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Abstract: The reduction of nitrogen oxides (NOx), critical pollutants from stationary to mobile sources,
mainly relies on the selective catalytic reduction (NH3-SCR) method, employing ammonia to reduce
NOx into nitrogen and water. However, conventional catalysts, while effective, pose both environmen-
tal and operational challenges. This study investigates ceria-zirconia-supported molybdenum-based
catalysts, exploring the effects of zirconium doping and different catalyst synthesis techniques, i.e.,
co-precipitation and impregnation. The catalytic performance of the differently prepared samples was
significantly influenced by the molybdenum incorporation method and the zirconium content within
the ceria-zirconia support. Co-precipitation at higher temperatures resulted in catalysts with better
structural attributes but slightly lower catalytic activity compared to those prepared via impregnation.
Optimal NOx reduction (close to 100%) was observed at a 15 mol% zirconium doping level when
using the impregnation method.

Keywords: NH3-SCR; NOx reduction; Ce-Zr-Mo catalysts; molybdenum oxide

1. Introduction

The pressing environmental and health challenges posed by nitrogen oxide (NOx)
emissions, derived from both stationary sources such as power plants and steel plants [1,2]
and mobile sources such as automobiles and heavy-duty vehicles [3,4], underscore the
critical need for effective emission control technologies. Among these, selective catalytic
reduction (NH3-SCR) has emerged as a principal technology for controlling NOx emis-
sions [5–7]. NH3-SCR leverages ammonia (NH3) as a reducing agent to convert NOx
into gaseous nitrogen (N2) and water (H2O) within a specific temperature range [5], thus
representing a widely adopted denitrification technology.

Catalysts play a pivotal role in the NH3-SCR process, with their performance and
stability being crucial for the technology’s large-scale industrial application [7]. Historically,
the V2O5 catalyst (differently supported) has been dominant in the industry due to its
high catalytic efficiency [8–13]. However, V2O5’s biological toxicity [14] and relatively poor
thermal stability [15] have limited its broader application. Moreover, issues such as difficult
recyclability and the potential for secondary pollution pose additional environmental and
safety concerns [16,17].

In the quest for more efficient NH3-SCR catalysts, transition metal oxides such as Mn,
Cu, and Fe have demonstrated higher activity at lower temperatures [18–22]. Nonetheless,
their susceptibility to sulfur poisoning remains a significant barrier to industrial use [23,24].
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Despite meaningful progress achieved through elemental doping, novel preparation meth-
ods, and carrier loading, these strategies alone have proven insufficient to overcome the
inherent limitations of current catalyst formulations [25,26].

This synthesis of current research highlights a concerted effort to develop low-temperature
NH3-SCR catalysts with enhanced chemical resistance to H2O and SO2. Specifically, the
research efforts should be directed to develop catalyst structures that not only mitigate
NOx emissions efficiently but also address the operational and environmental drawbacks
of the existing solutions. Molybdenum (Mo), as an active catalyst component, has recently
gained attention in the context of NOx reduction, especially within the context of selective
catalytic reduction (SCR) processes [27–29]. The use of molybdenum, often in conjunction
with other metals such as vanadium (V) and tungsten (W), is primarily due to its beneficial
properties that enhance catalytic performance for NOx reduction [30,31]. Molybdenum,
when integrated into the catalyst structure, can help in expanding the operating temperature
range, thereby making the catalyst more versatile for different industrial applications that
operate at varying temperatures [32]. The commonly accepted mechanism for the NOx
reduction over Mo is the bifunctional mechanism whereby the NH3 is activated on the
acidic sites of MoO3 (or WO3) while the Ce component, through the Ce4+/3+ pair, is able to
reduce the NOx [33,34].

Moreover, Mo modifies the surface properties of the catalyst, contributing to improving
the electron transfer processes within the catalyst and thus facilitating the reduction of NOx
to N2 and H2O more efficiently. This is particularly important for low-temperature applica-
tions where achieving sufficient catalytic activity can be challenging. Finally, molybdenum
has been shown to improve the resistance of catalysts to sulfur poisoning, maintaining
catalytic activity and longevity in environments with high SO2 concentrations [35].

However, the challenge of anchoring highly reactive Mo species onto an appropriate
support still poses practical issues [36,37], as well as the balance between the acid/redox
sites and surface exposure/availability must be optimized for the best catalyst performance
for such systems.

