional generative adversarial networks. Diagnostics 2022, 12, 3145. [CrossRef] [PubMed]
40. Raju, K.K.; Hemalatha, I.; Goli, D.; Yuvananda, C.; Karthik, A.; Krishna, I.J.V. Skin Cancer LesionClassification Using Transfer

Learning based Fine Tuned Deep Neural Networks. Scand. J. Inf. Syst. 2023, 35, 1331–1340.
41. Ali, M.S.; Miah, M.S.; Haque, J.; Rahman, M.M.; Islam, M.K. An enhanced technique of skin cancer classification using deep

convolutional neural network with transfer learning models. Mach. Learn. Appl. 2021, 5, 100036. [CrossRef]
42. Akilandasowmya, G.; Nirmaladevi, G.; Suganthi, S.; Aishwariya, A. Skin cancer diagnosis: Leveraging deep hidden features and

ensemble classifiers for early detection and classification. Biomed. Signal Process. Control 2024, 88, 105306. [CrossRef]
43. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. ACM Comput. Surv. (CSUR)

2022, 54, 1–41. [CrossRef]
44. Cui, Q.; Zhou, B.; Guo, Y.; Yin, W.; Wu, H.; Yoshie, O.; Chen, Y. Contrastive vision-language pre-training with limited resources.

In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 236–253.
45. Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y. A survey on visual transformer. arXiv 2020,

arXiv:2012.12556.
46. Zhai, X.; Kolesnikov, A.; Houlsby, N.; Beyer, L. Scaling vision transformers. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12104–12113.
47. Gan, Z.; Li, L.; Li, C.; Wang, L.; Liu, Z.; Gao, J. Vision-language pre-training: Basics, recent advances, and future trends. Found.

Trends Comput. Graph. Vis. 2022, 14, 163–352. [CrossRef]
48. Ahmad, I.; Alsulami, B.S.; Alqurashi, F. Enhancing Skin Cancer Detection with Transfer Learning and Vision Transformers. Int. J.

Adv. Comput. Sci. Appl. 2024, 15. [CrossRef]
49. Saha, D.K.; Joy, A.M.; Majumder, A. YoTransViT: A transformer and CNN method for predicting and classifying skin diseases

using segmentation techniques. Inform. Med. Unlocked 2024, 47, 101495. [CrossRef]

https://doi.org/10.54116/jbdai.v2i1.32
https://doi.org/10.3322/caac.21552
https://doi.org/10.1186/s40779-023-00458-8
https://doi.org/10.3390/sym16030366
https://doi.org/10.1080/00051144.2023.2293515
https://doi.org/10.19139/soic-2310-5070-2005
https://doi.org/10.1007/s11042-022-14305-w
https://www.ncbi.nlm.nih.gov/pubmed/36588765
https://doi.org/10.1016/j.ejmp.2021.02.006
https://doi.org/10.3390/diagnostics13152531
https://doi.org/10.1108/IJIUS-02-2021-0010
https://doi.org/10.1007/s11042-023-16783-y
https://doi.org/10.1080/17455030.2023.2189485
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.3390/diagnostics12123145
https://www.ncbi.nlm.nih.gov/pubmed/36553152
https://doi.org/10.1016/j.mlwa.2021.100036
https://doi.org/10.1016/j.bspc.2023.105306
https://doi.org/10.1145/3505244
https://doi.org/10.1561/0600000105
https://doi.org/10.14569/IJACSA.2024.01510104
https://doi.org/10.1016/j.imu.2024.101495


J. Imaging 2024, 10, 332 24 of 24

50. Selvaraju, R.R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Why did you say that? arXiv 2016,
arXiv:1611.07450.

51. Ribeiro, M.T.; Singh, S.; Guestrin, C. “ Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144.

52. Codella, N.; Rotemberg, V.; Tschandl, P.; Celebi, M.E.; Dusza, S.; Gutman, D.; Helba, B.; Kalloo, A.; Liopyris, K.; Marchetti, M.
Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic).
arXiv 2019, arXiv:1902.03368.

53. Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of
common pigmented skin lesions. Sci. Data 2018, 5, 180161. [CrossRef] [PubMed]

54. Lin, C.-H.; Kaushik, C.; Dyer, E.L.; Muthukumar, V. The good, the bad and the ugly sides of data augmentation: An implicit
spectral regularization perspective. J. Mach. Learn. Res. 2024, 25, 1–85.

55. Wang, Q.; Michau, G.; Fink, O. Domain adaptive transfer learning for fault diagnosis. In Proceedings of the 2019 Prognostics and
System Health Management Conference (PHM-Paris), Paris, France, 2–5 May 2019; pp. 279–285.

56. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
57. Vapnik, V.N.; Vapnik, V. Statistical Learning Theory; John Wiley & Sons: Hoboken, NJ, USA, 1998.
58. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [CrossRef]
59. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
60. Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms; CRC Press: Boca Raton, FL, USA, 2012.
61. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst.

Sci. 1997, 55, 119–139. [CrossRef]
62. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks

via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

63. Zeiler, M. Visualizing and Understanding Convolutional Networks. In Proceedings of the European Conference on Computer
Vision, Zurich, Switzerland, 8–11 September 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/sdata.2018.161
https://www.ncbi.nlm.nih.gov/pubmed/30106392
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1007/BF00058655
https://doi.org/10.1006/jcss.1997.1504

	Introduction 
	Related Works 
	Transfer Learning and Pretrained Models 
	Explainable AI in Dermatology 
	Challenges Identified 

	Materials and Methods 
	Dataset Collection, Preprocessing, and Augmentation 
	ISIC Skin Cancer: Malignant vs. Benign 
	Human Against Machine Dataset 
	Data Augmentation 

	Transfer Learning 
	Modification of the Xception Network Architecture 
	Feature Selection Using PSO 
	Classification 

	Results 
	Discussion 
	Visual Representation of Model Attention Using Grad-CAM, LIME, and Occlusion Sensitivity 
	Conclusions 
	References

