
05 February 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A new architecture for onboard change detection based on deep learning / Inzerillo, Gabriele; Valsesia, Diego; Magli,
Enrico; Fiengo, Aniello. - ELETTRONICO. - (2024). (Intervento presentato al  convegno 9th International Workshop on
On-Board Payload Data Compression tenutosi a Las Palmas De Gran Canaria (Esp) nel 2-4 October 2024).

Original

A new architecture for onboard change detection based on deep learning

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2995771 since: 2024-12-20T15:57:01Z

ESA



 

OBPDC 2024 
 

 
A NEW ARCHITECTURE FOR ONBOARD CHANGE DETECTION BASED ON DEEP 

LEARNING 
 

Gabriele Inzerillo(1), Diego Valsesia(1), Enrico Magli(1), Aniello Fiengo(2) 
 

(1)Politecnico di Torino 
Department of Electronics and Telecommunications, 
Corso Duca degli Abruzzi 24, 10129, Torino, Italy. 

Email: gabriele.inzerillo@polito.it, diego.valsesia@polito.it, enrico.magli@polito.it 
 

(2)European Space Agency 
European Space Research & Technology Centre (ESTEC), 

Keplerlaan 1, 2200 AG Noordwijk, The Netherlands. 
Email: aniello.fiengo@ext.esa.int 

 
 
ABSTRACT 
 
Change detection (CD) from satellite imagery is a task of paramount importance for monitoring Earth, land usage and 
disaster management. Traditionally, CD is performed at the ground segment where the long product formation pipeline 
adds significant delays between the time of acquisition and the availability to the end-user. In case of time-sensitive 
conditions, such as natural disasters, it would be desirable to perform CD directly onboard of the spacecraft, so that alerts 
could be prioritized for low-latency transmission. However, onboard CD is far from trivial and requires to address a 
number of issues, including efficient onboard storage, image registration, etc. within the constraints of onboard resources. 
In this paper, we present a framework towards building an onboard CD pipeline. In particular, the essential operations 
required by an onboard CD pipeline are efficient storage of the images acquired for a given location during multiple 
revisits, their geometric registration and, only then, the actual change detection algorithm. We seek to develop a deep-
learning (DL) approach that addresses all these issues with a single neural network model that is end-to-end optimized 
for a desired tradeoff between computational complexity, storage requirements and accuracy or resolution of change 
detection. This neural network has a modular architecture, conceptually consisting of an image encoder into a compact 
feature space for storage, an image decoder, a registration module and a change detection module. In particular, one 
wonders what is the optimal way of storing the image information for the purpose of best detecting change. We argue that 
instead of saving the images, the optimal approach is to save a compact representation generated by the neural network 
encoder with the objective of maximizing the downstream CD performance for a given bitrate constraint. In this coding-
for-machines philosophy, compression is optimized not for the visual quality of a human observer, but rather for the 
algorithm performing inference tasks, such as CD, on the compressed data. 
 
INTRODUCTION 
 
Change detection (CD) from satellite imagery plays a crucial role in a wide range of applications including environmental 
monitoring, land use analysis and disaster management. The ability to rapidly and accurately detect changes in the Earth’s 
surface can provide critical insights for decision-makers, enabling timely responses in such situations such as 
deforestation monitoring, urban expansion and natural disaster response (e.g., floods, earthquakes, forest fires etc...) [1, 
2]. Traditional approaches to CD rely on processing data at the ground segment, which introduces significant delays due 
to the long pipeline between the image acquisition and the final product's delivery to the end-user. While this delay is 
tolerable for many applications, time-sensitive scenarios such as disaster management demand low-latency solutions, 
where immediate detection and alerting could make a substantial difference in response effectiveness.  
 
To address this latency issue, performing CD directly onboard the satellite has emerged as a promising alternative [3, 4]. 
By enabling the spacecraft to autonomously process data and detect changes, it is possible to prioritize and transmit only 
critical information, reducing transmission costs and, more importantly, ensuring rapid delivery of time-sensitive alerts. 
However, onboard CD introduces a number of technical challenges. Satellites are constrained by limited computational 
power, storage, and energy resources, making it difficult to implement traditional CD pipelines onboard [5]. Key 
operations such as efficient storage, accurate geometric registration, and change detection must be re-engineered to fit 
within these constraints. 
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In recent years, deep learning (DL) approaches have revolutionized computer vision tasks, including CD. Several works 
have explored DL-based methods for CD on Earth observation data, showing promising improvements in accuracy over 
traditional techniques [6, 7, 8]. However, the majority of these methods are designed for ground-segment processing, 
where computational and storage limitations are less restrictive. The challenge of applying DL to onboard CD remains 
largely unexplored, with key questions surrounding the efficient storage and representation of data for downstream 
processing tasks. 
 
