
05 February 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A multi-service edge-AI architecture based on self-supervised learning / Magli, E; Angarano, S.; Bassetti, S.; Bianchi, T.;
Boccardo, P.; Bucci, S.; Chiaberge, M.; Inzerillo, G.; Lisi, D.; Mascetti, G.; Mergè, M.; Monaco, C.; Pasturensi, M.;
Piccinini, D.; Valsesia, D.; Zema, G.. - ELETTRONICO. - (2024), pp. 1-9. (Intervento presentato al convegno 75th
International Astronautical Congress tenutosi a Milan (Ita) nel 14-18 October 2024).

Original

A multi-service edge-AI architecture based on self-supervised learning

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2995769 since: 2025-01-10T16:09:21Z

IAF

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-B1.4.2 Page 1 of 9

IAC-24-B1.4.2

A multi-service edge-AI architecture based on self-supervised learning

E. Maglia*, S. Angaranoa, S. Bassettib, T. Bianchia, P. Boccardoa, S. Buccic, M. Chiabergea, G. Inzerilloa, D.
Lisib, G. Mascettid, M. Mergèd, C. Monacob, M. Pasturensic, D. Piccininia, D. Valsesiaa, G. Zemac

a Department of Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli
Abruzzi 24, Torino, Italy.
b Ithaca srl, Via Pier Carlo Boggio 61, Torino, Italy.
c Argotec srl, Via Cervino 52, Torino, Italy.
d Agenzia Spaziale Italiana, Via del Politecnico snc, Roma, Italy.
* Corresponding Author

Abstract

This paper presents the development of an efficient artificial intelligence (AI) methodologies for onboard satellite
image processing. The proposed system features a fast and efficient neural network designed to process radiometrically
corrected multispectral optical images directly onboard satellites. The architecture is composed of a backbone feature
extractor that generates semantically meaningful feature representations of input data, which are shared with multiple
task-specific heads for various applications, including image classification, segmentation, and object detection.
Training employs a self-supervised learning approach, significantly reducing the need for labelled data, with only small
application-specific datasets required. The flexible design allows new tasks to be added without retraining the entire
model or making major code changes. To ensure suitability for onboard use, the model is optimized for efficiency and
low energy consumption through the use of quantization techniques and efficient deep learning modules. Key
applications include cloud segmentation, fire detection, and flood detection, which demand low-latency responses for
early warning and damage assessment.
Keywords: Artificial Intelligence, Self-Supervised Learning, Multitask learning, Onboard Edge-device, Remote
Sensing

Acronyms/Abbreviations

AI Artificial Intelligence
CNN Convolutional Neural Network
DL Deep Learning
FP Floating-Point precision
INT Integer precision
IoU Intersection over Union
NLL Negative Log Likelihood
SL Supervised Learning
SSL Self-Supervised Learning

1. Introduction

Conventional satellite imaging systems typically
involve capturing data in space and then transmitting it to
ground stations for subsequent processing. This
workflow often results in significant delays, sometimes
extending to several days, before the final processed
images are made available to users. Such delays are
especially problematic in urgent scenarios, such as
natural disasters, where immediate access to data is
critical. To mitigate this issue, a new approach has gained
traction: shifting some of the image processing workload
onboard the satellite itself. By processing data in real
time, satellites can detect critical events early and send
prioritized alerts, ensuring that essential information
reaches ground stations faster.

This evolving trend, known as Edge-AI, capitalizes
on recent advancements in artificial intelligence,
particularly deep learning, to enable advanced image
analysis directly in orbit. Edge-AI allows satellites to
process imagery immediately after it is captured, filtering
out unimportant data, such as cloud-covered images, and
detecting high-priority events, like floods or fires, with
minimal delay. However, the adoption of Edge-AI has
been hindered by several challenges, including the
difficulty of deploying machine learning models on field-
programmable gate arrays (FPGAs), high power
consumption, and the limited availability of labelled data
for training purposes.

