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Abstract—In this work, we compare two Longitudinal Power
Monitoring (LPM) techniques (Least-Squares and Correlation
Method) for localizing and measuring Polarization-Dependent
Loss (PDL) in a multi-span optical transmission link. We consider
situations with different PDL values in the link and multiple PDL
sources.

Index Terms—Longitudinal Power Monitoring, Optical Com-
munications

I. INTRODUCTION

The accurate monitoring of optical links plays a crucial role
in ensuring the reliable operation and effective management
of an optical network. Recently proposed Longitudinal Power
Monitoring (LPM) algorithms [1]–[4] exploit the digital data
available inside standard coherent receivers, which eliminates
the need for external devices and represents a cost-effective
solution for the monitoring of the optical link. These LPM
algorithms can be divided into two main families, namely
correlation-based methods (CM) [1], [4] and Least Squares
(LS)-based methods [2], [3].

Traditionally, LPM has been employed mainly for power
profile estimation. However, additional parameters have suc-
cessfully been estimated in recent research, such as chromatic
dispersion coefficient for fiber type identification [5], Multi-
Path Interference (MPI) [4], and Polarization-Dependent Loss
(PDL) [3], [6], [7]. In particular, a precise monitoring of
PDL is critical, since it can introduce a significant penalty
in terms of link performance. Moreover, since its effect is
closely related to the location of the PDL source in the system,
accurate localization is also required. To this end, two methods
have been proposed to estimate and localize PDL, based on
linear LS (LLS) [3], [6] and correlation methods [7]. However,
no direct comparison between the two methods has been
carried out so far. For this reason, in this work we perform
a detailed comparison between the two approaches, analyzing
their performance under varying PDL conditions. We consider
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two scenarios: first, different PDL values within the link, and
second, multiple PDL sources distributed across a simulated
optical link consisting of ten 50-km single mode fiber (SMF)
spans.

II. SIMULATION SETUP

The simulation setup is reported in Fig. 1. The transmitted
signal consists of a PM-64QAM channel having square-root
raised-cosine spectral shape with roll-off 0.15, modulated at
128 GBaud and with a channel power Pch = 5dBm. The link
is composed of 10×50-km identical SMF spans, with attenua-
tion αdB = 0.2 dB/km, CD coefficient β2 = −21.28 ps2/km
and non-linearity coefficient γ = 1.3 1/W/km. Each span
is followed by an EDFA with noise figure 5 dB, working in
constant output power mode to fully compensate for both the
span loss and the average PDL loss. The PDL sources have
been modeled according to the Jones formalism as:

Eout = R−1

(
1 0
0 ρ

)
REin (1)

where R is a random unitary matrix, ρ = 10−
PDLdB

20 and
Ein/out are the input and output optical signals, respectively.
Fiber propagation has been simulated using the split-step
Fourier Method (SSFM) to implement the Manakov equation.
The SSFM step has been set as described in [8]. After
propagating, the received signal enters a standard coherent
receiver, where it is resampled at a rate of 2 samples per
symbol and processed by several DSP blocks, which perform
CD compensation, data-aided LMS-based fractionally-spaced
adaptive equalization and blind-phase search (BPS) carrier
phase recovery. The output of this last stage is extracted and
used as input of the LPM algorithms, briefly described in the
following.

The CM method is implemented according to [1], with
a nonlinear remediation parameter equal to ϵ = 0.01 and
introducing the modifications proposed in [7] to compute
polarization-wise power profiles. Note that a calibration pro-
cedure [7] needs to be performed both on the transmission
link and the estimated power profiles, since CM-based LPM
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Fig. 1. Simulation setup (left) and PDL estimation schematic (right).

does not estimate real power values. In particular, an anomaly
indicator AI = AIx+AIy is computed, where AIx/y indicates
the anomaly indicator of the individual polarizations, defined
as the difference between a reference and a monitoring profile.
Its peak is then mapped to a location on the link and to a PDL
value through a calibration factor which relates correlation
variations to power variations. The LLS-based LPM described
in [2] is adapted for polarization-wise estimation, as well,
as proposed in [3]. The LLS-based LPM outputs the real
power evolution of the optical signal, hence PDL is estimated
considering a PDL indicator computed as the difference –
in logarithmic units – between the maximum and minimum
values of the estimated power profiles for each position on
the link. In both cases (CM and LS), the spatial step is fixed
to ∆z = 2km.

