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We present an optimization procedure for generic polygonal or polyhedral meshes, tailored for the 
Virtual Element Method (VEM). Once the local quality of the mesh elements is analyzed through a 
quality indicator specific to the VEM, groups of elements are agglomerated to optimize the global 
mesh quality. A user-set parameter regulates the percentage of mesh elements, and consequently 
of faces, edges, and vertices, to be removed. This significantly reduces the total number of degrees 
of freedom associated with a discrete problem defined over the mesh with the VEM, particularly 
for high-order formulations. We show how the VEM convergence rate is preserved in the optimized 
meshes, and the approximation errors are comparable with those obtained with the original ones. 
We observe that the optimization has a regularization effect over low-quality meshes, removing the 
most pathological elements. In such cases, these “badly-shaped” elements yield a system matrix 
with very large condition number, which may cause the VEM to diverge, while the optimized 
meshes lead to convergence. We conclude by showing how the optimization of a real CAD model 
can be used effectively in the simulation of a time-dependent problem.

1. Introduction

During the last decades, solving Partial Differential Equations (PDEs) has experienced a substantial surge in its influence on 
research, design, and production. PDEs are indispensable tools for modeling and analyzing phenomena across physics, engineering, 
biology, and medicine. The predominant methods for solving PDEs, such as the Finite Element Method, rely on suitable descriptions 
of geometrical entities, like the computational domain and its attributes, generally encoded by a mesh.

Despite extensive research and notable achievements, developing techniques for generating meshes with suitable geometrical 
properties remains an ongoing endeavor. Contemporary meshing algorithms typically generate an initial mesh, ideally dominated by 
well-shaped elements, and optionally execute optimization steps to enhance the geometrical quality of the elements [1]. Pivotal to 
these optimizations is the definition of the concept of “quality” of a mesh and its elements [2]. Although there is some consensus in 
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the literature regarding the notion of quality for triangular/tetrahedral and quadrangular/hexahedral meshes, defining a universal 
quality indicator for generic polytopal (i.e., polygonal or polyhedral) meshes remains contentious, as evidenced by the myriad attempts 
[3–10].

The main reason behind this difficulty is that the concept of the “geometric quality of a cell” becomes quite vague when the cell is 
a generic polytope. Many classical quality indicators become meaningless when the element has a generic number of vertices or faces, 
or their extension is not straightforward. For instance, indicators based on the Jacobian operator can be extended to generic convex 
polygons, but are not defined for non-convex ones [3]. Most mesh generators and numerical schemes get around this problem by only 
allowing convex or star-shaped elements and classifying the others as unlikely configurations. Alternatively, many mesh optimization 
strategies are tied solely to the optimization of the elements’ size, or the number of incident edges/faces [2].

The development of numerical schemes that support generic polytopal elements [11–16] and the great advantages that they 
provide over classical methods, make it more and more urgent to devise suitable mesh optimization strategies. In particular, the 
Virtual Element Method (VEM) was appositely designed to enable computations over any polytopal cell, as it does not require the 
explicit computation of the basis functions [17]. To fully exploit its potentialities, we therefore need to be able to generate and 
optimize polytopal meshes. Polytopal mesh generation from scratch is generally addressed through Voronoi tessellations [18], while 
polytopal mesh optimization and refinement is recently emerging as a topic, both for two-dimensional [19–22] and three-dimensional 
domains [23–25].

In this study, we tackle the problem of optimizing a given planar or volumetric mesh for the VEM, so that it contains the smallest 
possible number of elements, while still producing accurate results in a VEM numerical simulation. This is pursued through the use 
of a polytopal quality indicator [8,9] which analyzes the geometrical shape of the elements and indicates groups of elements that can 
be merged into a single cell without compromising (and sometimes improving) the global mesh quality. The algorithm can be seen as 
a “topological” optimization method, i.e. it modifies the connectivity of the tessellation cells without changing the vertices’ position. 
We point out that the presented version of the algorithm is based on the VEM quality indicator introduced in [26], and therefore it is 
specifically designed to improve the quality of a mesh with respect to the VEM quality requirements [26]. However, we remark that 
the same algorithm could be adapted to other types of polytopal numerical schemes by modifying the quality indicator according to 
the requirements of the chosen scheme. For additional quality indicators, we refer to [2].

To investigate its true potential, we test it on a collection of appositely built high and low-quality meshes. In short, thanks to the 
proposed optimization method, our algorithm generates new meshes that:

• contain from 5% to 45% of the original mesh elements, based on an user-set parameter, consequently reducing the number of 
degrees of freedom in the discrete problems defined over it;

• preserve the optimal VEM convergence rates, both in 𝐿2 and 𝐻1 error norms, and produce approximation errors comparable or 
improved to those produced by the original mesh.

Moreover, these achievements allow us to:

• recover the optimal convergence rate in low-quality meshes, by removing pathological elements, i.e., elements that yield a system 
matrix with very large condition number, which may cause the VEM to diverge on the original tessellation;

• reduce the total computational time, in particular for high-order formulations and time-dependent simulations.

The paper is structured as follows. In Section 2, we introduce the numerical problem to be solved and the VEM discretization 
used. We devote Section 3 to the description of the mesh quality indicator and the mesh quality optimization algorithm. In Section 4

we build a collection of meshes and optimize them with our algorithm. These meshes will be used for numerical tests in Section 5, 
where we report the performance of the VEM over them. Finally, in Section 6, we present an application of our algorithm to a real 
CAD model within the context of a time-dependent problem. To balance completeness and readability, we collect in Appendix A all 
the tables omitted from the other sections.

1.1. Notation and technicalities

We adhere to the standard definitions and notations of Sobolev spaces, norms, and seminorms, cf. [27]. Let 𝑘 be a nonnegative 
integer. The Sobolev space 𝐻𝑘(𝜔) consists of all square-integrable functions with all square-integrable weak derivatives up to order 
𝑘 that are defined on the open, bounded, connected subset 𝜔 of R𝑑 , where 𝑑 = 1, 2, 3. In the case where 𝑘 = 0, we use the notation 
𝐿2(𝜔). The norm and seminorm in 𝐻𝑘(𝜔) are represented by | | ⋅ | |𝑘,𝜔 and |⋅|𝑘,𝜔 respectively, and for the inner product in 𝐿2(𝜔) we 
use the (⋅, ⋅)𝜔 notation.

Table 1 reports a summary of the notation used in this paper. We denote by Ω ⊂R𝑑 , 𝑑 ∈ {2, 3} an open, connected, and bounded 
set, with boundary 𝜕Ω. We employ the symbol ℎ to represent a tessellation of Ω with mesh size ℎ, i.e., a partition of Ω into non-

overlapping polytopal elements 𝐸 such that 
⋃
𝐸∈Ω 𝐸 = Ω̄. A polytopal element 𝐸 (a polygon for 𝑑 = 2 or a polyhedron for 𝑑 = 3) is 

a compact subset of R𝑑 with boundary 𝜕𝐸, size (area or volume) |𝐸|, barycenter 𝐱𝐸 , and diameter ℎ𝐸 = sup𝐱,𝐲∈𝐸 |𝐱 − 𝐲|. The mesh 
size labeling each mesh ℎ is defined by ℎ =max𝐸∈ℎ ℎ𝐸 . We denote by 𝐸 , 𝐸 , and 𝐸 (if 𝑑 = 3) the set of vertices, edges and faces 
of the element 𝐸, respectively. With the same intention, we use ℎ , ℎ, and ℎ to indicate the set of vertices, edges and faces (if 
2

𝑑 = 3) of the tessellation ℎ.
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Table 1

Notation summary.

Symbol Description

𝑑 = {2,3} Geometric dimension

Ω ⊂R𝑑 Open, connected, and bounded set

𝜕Ω ⊂R𝑑−1 Boundary of Ω
ℎ Tessellation of Ω with mesh size ℎ

𝐸 ∈ ℎ Polytopal mesh element|𝐸|,𝐱𝐸 ,ℎ𝐸 Size, barycenter and diameter of 𝐸

𝐸 ,𝐸 ,𝐸 Set of vertices, edges and faces of 𝐸

ℎ,ℎ,ℎ Set of vertices, edges and faces of ℎ

2. The virtual element discretization

In this section, we consider an elliptic second-order differential problem in Ω ⊂R𝑑 , 𝑑 ∈ {2, 3}, written in its variational formula-

tion: given the functional space 𝑉 , we look for 𝑢 ∈ 𝑉 the solution of

𝑎(𝑢, 𝑣) = 𝐹 (𝑣) ∀𝑣 ∈ 𝑉 , (1)

where

• 𝑉 is the Sobolev space 𝐻1(Ω), or 𝐻1
Γ(Ω), Γ being a non-empty subset of 𝜕Ω with a non-zero (𝑑 − 1) dimensional Lebesgue 

measure where some set of essential boundary conditions are possibly imposed;

• 𝑎 ∶ 𝑉 × 𝑉 →R is a continuous and coercive bilinear form;

• 𝐹 ∶ 𝑉 →R is a continuous linear functional.

Under these hypotheses, the Lax-Milgram lemma implies that Problem (1) is well-posed; see, e.g., [28].

We approach the discretization of such a variational problem through the Virtual Element Method in a 𝑑-dimensional setting, as 
described in [29,30]. Let 𝐸 be a generic 𝑑-dimensional polytopal element of the domain partition ℎ . We fix a positive integer 𝑘 as 
the order of the discrete approximation. We denote ℙ𝑑

𝑘
(𝐸) the set of 𝑑-dimensional polynomials of degree less than or equal to 𝑘

defined on 𝐸. We conventionally assume that P−1(𝜔) = {0}. In our VEM implementation for numerical tests, we use the standard 
basis of scaled monomials for all polynomial spaces [11].