The objective of this paper is to establish a framework
for developing an Edge-AI system that can manage
multiple onboard tasks while addressing the existing
technological barriers. The proposed system revolves
around a deep neural network specifically designed for
satellites carrying multispectral sensors. The central
component of this system is a feature extractor, which
generates semantic representations of the captured
multispectral imagery that can be utilized by various
onboard applications. This extractor is trained using a
self-supervised learning (SSL) technique, enabling it to
generate general-purpose features without requiring large
quantities of labelled data. Individual application-
specific heads are developed for specific tasks and utilize

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-B1.4.2 Page 2 of 9

these shared features, minimizing both computational
demands and the need for extensive annotated datasets.
Additionally, multitasking can improve overall system
efficiency; for example, cloud detection can be used to
optimize data transmission by excluding regions with
many clouds in order to adjust compression algorithms
for better data management and a faster data
transmission.

While deep learning significantly enhances detection
capabilities in such applications, designing an AI system
for onboard real-time multitasking requires careful
consideration of satellite platform constraints, including
limited power and processing resources. This paper
proposes the development of such an architecture,
emphasizing a lightweight neural network architecture
tailored for feature extraction from multispectral images
with varying spatial resolutions. The feature extractor is
trained in a self-supervised manner using large volumes
of unlabelled data. These extracted features are made
available to third-party developers, who can design task-
specific application heads, such as for image
segmentation or classification, each running
independently of the backbone architecture. This ensures
that multiple applications can operate concurrently
without overwhelming the onboard computational
resources.

Furthermore, the modular design of the system
supports in-flight updates and the gradual integration of
new tasks, thereby improving the satellite’s adaptability
and long-term efficiency. This paper presents an
implementation of the whole architecture, comprising the
feature extractor and three specific application heads,
with results demonstrating its effectiveness in three
different tasks: cloud segmentation, flood segmentation
and fire segmentation, highlighting the potential of this
architecture for onboard satellite image processing. To
perform the latter tasks, we selected five spectral bands
for trainings, Red, Green, Blue, Near-Infrared (NIR), and
Short-Wave Infrared (SWIR), as they offer a strong
balance between informational richness and
computational efficiency. These bands provide sufficient
spectral diversity to capture key features for our tasks
while maintaining efficiency, as we only use five
channels rather than the dozens or hundreds typically
found in hyperspectral imagery.

1.1 Onboard AI

The integration of artificial intelligence (AI) directly
on-board satellites is deeply changing satellite
observation of the Earth, enabling real-time data
processing and decision-making capabilities. This marks
a significant departure from the traditional model where
data is transmitted to ground stations for post-processing,
resulting in delays that can be harmful in critical
situations such as natural disasters or environmental
monitoring. However, while on board artificial

intelligence has great potential, it presents a number of
technical challenges. Zhang et al. [1] outline several key
challenges, including the difficulty of efficiently
integrating AI models with onboard hardware, managing
the power consumption of these systems.

Benchmarking studies, such as the work by Ziaja et
al. [2], have further underscored the difficulties in
deploying deep learning models on space-qualified
hardware. Their study systematically evaluated the
performance of various neural network architectures on
onboard space platforms, evaluating the trade-offs
between model complexity and onboard resource
constraints.

A key milestone in this field was the ESA ϕ-sat-1
mission, which demonstrated the feasibility of using deep
learning algorithms for onboard processing as shown in
[3]. In this mission, a convolutional neural network was
deployed to filter out cloud-covered images directly in
space, marking one of the first successful
implementations of a deep neural network on a satellite
platform.

1.2 Deep Learning models

Deep learning has emerged as a powerful technology
in image processing and computer vision, enabling
significant advances in tasks such as object detection,
image classification, segmentation and more. Unlike
traditional machine learning techniques, which often rely
on hand-created features and domain-specific
knowledge, deep learning models automatically learn
hierarchical representations of data directly from raw
inputs, making them highly effective in visual tasks.

At the core of deep learning’s success in image
processing are convolutional neural networks (CNNs),
which have become the standard architecture for many
computer vision tasks. CNNs are designed to exploit the
spatial structure of images, using convolutional layers to
capture patterns such as edges, textures, and higher-level
features. This architecture has proven extremely effective
in large-scale datasets, such as ImageNet, where deep
learning models have consistently surpassed traditional
methods in classification [4], segmentation [5] and object
detection [6] tasks, just to name a few. This breakthrough
ignited widespread adoption of CNNs in various
domains, from medical imaging to remote sensing, where
accurate and efficient image analysis is fundamental.

1.3 Self-Supervised Learning

Self-supervised learning (SSL) is a paradigm in
machine learning where models learn to predict highly
informative representation of the data from the images
without the need of labelled ground truth, effectively
leveraging unlabelled data for training. Unlike traditional
supervised learning (SL), which requires labelled
examples for each training instance, SSL utilizes the
inherent structure in the data itself to learn rich features.