Therefore, this study seeks to evaluate differently Zr-doped ceria (CeO2) as a support
for active and durable Mo-based catalysts. Although Zr-doped ceria has been widely
recognized for its exceptional qualities as a heterogeneous catalyst over recent years [38–42],
its application in dispersing active Mo-based catalysts specifically for NOx reduction
reactions remains partially unexplored, to the best of our knowledge. In this context, we
have used a simple and cheap co-precipitation technique for synthesizing both undoped
and Zr-doped ceria supports, subsequently subjected to wet impregnation with the Mo-
based active catalysts (with MoO as 10 wt% of the support). The impact of the precipitating
temperature (and the related MoO addition mode) on the dispersion and effectiveness of
the catalyst has been studied, highlighting the structural and surface characteristics of the
samples. Finally, the variously prepared samples have been tested in terms of their catalytic
SCR activity.

2. Results and Discussion

All the catalyst samples prepared contain a nominal molybdenum oxide content of
10 wt%, and their different labels are reported in Table 1, also containing a summary of the
conditions under which the synthesis was carried out.

Figure 1 shows the diffraction patterns of all the impregnated catalysts (i.e., CeZr0Mo10_imp,
CeZr15Mo10_imp, and CeZr30Mo10_imp).

First, a clear trend in terms of “degree of crystallization” is observable in Figure 1: from
sample CeZr0Mo10_imp (Zr = 0%), the better-crystallized one, to sample CeZr30Mo10_imp
(Zr = 30%), the worst-crystallized one (and likely also characterized by the presence of
some amorphous phase). Such a remarkable difference in crystallinity, in terms of both the
amount of crystallized material and crystallite size, is clearly highlighted in Figure 1 by the
reflections at high 2θ angles, i.e., corresponding to planes (331) and (420), which are well
resolved for the sample CeZr0Mo10_imp (with relatively larger crystallites), whereas for
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sample CeZr30Mo10_imp, those reflections are barely perceivable, suggesting very small
crystallites. The diffraction pattern of sample CeZr15Mo10_imp is intermediate to the previ-
ous ones. Such a trend is very likely due to the different amounts of ZrO2 doping within
the samples. Indeed, pure, as-precipitated ceria derived by addition of ammonia to cerium
(III) nitrate solution is very prone to crystallization in fluorite structure, so that a mild
thermal treatment (i.e., at about 300 ◦C) suffices to obtain a well-crystallized system [43,44].
Conversely, a full crystallization of zirconia precipitated through ammonia requires higher
temperatures, i.e., around 440 ◦C, and leads to the formation of tetragonal zirconia [45].
Therefore, in the sample without zirconium (pure ceria support), the calcination treatment
used in the present work (i.e., 450 ◦C for 1 h) led to full crystallization, whereas the fluorite-
structured samples CeZr15Mo10_imp and CeZr30Mo10_imp are only partially crystallized
due to the zirconium doping.
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Figure 1. XRD patterns of samples CeZr0Mo10_imp, CeZr15Mo10_imp, and CeZr30Mo10_imp,
calcined at 450 ◦C for 1h. The inset highlights the detail of the (220) peak of CeZr0Mo10_imp,
CeZr15Mo10_imp, and CeZr30Mo10_imp diffraction patterns.

Additionally, upon careful examination of Figure 1, one can observe an increasing
positive shift of the Bragg angles (see inset in Figure 1, where the enlargement of the
peak corresponding to the crystallographic plane with Miller index (220) of fluorite with
increasing zirconium content is shown). Such observed shift is related to the decrease in
the lattice parameter of fluorite from sample CeZr0Mo10_imp to sample CeZr30Mo10_imp,
indicative of the effect of partial substitution of the Ce4+ ion (cationic radius 0.97 Å in
coordination VIII [46]) with the Zr4+ ion (cationic radius 0.84 Å in coordination VIII [46]) in
the ceria lattice (see also Table 2). Essentially, the absence of Mo-containing salts during
the co-precipitation step with NH3 leads to the formation of a Ce-Zr substitutional solid
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solution, consequently causing a decrease in the lattice parameter with increasing Zr content.
Conversely, the addition of Mo in the subsequent impregnation step is not detectable via
XRD, very likely being present in an amorphous form.

Table 1. Prepared catalysts and their labeling.