We introduce two elliptic projection operators on 𝐸: namely, Π∇
𝑘
∶𝐻1(𝐸) → ℙ𝑑

𝑘
(𝐸) defined as

⎧⎪⎨⎪⎩
(
∇𝑝,∇(Π∇

𝑘
𝑣− 𝑣)

)
𝐸
= 0, ∀𝑝 ∈ ℙ𝑑

𝑘
(𝐸),(

1,Π∇
𝑘
𝑣− 𝑣

)
𝜕𝐸

= 0,

and Π0
𝑘
∶𝐿2(𝐸) → ℙ𝑘(𝐸) as(
𝑝,Π0

𝑘
𝑣− 𝑣

)
𝐸
= 0, ∀𝑝 ∈ ℙ𝑑

𝑘
(𝐸).

On every element 𝐸, we consider the local virtual element space of order 𝑘 that is defined as

• if 𝑑 = 2,

𝑉 𝐸
𝑘

=
{
𝑣 ∈𝐻1(𝐸) ∶ Δ𝑣 ∈ ℙ2

𝑘
(𝐸), 𝑣|𝑒 ∈ ℙ1

𝑘
(𝑒) ∀𝑒 ∈ 𝐸, 𝑣|𝜕𝐸 ∈ 𝐶0(𝜕𝐸),(

𝑝, 𝑣−Π∇
𝑘
𝑣
)
𝐸
= 0 ∀𝑝 ∈ ℙ2

𝑘
(𝐸) ∕ ℙ2

𝑘−2(𝐸)
}
, (2)

• if 𝑑 = 3,

𝑉 𝐸
𝑘

=
{
𝑣 ∈𝐻1(𝐸) ∶ Δ𝑣 ∈ ℙ3

𝑘
(𝐸), 𝑣|𝐹 ∈ 𝑉 𝐹

𝑘
∀𝐹 ∈ 𝐸, 𝑣|𝜕𝐸 ∈ 𝐶0(𝜕𝐸),(

𝑝, 𝑣−Π∇
𝑘
𝑣
)
𝐸
= 0 ∀𝑝 ∈ ℙ3

𝑘
(𝐸) ⧵ℙ3

𝑘−2(𝐸)
}
. (3)

The space ℙ𝑑
𝑘
(𝐸) ⧵ ℙ𝑑

𝑘−2(𝐸) denotes the set of polynomials generated by the monomials of degree equal to 𝑘 and 𝑘 − 1, and 𝑉 𝐹
𝑘

is 
the virtual element space defined on the two-dimensional face 𝐹 defined for 𝑑 = 2.

With the local spaces of Equations (2)-(3), we define the global virtual element space

𝑉𝑘 =
{
𝑣 ∈ 𝐶0(Ω̄) ∩ 𝑉 ∶ 𝑣|𝐸 ∈ 𝑉 𝐸

𝑘
∀𝐸 ∈ ℎ

}
. (4)
3

Each function 𝑣 ∈ 𝑉𝑘 ⊂ 𝑉 can be uniquely identified, see [11], by the set of Degrees of Freedoms (DOFs)
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Fig. 1. Optimization pipeline: (a) input mesh (black), with elements 𝐸1 , 𝐸2 and their shared edge 𝑓 , and mesh dual graph (blue), with nodes 𝑛𝐸1
, 𝑛𝐸2

and arc 𝑎𝑓 ; 
(b) weights assignment: 𝑤(𝑛𝐸1

) is the quality of the green polygon, 𝑤(𝑛𝐸2
) is the quality of the purple polygon and 𝑤(𝑎𝑓 ) is the quality of the red polygon; (c) input 

mesh colored with respect to METIS labeling: nodes 𝑛𝐸1
and 𝑛𝐸2

are assigned the same label 𝜆; (d) agglomeration of the elements with the same label: elements 𝐸1
and 𝐸2 become a single element 𝐸Λ . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

• the value of 𝑣 in each vertex of the set ℎ;

• if 𝑘 > 1, the value of 𝑣 in the internal 𝑘 − 1 Gauss quadrature nodes of each edge of set ℎ;

• if 𝑘 > 1 and 𝑑 = 3, the value of the internal scaled moments of 𝑣 of order 𝑘 − 2 on each face of set ℎ;

• if 𝑘 > 1, the value of the internal scaled moments of 𝑣 of order 𝑘 − 2 on each 𝐸 ∈ ℎ.

Both projection operators Π∇
𝑘

and Π0
𝑘

are computable on every 𝐸 from these degrees of freedom, although the construction of Π∇
𝑘

on 
𝐸 recursively requires the construction of Π∇

𝑘
on every face 𝐹 ⊂ 𝜕𝐸.

We discretize Problem (1) using the local bilinear discrete form 𝑎𝐸
ℎ
∶ 𝑉 𝐸

𝑘
× 𝑉 𝐸

𝑘
→R:

𝑎𝐸
ℎ
(𝑢, 𝑣) ∶= 𝑎𝐸 (Π∇

𝑘
𝑢,Π∇

𝑘
𝑣) + 𝑆𝐸 (𝑢−Π∇

𝑘
𝑢, 𝑣−Π∇

𝑘
𝑣), (5)

where

• 𝑎𝐸
ℎ
(⋅, ⋅) is an approximation of the bilinear form 𝑎𝐸 (⋅, ⋅), the restriction of the bilinear form 𝑎(⋅, ⋅) to the element 𝐸;

• the bilinear form 𝑆𝐸 (⋅, ⋅) is the stabilization term, which can be any computable, symmetric, positive definite bilinear form 
satisfying the stability condition

𝑐∗𝑎(𝑣, 𝑣) ≤ 𝑆(𝑣, 𝑣) ≤ 𝑐∗𝑎(𝑣, 𝑣), ∀𝑣 ∈ 𝑉 𝐸𝑘 ∩ ker(Π∇
𝑘
),

for some pair of real, positive constants 𝑐∗ and 𝑐∗.

In the implementation, for the numerical results, we apply the standard dofi-dofi stabilization proposed in [11].

This leads to the discrete counterpart of Problem (1): Find 𝑢ℎ ∈ 𝑉𝑘 such that:

𝑎ℎ(𝑢ℎ, 𝑣ℎ) ∶=
∑
𝐸∈𝑇ℎ

𝑎𝐸
ℎ
(𝑢ℎ, 𝑣ℎ) =

∑
𝐸∈𝑇ℎ

𝐹𝐸
ℎ
(𝑣ℎ) =∶ 𝐹ℎ(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉𝑘, (6)

where, for every 𝑣ℎ ∈ 𝑉 𝐸𝑘 , we set 𝐹𝐸
ℎ
(𝑣ℎ) = 𝐹𝐸 (Π0

𝑘
𝑣ℎ) as a local approximation of 𝐹 (𝑣ℎ). Other details about 𝑎(⋅, ⋅), 𝐹 (⋅), and their 

virtual element approximation are given in Section 5.

3. Mesh quality optimization algorithm

The mesh optimization process involves two distinct steps. Initially, we evaluate the quality of the mesh elements by employing 
a local quality indicator. Subsequently, these elements are categorized and tagged, followed by the agglomeration of elements that 
bear identical tags. This methodology applies to both polygonal and polyhedral meshes. We detail the process specifically for three-

dimensional meshes (𝑑 = 3), noting any variation that is relevant to two-dimensional cases (d = 2). The entire workflow, shown in 
Fig. 1, has been implemented using the cinolib library [31].

3.1. Quality indicator

We borrow the notion of quality from Sorgente et al. [8,9], who propose a mesh quality indicator specifically tailored for the 
Virtual Element Method. We briefly report the indicator definitions and refer the reader to the original papers for a more complete 
discussion. Given a polygonal mesh ℎ, for each element 𝐸 ∈ ℎ we have the following indicators:

𝜚2,1(𝐸) =
|𝑘𝑒𝑟𝑛𝑒𝑙(𝐸)||𝐸| =

⎧⎪⎨1 if 𝐸 is convex

∈ (0,1) if 𝐸 is concave and star-shaped
4

⎪⎩0 if 𝐸 is not star-shaped
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𝜚2,2(𝐸) =
min(

√|𝐸|, min𝑒∈𝐸 |𝑒|)
ℎ𝐸

𝜚2,3(𝐸) =
3

#
{
𝑒 ∈ 𝐸

} =

{
1 if 𝐸 is a triangle

∈ (0,1) otherwise

𝜚2,4(𝐸) = min
𝑗

min
𝑒∈𝑗

𝐸

|𝑒|
max

𝑒∈𝑗
𝐸

|𝑒| (7)

For polyhedral meshes, we assess the interior quality of an element 𝐸 with a volumetric quality operator. Additionally, we evaluate 
the quality of the element’s faces, denoted as 𝐸 , by employing the two-dimensional quality indicators 𝜚2,𝑖 . This dual approach ensures 
a comprehensive analysis of both the volumetric and surface attributes of the mesh.

𝜚3,1(𝐸) =
|𝑘𝑒𝑟𝑛𝑒𝑙(𝐸)||𝐸| ∏

𝐹∈𝐸

𝜚2,1(𝐹 )

=
⎧⎪⎨⎪⎩
1 if 𝐸 and all its faces are convex

∈ (0,1) if 𝐸 and all its faces are concave and star-shaped

0 if 𝐸 or one of its faces are not star-shaped

𝜚3,2(𝐸) =
1
2

[
min( 3

√|𝐸|, min𝐹∈𝐸 ℎ𝐹 )
ℎ𝐸

+
∑
𝐹∈𝐸 𝜚2,2(𝐹 )

#
{
𝐹 ∈ 𝐸

} ]

𝜚3,3(𝐸) =
1
2

[
4

#
{
𝐹 ∈ 𝐸

} +
∑
𝐹∈𝐸 𝜚2,3(𝐹 )

#
{
𝐹 ∈ 𝐸

} ]

=

{
1 if 𝐸 is a tetrahedron

∈ (0,1) otherwise
(8)

The 𝑘𝑒𝑟𝑛𝑒𝑙 operator in 𝜚2,1 and 𝜚3,1 computes the kernel of an element (polygon or polyhedron), intended as the set of points 
from which the whole element is visible. The sets 𝑗

𝐸
in 𝜚2,4 are the 1-dimensional disjoint sub-meshes corresponding to the edges 

of 𝐸 (we consider each 𝑗
𝐸

as a mesh, as it may contain more than one edge) such that 𝐸 = ∪𝑗
𝑗

𝐸
, where 𝐸 is the 1-dimensional 

mesh induced by 𝜕𝐸 (see [8]). Indicator 𝜚2,4 does not have a natural 3D extension [9].