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-B1.4.2 Page 3 of 9

This approach has proven especially useful in domains
where labelled data is scarce or expensive to obtain, such
as in image processing and computer vision.

Among the various self-supervised paradigms, one of
the most successful is contrastive learning. Contrastive
learning [7, 8] is a self-supervised learning technique that
focuses on learning representations by distinguishing
between similar and dissimilar data points. The core idea
is to train models to bring similar examples (positive
pairs) closer together in the feature space while pushing
dissimilar examples (negative pairs) farther apart.

2. Material and methods

In this section we present a general overview of the
proposed AI system, along with the design of the feature
extractor and the application-specific heads.
Furthermore, we present the dataset we specifically
created and used for the trainings of both feature
extractor and application heads.

2.1 Datasets

To train our AI architecture, we utilized four different
datasets, all containing multispectral images captured by
the European Space Agency's Sentinel-2 mission:

• A subset of approximately 40,000 images
from the majorTom dataset [9] was used for
self-supervised learning to train the
backbone feature extractor.

• The CloudSen12 [10] was employed for
supervised training of the application head
dedicated to cloud segmentation. This
dataset contains around 49.000 images with
corresponding segmentation masks
indicating the presence of cloudy or clear
pixels (distinguishing between “thin cloud”,
“thick clouds”, “cloud shadow” and
“background” classes) and was specifically
created as an extensive benchmark for cloud
cover segmentation tasks.

• The datasets for trainings of the application
heads for flood and fire segmentation were
specifically created by us for these two
tasks. For the flood segmentation dataset, for
each image, we created segmentation masks
with four possible values: “no event”,
“floods”, “flood trace”, and “permanent
water”. Similarly, for the fire segmentation
dataset, we generated segmentation masks
for each image with three possible values:
“no event”, “burnt area”, and “active flame”.
To generate the datasets, shapefiles obtained
from the Rapid Mapping activations of the
Copernicus Emergency Management
Service were also used; these shapefiles
were refined automatically and manually to
meet our needs. [CEMS]

2.2 AI architecture

The overall architecture of our AI system is illustrated
in Figure 1 and consists of two primary components: a
backbone feature extractor and multiple application
heads. This modular design enables the use of various
independent application heads for different tasks, with
the flexibility to add more as needed. The backbone
serves as a universal feature extractor, trained using a
self-supervised learning approach and developed
independently of specific application heads. Its primary
requirement is to generate features that are broadly
applicable across a range of tasks. Once extracted, these
features are passed to task-specific heads, smaller neural
networks tailored to individual tasks and then fine-tuned
on datasets that are specific for the task they are designed
to solve. To maintain the reusability of the extracted
features for all tasks, application heads are restricted
from fine-tuning the backbone itself.

Fig. 1. The backbone feature extractor creates

meaningful feature representations that are shared with
the three application heads.

The input to the architecture, as shown in Figure 1, is

a raw Sentinel-2’s Level-1C image received directly
from the multispectral sensor. These images have
undergone some radiometric and geometric corrections,
and an orthorectification process has been applied. It is
important to note that once the backbone has extracted
the features, they are simultaneously passed to the
application heads, which process these representations in
parallel. This allows the system to perform the n (three,
for our specific demonstration) tasks concurrently,
effectively reducing latency.

Moreover, to meet the stringent requirements of low
latency and computational efficiency for effective
onboard processing, we applied a post-training
quantization process, reducing the model's weight
precision from 32-bit floating point (FP) to 8-bit integer
(INT). This approach minimizes the model's complexity,
reducing the memory occupation, with only a minimal
loss in accuracy, optimizing it for deployment on
resource-constrained hardware. The shift to INT also

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-B1.4.2 Page 4 of 9

allows for faster inference times, making the model
suitable for real-time operations in space environments.

In the following subsections we are now going into
details and explain each module of our architecture.

2.2.1 Backbone Feature Extractor and SSL Training

As mentioned in Section 2, the backbone feature
extractor has the goal of generating feature
representations that must be shared among all application
heads. Sharing the feature extractor across multiple
information extraction applications is a highly effective
concept for enabling the execution of several tasks within
the same architecture. The most computationally
intensive part is performed only once, significantly
improving efficiency. To achieve this, the feature
extractor must be trained independently of any specific
application, as it needs to be adaptable to a wide range of
tasks. For this purpose, we trained the feature extractor
using self-supervised learning techniques, and more
specifically on contrastive learning. In contrast to
conventional supervised training, self-supervised
techniques do not rely on explicit annotations and labels
from the training dataset.