Sample Labeling Composition Mo Addition Precipitation Temperature

CeZr0Mo10_imp 10MoO3/CeO2 Impregnation r.t.

CeZr15Mo10_imp 10MoO3/Ce0.85Zr0.15O2 Impregnation r.t.

CeZr30Mo10_imp 10MoO3/Ce0.70Zr0.30O2 Impregnation r.t.

CeZr0Mo10_copr 10MoO3/CeO2 Co-precipitation 90 ◦C

CeZr15Mo10_copr 10MoO3/Ce0.85Zr0.15O2 Co-precipitation 90 ◦C

CeZr30Mo10_copr 10MoO3/Ce0.70Zr0.30O2 Co-precipitation 90 ◦C

Table 2. Lattice parameters (a) for the impregnated samples, both determined by the XRD data and
estimated (by using Vegard’s law).

Sample a (Calculated) [nm] a (Vegard’s Law) [nm] Crystal Size [nm]

CeZr0Mo10_imp 0.54266 0.54113 11.1
CeZr15Mo10_imp 0.54080 0.53690 5.3
CeZr30Mo10_imp 0.53795 0.53266 7.8

Figure 2 reports the DTA-TG plot of sample CeZr0Mo10_imp, confirming the hypoth-
esis that the pure ceria support is already fully crystallized upon precipitation. In fact,
such a thermograph reveals the presence of only two thermal events: the first one (α),
endothermic, occurring at about 100 ◦C (paired with a weight loss of about 6%) and at-
tributable to adsorbed water evolution, while the second one (β), exothermic, occurring at
≈620 ◦C (paired with a very small weight loss of <1%) and being very likely attributable to
Mo oxide crystallization, as MoO3 can exist in three different states: amorphous, mono-
clinic (β-hexagonal), or orthorhombic (α-rectangular) [47]. However, given the adopted
calcination treatment at 450 ◦C, the impregnated MoO3 remains amorphous within all the
prepared samples.

Table 2 reports the lattice parameter (a), both determined by the XRD data and es-
timated by using Vegard’s law [48] of the three impregnated samples, along with their
crystal size calculated by using the Williamson-Hall method.

The values of lattice parameters a for the impregnated samples are well aligned
with each other and sufficiently aligned with the estimation given from Vegard’s law
(by using a = 0.54113 nm for pure CeO2, ICDD card n. 34-0394, and a = 0.51291 nm for
pure ZrO2, ICDD card n. 81-1550), considering that the CeZr0Mo10_imp sample has a
higher cell parameter than the corresponding literature value. Furthermore, the inspection
of the diffraction patterns in Figure 1 and the reported trend of the lattice parameter
suggests the presence of a small amount of amorphous phase in the impregnated samples
doped with Zr. The crystal size of the impregnated samples is pretty small, exhibiting
no significant differences. As known, such a feature frequently promotes agglomeration
phenomena leading to irregular powder morphology, as observed also in these samples
(see Figure S1) [43].
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Figure 2. DTA/TG of sample CeZr0Mo10_imp.

Figure 3 shows the diffraction patterns of all the co-precipitated catalysts (i.e., CeZr0-
Mo10_copr, CeZr15Mo10_copr, and CeZr30Mo10_copr).

In general terms, all co-precipitated samples are found to be less crystalline compared
to their corresponding impregnated samples, very likely because during co-precipitation in
a single step (Ce-Zr-Mo) with NH3 at high temperatures, the presence of Mo can hinder
the crystallization of the samples, as already observed for similar systems [49].

For the co-precipitated samples, a clear trend in the lattice parameter from their
diffractograms is not discernible. Approximately, sample CeZr0Mo10_copr (Zr = 0%)
and CeZr15Mo10_copr (Zr = 15%) share the same lattice parameter (as their peaks are
virtually overlapped), while the lattice parameter of sample CeZr30Mo10_copr (Zr = 30%)
is found to be smaller (peaks shifted towards higher angles, as observable in the inset
of Figure 3). Moreover, when comparing the diffractograms of sample CeZr15Mo10_imp
and sample CeZr15Mo10_copr individually (both with a nominal Zr content of 15%), the
lattice parameter of the impregnated sample appears to be slightly lower than that of its
co-precipitated counterpart.