These indicators are combined together into an element quality indicator, which measures the overall quality of an element 𝐸 ∈ ℎ:

𝜚2(𝐸) =

√
𝜚2,1(𝐸)𝜚2,2(𝐸) + 𝜚2,1(𝐸)𝜚2,3(𝐸) + 𝜚2,1(𝐸)𝜚2,4(𝐸)

3

𝜚3(𝐸) =

√
𝜚3,1(𝐸)𝜚3,2(𝐸) + 𝜚3,1(𝐸)𝜚3,3(𝐸)

2
(9)

For 𝑑 = 2, 3 we have 𝜚𝑑 (𝐸) ≈ 1 if 𝐸 is a perfectly-shaped element, e.g. an equilateral triangle/tetrahedron or a square/cube, 𝜚𝑑 (𝐸) = 0
if and only if 𝐸 is not star-shaped, and 0 < 𝜚𝑑 (𝐸) < 1 otherwise.

It is also possible to define a global function, which we call mesh quality indicator and denote by 𝜚𝑑 (ℎ) with a small abuse of 
notation, to measure the overall quality of a 𝑑-dimensional mesh ℎ :

𝜚𝑑 (ℎ) =
√

1
#
{
𝐸 ∈ ℎ

} ∑
𝐸∈ℎ

𝜚𝑑 (𝐸). (10)

All indicators in (7), (8), and consequently the local and global indicators (9), (10), only depend on the geometrical properties of the 
mesh elements; therefore their values can be computed before applying the VEM, or any other numerical scheme.

3.2. Mesh partitioning

METIS [32] is a collection of serial programs implementing graph partitioning algorithms and finite element meshes, and producing 
fill-reducing orderings for sparse matrices. In the context of our work, we use it to perform a 𝐾 -way partitioning of the dual graph 
of a mesh. We construct this graph by representing each mesh element as a node and establishing arcs between adjacent elements, 
as depicted in Fig. 1a. Additionally, we assign weights to both nodes and arcs based on the element quality indicator (9), cf. Fig. 1b. 
In detail:

• Each mesh element 𝐸 ∈ ℎ becomes a graph node 𝑛𝐸 with the associated weight 𝑤(𝑛𝐸 ) = 𝜚𝑑 (𝐸);
• Each internal mesh (𝑑 − 1)-dimensional object (which correspond to a face 𝐹 ∈ ℎ if 𝑑 = 3 or an edge 𝑒 ∈ ℎ if 𝑑 = 2), shared 
5

by elements 𝐸1 and 𝐸2, becomes a graph arc 𝑎𝐹 with weight 𝑤(𝑎𝐹 ) = 𝜚𝑑 (𝐸1 ∪𝐸2);
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• (𝑑 − 1)-dimensional boundary objects (boundary faces if 𝑑 = 3 or boundary edges if 𝑑 = 2) are not part of the graph, as they are 
only shared by one element.

We store the weights in two arrays 𝒘
𝒏
, 𝒘

𝒂
that will be passed to METIS together with the mesh. To maximize their impact on the 

mesh partition process, and also because METIS only accepts integer weights, we re-scale the weights in 𝒘
𝒏

from [0, 1] onto the 
interval[

1 +
⌊
min(𝒘

𝒏
)
#𝒘

𝒏

𝑐𝑤

⌋
, 1 +

⌊
max(𝒘

𝒏
)
#𝒘

𝒏

𝑐𝑤

⌋]
and similarly for 𝒘

𝒂
. We add a constant 1 because zero-weights are not accepted, and divide by 𝑐𝑤 ∈ R to avoid extremely big 

weights in very large meshes which may cause overflow problems. For the meshes in this work we used 𝑐𝑤 = 10.

The routine METIS-PartGraphKway partitions a graph into 𝐾 parts using multilevel 𝐾 -way partitioning. We compute the number of 
required partitions 𝐾 as a percentage of the number of elements in the mesh #ℎ . This percentage is called the optimization parameter

 and it is defined by:

𝐾 =%(#ℎ) ∶=
#ℎ
100

.

If we set  = 20 we are asking the optimization to partition the mesh into 𝐾 = 20%(#ℎ) parts, i.e., to generate a mesh with 1/5 
of the elements of ℎ. In our experiments, we could observe that values of  below 5 lead to collapsing all the elements into a 
single one, while for  values higher than 40 the number of partitions computed by METIS does not increase proportionally. These 
observations could highlight possible limitations of the partitioning algorithm that are independent of the quality indicator used. 
The METIS-PartGraphKway routine can be configured with a number of flags. In particular, we set PartitionType: CutBalancing and 
activated the flags ContigousPartitions, CompressGraph, and MinimizeConnectivity (see the METIS documentation for the details [32]).

3.3. Mesh agglomeration

The partition computed by METIS consists of an array containing a flag 𝜆𝐸 ∈ [1, 𝐾] for each element 𝐸 of the mesh, see Fig. 1c. 
We aim to pick all the elements with the same flag and replace them with their union, which will be treated as a single element. In 
particular, for each flag 𝜆 = 1, … , 𝐾 we consider the set Λ ∶= {𝐸 ∈ ℎ ∶ 𝜆𝐸 = 𝜆} and build a new element 𝐸Λ defined by all the faces 
(edges if 𝑑 = 2) that are shared by only one element in Λ. While doing this operation, we check that the arising element is still a 
manifold. If not, we stop the agglomeration and skip to the next label, maintaining the old elements. This situation is extremely rare, 
but a single non-manifold element may compromise the whole mesh for certain applications.

At the end of the optimization process with input parameter , the resulting mesh will have approximately 𝐾 elements optimized 
for the computation of the virtual element basis functions. We will have removed around #ℎ −𝐾 elements from the mesh and at 
least #ℎ −𝐾 faces (edges if 𝑑 = 2) between them, see Fig. 1d. Moreover, if 𝐾 is particularly low, we may happen to remove also 
edges (if 𝑑 = 3) and vertices, but in a smaller number.

3.4. Computational complexity

The computational complexity of the mesh quality optimization algorithm is calculated on the basis of the three distinct compo-

nents discussed in the previous sections.

1. Generation of the weighted dual mesh graph (Section 3.1): we compute the arc weights of internal edges/faces, 𝑂(#ℎ)/𝑂(#ℎ), 
and the node weights of the mesh cells, 𝑂(#ℎ). Each weight is determined using the quality indicator (9), whose computational 
cost is linear with the number of vertices of the polytope. Therefore, the overall cost of this operation is 𝑂(#ℎ + #ℎ) if 𝑑 = 2, 
or 𝑂(#ℎ + #ℎ) if 𝑑 = 3.

2. Graph partitioning (Section 3.2): the operation relies on the METIS PartGraphKway routine, whose complexity can be overesti-

mated as 𝑂(𝐾#ℎ log(#ℎ)) if 𝑑 = 2 and 𝑂(𝐾#ℎ log(#ℎ)) if 𝑑 = 3, see [38].

3. Mesh agglomeration (Section 3.3): we construct the 𝐾 agglomerated polytopal elements resulting from the graph optimization. 
This operation scales linearly with the number of new elements generated, 𝑂(𝐾).

Overall, the global complexity of the algorithm is primarily dominated by the graph partitioning step. To improve efficiency, partic-

ularly for large meshes, parallelizing the algorithm is a potential solution. Operations 1 and 3 are embarrassingly parallel, while the 
graph partitioning can be parallelized using existing strategies such as ParMETIS [36].

4. Datasets

This section details the generation and the optimization of a number of meshes specifically created for testing our algorithm. 
More precisely, we call dataset a sequence of meshes defined over the same domain, with decreasing mesh size, and built with the 
same technique, so that they contain similar elements organized in similar configurations. We point out that each mesh in a dataset 
6

is built independently, therefore our datasets are not nested. We generate four datasets to span the most common types of meshes 
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Fig. 2. First mesh of datasets Tri and Quad optimized with  = 40 and  = 20.

currently used in numerical simulations: triangular and quadrangular in 2D, and tetrahedral and hexahedral in 3D. These meshes are 
built with random strategies so that they contain low-quality elements that make it meaningful, if not necessary, to think about their 
optimization. All the meshes presented in this paper are available for download at https://github .com /TommasoSorgente /mesh _
optimization _dataset/. The proposed analysis focuses only on triangular/tetrahedral and quadrilateral/hexahedral tessellations to 
demonstrate the advantages the optimization algorithm can offer by introducing polygonal elements into standard meshes. However, 
we emphasize that the algorithm can be safely applied to general polygonal/polyhedral tessellations, such as Voronoi tessellations. 
In this case, the benefits of the algorithm are closely tied to the initial quality of the polytopal elements: the lower the quality, the 
better the performance. For further details, see [21], where initial 2D polygonal tessellations are analyzed.

4.1. Planar datasets

We generate two planar datasets on the unit square Ω = (0, 1)2, containing five meshes each. To compare our results, the 𝑖-th mesh 
of each dataset contains a similar number of vertices and elements.

Dataset Tri contains triangular meshes with randomly-shaped elements, generated by calling Triangle [33] on Ω with a set of 
initial points to be preserved and no other constraints. The initial points are randomly sampled on Ω. Hence, the resulting meshes 
contain several needles and flat elements. Dataset Quad contains quadrangular meshes with randomly-shaped quads. We start from 
an equispaced planar grid and randomly move all the points belonging to a certain plane 𝜋1 to another plane 𝜋2, parallel to 𝜋1. In 
practice, we pick all the points sharing the same 𝑥-coordinate and randomly change 𝑥 by the same quantity; then, we repeat this 
operation for the 𝑦 coordinates. The resulting meshes contain quadrangular elements with very different sizes and aspect ratios. In 
Fig. 2 we present the first mesh of datasets Tri and Quad, and their optimized versions with parameters  = 40 and  = 20.