To perform the self-supervised training of our feature
extractor, we employed the contrastive learning method
BYOL [8]. Contrastive learning is a self-supervised
approach that aims to learn useful representations by
contrasting positive pairs (i.e., similar data points, such
as different views of the same image) against negative
pairs (i.e., dissimilar data points). Typically, these
architectures utilize two neural networks, an online
network and a target network, to align their output
representations effectively.

The architecture of our backbone and the training
process using the SSL framework are illustrated in Figure
2. As depicted in the figure, the input to the SSL
architecture consists of two distinct augmentations of the
same base image. These augmentations play a crucial
role, as they introduce variations of the same input that
both the online and target networks process. Despite
receiving different augmented versions, the networks are
trained to produce similar feature representations.
Specifically, for the online network (upper branch), the
input image is subjected solely to spatial augmentations
(e.g., random crops, horizontal and vertical flips). In
contrast, the target network (lower branch) receives the
same source image augmented with both spatial and color
transformations (e.g., solarization, color jittering).

Then, in order to learn informative feature
representations of the input images, a global contrastive
loss is computed by aligning the feature representations
output by the global projector and global predictor of the
online network with those from the target network. The
goal is to minimize the difference between the predicted
output from the online network and the projected output
from the target network.

It is important to highlight that most state-of-the-art
SSL methods, including BYOL, are primarily designed
for image-level tasks, such as classification. However, in
this work, we aim to pre-train a model that can effectively
support a variety of application heads, including those
responsible for pixel-level tasks like semantic
segmentation and object detection. To achieve this, we
introduced a Local Contrastive Loss inspired by [11] into
our SSL training. This loss is specifically designed to
better capture, and model, dense features, which are
crucial in solving fine-grained tasks.

The overall SSL loss is computed as:

𝐿 = 𝜆𝐿!" + (1 − 𝜆)𝐿#"

Where 𝜆 is a trade-off parameter to balance between
local contrastive loss (𝐿!") and the classical global
contrastive loss (𝐿#").

The local contrastive loss is essentially a Negative
Log-Likelihood (NLL) to capture fine-grained, pixel-
level correspondences between two differently
augmented views of the same input image. To do so, first,
we define a set of key points in one augmented image and
then map these points to their corresponding locations in
the second image based on the known spatial
transformations. These key points in the first image (i.e.,
𝑝$) are matched with corresponding points in the second
image (i.e., 𝑝%$). For each key point in the first image, the
model computes the similarity between its feature
representation and the feature representation of the
corresponding point in the second image. This is done
using a dense correspondence map, where the similarity
score between points is computed. Lastly, The NLL
quantifies how likely the corresponding points (i.e., 𝑝$
and 𝑝%$) are to match in terms of their feature similarity.
Specifically, it measures how well the feature
representation of a point in the first image aligns with the
feature representation of the corresponding point in the
second image, compared to other possible points in the
second image.

On the other hand, the global contrastive loss uses
cosine similarity to measure how well the global
representations of the two augmented views align. We
apply the cosine similarity to the two features (tensors)
outputted from the online and target network.

Regarding the architecture of the backbone feature
extractor, given that the objective is to develop a model
capable of running within the constraints of a satellite
payload, we opted for a pre-existing SOTA efficient and
low-complexity architecture [12]. Nevertheless, it is
worth noting that the choice of this model as the
backbone is not restrictive, as the SSL training procedure,
as well as the entire framework, would remain unchanged
with any other neural network capable of extracting
image features.

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-B1.4.2 Page 5 of 9

2.2.2 Application Heads
To evaluate our AI system, we tested the entire model

on the three tasks described in Section 2 (“Materials and
Methods”). Consequently, we required three parallel,
task-specific heads. Since all the tasks are essentially
segmentation tasks (clouds, fires, and floods), we
designed a single application head specifically for
segmentation. As is shown in Figure 3, the segmentation
head is a neural network that takes in input three different
features maps, with different resolution, extracted by the
feature extractor, and aggregate them before performing
a set of upsampling and lightweight convolution to
finally obtain the segmentation map.

