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Abstract 

This paper presents the development of an efficient artificial intelligence (AI) methodologies for onboard satellite 
image processing. The proposed system features a fast and efficient neural network designed to process radiometrically 
corrected multispectral optical images directly onboard satellites. The architecture is composed of a backbone feature 
extractor that generates semantically meaningful feature representations of input data, which are shared with multiple 
task-specific heads for various applications, including image classification, segmentation, and object detection. 
Training employs a self-supervised learning approach, significantly reducing the need for labelled data, with only small 
application-specific datasets required. The flexible design allows new tasks to be added without retraining the entire 
model or making major code changes. To ensure suitability for onboard use, the model is optimized for efficiency and 
low energy consumption through the use of quantization techniques and efficient deep learning modules. Key 
applications include cloud segmentation, fire detection, and flood detection, which demand low-latency responses for 
early warning and damage assessment. 
Keywords: Artificial Intelligence, Self-Supervised Learning, Multitask learning, Onboard Edge-device, Remote 
Sensing 
 
Acronyms/Abbreviations 

AI Artificial Intelligence 
CNN Convolutional Neural Network 
DL Deep Learning 
FP Floating-Point precision 
INT Integer precision 
IoU Intersection over Union 
NLL Negative Log Likelihood 
SL Supervised Learning 
SSL Self-Supervised Learning 

 
1. Introduction 

Conventional satellite imaging systems typically 
involve capturing data in space and then transmitting it to 
ground stations for subsequent processing. This 
workflow often results in significant delays, sometimes 
extending to several days, before the final processed 
images are made available to users. Such delays are 
especially problematic in urgent scenarios, such as 
natural disasters, where immediate access to data is 
critical. To mitigate this issue, a new approach has gained 
traction: shifting some of the image processing workload 
onboard the satellite itself. By processing data in real 
time, satellites can detect critical events early and send 
prioritized alerts, ensuring that essential information 
reaches ground stations faster. 

This evolving trend, known as Edge-AI, capitalizes 
on recent advancements in artificial intelligence, 
particularly deep learning, to enable advanced image 
analysis directly in orbit. Edge-AI allows satellites to 
process imagery immediately after it is captured, filtering 
out unimportant data, such as cloud-covered images, and 
detecting high-priority events, like floods or fires, with 
minimal delay. However, the adoption of Edge-AI has 
been hindered by several challenges, including the 
difficulty of deploying machine learning models on field-
programmable gate arrays (FPGAs), high power 
consumption, and the limited availability of labelled data 
for training purposes. 

The objective of this paper is to establish a framework 
for developing an Edge-AI system that can manage 
multiple onboard tasks while addressing the existing 
technological barriers. The proposed system revolves 
around a deep neural network specifically designed for 
satellites carrying multispectral sensors. The central 
component of this system is a feature extractor, which 
generates semantic representations of the captured 
multispectral imagery that can be utilized by various 
onboard applications. This extractor is trained using a 
self-supervised learning (SSL) technique, enabling it to 
generate general-purpose features without requiring large 
quantities of labelled data. Individual application-
specific heads are developed for specific tasks and utilize 
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these shared features, minimizing both computational 
demands and the need for extensive annotated datasets. 
Additionally, multitasking can improve overall system 
efficiency; for example, cloud detection can be used to 
optimize data transmission by excluding regions with 
many clouds in order to adjust compression algorithms 
for better data management and a faster data 
transmission. 

While deep learning significantly enhances detection 
capabilities in such applications, designing an AI system 
for onboard real-time multitasking requires careful 
consideration of satellite platform constraints, including 
limited power and processing resources. This paper 
proposes the development of such an architecture, 
emphasizing a lightweight neural network architecture 
tailored for feature extraction from multispectral images 
with varying spatial resolutions. The feature extractor is 
trained in a self-supervised manner using large volumes 
of unlabelled data. These extracted features are made 
available to third-party developers, who can design task-
specific application heads, such as for image 
segmentation or classification, each running 
independently of the backbone architecture. This ensures 
that multiple applications can operate concurrently 
without overwhelming the onboard computational 
resources. 