In the datasets optimized with parameter 40, each mesh has less than half the elements of its corresponding original mesh, while 
in datasets optimized with parameter 20 each mesh has around 1∕5 of the elements of its corresponding original mesh. Moreover, 
while in the original datasets all the elements are guaranteed to be convex (triangles or quads), in the optimized ones a significant 
number of elements are not convex or even not star-shaped.

4.2. Volumetric datasets

We also define two volumetric datasets on the unit cube Ω = (0, 1)3, containing five meshes each, with similar numbers of vertices 
and elements. They are built in analogy to their planar versions: for Tet we use TetGen [34] and for Hex we also perturb the 𝑧-
7

coordinates. In Fig. 3 we show the first mesh of these datasets and their optimized versions with parameters  = 40 and  = 20.

https://github.com/TommasoSorgente/mesh_optimization_dataset/
https://github.com/TommasoSorgente/mesh_optimization_dataset/
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Fig. 3. First mesh of datasets Tet and Hex optimized with  = 40 and  = 20.

Table 2

Geometric properties of datasets Tet, Tet40 , and Tet20 : number of vertices, faces and elements of each 
mesh; number of internal DOFs for 𝑘 = 1, 2, 3; mesh quality (10).

ℎ #DOFs

Dataset Mesh #ℎ #ℎ #ℎ 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝜚3(ℎ)

Tet 1 512 4958 2332 216 9173 27164 0.827

Tet 2 1728 18836 9055 1000 36769 108032 0.829

Tet 3 4096 47086 22868 2744 94261 275900 0.830

Tet 4 8000 95184 46509 5832 193369 564776 0.831

Tet 5 13824 167952 82389 10648 344505 1004744 0.832

Tet40 1 510 3198 887 216 6023 16399 0.717

Tet40 2 1726 12298 3455 1000 24677 66602 0.719

Tet40 3 4095 30906 8728 2744 63751 171345 0.718

Tet40 4 7997 62630 17774 5832 131245 351996 0.720

Tet40 5 13819 110792 31351 10648 234607 627923 0.720

Tet20 1 505 2498 506 216 4775 12517 0.656

Tet20 2 1719 9506 1879 1000 19459 50405 0.651

Tet20 3 4081 23992 4671 2744 50675 130541 0.645

Tet20 4 7979 48775 9560 5830 104721 269262 0.649

Tet20 5 13794 86517 16989 10647 187679 481881 0.650

In Table 2, we present some numerics about dataset Tet and its optimized versions; analogous tables for the other datasets are 
reported in Appendix A (Tables A.8, A.7). As already noted in Section 3.3, the number of vertices #ℎ does not change significantly 
after the optimization process. Instead, the number of elements #ℎ decreases as expected: meshes in Tet40 and Tet20 contain, ap-

proximately, 40% and 20% the elements of the corresponding meshes in Tet . The number of faces #ℎ decreases a bit more than the 
number of elements (in absolute value), given that each couple of merged elements shares at least one face which gets erased. For 
instance in mesh 5 from Tet to Tet40 we remove 51038 elements and 57160 faces, obtaining a mesh with 38% of the elements and 
66% of the faces of the original one.

These considerations are reflected in the last three columns of the tables, in which we report the number of internal degrees of 
freedom, for 𝑘 = 1, 2, 3, that we would define over each mesh in a VEM simulation. For 𝑘 = 1 the DOFs coincide with the internal 
vertices and therefore remain almost identical, but for 𝑘 > 1 we have an important reduction. For Tet40 we save on average the 33% in 
8

DOFs for 𝑘 = 2 and the 38% for 𝑘 = 3, while for Tet20 we save on average the 47% in DOFs for 𝑘 = 2 and the 53% for 𝑘 = 3. This means 
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that, for instance, optimizing mesh 5 with  = 20 we can save up to 5 × 106 DOFs for 𝑘 = 3, obtaining a mesh that is significantly 
lighter to store and easy to handle.

We point out that the primary goal of the algorithm is to reduce the number of elements to the expected percentage. In this sense, 
the global mesh quality is likely to decrease after the optimization, as visible in the last column of Table 2. However, the loss of 
quality is optimal to the number of elements removed. In other words, the optimized mesh has the maximum quality we can achieve 
by removing that number of elements.

5. Convergence tests

In this section, we compare the performance of the VEM over the original datasets and the optimized ones.

5.1. Test problem

On all the datasets from Section 4 we solve the Poisson problem:

−Δ𝑢 = 𝑓 in Ω, (11)

𝑢 = 0 in 𝜕Ω,

reported in the variational form of Problem (1) with the definition of

𝑎(𝑢, 𝑣) ∶= (∇𝑢,∇𝑣)Ω , 𝐹 (𝑣) ∶= (𝑓, 𝑣)Ω .

For the discretization, we employ the VEM described in Section 2. In particular, we define the approximated bilinear form of Equa-

tion (5) as:

𝑎𝐸
ℎ
(𝑢ℎ, 𝑣) = (Π0

𝑘−1∇𝑢ℎ,Π
0
𝑘−1∇𝑣)Ω + 𝑆𝐸 (𝑢−Π∇

𝑘
𝑢, 𝑣−Π∇

𝑘
𝑣),

and 𝐹𝐸
ℎ
(𝑣) ∶= (𝑓, Π0

𝑘
𝑣)Ω. We use the symbol Π0

𝑘−1 for the 𝐿2-projection operator of a vector-valued function onto the polynomial 
space, applied component-wisely. Finally, we compute 𝑓 ∈𝐿2(Ω), using as ground truth the function

𝑢(𝑥, 𝑦, 𝑧) = 6.4𝑥𝑦𝑧(𝑥− 1)(𝑦− 1)(𝑧− 1).

We compare the results plotting the relative 𝐿2-norm and 𝐻1-seminorm:

𝐿2 = ||𝑢−Π𝑘0𝑢ℎ||0,Ω ∕ ||𝑢||0,Ω,
𝐻1 = |𝑢−Π𝑘0𝑢ℎ|1,Ω ∕ |𝑢|1,Ω,

of the approximation error as the number of degrees of freedom increases. The optimal convergence rate of the method is indicated by 
the slope of a reference triangle in each plot. We want to ensure that the method converges with the correct rate over the optimized 
datasets, and we are interested in measuring differences in the approximation errors produced before and after the optimization.

Given a mesh ℎ over which we have computed an approximated solution 𝑢ℎ of 𝑢, and an optimized mesh  ′
ℎ

with approximated 
solution 𝑢′

ℎ
, we measure the difference between ℎ and  ′

ℎ
through the following quantities:

ΔDOFs = #dofs(ℎ) − #dofs( ′
ℎ
), (12)

Δ𝐿2 =
||𝑢−Π𝑘0𝑢ℎ||0,Ω − ||𝑢−Π𝑘0𝑢

′
ℎ
||0,Ω||𝑢||0,Ω , (13)

Δ𝐻1 =
|𝑢−Π𝑘0𝑢ℎ|1,Ω − |𝑢−Π𝑘0𝑢

′
ℎ
|1,Ω|𝑢|1,Ω . (14)

In practice, Δ𝐿2 > 0 means that the relative error produced by the VEM over  ′
ℎ

is smaller than the one produced over ℎ, and 
similarly for Δ𝐻1 and ΔDOFs. We expect optimized meshes to produce less accurate results than the original ones (i.e., Δ𝐿2 < 0
and Δ𝐻1 < 0) because these discretizations contain many fewer degrees of freedom and, therefore, information. In fact, ΔDOFs ≥ 0
for all meshes. However, if the loss in accuracy is limited, the optimization might be convenient. For instance, if Δ𝐿2 ∼ −10−7 and 
Δ𝐻1 ∼ −10−4, but ΔDOFs ∼ 105, we have a significant gain in terms of space and computations at a very small cost in terms of 
accuracy.

Finally, we compare the computational time:

ΔT = 𝑇solve(ℎ) − (𝑇optimize(ℎ) + 𝑇solve( ′
ℎ
)), (15)
9

where 𝑇solve(ℎ) is the time required for solving (11) on ℎ, and 𝑇optimize(ℎ) is the time required for optimizing ℎ into  ′
ℎ

.
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Fig. 4. Convergence of datasets Tri20 , Quad20 (continuous lines) compared to their original datasets Tri , Quad (dotted line). We measure 𝐿2 (top figures) and 𝐻1

(bottom figures) with respect to the number of DOFs.

5.2. Planar datasets

We begin our analysis by checking the convergence of the VEM for 𝑘 = 1, 2, 3 over the planar datasets Tri and Quad from Section 4.1

and their optimizations with  = 20. First, we note from the convergence plots in Fig. 4 how the optimized datasets Tri20 and Quad20
preserve the optimal convergence rate both in 𝐿2 and 𝐻1 norms.

We then consider the quantities (12), (13), and (14), computed between the last meshes (mesh 5) of Tri and Tri20:

• for 𝑘 = 1, we have ΔDOFs ∼ 103, Δ𝐿2 ∼ −10−4, and Δ𝐻1 ∼ −10−3;

• for 𝑘 = 2, we have ΔDOFs ∼ 104, Δ𝐿2 ∼ −10−7, and Δ𝐻1 ∼ −10−4;

• for 𝑘 = 3, we have ΔDOFs ∼ 105, Δ𝐿2 ∼ +10−5, and Δ𝐻1 ∼ −10−6.