Each head, tailored to specific tasks, only requires
fine-tuning on datasets pertinent to its particular function.
When introducing a new task, the process involves
simply creating and fine-tuning an additional application
head. Importantly, training the entire architecture,
including both the backbone and the application head, is
avoided to maintain the modularity and generality of the
architecture. Instead, by selectively fine-tuning only the
application heads while keeping the backbone’s weights
frozen (i.e., unchanged, without any fine-tuning on any
specific dataset), the system’s modularity is maintained,
allowing for simultaneous inference of multiple tasks by
different heads.

3. Results

We conducted a series of extensive experiments with
the proposed architecture. The tests were performed by
first training the backbone using the SSL approach
explained in Subsection 2.2.1 (“Backbone Feature
Extractor and SSL Training”). Then, the three
segmentation heads for clouds, fires and floods
segmentation have been trained, maintaining the feature
extractor’s weights frozen (i.e., without updating them),
in a classical supervised way, thus using the labels of the
three datasets.

Table 1 shows a summary of the computational
complexity of each component of the proposed
architecture, computed by forwarding an input image of
shape 512 × 512 × 5 . It is easily noticed that the
bottleneck of our architecture is found, as expected, in the
backbone feature extractor, where the computational
complexity is most concentrated, while the segmentation
head design is significantly more efficient, with a small
number of floating-point operations (FLOPs) and
parameters compared to the backbone.

Fig. 2. SSL training of the backbone feature extractor using both global and local contrastive loss. The input
images are obtained by applying to the same source image two different sets of augmentations: spatial
transformations (upper branch) and spatial and color transformations (lower branch).

Fig. 3. Architecture of the segmentation head which
takes in input multi-resolution features. The shape of the
different features is marked in squared brackets; F
identify the number of channels computed by the feature
extractor, C the number of output classes in the
segmentation map, H and W are the height and width of
the image/features, respectively.

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-B1.4.2 Page 6 of 9

To evaluate the performance of our model across the
three tasks, cloud segmentation, fire segmentation, and
flood segmentation, we adopted the Mean Intersection
over Union (mIoU) metric. Since all of these tasks are
fundamentally segmentation problems, mIoU is
particularly well-suited as it is one of the most widely
used metrics for assessing the quality of predicted
segmentations in image analysis. The mIoU is calculated
by first determining the Intersection over Union (IoU) for
each class in the segmentation task. The IoU measures
the overlap between the predicted segmentation and the
ground truth for each class, where the intersection is the
common area between the predicted and ground truth
masks, and the union is the total area covered by both the
predicted and ground truth masks combined. The mIoU
extends this concept by averaging the IoU values across
all the classes, providing a single performance measure.

Mathematically, for N classes, the mIoU is expressed
as:

𝑚𝐼𝑜𝑈 =
1
𝑁2𝜔& ⋅ 5

𝑃& ∩ 𝐺&
𝑃& ∪ 𝐺&

5
'

&()

Where 𝑃& is the predicted set of classes for class i, 𝐺&

is the ground truth set of pixels for class i, and 𝜔& is the
weight assigned to class i, based on the proportion of
pixels in the ground truth for that class.

Table 1. Computational complexity of each component
of the proposed Architecture.

 FLOPs Params
Backbone Feature
Extractor

4.50 ⋅ 10* 9.55 ⋅ 10+

Segmentation Head 187 ⋅ 10+ 402 ⋅ 10,

The mIoU metric is particularly advantageous in our
case since it balances the contributions of all classes in
the segmentation task, ensuring that performance is not
disproportionately affected by classes that occupy larger
areas (e.g., background), furthermore, using the weight
factor 𝜔 ensures that larger classes (in terms of pixels)
have a proportionally higher weight in the final mIoU
calculation. By using mIoU as our evaluation metric, we
can comprehensively assess how well our model
performs across different segmentation tasks and ensure
a fair comparison of its efficacy on cloud, fire, and flood
segmentation tasks. This metric also allows for easy
interpretability: a value closer to 1 indicates a higher
degree of overlap between the predicted and true
segmentation, whereas a value closer to 0 indicates poor
overlap, making it a clear indicator of model
performance.

In the following subsections we discuss in details the
evaluation setting and the results obtained for each of the

three tasks. As a term of comparison, we evaluate or
architecture under two configurations:

• SSL: the backbone feature extractor is
pretrained using the aforementioned SSL
approach, after which its weights are frozen.
The three task-specific heads are then fine-
tuned independently for each task. This
configuration allows for parallel inference
across all three heads.