III. RESULTS AND DISCUSSION

The first comparison is performed by inserting a lumped
PDL element at the beginning of the 4th span (corresponding
to a distance of z = 150 km from the transmitter side), whose
value is varied between 0.25 dB and 3 dB. For each PDL
value, 10 estimations are performed leveraging both LPM
algorithms, using ∼ 7 · 105 samples as input. In particular,
calibration and reference profile estimation are performed
before the estimation of the 10 monitoring profiles with the
CM-based method. Afterwards, AI is computed and its peak
is used to retrieve the inserted PDL value. In the case of
LLS-based LPM, polarization requires rotation, either at the
transmitter or receiver, to align the signal’s polarization with
the PDL element’s axes. To achieve this alignment, 20 random
rotations were performed at the transmitter for each estimated
value, maintaining the polarization-rotating elements within
the transmission link in a fixed position. This is in line with
the assumption that, in a realistic scenario, the incident state of
polarization at the PDL elements remains relatively stable over
time. Finally, the PDL indicator allows to localize the span
at which the PDL source is inserted and its value is estimated
as the mean of such indicator over the first half of the span.
In this region, the signal power is still relatively high and the
LPM algorithm yields a more accurate power estimation. The
mean estimated PDL values and their standard deviation σPDL

are reported in Fig. 2.

Both approaches manage to yield relatively accurate results.
However, for PDL values below 1 dB, which are also the
typical values, the calibration method manages to yield very
accurate estimations down to 0.25 dB with a standard devi-
ation σPDL < 0.05 dB and a maximum estimation error of
0.058 dB. On the contrary, the LLS-based approach provides
less accurate estimations. This can be explained by considering
that LLS-based power profiles are a deconvolved version
of the CM-based ones, which causes noise and distortion
enhancement. Hence, the intrinsic estimation noise of the
algorithm does not allow to detect PDL values below a certain
threshold. A confirmation of this aspect is given by the fact that
the same estimation performed on the 4th span, when no PDL
source is present, yields an estimation around 0.5 dB, thus
defining the minimum detectable PDL value of the algorithm
under the considered conditions.

Nevertheless, the lower accuracy with respect to the cal-
ibration method is compensated by the lower complexity
of the LLS-based approach. Indeed, LLS does not require
any calibration procedure to be performed on the transmis-
sion link, nor a reference profile to be compared with the
monitoring ones. In addition, calibration in the CM needs
to be performed again if some transmission parameters are
changed, e.g., the symbol rate. This of course adds more
complexity and degrades the flexibility of the transmission
system. Moreover, LLS-based LPM outputs the real signal
power evolution, meaning that PDL can be directly computed
using its definition, i.e., a simple difference between absolute
power values, in logarithmic units.

Another scenario that has been considered is the one with
multiple PDL sources within the link. To this end, two 2-dB
PDL elements have been inserted in the same setup as in Fig.
1 at the beginning of the 4th and 7th span, i.e., at z = 150 km
and z = 300 km. Since the end-to-end PDL value depends on
the relative orientation of the PDL axes of the single elements,
they have been set so as to have a total PDL of 3 dB. The PDL
and anomaly indicators obtained with the two approaches are
reported in Fig. 3.

While the LLS-based approach in Fig. 3a is able to clearly
localize both PDL elements and yield the correct cumulated
value, the CM-based approach in Fig. 3b simply manages
to localize the PDL elements. However, it does not seem to



a) b)

Fig. 2. a) Mean estimated PDL over 10 realizations, obtained with both LLS-based (blue) and CM-based (red) approaches. Dashed line represents perfect
estimation. b) Standard deviation of estimated PDL values.

a)

b)

Fig. 3. Resulting a) PDL indicator and b) anomaly indicator AI when two 2-dB PDL elements are inserted on the link at z = 150 km and z = 300 km.
The end-to-end PDL is set to 3 dB.

give any useful information on the cumulated value, since
both estimated values are around 2 dB. This represents a clear
advantage of the LS-based approaches with respect to the CM-
based ones.

IV. CONCLUSION

In this work, we performed a comparison between Least-
Squares (LS) and Correlation (CM) LPM methods to localize
and measure PDL in a single-channel multi-span optical
transmission link. We found that CM-based methods are able
to accurately detect and estimate values of PDL as small
as 0.25 dB with a maximum estimation error of 0.058 dB.
However, the main trade-off is represented by the higher
complexity of the calibration procedure. In the case of multiple
PDL sources along the optical link, instead, only the LLS-

based method succeeds in both detecting and estimating the
correct end-to-end PDL value.
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