Full details for the other meshes are reported in Table A.10 of the Appendix A. We note how for 𝑘 = 1, 2 the method performs slightly 
worse on the optimized meshes, despite having significantly fewer degrees of freedom, and this difference decreases as 𝑘 grows. The 
difference in ΔDOFs is appreciable because the dots relative to optimized meshes are shifted towards the left in Fig. 4. For 𝑘 = 3 the 
error 𝐿2 produced by the original meshes is so high, not only in the last mesh, that the method fails to converge. This is due to 
extremely small and flat triangles in the original meshes, which cause enormous condition numbers. Such elements disappear in the 
optimized meshes, and the VEM converges properly over them. For instance, in dataset Tri we have 𝑐𝑜𝑛𝑑 ∼ 1012 and 𝑐𝑜𝑛𝑑 ∼ 1015
for meshes 3 and 4, while in Tri20 we have 𝑐𝑜𝑛𝑑 ∼ 105 and 𝑐𝑜𝑛𝑑 ∼ 106. Therefore, we have fewer DOFs and smaller 𝐿2 in this case.

For Quad and Quad20, the values of ΔDOFs, Δ𝐿2 , and Δ𝐻1 are essentially analogous, see Table A.10. The only significant differ-

ence is that the method does not diverge over Quad for 𝑘 = 3: in mesh 5 we have ΔDOFs ∼ 104, Δ𝐿2 ∼ −10−8, and Δ𝐻1 ∼ −10−6. 
The difference Δ𝐿2 is negative in this case, but it is extremely small compared to ΔDOFs. The difference in computational time 
between the original and the optimized meshes is negligible both for Tri and Quad, as the considered meshes are relatively small. 
The quantity ΔT will become significant with the more complex meshes of the next section.

5.3. Volumetric datasets

In Fig. 5 we present analogous plots for the 3D datasets Tet and Hex, both optimized with  = 20. As for the planar datasets, all 
optimized datasets produce optimal convergence rates, even when the original dataset does not (see Tet for 𝑘 = 3).

In Table 3 we report the usual data about the differences between Tet and Tet20:

• for 𝑘 = 1 we have almost no DOFs reduction, with Δ𝐿2 ∼ −10−4 and Δ𝐻1 increasing until becoming a positive 10−4 in the 
last mesh;

• for 𝑘 = 2 ΔDOFs reaches 105 with Δ𝐿2 ∼ −10−6 and Δ𝐻1 ∼ −10−3;

• for 𝑘 = 3 the VEM diverges on the original meshes and we get Δ𝐿2 > 0 on every mesh.

Results for Hex and Hex20 can be found in Table A.9. For 𝑘 = 1 the difference between the original and the optimized meshes is 
higher, also in terms of ΔDOFs, but for 𝑘 > 1 the errors become smaller and smaller, even if the original dataset does not diverge in 
10

this case.
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Fig. 5. Convergence of datasets Tet20 and Hex20 (continuous lines) compared to their original datasets (dotted lines). We measure 𝐿2 (top figures) and 𝐻1 (bottom 
figures) with respect to the number of DOFs.

Table 3

VEM performance: difference between the number of DOFs (12), the 𝐿2 er-

ror (13), the 𝐻1 error (14), and the computational time (15) in Tet20 and the 
original meshes in Tet .

Mesh 𝑘 ΔDOFs Δ𝐿2 Δ𝐻1 ΔT

1 1 − −3.99 ⋅ 10−3 −6.76 ⋅ 10−2 −7.21 ⋅ 10−1
2 1 − −2.02 ⋅ 10−3 −1.60 ⋅ 10−2 −2.72 ⋅ 100
3 1 − −1.13 ⋅ 10−3 −7.06 ⋅ 10−3 −7.28 ⋅ 100
4 1 2.00 ⋅ 100 −7.03 ⋅ 10−4 −2.70 ⋅ 10−4 −1.50 ⋅ 101
5 1 1.00 ⋅ 100 −4.85 ⋅ 10−4 +𝟗.𝟐𝟗 ⋅ 𝟏𝟎−𝟒 −2.72 ⋅ 101

1 2 4.40 ⋅ 103 −2.72 ⋅ 10−4 −2.80 ⋅ 10−2 −5.54 ⋅ 10−1
2 2 1.73 ⋅ 104 −4.80 ⋅ 10−5 −1.00 ⋅ 10−2 −2.58 ⋅ 100
3 2 4.36 ⋅ 104 −1.73 ⋅ 10−5 −5.42 ⋅ 10−3 −7.04 ⋅ 100
4 2 8.86 ⋅ 104 −8.19 ⋅ 10−6 −3.38 ⋅ 10−3 +𝟏.𝟒𝟒 ⋅ 𝟏𝟎𝟏
5 2 1.57 ⋅ 105 −4.69 ⋅ 10−6 −2.38 ⋅ 10−3 +𝟏.𝟔𝟑 ⋅ 𝟏𝟎𝟏

1 3 1.46 ⋅ 104 +𝟏.𝟑𝟖 ⋅ 𝟏𝟎−𝟒 −5.27 ⋅ 10−3 −1.23 ⋅ 100
2 3 5.76 ⋅ 104 +𝟓.𝟓𝟖 ⋅ 𝟏𝟎−𝟒 −1.17 ⋅ 10−3 −5.23 ⋅ 100
3 3 1.45 ⋅ 105 +𝟏.𝟎𝟎 ⋅ 𝟏𝟎𝟎 −4.69 ⋅ 10−4 +𝟑.𝟔𝟕 ⋅ 𝟏𝟎𝟏
4 3 2.96 ⋅ 105 +𝟔.𝟓𝟏 ⋅ 𝟏𝟎−𝟑 +𝟑.𝟑𝟑 ⋅ 𝟏𝟎−𝟑 +𝟏.𝟐𝟕 ⋅ 𝟏𝟎𝟐
5 3 5.23 ⋅ 105 +𝟒.𝟓𝟏 ⋅ 𝟏𝟎−𝟒 −1.28 ⋅ 10−4 +𝟒.𝟗𝟖 ⋅ 𝟏𝟎𝟐

Looking at the times, for 𝑘 = 1 we have a negative ΔT for both Tet20 and Hex20. This is because the elements of the optimized 
meshes generally have more complicated shapes than the simple tets or hexes of the original ones. At the same time, for 𝑘 = 1 the 
number of DOFs does not decrease significantly, hence the linear system to be solved is more complex and has the same size. However, 
once 𝑘 increases and ΔDOFs becomes significant, the size of the system reduces drastically, and we see positive ΔT values for 𝑘 = 2, 3.

We note how the optimization becomes more interesting for high values of 𝑘 and more complicated meshes. An optimized mesh 
containing 105 less DOFs, which produces results only 10−6 less accurate, leads to a faster and cheaper simulation. Moreover, the 
optimization removes small and flat elements in meshes from Tet that cause the VEM to diverge, and we obtain a numerical approxi-

mation that was impossible to compute on the original meshes. Finally, we emphasize the good performance of the VEM for datasets 
Quad20 and Hex20, despite their “Tetris-like” internal structure (see Fig. 2f and Fig. 3f). While these meshes may be unconventional 
for real-world applications, the low error rates and strong convergence demonstrate the effectiveness of the optimization.

5.4. Role of the optimization parameter

We now analyze the impact of parameter  on the optimization process, comparing the performance produced by dataset Tet

optimized with  = 5, 10, 20, 30, 40, and 50. We point out that Tet and Tet20 are the same datasets shown in Fig. 5, and that we 
reported in Table 2 the number of vertices, faces, elements and DOFs for meshes in Tet , Tet40, and Tet20. We also try to process the 
dataset recursively, i.e., to further optimize Tet40 with  = 25, obtaining a dataset Tet40−25. This dataset contains the 25% of the 
11

elements of Tet40, which contains the 40% of the elements of Tet. Overall, Tet40−25 should be comparable with Tet10.
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Table 4

Role of parameter  in the optimization of dataset 
Tet . Each column shows the average (among the five 
meshes in the dataset) percentage reduction with 
respect to the original dataset. In the second row, 
the optimization has been subdivided in two steps, 
with parameters 40 and 25.

#DOFs [%]

 #ℎ [%] 𝑘 = 1 𝑘 = 2 𝑘 = 3

5 89.48 3.21 62.92 68.49

40-25 89.12 0.92 56.92 63.36

10 86.46 0.43 55.58 61.78

20 79.19 0.01 46.53 52.86

30 69.90 0.00 38.51 44.48

40 61.87 0.00 32.72 38.21

50 58.17 0.00 29.93 35.22

Fig. 6. Comparison between dataset Tet and its optimized versions with  ∈ {5, 10, 20, 30, 40, 50, 40-25}. We measure 𝐿2 (top figures) and 𝐻1 (bottom figures) 
concerning the number of DOFs.

In Table 4 we present the reduction, in terms of numbers of elements #ℎ and DOFs, of each optimized dataset compared to Tet , 
and in Fig. 6 the VEM performance over them. First, we note how the algorithm is generally able to satisfy the elements reduction 
required by the parameter: for  = 40 we have around −60% elements, for  = 30 we have around −70% elements, and so on. As 
already noted in Section 3.3, we reach a plateau for  > 40 because METIS implementation, therefore results for  = 50 are similar 
to those for  = 40. At the opposite side of the range, when optimizing with  ≤ 10 the correspondence between  and the elements 
reduction becomes weaker (86% elements reduction instead of 90%). However, if we subdivide the optimization into two steps, i.e. 
with  = 40 − 25, we get closer to the desired reduction. Concerning the DOFs, for 𝑘 = 1 we have only a small reduction for the 
smallest  values, as expected. For 𝑘 = 2, 3 the DOFs reduction is smaller than the elements reduction, but they vary similarly.

In the plots of Fig. 6 we can observe how higher  values produce higher errors, but also that this difference decreases when 
increasing the order 𝑘. Datasets Tet10 and Tet40−25 perform very similarly, but for 𝑘 = 3, the former starts to oscillate while the latter 
does not. Hence, a single, aggressive optimization produces worse results than two conservative ones.