• SL: the backbone feature extractor and a
single segmentation head are treated as one
single network and trained using a classical
supervised learning (SL) approach. In this
setup, parallel inference is not possible;
only one task can be addressed at a time.
However, the backbone is fine-tuned
specifically for that task, producing task-
specific features rather than general features
shared across multiple tasks.

3.1. Clouds Segmentation

To evaluate our architecture on the cloud
segmentation task, we utilized only the high-quality
images (i.e., images with a corresponding high-quality
segmentation mask as ground truth) from the
CloudSen12 dataset [10], specifically those that were
manually labelled. We excluded the low-quality images,
as they are either automatically annotated or contain
labelling inaccuracies, which could introduce noise and
negatively impact the model's training and evaluation
process. By focusing on the high-quality subset, we
ensured more reliable ground truth data, allowing for a
more accurate assessment of the model's segmentation
performance.

Moreover, since there is essentially no difference
between “thin clouds” and “thick clouds” classes, we
aggregated the two classes in one, resulting in a 3-classes
dataset (“Clouds”, “Clouds Shadow”, “Background”).

Table 2 presents quantitative performance
comparisons for the cloud segmentation task using both
the SSL and SL configurations. As anticipated, the SL
architecture exhibits superior performance since both the
backbone feature extractor and the segmentation head are
specifically trained and fine-tuned for the cloud
segmentation task. However, this highest performance
comes at a cost: it precludes the ability to perform other
tasks in parallel, strongly increasing latency in the
multitask approach. In Figure 4 (first column) are
reported the confusion matrices computed for the cloud
segmentation task.

For cloud segmentation, the SSL model performs
reasonably well in detecting the background (47.48%),
but shows notable confusion between clouds (6.5%) and
cloud shadows (2.95%). Cloud shadow detection in the
SSL model is relatively weak, with significant overlap
with the cloud and background classes. In contrast, the

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-B1.4.2 Page 7 of 9

SL model exhibits an improved performance, with
background detection at 49.01%. Furthermore, cloud
shadows are better recognized (6.72%) with reduced
confusion. The better performance of the SL model in
this task can be attributed to the direct supervision
provided during training, which likely allows the model
to learn more precise boundary definitions between
clouds, shadows, and background, minimizing
ambiguity.

Table 2. Clouds Segmentation Performance Comparison.

Configuration mIoU
SSL 70.65
SL 82.00

3.2 Floods Segmentation

The dataset used for flood segmentation, as detailed
in Subsection 2.1 (“Datasets”), initially included four
distinct classes: “no event,” “floods,” “floods trace,” and
“permanent water.” However, differentiating between
flood water and permanent water using multispectral
imagery proved to be extremely challenging, if not nearly
impossible. Consequently, we opted to aggregate these
two classes into a single “water” class to simplify the
segmentation task and improve the model's performance.
Globally, the class distribution of pixels after the merge
of the two water classes is as follows:

• No event: 75.12%.
• Water: 21.45%.
• Floods Trace: 3.43%.

We used 14805 images for the training process of the
application heads and 4643 images for testing.

Table 3 presents quantitative performance
comparisons for the floods segmentation task using both
the SSL and SL configurations.

Table 3. Floods Segmentation Performance Comparison.

Configuration mIoU
SSL 91.83
SL 92.96

In Figure 4 (second column) are reported the

confusion matrices computed for the floods segmentation
task. In Figure 4 (second column) are reported the
confusion matrices computed for the floods
segmentation task.

In the flood segmentation task, the SSL model shows
strong performance in detecting the "no event" class
(74.69%) but struggles with water detection, achieving
20.72% and significant confusion with the "no event"
class (0.64%). Flood trace detection is notably weak at
2.53%, indicating that the model struggles to distinguish

flood traces from other classes. The SL model offers a
slight improvement, maintaining high accuracy for the
"no event" class (74.53%) and increasing water detection
to 21.06%. Flood trace detection, however, remains low
at 2.09%. The marginal improvement in the SL model's
performance could be due to the availability of labelled
data that helps the model differentiate subtle features of
water and flood traces, although the intrinsic complexity
of flood patterns still poses a challenge.