In this work, we propose a preliminary design of a deep learning-based framework to address the challenges of onboard 
CD. Specifically, we focus on designing an end-to-end optimized pipeline that encompasses efficient image storage, 
image registration and change detection, all while minimizing computational complexity and memory usage. Inspired by 
the "coding-for-machines" paradigm [9], we aim to develop a neural network architecture that compresses image data not 
for human visual consumption, but for optimal downstream inference by the CD algorithm. This approach departs from 
traditional compression schemes, instead optimizing the encoding process to maximize change detection accuracy given 
the limited onboard resources, using a deep learning compressing architecture.  Furthermore, special attention must be 
given to the development of a registration module, as satellite images captured onboard are neither co-registered nor 
orthorectified, thus, to ensure accurate change detection, a registration step is essential. Lastly, we present some 
preliminary experiments for the CD and Registration modules. 
 
METHOD  
 
In this section, we provide a general overview of the proposed DL framework, as illustrated in Fig. 1, along with a 
preliminary design of both the registration module and the change detection module. Although the overall compression 
module, which includes the blue block in Fig. 1 (i.e., block named “Feature Extractor”), has not yet been developed, we 
outline a possible design for it in the next subsections. The complete framework consists of several interconnected 
modules, which we describe in detail below. 
 

 
Fig. 1. Overall architecture and process steps of the proposed onboard CD framework. The satellite storage holds multiple 
compressed feature maps (𝑪𝒔) from the previous satellite revisit. When a new image is acquired (𝑰𝑻𝟐), the corresponding 
compressed feature map from the previous revisit (𝑭𝑻𝟏) is retrieved and decompressed. The new image is then processed 
through the feature extractor to generate the current feature map (𝑭𝑰). Both the current (𝑭𝑻𝟏) and previous (𝑭𝑻𝟐) feature 
maps are passed to the registration module, after which the change detection step is performed. Finally, 𝑭𝑰 is compressed 
(C) and stored in the satellite storage, while the old compressed feature map is discarded. 

 
Dataset and Training Images 
 
Since our ultimate goal is to perform CD directly onboard the satellite, we must train our architecture, including all three 
modules, using the raw images available onboard. We assume a Sentinel-2-like scenario, where the onboard images are 
non-orthorectified. Unfortunately, to the best of our knowledge, there are no publicly available datasets of non-
orthorectified images. Therefore, we opted to train and test part of our framework (registration) using widely available 
co-registered and orthorectified Sentinel-2 image datasets [10, 11]. To approximate the geometry of non-orthorectified 
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images, we applied geometric transformations such as affine (translation, rotation, scaling, shear) and perspective 
transformations. It is important to acknowledge that the differences between two images cannot be fully replicated by any 
transformation; however, this initial approach aims to reasonably approximate non-orthorectified images in the absence 
of real data. 
 
Feature Extraction and Compression 
 
To solve Change Detection tasks, it is crucial to keep track of past data, as we need to compare the current acquisition 
with previous ones. This means we must store images from past satellite revisits, however, given the limited onboard 
storage capacity, efficiently storing as much data as possible is essential to achieve broad coverage for our application. 
 
A plausible straightforward approach to reduce the size of the stored data is to use a feature extractor, which essentially 
functions as part of an autoencoder during the inference. The feature extractor takes an image as input and generates a 
smaller, more compact feature map. This compressed representation should retain the same, or nearly the same, amount 
of information as the original image but in a more space-efficient format. By saving this smaller feature map instead of 
the full-resolution image, we can later reconstruct the original input during the decoding phase of the training loop. 
However, this approach may still be insufficient, as significantly reducing the size of the feature maps would require a 
high downsampling factor, leading to the loss of much of the spatial information necessary for accurate registration and 
change detection. To address this, one possible approach we plan to pursue is similar to that outlined in [12]. In this 
method, beyond feature extraction using an encoder, an additional compression step is introduced. This step is optimized 
end-to-end using the following loss function: 
 

𝐿# = 𝐷 + 𝜆 ⋅ 𝑅	 (1) 
 
Here, D represents the distortion (e.g., in our training, it could be the Mean-Squared Error loss, which indicates the quality 
of the reconstructed image), R is the rate, and 𝜆 is a hyperparameter that can be manually adjusted to prioritize either the 
quality of the reconstruction or the level of data compression.   
 