In conclusion, the choice of the best optimization parameter may depend on the order of the method. In any case, we suggest to 
set  < 50 because the optimization does not work properly after that value. For low-order VEM, it seems preferable to use a higher 
optimization value because removing too many elements may significantly increase the errors. For 𝑘 > 1 instead, the difference 
between  = 40,  = 30, and  = 20 are very small in terms of 𝐿2 while notable in the number of DOFs. Therefore, it is worth 
choosing a lower optimization value. Values of  lower than 20 are not recommended because they do not always produce reliable 
12

results, especially for 𝑘 > 2. In those cases, applying multiple optimizations with higher  values is preferable.
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Fig. 7. Error 𝐿2 with respect to the number of DOFs produced by Hex optimized with  = 20 and constant weights (Hex20𝑐 ), or quality weights (Hex20).

5.5. Importance of quality weights

We also analyze the importance of using the quality indicator (9) for assigning METIS weights to nodes and arcs (see Section 3.2). 
In Fig. 7 we consider dataset Hex optimized always with  = 20, but with different weights:

• in Hex20 we set quality weights on nodes and arcs, as done in the rest of the paper: 𝑤(𝑛𝐸 ) = 𝜚(𝐸) and 𝑤(𝑎𝐹 ) = 𝜚(𝐸1 ∪𝐸2) for all 
nodes 𝑛𝐸 and arcs 𝑎𝐹 ;

• in Hex20𝑐 we set constant weights, using METIS in its original mode: 𝑤(𝑛𝐸 ) = 1 and 𝑤(𝑎𝐹 ) = 1 for all 𝑛𝐸 , 𝑎𝐹 ;

Different weights produce optimized meshes with similar numbers of vertices and elements but organized in different configurations. 
Using constant weights, we optimize the mesh following the METIS internal criterion for graph partitioning, which essentially tries 
to agglomerate elements in compact and convex configurations. This is conceptually not so far from what the quality indicator (8)

suggests, in particular, 𝜚3,1 and 𝜚3,2 promote exactly such types of polytopes. Therefore, it is reasonable that the output meshes will 
not be so different from each other, and we want to make sure that the use of the quality indicator has an impact.

We see how Hex20 produces smaller 𝐿2 values (and 𝐻1 values are analogous) than Hex20𝑐 , and this difference remains constant 
when increasing 𝑘. Moreover, meshes in Hex20 contain fewer DOFs than those in Hex20𝑐 , as indicated by the position of the dots in 
the plot. It is therefore important to set the weights using a quality criterion, also considering that the weights computation time is 
negligible compared to the time needed for METIS to partition the graph.

6. CAD application

In this last section we test our algorithm over a real CAD model of a heat sink, downloaded from the repository Traceparts.1

Using fTetWild [35], we re-meshed the original triangulation obtaining a higher quality surface mesh, and then we generated a 
tetrahedralization of the inside. The considered model is particularly complex because it presents three different levels of detail, 
which determine the generation of elements with variable size. The resulting mesh, noted Cad , is visible in Fig. 8, together with 
its optimization with parameter  = 20. In the “exploded” version, elements are colored with respect to their quality, from yellow 
(𝜚3 = 1) to blue (𝜚3 = 0). While Cad contains only tets, which are very high quality, in Cad20 the 80% of the elements have been 
agglomerated into generic polyhedra. The local quality of Cad20 is therefore generally lower, and this is an unavoidable side-effect 
when optimizing high-quality meshes. However, we guess that the loss in local quality is negligible when compared to the gain in 
terms of DOFs.

6.1. Time-dependent problem

Differently from Section 5, we now have a single mesh and we measure the advantages of solving multiple problems over a smaller 
and better (in the sense of quality) mesh. We solve the following time-dependent problem, defined on Cad and its optimized version 
Cad20, for a number of time values between 0 and 1:

𝜕𝑢

𝜕𝑡
−Δ𝑢 = 𝑓 in Ω, ∀𝑡 ∈ [0,1],

𝑢(𝑡, 𝑥) = 0 in 𝜕Ω, ∀𝑡 ∈ [0,1],

𝑢(0, 𝑥) = 0 in Ω̄.

The two meshes share the same bounding box with centroid 𝐱, origin (𝑥0, 𝑦0, 𝑧0) ≅ (−0.035, 0.0, −25.002), and size (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) ≅
(75.58, 60.01, 25.05). Given a constant 𝑢̃0 computed such that 𝑢 = 1 when 𝑡 = 1, we seek for the exact solution:

1 www .traceparts .com /it /product /fischer -elektronik -gmbh -co -kg -strangkuhlkorper -fur -einrasttransistorhaltefeder ?CatalogPath =TRACEPARTS %3ATP014002 &
13

Product =34 -23062017 -133913 &PartNumber =SK %20593 %2025 &corid =0737fe6b -01e1 -4714 -6dec -a98692f099d7.

http://www.traceparts.com/it/product/fischer-elektronik-gmbh-co-kg-strangkuhlkorper-fur-einrasttransistorhaltefeder?CatalogPath=TRACEPARTS%3ATP014002&Product=34-23062017-133913&PartNumber=SK%20593%2025&corid=0737fe6b-01e1-4714-6dec-a98692f099d7
http://www.traceparts.com/it/product/fischer-elektronik-gmbh-co-kg-strangkuhlkorper-fur-einrasttransistorhaltefeder?CatalogPath=TRACEPARTS%3ATP014002&Product=34-23062017-133913&PartNumber=SK%20593%2025&corid=0737fe6b-01e1-4714-6dec-a98692f099d7
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Fig. 8. Cad model optimized with  = 20, with a close-up on a small-scale detail (top) and elements colored w.r.t. their quality (bottom).

Table 5

Differences between Cad and Cad20 for 𝑘 = 1, 2, 3, 4 at 𝑡 = 1.

𝑘 Δℎ ΔDOFs Δ𝐿2 Δ𝐻1 𝑟𝐿2 𝑟𝐻1

1 8.51 ⋅ 104 4.00 ⋅ 100 −3.33 ⋅ 10−3 +𝟏.𝟐𝟓 ⋅ 𝟏𝟎−𝟐 −4.01 ⋅ 10−1 +𝟐.𝟏𝟎 ⋅ 𝟏𝟎−𝟏
2 8.51 ⋅ 104 1.91 ⋅ 105 −1.27 ⋅ 10−3 −1.19 ⋅ 10−2 −2.66 ⋅ 10−6 −3.43 ⋅ 10−6
3 8.51 ⋅ 104 6.47 ⋅ 105 −7.10 ⋅ 10−5 −9.75 ⋅ 10−4 −4.37 ⋅ 10−8 −8.32 ⋅ 10−8
4 8.51 ⋅ 104 1.45 ⋅ 106 −1.15 ⋅ 10−6 −1.89 ⋅ 10−5 −3.14 ⋅ 10−10 −7.17 ⋅ 10−10

𝑢(𝐱, 𝑡) = 𝑡𝑢̃0(𝑥− 𝑥0)(𝑦− 𝑦0)(𝑧− 𝑧0)(𝑥− (𝑥0 + 𝑥𝑠))(𝑦− (𝑦0 + 𝑦𝑠))(𝑧− (𝑧0 + 𝑧𝑠)).

We use a backward Euler scheme with 10 time steps; visual results are presented in Fig. 9.

In Fig. 10 we plot 𝐿2 and 𝐻1 for 𝑘 = 1, 2, 3, 4 relatively to 𝑡 = 1, but these errors remain very similar for all time steps. Instead 
of refining the mesh at each iteration, as done in Section 5, we increase the order of the VEM scheme. The original meshes produce 
more accurate results point-wise, i.e., the 𝑖-th dot of Cad is higher than the 𝑖-th dot of Cad20 in the plot. However, the difference in 
error is much smaller than the difference in terms of DOFs. Both plots converge linearly in semilog-y scale as expected, but the line 
relative to Cad20 is significantly below the Cad one.

In Table 5 we can see how ΔDOFs grows with 𝑘 while Δ𝐿2 and Δ𝐻1 decrease, all with an exponential rate. Therefore, despite 
Δ𝐿2 and Δ𝐻1 being negative, their influence is smaller and smaller. The last column represents the ratio 𝑟𝐿2 = Δ𝐿2∕ΔDOFs, and 
analogously for 𝑟𝐻1 . When we compare two meshes in the plot we have an 𝑥-shift represented by ΔDOFs, and an 𝑦-shift represented 
by Δ𝐿2 (or Δ𝐻1 ). The ratio 𝑟 = 𝑑𝑥∕𝑑𝑦 then represents the slope of the line connecting the two meshes. The smaller |𝑟|, the more 
is convenient to pass from one mesh to the other, because the difference in DOFs overcomes the difference in error. For instance, for 
𝑘 = 3 we have |𝑟𝐿2 | ∼ 10−8: we are losing a factor 10−8 in accuracy for every DOF that we removed from the original mesh.

6.2. Computational time

In Table 6 we report a comparison of the computational times required for the main operations involved in the process, for the 
case 𝑘 = 3. As in the rest of the paper, the comparison is made by subtracting the time relative to Cad20 from the time relative to 
Cad, hence a positive Δ means a gain in time when using the optimized mesh. Computations have been performed using a 3.60 GHz 
Intel Core i7 processor with 16 cores and 32 GB of RAM.

The first column contains the number of time steps considered, from 10 to 106. The times for importing the mesh structure in the 
solver, computing the geometric properties, and assembling the linear system, are aggregated in Assemble, while Factorize indicates the 
time for factorizing the global matrix of the problem. These operations are performed only once, therefore these times are independent 
14

of the number of time steps. The differences ΔAssemble and ΔFactorize are negative because elements in optimized meshes generally 
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Fig. 9. Simulation with 𝑘 = 1 over models Cad (top) and Cad20 (bottom). From left to right, 𝑡 = 0, 𝑡 = 0.5, 𝑡 = 1.