Furthermore, the modular design of the system 
supports in-flight updates and the gradual integration of 
new tasks, thereby improving the satellite’s adaptability 
and long-term efficiency. This paper presents an 
implementation of the whole architecture, comprising the 
feature extractor and three specific application heads, 
with results demonstrating its effectiveness in three 
different tasks: cloud segmentation, flood segmentation 
and fire segmentation, highlighting the potential of this 
architecture for onboard satellite image processing. To 
perform the latter tasks, we selected five spectral bands 
for trainings, Red, Green, Blue, Near-Infrared (NIR), and 
Short-Wave Infrared (SWIR), as they offer a strong 
balance between informational richness and 
computational efficiency. These bands provide sufficient 
spectral diversity to capture key features for our tasks 
while maintaining efficiency, as we only use five 
channels rather than the dozens or hundreds typically 
found in hyperspectral imagery. 
 
1.1 Onboard AI 

The integration of artificial intelligence (AI) directly 
on-board satellites is deeply changing satellite 
observation of the Earth, enabling real-time data 
processing and decision-making capabilities. This marks 
a significant departure from the traditional model where 
data is transmitted to ground stations for post-processing, 
resulting in delays that can be harmful in critical 
situations such as natural disasters or environmental 
monitoring. However, while on board artificial 

intelligence has great potential, it presents a number of 
technical challenges. Zhang et al. [1] outline several key 
challenges, including the difficulty of efficiently 
integrating AI models with onboard hardware, managing 
the power consumption of these systems.  

Benchmarking studies, such as the work by Ziaja et 
al. [2], have further underscored the difficulties in 
deploying deep learning models on space-qualified 
hardware. Their study systematically evaluated the 
performance of various neural network architectures on 
onboard space platforms, evaluating the trade-offs 
between model complexity and onboard resource 
constraints. 

A key milestone in this field was the ESA ϕ-sat-1 
mission, which demonstrated the feasibility of using deep 
learning algorithms for onboard processing as shown in 
[3]. In this mission, a convolutional neural network was 
deployed to filter out cloud-covered images directly in 
space, marking one of the first successful 
implementations of a deep neural network on a satellite 
platform. 

 
1.2 Deep Learning models 

Deep learning has emerged as a powerful technology 
in image processing and computer vision, enabling 
significant advances in tasks such as object detection, 
image classification, segmentation and more. Unlike 
traditional machine learning techniques, which often rely 
on hand-created features and domain-specific 
knowledge, deep learning models automatically learn 
hierarchical representations of data directly from raw 
inputs, making them highly effective in visual tasks.  

At the core of deep learning’s success in image 
processing are convolutional neural networks (CNNs), 
which have become the standard architecture for many 
computer vision tasks. CNNs are designed to exploit the 
spatial structure of images, using convolutional layers to 
capture patterns such as edges, textures, and higher-level 
features. This architecture has proven extremely effective 
in large-scale datasets, such as ImageNet, where deep 
learning models have consistently surpassed traditional 
methods in classification [4], segmentation [5] and object 
detection [6] tasks, just to name a few. This breakthrough 
ignited widespread adoption of CNNs in various 
domains, from medical imaging to remote sensing, where 
accurate and efficient image analysis is fundamental. 
 
1.3 Self-Supervised Learning 

Self-supervised learning (SSL) is a paradigm in 
machine learning where models learn to predict highly 
informative representation of the data from the images 
without the need of labelled ground truth, effectively 
leveraging unlabelled data for training. Unlike traditional 
supervised learning (SL), which requires labelled 
examples for each training instance, SSL utilizes the 
inherent structure in the data itself to learn rich features. 
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This approach has proven especially useful in domains 
where labelled data is scarce or expensive to obtain, such 
as in image processing and computer vision. 

Among the various self-supervised paradigms, one of 
the most successful is contrastive learning. Contrastive 
learning [7, 8] is a self-supervised learning technique that 
focuses on learning representations by distinguishing 
between similar and dissimilar data points. The core idea 
is to train models to bring similar examples (positive 
pairs) closer together in the feature space while pushing 
dissimilar examples (negative pairs) farther apart. 
 
2. Material and methods  

In this section we present a general overview of the 
proposed AI system, along with the design of the feature 
extractor and the application-specific heads. 
Furthermore, we present the dataset we specifically 
created and used for the trainings of both feature 
extractor and application heads. 