Table 3 reports the lattice parameter (a), both determined by the XRD data and esti-
mated by using Vegard’s law of the three co-precipitated samples, along with their crystal
size calculated by using the Williamson-Hall method.

Table 3. Lattice parameters (a) for the co-precipitated samples, both determined by the XRD data and
estimated (by using Vegard’s law).

Sample a (Calculated) [nm] a (Vegard’s Law) [nm] Crystal Size [nm]

CeZr0Mo10_copr 0.54225 0.54113 9.5
CeZr15Mo10_copr 0.54227 0.53690 5.4
CeZr30Mo10_copr 0.54047 0.53266 4.0
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Figure 3. XRD patterns of samples CeZr0Mo10_copr, CeZr15Mo10_copr, and CeZr30Mo10_copr,
calcined at 450 ◦C for 1 h. The inset highlights the detail of the (220) peak of CeZr0Mo10_copr,
CeZr15Mo10_copr, and CeZr30Mo10_copr diffraction patterns (dashed line indicates precise (220)
peak position for sample CeZr0Mo10_copr).

In the case of the co-precipitated samples, the de facto constancy of a between
CeZr0Mo10_copr and CeZr15Mo10_copr suggests that there is no zirconia in the precipi-
tated fluorite phase, even in the case of a nominal 15% of Zr, which obviously precipitated
in an amorphous phase either composed by pure zirconia or by zirconium molybdates.
Conversely, the decrease in a for sample CeZr30Mo10_copr indicates that in this case Zr
has entered the ceria fluorite-like structure. Finally, the nearly coincident values of a for
the CeZr30Mo10_copr sample and the CeZr15Mo10_imp sample suggest that in the former
sample approximately half of the nominal content of zirconium (30%) is amorphous and
the rest is in a solid solution with CeO2. From these observations, it can be deduced that in
the co-precipitation with ammonia in a single step, the simultaneous presence of soluble
Mo salts and Zr cations in the aqueous environment (at about 100 ◦C) might lead to the
formation of binary Mo-Zr compounds, for example, amorphous zirconium molybdates,
which reduces available zirconium to be dissolved in the lattice of cerium oxide (CeO2)
(this because, with the same nominal Zr content, the co-precipitated samples show higher
lattice parameters compared to their corresponding impregnated samples, evidencing a
quantity of Zr dissolved in the ceria lattice effectively less than the nominal one). Also, for
the coprecipitated samples, the crystal size is very small and, not surprisingly, similar to the
corresponding impregnated catalysts, due to the same synthesis method used to prepare
the support. Therefore, also the coprecipitated catalysts exhibit agglomeration phenomena
and non-uniform powder morphology (see Figure S2).

Figure 4 shows the N2 absorption-desorption isotherms for all the prepared cata-
lysts. It is clearly visible that samples prepared by co-precipitation and impregnation,
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Figures 4a and 4b, respectively, display similar behavior when varying the Zr content. In
particular, the shape of the isotherms can be described as type IV with a hysteresis loop
classifiable as H2b. The latter, generated by the pore-blocking effect, is characterized by a
non-steep evaporation branch due to a wide distribution of necks [50,51]. For both sets of
samples, the zirconium-free catalyst shows an isotherm that clearly differs from the others
concerning the condensation branch at p/p0 greater than 0.6. Despite a certain degree
of overlap with the other adsorption curves, condensation is clearly delayed, indicating
the presence of larger mesopores [52]. This interpretation is confirmed by the pore size
distribution curves presented in Figure 5, vide infra. The assignment of the hysteresis loop
in the case of the CeZr0Mo10_copr and CeZr0Mo10_imp samples is less straightforward.
While it might also correspond to an H1-type, observed in samples where the width of the
distribution of the necks is similar to that of the pores, it could also tentatively be assigned
to an H3-type associated with a type II isotherm [53]. The latter situation, also referred
to as pseudo-type II isotherm, is associated with metastability of the adsorbed multilayer
(and delayed capillary condensation) and is due to the low degree of pore curvature and
non-rigidity of the aggregate structure [54]. This second hypothesis seems less convincing
due to the lack of the characteristic step-down to close the hysteresis [55].

When necks are below a certain critical size (5–6 nm for N2 ads at 77 K), cavitation is
the phenomenon that might govern the evaporation process (the molecules present in the
cavity evaporate towards the surrounding bulk gas through a mass transfer mechanism
through the pore neck), bringing the hysteresis closure point to a p/p0 value of about
0.4 [53,56].