Fig. 10. Performance of the VEM with 𝑘 = 1, 2, 3, 4 at 𝑡 = 1 on models Cad and Cad20 . We measure 𝐿2 (left) and 𝐻1 (right) with respect to the number of DOFs in 
semilog-𝑦 scale.

Table 6

Differences between computational times, in seconds, for the time-dependent problem with 
𝑘 = 3 solved on Cad and Cad20 . In the last column, the percentage of the total time required 
by the optimization of the mesh.

Steps ΔAssemble ΔFactorize ΔSolve ΔTime Optimize [%]

1 ⋅ 101 −2.59 ⋅ 101 −4.43 ⋅ 10−2 +𝟒.𝟗𝟕 ⋅ 𝟏𝟎−𝟏 −6.15 ⋅ 101 24.03

1 ⋅ 102 −2.59 ⋅ 101 −4.43 ⋅ 10−2 +𝟒.𝟗𝟕 ⋅ 𝟏𝟎𝟎 −5.70 ⋅ 101 20.04

1 ⋅ 103 −2.59 ⋅ 101 −4.43 ⋅ 10−2 +𝟒.𝟗𝟕 ⋅ 𝟏𝟎𝟏 −1.23 ⋅ 101 7.54

1 ⋅ 104 −2.59 ⋅ 101 −4.43 ⋅ 10−2 +𝟒.𝟗𝟕 ⋅ 𝟏𝟎𝟐 +𝟒.𝟑𝟓 ⋅ 𝟏𝟎𝟐 1.04

1 ⋅ 105 −2.59 ⋅ 101 −4.43 ⋅ 10−2 +𝟒.𝟗𝟕 ⋅ 𝟏𝟎𝟑 +𝟒.𝟗𝟏 ⋅ 𝟏𝟎𝟑 0.11
15
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have more complicated shapes than the simple tets of the original ones, despite being fewer. We indicate by Solve the time required 
for the solution of the problem, resulting from the sum of Steps iterations. The solution time is faster on the optimized meshes because 
the problem itself becomes much smaller, and this gain gets multiplied by the number of time steps. Time indicates the total time, 
resulting from the sum of the previous ones and including also the optimization of the mesh. Note that ΔTime cannot be expressed in 
terms of (15), as each ΔT already contains the time for optimizing the mesh. This Δ is initially negative, but it grows with the number 
of time steps because the initial fixed costs (optimizing the mesh, assembling the system, factorizing the matrix) become negligible 
with respect to Solve. In particular, we report the impact of the optimization on the total time in the last column.

We could observe a difference in the Factorize cost with respect to Tet and Hex (Table 3 and Table A.9). In those cases, the 
factorization step is significantly cheaper on the optimized mesh, resulting in a positive ΔT for 𝑘 > 1 even if we were solving a single 
iteration of the problem. We associate this fact with the quality of the original mesh: Tet and Hex contain very bad-shaped elements, 
while Cad is made of good-quality tets. If the starting mesh is already good, there is less space for improvements, and our optimization 
becomes effective only after a certain number of time steps.

In particular, there exists a critical number of time steps 𝑡 such that for less than 𝑡 steps, computations are faster on the original 
mesh, while for more than ̄𝑡 steps the optimized mesh becomes advantageous. This number decreases as 𝑘 grows: we have ̄𝑡 = 2.63 ⋅104
for 𝑘 = 2, 𝑡 = 1.25 ⋅ 103 for 𝑘 = 3, and 𝑡 = 7.63 ⋅ 102 for 𝑘 = 4. For 𝑘 = 1 times are essentially equivalent, thus we could not identify a 
single 𝑡 value. However, the presented calculations were made using a code written and optimized for meshes with convex elements, 
therefore we believe further improvements can be made with solvers optimized for generic non-convex cells.

In conclusion, the authors acknowledge that the tessellation used in this final test may be too coarse for practical applications 
different from the one discussed in this Section. Nevertheless, the proposed algorithm demonstrates excellent performance, and we 
believe the results will only improve with finer meshes.

7. Conclusions

We presented an algorithm for optimizing the size of a mesh with respect to its quality, in the context of VEM simulations. 
The algorithm can significantly reduce the total number of mesh elements and the number of DOFs, in particular in high-order 
formulations, while preserving the VEM optimal convergence rates. These effects lead to a notable decrease in the computational 
effort required for obtaining the numerical solution. A scenario in which this decrease becomes particularly interesting is the class of 
time-dependent problems: in such cases, we optimize the mesh only once and then save time in each iteration. We also observed how, 
if the input mesh has a particularly low quality, the optimization can locally improve the shape of the elements. This improvement 
allows to control the stiffness matrix condition number and therefore to recover the optimal VEM convergence rate. The mesh 
optimization algorithm is therefore a powerful tool to achieve faster and more stable VEM simulations.

One potential limitation of the algorithm is that it only evaluates elements pairwise. When considering an element 𝐸 with neigh-

boring elements 𝐸′ and 𝐸′′, the algorithm separately assesses the potential quality of 𝐸 ∪𝐸′ and 𝐸 ∪𝐸′′, without considering the 
overall quality of 𝐸 ∪ 𝐸′ ∪ 𝐸′′. Consequently, some small mesh elements may still persist in the optimized final mesh, particularly 
around small-scale shape features of the boundary. This issue can be controlled by subdividing the optimization into smaller steps 
(i.e., running the algorithm twice with  = 40 and  = 25 instead of once with  = 10). However, the numerical findings presented 
in this study suggest that such action is generally not necessary for obtaining satisfactory results.

We believe that interesting aspects of our algorithm are its ease of parallelization with minimal effort and its generality, as it 
can be applied to any type of mesh. It is also modular: its key ingredients, the mesh quality indicator and the graph partitioning 
algorithm, may be easily replaced or adjusted for adapting the optimization to specific needs. With a different quality indicator, we 
could optimize the mesh to be used with numerical methods other than the VEM or include in the quality criterion features of the 
numerical problem (e.g., anisotropies). We refer the reader to [2] for more quality indicators. Other algorithms for graph partitioning 
may be more efficient, see the parallel version of METIS, ParMETIS [36]. In some situations instead, it may be useful to have a 
partitioning method that finds a local maximum of the global quality of the mesh and automatically decides the optimal number 
of partitions, as it is done in [21] using GraphCut [37]. Alternatively, recent techniques based on Graph Neural Networks (GNNs) 
[22,24] can be considered, as they offer faster partitioning during the online phase. Finally, another recent approach suggests using 
specialized data structures based on R-trees [23].

Future research will investigate these aspects more deeply, as well as try to adapt a similar approach to mesh refinement strategies.
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Appendix A. Supplementary material

We collect in Tables A.7-A.8 the analogues of Table 2 for datasets Hex, Tri, Quad, and their optimizations with  = 40 and  = 20. 
In Tables A.9-A.10 we report the analogues of Table 3 for datasets Hex20, Tri20, and Quad20.

Table A.7

Analogue of Table 2 for dataset Hex . Number of vertices, faces and elements of each mesh; number 
of internal DOFs for 𝑘 = 1, 2, 3; mesh quality (10).

ℎ #DOFs

Dataset Mesh #ℎ #ℎ #ℎ 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝜚3(ℎ)

Hex 1 343 756 216 125 1331 3509 0.768

Hex 2 2197 5616 1728 1331 12167 31211 0.773

Hex 3 6859 18468 5832 4913 42875 109025 0.776

Hex 4 15625 43200 13824 12167 103823 262871 0.778

Hex 5 29791 83700 27000 24389 205379 518669 0.780

Hex40 1 343 439 85 125 873 2102 0.681

Hex40 2 2191 3395 677 1325 8425 19766 0.677

Hex40 3 6825 11218 2296 4891 30035 69897 0.675

Hex40 4 15547 26814 5459 12111 73877 171388 0.681

Hex40 5 29690 52117 10586 24307 146663 339215 0.679

Hex20 1 314 285 49 114 639 1467 0.614

Hex20 2 2022 2266 381 1237 6395 14275 0.609

Hex20 3 6332 7382 1248 4561 22437 49466 0.605

Hex20 4 14573 17998 2949 11414 56209 123592 0.607

Hex20 5 27684 34891 5739 22737 111271 244181 0.605

Table A.8

Analogue of Table 2 for datasets Tri and Quad . Number of vertices, edges and elements of each 
mesh; number of internal DOFs for 𝑘 = 1, 2, 3; mesh quality (10).

ℎ #DOFs

Dataset Mesh #ℎ #ℎ #ℎ 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝜚2(ℎ)

Tri 1 100 261 162 64 451 1000 0.900

Tri 2 324 901 578 256 1667 3656 0.897

Tri 3 1156 3333 2178 1024 6403 13960 0.899

Tri 4 4356 12805 8450 4096 25091 54536 0.900

Tri 5 16900 50181 33282 16384 99331 215560 0.900

Tri40 1 92 153 62 64 251 500 0.735

Tri40 2 303 515 213 253 931 1822 0.727

Tri40 3 1098 1905 808 1001 3617 7041 0.744

Tri40 4 4199 7366 3168 4006 14347 27856 0.750

Tri40 5 16433 28963 12531 16057 57175 110824 0.751

Tri20 1 70 101 32 50 163 308 0.621

Tri20 2 254 368 115 215 659 1218 0.601

Tri20 3 962 1396 435 883 2635 4822 0.593

Tri20 4 3717 5406 1690 3559 10497 19125 0.579

Tri20 5 14535 21190 6656 14241 41793 76001 0.585
17

(continued on next page)



Journal of Computational Physics 521 (2025) 113552T. Sorgente, F. Vicini, S. Berrone et al.