3.3 Fires Segmentation

For the fire segmentation task, we utilized the dataset
in its original form, without any aggregation of classes or
modifications. However, it is crucial to highlight the
significant class imbalance present in this dataset:

• No event: 80.53%.
• Burnt area: 19.43%.
• Active flames: 0.04%.

This imbalance arises because it is extremely rare to
capture remote-sensed images directly over areas with
active flames. Additionally, due to their intrinsic nature,
accurately recognizing and labelling active flames is
challenging, leading to their minimal representation in
Sentinel-2 imagery.

We used 14876 images for the training process and
4233 images for testing.

Table 4 presents quantitative performance
comparisons for the cloud segmentation task using both
the SSL and SL configurations. In Figure 4 (third
column) are reported the confusion matrices computed
for the fires segmentation task. As shown from the
matrices, the SSL model performs well in classifying the
"no event" class (76.2%) but shows confusion with the
burnt area class (4.32%). Burnt area detection reaches
13.44%, though much of it is misclassified as "no event."
The model is almost entirely ineffective at detecting
active flames, with an accuracy of just 0.01%. The SL
model slightly improves performance, with a "no event"
detection of 76.89% and a burnt area classification
accuracy rising to 17.53%. However, active flame
detection remains extremely poor (0.01%). The difficulty
that both models face in distinguishing burned areas and
active flames certainly stems from the visual similarities
between these features and the background, as well as the
challenge of capturing small regions of dynamic flames,
which are extremely rare in the dataset, as discussed at
the beginning of this subsection; this scarcity of features
related to active flames is amply visible by noting how
only 0.04% of the pixels in the entire dataset contain
active flames.

It is also plausible that during the SSL training of the
backbone feature extractor, very few images, if any,
contain active flames inside it, thus making it difficult to
learn semantically representative features of the
phenomenon that, even in the case of SL configuration is
extremely difficult to detect correctly.

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-B1.4.2 Page 8 of 9

Table 4. Fires Segmentation Performance Comparison.

Configuration mIoU
SSL 81.93
SL 89.91

4. Discussion

Looking at the results presented in the previous
section we notice how, in general, the SL generally
model performs better than the SSL model across all
tasks, particularly in the detection of clouds and burnt
areas. The primary reason for this improvement, how we
might expect, is the presence of labelled data in the SL
configuration, which enables the model to learn clearer
class distinctions during the end-to-end training of the
whole architecture. In contrast, the SSL model, lacking
explicit supervision (except for the small finetune of the
task-specific heads), struggles with overlapping or
visually ambiguous features, leading to more confusion
between classes. However, neither model performs
optimally in detecting smaller or more complex classes,
such as flood traces or active flames, which suggests that
both configurations could benefit from more advanced
techniques or, even better, by training on datasets that
better represent these features.

However, it is worth noting that, even though the SSL
configuration performs slightly worse than the SL in
terms of segmentation accuracy, it successfully addresses
our first objective: performing all of the three tasks with
overall high accuracy while reducing the computational
complexity. The SSL model allows for parallel inference,
enabling the simultaneous resolution of all three tasks

(clouds, floods, and fires segmentation), this parallel
approach offers a significant advantage in terms of
efficiency, as it minimizes the need for sequential
processing.

In Table 5, we provide an analysis of the latencies for
computing the three tasks using both configurations
(quantized, INT8 precision) on a 7W low-power edge-
device with an accelerator specifically tailored for DL
models, highlighting how the SSL setup offers reduced
latency. Additionally, we present a comprehensive
comparison of the energy-latency-quality trade-off
demonstrating that while the SL configuration slightly
edges out in quality, the SSL model excels in energy
efficiency and latency. The SSL configuration maintains
a stable latency even when adding a finite number of
task-specific heads, this is because the tasks are executed
in parallel, allowing the system to handle multiple tasks
simultaneously without a significant increase in
processing time. On the other hand, in the SL
configuration, latency increases linearly with the addition
of task-specific heads. Each time a new head is added, it
must be executed sequentially, leading to two main
drawbacks: (1) increased latency due to the serial
execution of tasks and (2) higher memory consumption
on board, as each task requires its own model instance
(backbone + head). This creates inefficiencies,
particularly in systems with limited computational
resources, where managing multiple models
simultaneously can lead to performance bottlenecks.
Therefore, while the SL model might offer slight
improvements in accuracy, the SSL configuration proves
more scalable and efficient, especially when dealing with
multiple tasks in real-time applications.