In this situation, the pore size distribution is best achieved by the adsorption branch
since the cavitation pressure is solely dependent on the thermophysical properties of the
fluid present in the porous cavity. The pore size distribution, PSD, is shown in Figure 5. As
expected from the adsorption/desorption isotherm analysis, all samples exhibit pore sizes
within the mesopore range. It is possible to observe that overall, the samples prepared by
impregnation, Figure 5b, exhibit smaller pore sizes than those prepared by coprecipitation,
Figure 5a, with curves closing for smaller values of pore diameter. Furthermore, as expected
from the isotherm analysis, the zirconium-free samples possess larger pore sizes, greater
than 50 Å.

Table 4 shows the specific surface area and the total pore volume values obtained by
processing the adsorption/desorption isotherms. In line with what is expected from the
larger volumes of adsorbed nitrogen (the adsorption isotherms of co-precipitates close at
higher values than those of impregnates), in Figure 5, the surface area values are higher for
samples prepared by coprecipitation. Finally, the total pore volume gradually decreases
with increasing zirconium.

Table 4. BET specific surface area, SBET, and total pores volume, Vp, adsorbed NH3 (calculated from
NH3-TPD) and H2 consumption (calculated from H2-TPR) of all prepared catalysts.

Sample Sbet (m2 g−1) a Vp (cm3 g−1)
Adsorbed NH3

(µmol g−1)
H2 Uptake
(µmol g−1)

CeZr0Mo10_copr 113 0.302 203 1133
CeZr15Mo10_copr 108 0.164 171 1351
CeZr30Mo10_copr 118 0.117 174 1402
CeZr0Mo10_imp 75 0.239 140 955
CeZr15Mo10_imp 116 0.116 194 1081
CeZr30Mo10_imp 92 0.090 144 1374

a relative pressure range of 0.18–0.28.
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The textural properties were complemented with redox and surface acidity properties
to correlate the chemical, physical, and structural characteristics with the catalytic activity
of the tested samples.

H2-TPR was performed to investigate the reducibility of the samples, indicating their
ability to oxidize gaseous molecules. The H2-TPR curves, obtained in the 50–700 ◦C tem-
perature range and not normalized for the mass of the samples, are presented in Figure 6a.
They show a single peak with a maximum in the 520–570 ◦C temperature range, which can
be attributed to the reduction of surface cerium species from Ce4+ to Ce3+ and the reduction
of octahedral molybdenum groups, weakly bound to the surface with varying degrees of
polymerization, Mo6+ to Mo4+ [57]. By accurate inspection of Figure 6a, it can be observed
that both in the set of impregnated samples and in the set of coprecipitated ones, samples
containing 30% Zr show a slightly higher peak temperature, whereas for the other samples
in each set the difference in peak temperature is not significant. Thus, in our opinion, no
relevant inference can be deduced by the peak temperatures in Figure 6a. On the contrary,
a clear trend can be detected for the amount of consumed H2 (see Table 4), inasmuch as it
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increases with the increase of Zr content for both impregnated and coprecipitated samples.
This finding confirms literature evidence reporting how the presence of Zr in the lattice of
CeO2 favors the formation of oxygen vacancy [58], i.e., favors the reducibility of cerium;
that also agrees with our XRD results showing the presence of Zr in the CeO2 lattice in
substitutional position. Moreover, the co-precipitated catalysts show slightly higher H2
consumption values than the impregnated ones. Thus, the CeZr0Mo10_imp sample has the
lowest value, while the CeZr30Mo10_copr sample has the highest value.
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Figure 6. H2-TPR curves (a) and NH3-TPD curves (b) of the variously prepared samples.

NH3-TPD analysis was performed to study the presence and nature of the acid sites
and the interaction of ammonia, i.e., the main reactant in NOx-SCR, with the catalyst
surface. The NH3-TPD curves, not normalized for the mass of the samples, are reported in
Figure 6b. All the tested catalysts show ammonia desorption in the 75–400 ◦C temperature
range, corresponding to ammonia desorbed from acid sites of varying strength, generally
categorized as weak, medium, and strong acid sites occurring in the 180–250 ◦C, 260–330 ◦C,
and 340–500 ◦C temperature ranges, respectively [57]. The tested catalysts primarily exhibit
weak and medium acid sites, with a similar trend across all samples, regardless of the
adopted synthesis method or Zr addition. The values of adsorbed NH3, reported in Table 4,
do not show a clear dependence on these parameters too, except for a direct correlation
between specific surface area and adsorbed NH3.