In our approach, we first focus on training the compression network independently to establish a baseline for compressing 
input images. This step allows us to develop an initial model for reducing data size efficiently. However, unlike traditional 
neural networks used for image compression, where the goal is typically to reconstruct visually accurate images, our 
strategy diverges after this initial step. Once the registration and change detection modules are also trained, we proceed 
to train the entire architecture end-to-end. In this end-to-end training phase, we replace the typical image reconstruction 
loss with a loss function tailored for change detection. This means that the 'distortion' is now measured in terms of the 
CD task performance rather than image reconstruction quality. As a result, the compressed feature maps are optimized 
for machine inference, specifically, to retain the most relevant information for performing accurate change detection, 
rather than being optimized for producing visually appealing images. This "coding-for-machines" approach ensures that 
the compression process prioritizes the preservation of information critical to the CD task, allowing for more efficient 
data storage and improved performance for change detection tasks. 
 
Image Registration 
 
Image registration is a critical preprocessing step in our framework, given that it operates on non-orthorectified and non-
registered images. Effective registration is essential before performing change detection, as discrepancies in pixel 
geometry can significantly impact the accuracy of change detection. 
 
We employ an unsupervised approach for training the image registration process. Our method begins with the dataset 
provided in [10], to which we apply the two types of augmentations already mentioned: affine and perspective 
transformations, used to generate an approximate representation of non-orthorectified images. In this setup, the augmented 
image serves as the target image, while the original image represents the source image. To train the registration model, 
depicted in Fig. 2, we utilize a multiscale neural network architecture inspired by the design proposed in [12]. 
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Fig. 2. Multiscale Neural Network for Image Registration. The network operates on three different resolutions of the 
image: full, half, and quarter resolutions. At each resolution, the network predicts the parameters of the homography 
matrix, which is then used to warp the source image to align with the target image. The warped images produced at each 
resolution are used to compute the total loss. 

The network processes the original images and their downsampled versions at two additional scales (1/2 and 1/4). Each 
pair of source and target images, at all three scales, is input into the corresponding network, which learns to predict the 
corresponding homography matrices that align the source images with their respective target counterparts. The network 
is trained by minimizing the weighted sum of the mean squared errors (MSE) between each warped source image 
(transformed using the predicted homography) and its corresponding target image, facilitating accurate multiscale 
alignment. The total loss of the registration process is: 
 

𝐿$ = 𝜆% ⋅ 𝐿(𝑡%, 𝑤%) + 𝜆%/' ⋅ 𝐿3𝑡%/', 𝑤%/'4 + 𝜆%/( ⋅ 𝐿3𝑡%/(, 𝑤%/(4	 (2) 
 
Where L is the MSE loss, t and w are the target and the warped images respectively, 𝜆 is a weight parameter and the 
subscript (1, ½ and ¼) indicates the resolution. 
 
To train and evaluate our registration module, we utilized the dataset presented in [10]. However, given that this Sentinel-
2 dataset was originally designed for cloud detection tasks, it includes many images with significant cloud cover, which 
could interfere with accurate image registration. To mitigate this issue, we carefully selected a subset of images from the 
dataset that contained minimal or no cloud coverage, ensuring that the registration task remained focused on aligning 
ground features without distortion introduced by cloud obstructions. This selection allowed us to effectively train the 
model while maintaining the integrity of the registration process. 
 
Change Detection 
 
Many sophisticated change detection architectures have been proposed in the literature [13, 14], achieving state-of-the-
art performance. However, in this work, we prioritize minimizing computational complexity (in terms of FLOPS and the 
number of parameters), as our objective is to perform the task onboard with limited computational resources. To this end, 
we employ a classical U-Net architecture with early fusion and residual connections, avoiding more resource-intensive 
siamese networks which, while often yielding superior performance, come with computational overhead. Since we adopt 
a standard U-Net with early fusion, we do not delve deeply into the specifics of the architecture, as it remains consistent 
with well-established designs in the literature [6, 11, 15]. Early fusion concatenates the source and target images at the 
input stage, allowing the network to simultaneously process both images and learn feature differences directly from the 
combined input.  
 
To further enhance efficiency, we plan to explore modifications to the standard U-Net architecture. These include 
integrating low-complexity components, such as depth-wise separable convolutions, which significantly reduce the 
number of parameters and computational cost compared to standard convolutions, and efficient activations and 
normalization layers such as the ReLU6 or Swish. 
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Lastly, to train our change detection module, we utilized the Onera Satellite Change Detection Dataset (OSCD) [11]. 
Although the dataset is relatively small, consisting of 24 pairs of multispectral images (14 for training and 10 for testing), 
we chose it specifically because it was created using Sentinel-2 imagery. This allows us to maintain consistency with the 
images used in the registration training phase, ensuring that both tasks, registration and change detection, are fine-tuned 
to the characteristics of the same sensor type (Sentinel-2). Using a dataset with images that differ significantly from 
Sentinel-2 images would introduce inconsistencies in the spatial and spectral characteristics, such as resolution, band 
distribution, and noise patterns, which could degrade the performance of the change detection model and of the overall 
architecture.  
 