Table A.8 (continued)

ℎ #DOFs

Dataset Mesh #ℎ #ℎ #ℎ 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝜚2(ℎ)

Quad 1 81 144 64 49 225 465 0.870

Quad 2 289 544 256 225 961 1953 0.865

Quad 3 1089 2112 1024 961 3969 8001 0.867

Quad 4 4225 8320 4096 3969 16129 32385 0.870

Quad 5 16641 33024 16384 16129 65025 130305 0.870

Quad40 1 58 82 25 41 131 246 0.589

Quad40 2 204 302 99 163 523 982 0.650

Quad40 3 773 1168 396 693 2177 4057 0.663

Quad40 4 3018 4603 1586 2835 8841 16433 0.667

Quad40 5 11709 18138 6430 11346 35551 66186 0.680

Quad20 1 44 55 12 31 85 151 0.311

Quad20 2 151 201 51 125 351 628 0.442

Quad20 3 551 754 204 489 1385 2485 0.506

Quad20 4 2144 2962 819 2021 5679 10156 0.505

Quad20 5 8503 11778 3276 8256 23063 41146 0.500

Table A.9

Analogue of Table 3 for dataset Hex . Difference between the number of DOFs (12), the 
𝐿2 error (13), the 𝐻1 error (14), and the computational time (15) w.r.t. the original 
mesh.

Dataset Mesh 𝑘 ΔDOFs Δ𝐿2 Δ𝐻1 ΔT

Hex20 1 1 1.10 ⋅ 101 −9.19 ⋅ 10−3 −5.01 ⋅ 10−1 −1.67 ⋅ 10−1
Hex20 2 1 9.40 ⋅ 101 −4.87 ⋅ 10−3 −2.19 ⋅ 10−1 −6.66 ⋅ 10−1
Hex20 3 1 3.52 ⋅ 102 −2.95 ⋅ 10−3 −1.36 ⋅ 10−1 −2.47 ⋅ 100
Hex20 4 1 7.53 ⋅ 102 −1.85 ⋅ 10−3 −9.20 ⋅ 10−2 −6.18 ⋅ 100
Hex20 5 1 1.65 ⋅ 103 −1.27 ⋅ 10−3 −6.88 ⋅ 10−2 −1.65 ⋅ 101

Hex20 1 2 6.92 ⋅ 102 −4.12 ⋅ 10−3 −1.89 ⋅ 10−1 −2.15 ⋅ 10−1
Hex20 2 2 5.77 ⋅ 103 −3.81 ⋅ 10−4 −3.64 ⋅ 10−2 −6.14 ⋅ 10−1
Hex20 3 2 2.04 ⋅ 104 −8.92 ⋅ 10−5 −1.63 ⋅ 10−2 +𝟑.𝟑𝟐 ⋅ 𝟏𝟎𝟎
Hex20 4 2 4.76 ⋅ 104 −3.22 ⋅ 10−5 −9.26 ⋅ 10−3 +𝟔.𝟗𝟓 ⋅ 𝟏𝟎𝟏
Hex20 5 2 9.41 ⋅ 104 −1.57 ⋅ 10−5 −6.04 ⋅ 10−3 +𝟏.𝟓𝟐 ⋅ 𝟏𝟎𝟐

Hex20 1 3 2.04 ⋅ 103 −4.70 ⋅ 10−4 −4.71 ⋅ 10−2 −3.44 ⋅ 10−1
Hex20 2 3 1.69 ⋅ 104 −2.13 ⋅ 10−5 −5.66 ⋅ 10−3 +𝟏.𝟐𝟗 ⋅ 𝟏𝟎𝟎
Hex20 3 3 5.96 ⋅ 104 −4.48 ⋅ 10−6 −1.82 ⋅ 10−3 +𝟔.𝟏𝟔 ⋅ 𝟏𝟎𝟏
Hex20 4 3 1.39 ⋅ 105 −1.37 ⋅ 10−6 −7.66 ⋅ 10−4 +𝟏.𝟖𝟔 ⋅ 𝟏𝟎𝟐
Hex20 5 3 2.74 ⋅ 105 −5.75 ⋅ 10−7 −4.03 ⋅ 10−4 +𝟕.𝟗𝟖 ⋅ 𝟏𝟎𝟐

Table A.10

Analogue of Table 3 for datasets Tri and Quad . Difference between the number of DOFs (12), the 
𝐿2 error (13), the 𝐻1 error (14), and the computational time (15) w.r.t. the original mesh.

Dataset Mesh 𝑘 ΔDOFs Δ𝐿2 Δ𝐻1 ΔT

Tri20 1 1 1.40 ⋅ 101 −2.76 ⋅ 10−2 −1.07 ⋅ 10−1 −1.42 ⋅ 10−2
Tri20 2 1 4.10 ⋅ 101 −6.57 ⋅ 10−3 −4.86 ⋅ 10−2 −4.25 ⋅ 10−2
Tri20 3 1 1.41 ⋅ 102 −2.10 ⋅ 10−3 −2.82 ⋅ 10−2 −2.66 ⋅ 10−1
Tri20 4 1 5.37 ⋅ 102 −4.85 ⋅ 10−4 −1.35 ⋅ 10−2 −1.56 ⋅ 100
Tri20 5 1 2.14 ⋅ 103 −1.22 ⋅ 10−4 −6.66 ⋅ 10−3 −6.45 ⋅ 100

Tri20 1 2 2.88 ⋅ 102 −1.91 ⋅ 10−3 −2.93 ⋅ 10−2 +𝟕.𝟓𝟎 ⋅ 𝟏𝟎−𝟒
Tri20 2 2 1.01 ⋅ 103 −2.76 ⋅ 10−4 −8.19 ⋅ 10−3 +𝟒.𝟗𝟎 ⋅ 𝟏𝟎−𝟑
Tri20 3 2 3.77 ⋅ 103 −4.72 ⋅ 10−5 −2.52 ⋅ 10−3 −1.69 ⋅ 10−1
Tri20 4 2 1.46 ⋅ 104 −7.76 ⋅ 10−6 −6.73 ⋅ 10−4 −1.55 ⋅ 100
Tri20 5 2 5.75 ⋅ 105 −7.70 ⋅ 10−7 −1.56 ⋅ 10−4 −6.41 ⋅ 100

Tri20 1 3 6.92 ⋅ 102 −2.55 ⋅ 10−4 −4.09 ⋅ 10−3 +𝟐.𝟒𝟒 ⋅ 𝟏𝟎−𝟐
Tri20 2 3 2.44 ⋅ 103 +𝟏.𝟑𝟎 ⋅ 𝟏𝟎−𝟑 −6.45 ⋅ 10−4 +𝟖.𝟐𝟐 ⋅ 𝟏𝟎−𝟐
Tri20 3 3 9.14 ⋅ 103 +𝟔.𝟏𝟑 ⋅ 𝟏𝟎−𝟔 −8.70 ⋅ 10−5 −3.59 ⋅ 10−1
Tri20 4 3 3.54 ⋅ 104 +𝟑.𝟎𝟒 ⋅ 𝟏𝟎−𝟑 −1.18 ⋅ 10−5 −1.55 ⋅ 100
Tri20 5 3 1.40 ⋅ 105 +𝟏.𝟗𝟖 ⋅ 𝟏𝟎−𝟓 −1.40 ⋅ 10−6 −6.26 ⋅ 100
18
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Table A.10 (continued)

Dataset Mesh 𝑘 ΔDOFs Δ𝐿2 Δ𝐻1 ΔT

Quad20 1 1 2.00 ⋅ 101 −6.14 ⋅ 10−2 −2.80 ⋅ 10−1 −8.80 ⋅ 10−3
Quad20 2 1 1.00 ⋅ 102 −1.47 ⋅ 10−2 −1.15 ⋅ 10−1 −5.68 ⋅ 10−2
Quad20 3 1 4.72 ⋅ 102 −4.68 ⋅ 10−3 −6.43 ⋅ 10−2 −1.25 ⋅ 10−1
Quad20 4 1 1.95 ⋅ 103 −1.11 ⋅ 10−3 −3.17 ⋅ 10−2 −5.09 ⋅ 10−1
Quad20 5 1 7.87 ⋅ 103 −2.89 ⋅ 10−4 −1.64 ⋅ 10−2 −3.54 ⋅ 100

Quad20 1 2 1.44 ⋅ 102 −6.03 ⋅ 10−3 −8.03 ⋅ 10−2 −1.82 ⋅ 10−3
Quad20 2 2 6.10 ⋅ 102 −8.00 ⋅ 10−4 −1.95 ⋅ 10−2 −9.10 ⋅ 10−3
Quad20 3 2 2.58 ⋅ 103 −8.81 ⋅ 10−5 −4.70 ⋅ 10−3 +𝟏.𝟔𝟔 ⋅ 𝟏𝟎−𝟑
Quad20 4 2 1.05 ⋅ 104 −1.13 ⋅ 10−5 −1.20 ⋅ 10−3 −8.68 ⋅ 10−1
Quad20 5 2 4.20 ⋅ 104 −1.61 ⋅ 10−6 −3.16 ⋅ 10−4 −3.47 ⋅ 100

Quad20 1 3 3.20 ⋅ 102 −8.94 ⋅ 10−4 −1.22 ⋅ 10−2 +𝟖.𝟏𝟐 ⋅ 𝟏𝟎−𝟑
Quad20 2 3 1.33 ⋅ 103 −5.00 ⋅ 10−5 −1.52 ⋅ 10−3 +𝟔.𝟑𝟗 ⋅ 𝟏𝟎−𝟐
Quad20 3 3 5.52 ⋅ 103 −2.78 ⋅ 10−6 −1.85 ⋅ 10−4 +𝟐.𝟐𝟒 ⋅ 𝟏𝟎−𝟏
Quad20 4 3 2.22 ⋅ 104 −1.90 ⋅ 10−7 −2.36 ⋅ 10−5 −8.42 ⋅ 10−1
Quad20 5 3 8.92 ⋅ 104 −1.51 ⋅ 10−8 −3.03 ⋅ 10−6 −3.23 ⋅ 100

Data availability

All the meshes presented in this paper are available for download at https://github .com /TommasoSorgente /mesh _optimization _
dataset/.
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