Then, Figure 7 reports the catalytic activity of all the prepared catalysts (measured as
the degree of conversion of NOx fed to the reactor) as a function of temperature.
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Generally speaking, the impregnated samples showed a better conversion than the co-
precipitated ones, even though several marked differences between different samples can
be observed. Particularly, it can be noted that the catalytic activities of the CeZr30Mo10_imp
and CeZr30Mo10_copr catalysts were merely fair, achieving a maximum degree of NOx
conversion of 70% at temperatures around 400 ◦C. Thus, no significant differences between
the co-precipitated and impregnated catalysts containing 30 mol% of Zr were found. In this
case, in fact, the obtained NOx conversion was lower than required for practical applications
or reported in literature.

The sample CeZr0Mo10_copr showed a constant NOx conversion degree of 15% up to
about 280 ◦C. However, such counterintuitive behavior actually occurs at such low conver-
sion values that it can essentially be ignored. With increasing temperature, CeZr0Mo10_copr
catalytic behavior significantly improved (reaching a conversion peak of about 75% near
390 ◦C), but even in this case, the NOx degree of conversion was lower than required
for practical applications. The corresponding impregnated sample, i.e., CeZr0Mo10_imp,
exhibited the following behavior: at 200 ◦C, the conversion was about 40%, and with in-
creasing temperature, the catalytic activity increased, reaching a conversion of 90% at about
350 ◦C and slightly exceeding 90% at about 390 ◦C. Therefore, in the case of undoped ceria
support, a substantial difference emerged between the co-precipitated and impregnated
samples, with the latter’s catalytic activity proving to be very good and potentially useful
for practical applications.

Finally, the CeZr15Mo10_copr sample showed a conversion of about 35% at 200 ◦C,
and with increasing temperature, the conversion substantially increased, reaching 85%
at 350 ◦C. This conversion rate remained almost constant up to 390 ◦C. The impregnated
counterpart, i.e., CeZr15Mo10_imp, showed the best performance among all the tested
samples; at 200 ◦C, the degree of NOx conversion was about 20%, and with increasing
temperature, this conversion reached 70% at about 250 ◦C, surpassing 90% at about 280 ◦C,
and from 290 ◦C up to 400 ◦C, it was practically equal to 100%.

N2 selectivity was determined for all samples, and the corresponding results are
shown in Figure 8. In a wide temperature range, N2 selectivity of the catalysts is in general
high, more than 80%. Moreover, the best samples in terms of NOx conversion achieved also
selectivity close to 100%, confirming the best performance of CeZr15Mo10_imp also from
the viewpoint of selectivity.
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Based on these results, the impregnation seems to be the most indicated synthesis
method for Ce-Zr-Mo-based catalysts for the NH3-SCR reaction; in fact, despite the inferior
textural and superficial properties (lower Sbet, lower amount of acid sites, lower redox
ability), the impregnation method takes advantage of the full inclusion of Zr in the CeO2
lattice upon support co-precipitation at room temperature and of avoiding potential side
reactions occurring between Mo and Zr upon simultaneous Mo-Ce-Zr coprecipitation at
90 ◦C. Furthermore, a 15 mol% addition of Zr within the CeO2 lattice seems to be the optimal
doping for ceria-supported Mo-based catalysts, with the sample CeZr15Mo10_imp that
demonstrated to be the most performing NH3-SCR catalyst due to a high specific surface
area, a high amount of weak and medium acid sites, and a moderate reducibility (i.e.,
sufficient to catalyze NO to NO2 oxidation but not too high for oxidizing ammonia). Thus,
CeZr15Mo10_imp possesses all the necessary characteristics to be successfully employed in
real technological applications.

3. Materials and Methods

Cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O, sourced from Carlo Erba, Cornaredo,
MI, Italy), zirconium (IV) oxychloride octahydrate (ZrOCl2·8H2O), and ammonium hep-
tamolybdate tetrahydrate ((NH4)6Mo7O24·4H2O) served as the starting materials for the
catalysts. For the precipitation process, a 30% ammonia solution supplied by Carlo Erba,
Italy, has been chosen, also based on previous authors results [59,60].