To mitigate the limitations of the dataset size, we employed data augmentation techniques, such as random rotations, 
flips, and small perturbations in brightness and contrast, to artificially expand the training set. This helps prevent 
overfitting and allows the model to generalize more effectively, even in the context of limited data. In the future, we plan 
to explore larger and more diverse datasets that can further enhance the robustness and accuracy of our change detection 
system. 
 
EXPERIMENTAL RESULTS 
 
In this section, we present some preliminary change detection experiments conducted using both the registration module 
and the change detection module to predict change maps. These experiments were performed under two distinct 
configurations, focusing on efficiency by utilizing only a single spectral band (i.e., Red) from the multispectral images: 
 

1) Co-Registered Image Pairs: in the first configuration, we provided the registration module with image pairs 
from the OSCD dataset that were already co-registered (i.e., using original image pairs from OSCD dataset). 
This setup served as a baseline to evaluate the performance of the change detection module in ideal conditions, 
where geometric discrepancies between the image pairs had already been resolved. 

2) Transformed Image Pairs: in the second configuration, we applied affine and perspective transformations to 
one image from each pair. The registration module was then tasked with compensating for these induced 
transformations. Once the registration was completed, the change detection module was used to predict the 
change maps. This configuration mimics real-world scenarios where images may not be perfectly aligned due to 
factors such as differences in acquisition geometry or atmospheric conditions. 
 

The primary goal of these experiments was to assess the effectiveness of our registration module in correcting for 
geometric misalignments and its impact on the overall change detection performance. By comparing the results from both 
configurations, we aim to determine the importance of accurate image registration in the change detection process, 
particularly when dealing with non-orthorectified and unregistered images.  
 
To evaluate the performance of the change detection module, we used standard metrics such as the F1-score and 
Intersection over Union (IoU), both macro-averaged across the dataset. The F1-score provides a balanced measure of 
precision and recall, while the IoU assesses the overlap between the predicted and ground-truth change maps. The results 
are presented in Table 1. 
 

Table 1. Change Detection performance comparisons. 
 

Configuration F1 IoU 
Co-Registered Pairs 53.72 46.04 
Transformed Pairs 52.29 44.95 

 
 
As we might have expected, the co-registered image pairs configuration yielded better performance in both F1-score and 
IoU compared to the transformed image pairs configuration. This suggests that even with successful registration, residual 
misalignments introduced by the transformation and subsequent compensation affect the accuracy of the change detection 
task. Nonetheless, the small performance gap between the two configurations highlights the robustness of the registration 
module in handling geometric transformations, although further improvements could be made to optimize alignment and 
subsequent change detection accuracy.  
 
It is important to note that image registration is traditionally performed under the assumption that the two scenes being 
aligned are nearly identical. In our case, however, we face the challenge of aligning images where substantial changes 
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may have occurred between acquisitions, such as the construction of new buildings, the appearance of new roads, or 
deforestation. As a result, the registration process may not be flawless, as the model may struggle to align features 
accurately when significant portions of the scene have changed or when new features are present. This limitation 
highlights a key area for future research and development. Our focus will be on improving the registration model to 
achieve more accurate alignment even in the presence of significant scene changes. Specifically, we aim to enhance the 
model's ability to identify and prioritize common features across images, rather than relying solely on predicting a 
homography matrix to account for geometric transformations.  
 
Fig. 3 presents a qualitative result of our image registration process. The target image is augmented to create the non-
registered (source) image, which we then warp to align with the target. For this specific example, the Peak Signal-to-
Noise Ratio (PSNR) between the non-registered source image and the target image is 22.83, which improves to 26.18 
after registration, indicating a significant enhancement in alignment. This improvement is also visually apparent in the 
second row of images. 
 

Fig. 3. Qualitative results of the image registration process. The top row displays the non-registered image (left), the 
registered (warped) image (center), and the reference image (right). The bottom row shows the overlay of the non-
registered image on the reference (left), the overlay of the registered image on the reference (center), and a visualization 
using a checkerboard pattern (right) to illustrate the alignment between the registered image and the target. 
 
CONCLUSIONS 
 
In this paper, we have explored the potential of onboard DL for change detection in satellite imagery, focusing on the 
need for efficient model design to address the constraints posed by limited computational resources in spaceborne 
platforms. The proposed preliminary framework is designed to meet the growing demand for real-time, onboard satellite 
data processing, thereby reducing the need for extensive downlink bandwidth and enabling more timely responses to 
detected changes. 
 
Future developments will focus on the design and implementation of the compression DL module, as well as the 
enhancement of the registration module to improve performance in cases where substantial changes exist between images. 
Additionally, we plan to conduct extensive experiments using a wider variety of datasets and operational scenarios to 
assess the generalizability and robustness of the approach across different conditions. 
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