Fig. 4. Confusion matrices of segmentation tasks reporting the absolute percentage value of true and predicted
classes. Columns of two matrices from left to right indicates: clouds segmentation, floods segmentation and fires
segmentation. Rows of matrices from top to bottom indicates: SSL configuration, SL configuration.

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24-B1.4.2 Page 9 of 9

Table 5. Quality metric and latency comparisons in
performing the three segmentation tasks.

Configuration mIoU
(avg on all tasks)

Latency

SSL 81.47 37.47ms
SL 88.29 114.41ms

6. Conclusions

We presented the design of an onboard Edge-AI
system capable of performing inference of multiple tasks
in parallel, demonstrating its potential through three
segmentation tasks, two of which were tested on custom
novel datasets. The combination of our self-supervised
learning technique and a modular design enables the
creation of an efficient system that can address complex
tasks with low latency and minimal computational
demands. The ability to run multiple tasks
simultaneously highlights the advantage of the SSL
configuration, particularly in resource-constrained
environments where parallel processing is essential.
However, further research is required to refine the self-
supervised training strategy to ensure that the SSL model
achieves performance levels comparable to the SL
configuration, in terms of quality metrics such as the
mIoU.

Acknowledgements
This study was partially funded and supervised by the
Italian Space Agency in the framework of the Research
Day “Giornate della Ricerca Spaziale” initiative,
through ASI contract N. 2023-23-U.0, within the
programme on “Analisi dati e immagini”.

References
[1] B. Zhang, Y. Wu, B. Zhao, J. Chanussot, D. Hong, J.

Yao, and L. Gao, “Progress and challenges in
intelligent remote sensing satellite systems,” IEEE
Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 15, pp. 1814–
1822, 2022.

[2] M. Ziaja, P. Bosowski, M. Myller, G. Gajoch, M.
Gumiela, J. Protich, K. Borda, D. Jayaraman, R.
Dividino, and J. Nalepa, “Benchmarking deep
learning for on-board space applications,” Remote
Sensing, vol. 13, no. 19, p. 3981, 2021.

[3] G. Giuffrida, L. Fanucci, G. Meoni, M. Batiˇc, L.
Buckley, A. Dunne, C. van Dijk, M. Esposito, J.
Hefele, N. Vercruyssen et al., “The ϕ-sat-1 mission:

The first on-board deep neural network demonstrator
for satellite earth observation,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 60, pp. 1–14,
2021.

[4] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E.
Hinton, "Imagenet classification with deep
convolutional neural networks." Advances in neural
information processing systems 25, 2012.

[5] Long, J., Shelhamer, E., & Darrell, T. Fully
convolutional networks for semantic segmentation.
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 3431-3440,
2015.

[6] R. Girshick, J. Donahue, T. Darrell and J. Malik,
"Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation," 2014 IEEE
Conference on Computer Vision and Pattern
Recognition, 2014.

[7] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A
simple framework for contrastive learning of visual
representations,” International conference on
machine learning. PMLR, 2020.

[8] J.-B. Grill, F. Strub, F. Altch´e, C. Tallec, P. H.
Richemond, E. Buchatskaya, C. Doersch, B. A. Pires,
Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R.
Munos, and M. Valko, “Bootstrap your own latent: A
new approach to self-supervised learning,” Neural
Information Processing Systems, 2020.

[9] F. Alistair and M. Czerkawski. "Major TOM:
Expandable Datasets for Earth Observation." arXiv
preprint arXiv:2402.12095 , 2024.

[10] Aybar, C., Ysuhuaylas, L., Loja, J. et al.,
“CloudSEN12, a global dataset for semantic
understanding of cloud and cloud shadow in Sentinel-
2.” Sci Data 9, 2022.

[11] I. Ashraful, et al. "Self-supervised learning with
local contrastive loss for detection and semantic
segmentation." Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision,
2023.

[12] Y. Tang, K. Han, J. Guo, C. Xu, C. Xu, and Y.
Wang, “Ghostnetv2: enhance cheap operation with
long-range attention,” Advances in Neural
Information Processing Systems, vol. 35, pp. 9969–
9982, 2022.

[CEMS] Copernicus Emergency Management Service,
“Copernicus Emergency Management Service -
Mapping”, 2023.
https://emergency.copernicus.eu/mapping/