A typical synthesis of the different samples involved two distinct approaches: one
where molybdenum was co-precipitated simultaneously with the ceria-zirconia supports,
and another one where molybdenum was added onto a pre-formed ceria-zirconia support
using a wet impregnation method (thus resulting in a two-step catalyst fabrication). In both
procedures, the molybdenum content was consistently maintained at 10.0 wt% concerning
the support mass.

All support materials own a nominal composition of CexZr1−xO2, with x being either
1, 0.7, or 0.85, and were synthesized through a single-step co-precipitation process. The
difference in the two series of co-precipitated samples was the choice of a different synthesis
temperature, with simultaneous co-precipitation of ammonium heptamolybdate requiring
T = 90 ◦C, while pure support co-precipitation occurs at room temperature.

Therefore, a typical synthesis involves the following steps:
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• Cerium and zirconium precursors are dissolved in deionized water to achieve a total
cation concentration of 0.1M; parallelly, a diluted ammonia solution (1M NH3) is
prepared.

• Both solutions are stirred vigorously for 15 min to ensure complete dissolution and
homogenization of the different precursors.

• An appropriate amount of the ammonia solution is gradually added to the cations-
containing solution, either at room temperature in the case of sole support (doped/
undoped ceria) or in a reflux setup at around 90 ◦C in the case of precursors containing
molybdenum. This latter step is performed to ensure a significant excess of the base at
a high temperature, leading to the formation of a Mo-containing powder precursor.

• After precipitation, the resulting suspensions are aged for a short period (several
minutes), filtered, and thoroughly washed with deionized water and ethanol (to favor
the complete elimination of Cl ions).

• Finally, all the co-precipitates are dried overnight at 80 ◦C and subsequently calcined
at 450 ◦C for 1 h.

The supports precipitated at room temperature are subjected to a further impregnation
step where the correct quantity of Mo is deposited onto the co-precipitated support. During
this step, the support powder is “wet” with a concentrated ammonium heptamolybdate so-
lution; subsequently, the obtained suspension was gradually heated with intensive stirring
until all the water had evaporated. Finally, the obtained powders are dried overnight at
80 ◦C and subsequently calcined at 450 ◦C for 1 h.

The X-ray Diffraction (XRD) analysis of the powder samples was conducted using an
X’Pert Philips diffractometer equipped with Cu Kα radiation, covering a 2θ range of 20◦–80◦

at a step width of 0.02◦ and a scanning time of 1 s per step. The patterns obtained from this
analysis were matched with entries from the PDF-2 Release 2002 database for identification.
The lattice parameters of the fluorite phase present in the samples were determined by
using the Williamson-Hall method included in the software X’Pert HighScore 3.0 from
Panalytical (Almelo, The Netherlands).

Thermal behavior of a selected sample was analyzed by simultaneous differential
thermal analysis and thermogravimetric analysis (DTA-TG), using α-Al2O3 as a reference
(Thermoanalyzer STA 409, Netzsch Instruments, Selb, Germany) and by using 10 ◦C min−1

as the heating rate.
Nitrogen adsorption/desorption measurements were performed at—196 ◦C on a

Quantachrome Autosorb 1C instrument, Boyton Beach, FL, USA, using around 100 mg
of powder sample that had been previously outgassed at 250 ◦C for three hours to elimi-
nate moisture and atmospheric impurities. The specific surface area of the samples was
calculated based on the Brunauer-Emmett-Teller (SBET) method. The total pore volume Vp
volume was determined at a relative pressure (p/p0) of 0.98, based on the desorption curve.
Finally, the pore size distribution was derived by applying the Barrett-Joyner-Halenda
(BJH) analysis to the desorption branch of the isotherms.

The H2-TPR experiments were performed on the TPDRO 1100 instrument, Thermo
Fisher Scientific, Waltham, MA, USA. Typically, 60 mg of the catalyst was placed in the
reactor, pretreated in He stream to remove impurities at 250 ◦C. Following the pretreatment,
the reactor was cooled down to 50 ◦C and reduced to 5% H2/Ar 20 mL/min flow with a
10 ◦C/min heating rate until 700 ◦C. The outlet gas was passed through a humidity trap
and analyzed with a TCD detector that was previously calibrated with a CuO standard.

NH3-TPD were conducted in a quartz tube reactor placed in a PID-controlled vertical
oven connected to an Infrared ABB Uras 26 analyser module (ABB S.p.A., Zurich, Switzer-
land) for ammonia quantification. A measured amount of catalyst powder was inserted
in the reactor and degassed with 160 mL/min of N2 at 250 ◦C for 30 min, then the sample
was cooled down to 100 ◦C and treated with 200 mL/min of 2000 ppm NH3 in a helium
stream at constant temperature for 1 h. Subsequently, the physisorbed NH3 was removed
by flowing 160 mL/min of N2 for 1 h. Finally, TPD was carried out by flowing 160 mL/min
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of N2. The temperature was increased from 100 to 450 ◦C at a ramp rate of 5 ◦C/min and
maintained at 450 ◦C for 30 min.

SCR catalytic tests on the experimental samples were conducted under the following
conditions: 200 mg of each catalyst in a fixed bed with a gas flow of 600 mL/min composed
of 10% O2, 2% H2O, 50 ppm NO, and NH3 in N2 as the carrier gas. This concentration was
selected to mimic realistic conditions in low-emission scenarios and to ensure the accurate
assessment of the catalytic activity under controlled, low-concentration conditions. The
results presented were obtained after reaching a steady state (approximately 30 min waiting
time) at the set temperature.

These catalytic tests were performed inside a quartz tubular reactor with an internal
diameter of 10 mm. The catalyst powder was placed on a dense porous support within
the reactor, which was then heated in a programmable vertical furnace. A thermocouple
was used to monitor the reaction temperature, and specific analyzers (ABB AO2000 Uras
and Limas, ABB S.p.A., Zurich, Switzerland) assessed the composition of the gaseous
reaction products (NO, NO2, N2O, NH3, CO, and CO2). For each catalytic test, 200 mg of
catalyst was used, with a gas flow rate of 600 mL/min, a catalyst mass/flow rate ratio of
(0.02 g_cat)/(mL s), and a gas hourly space velocity (GHSV) of 60,000 h−1.

4. Conclusions

The challenge of NOx pollution still requires many research efforts to develop catalysts
that are not only extremely efficient in reducing NOx emissions but also able to overcome the
limitations of current technologies. To this regard, ceria-zirconia-supported molybdenum-
based catalysts demonstrate impressive catalytic efficiency and robustness, even though
their performance is markedly affected by the fabrication cycle and, particularly, by the
choice of precipitating agent and Mo addition method. Thus, based on previous results
obtained for similar systems, we intended to optimize the fabrication cycle of ceria-zirconia
Mo-based catalysts for NH3-mediated NOx reduction.

Firstly, we compared the effects of different preparation methods, specifically wet
impregnation versus co-precipitation. Impregnated catalysts exhibited superior catalytic
performance compared to co-precipitated ones. This can be attributed to better dispersion
and interaction of molybdenum with the support, as well as to the avoidance of side reac-
tions between Mo and Zr upon co-precipitation. Secondly, we investigated the structural
and surface properties, such as surface area and pore structure, of the differently prepared
samples. Catalysts with higher surface areas and appropriate pore structures provided
more active sites for the selective catalytic reduction reaction. The CeZr15Mo10_imp catalyst
maintained a high specific surface area with a balanced distribution of weak and medium
acid sites, both important features for a NH3-SCR catalyst. Finally, H2-TPR analysis re-
vealed that increased zirconium content enhances the reducibility of cerium, facilitating the
conversion of NOx. The CeZr15Mo10_imp catalyst exhibited moderate reducibility, which
resulted optimal for promoting NOx reduction while preventing ammonia oxidation.

Thus, based on these considerations, we identified the optimal Zr doping for ceria-
zirconia-supported Mo-based catalysts as 15 mol%, as the CeZr15Mo10_imp showed a near
100% NOx conversion in a wide range of temperatures, i.e., a NOx conversion even higher
than the most recent literature on NH3-mediated catalytic reduction (i.e., Mn/ZSM-5 reported
by Pan et al. [61]), thus making it perfectly suitable for actual technological applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics12080217/s1, Figure S1: Exemplary SEM micrographs
of sample CeZr15Mo10_imp; Figure S2: Exemplary SEM micrographs of sample CeZr15Mo10_cop.
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