 
2.1 Datasets 

To train our AI architecture, we utilized four different 
datasets, all containing multispectral images captured by 
the European Space Agency's Sentinel-2 mission: 

• A subset of approximately 40,000 images 
from the majorTom dataset [9] was used for 
self-supervised learning to train the 
backbone feature extractor. 

• The CloudSen12 [10] was employed for 
supervised training of the application head 
dedicated to cloud segmentation. This 
dataset contains around 49.000 images with 
corresponding segmentation masks 
indicating the presence of cloudy or clear 
pixels (distinguishing between “thin cloud”, 
“thick clouds”, “cloud shadow” and 
“background” classes) and was specifically 
created as an extensive benchmark for cloud 
cover segmentation tasks. 

• The datasets for trainings of the application 
heads for flood and fire segmentation were 
specifically created by us for these two 
tasks. For the flood segmentation dataset, for 
each image, we created segmentation masks 
with four possible values: “no event”, 
“floods”, “flood trace”, and “permanent 
water”. Similarly, for the fire segmentation 
dataset, we generated segmentation masks 
for each image with three possible values: 
“no event”, “burnt area”, and “active flame”. 
To generate the datasets, shapefiles obtained 
from the Rapid Mapping activations of the 
Copernicus Emergency Management 
Service were also used; these shapefiles 
were refined automatically and manually to 
meet our needs. [CEMS] 

 
2.2 AI architecture 

The overall architecture of our AI system is illustrated 
in Figure 1 and consists of two primary components: a 
backbone feature extractor and multiple application 
heads. This modular design enables the use of various 
independent application heads for different tasks, with 
the flexibility to add more as needed. The backbone 
serves as a universal feature extractor, trained using a 
self-supervised learning approach and developed 
independently of specific application heads. Its primary 
requirement is to generate features that are broadly 
applicable across a range of tasks. Once extracted, these 
features are passed to task-specific heads, smaller neural 
networks tailored to individual tasks and then fine-tuned 
on datasets that are specific for the task they are designed 
to solve. To maintain the reusability of the extracted 
features for all tasks, application heads are restricted 
from fine-tuning the backbone itself. 

 
Fig. 1. The backbone feature extractor creates 

meaningful feature representations that are shared with 
the three application heads. 

 
The input to the architecture, as shown in Figure 1, is 

a raw Sentinel-2’s Level-1C image received directly 
from the multispectral sensor. These images have 
undergone some radiometric and geometric corrections, 
and an orthorectification process has been applied. It is 
important to note that once the backbone has extracted 
the features, they are simultaneously passed to the 
application heads, which process these representations in 
parallel. This allows the system to perform the n (three, 
for our specific demonstration) tasks concurrently, 
effectively reducing latency. 

Moreover, to meet the stringent requirements of low 
latency and computational efficiency for effective 
onboard processing, we applied a post-training 
quantization process, reducing the model's weight 
precision from 32-bit floating point (FP) to 8-bit integer 
(INT). This approach minimizes the model's complexity, 
reducing the memory occupation, with only a minimal 
loss in accuracy, optimizing it for deployment on 
resource-constrained hardware. The shift to INT also 
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allows for faster inference times, making the model 
suitable for real-time operations in space environments.  

In the following subsections we are now going into 
details and explain each module of our architecture. 

 
2.2.1 Backbone Feature Extractor and SSL Training 

As mentioned in Section 2, the backbone feature 
extractor has the goal of generating feature 
representations that must be shared among all application 
heads. Sharing the feature extractor across multiple 
information extraction applications is a highly effective 
concept for enabling the execution of several tasks within 
the same architecture. The most computationally 
intensive part is performed only once, significantly 
improving efficiency. To achieve this, the feature 
extractor must be trained independently of any specific 
application, as it needs to be adaptable to a wide range of 
tasks. For this purpose, we trained the feature extractor 
using self-supervised learning techniques, and more 
specifically on contrastive learning. In contrast to 
conventional supervised training, self-supervised 
techniques do not rely on explicit annotations and labels 
from the training dataset.  

To perform the self-supervised training of our feature 
extractor, we employed the contrastive learning method 
BYOL [8]. Contrastive learning is a self-supervised 
approach that aims to learn useful representations by 
contrasting positive pairs (i.e., similar data points, such 
as different views of the same image) against negative 
pairs (i.e., dissimilar data points). Typically, these 
architectures utilize two neural networks, an online 
network and a target network, to align their output 
representations effectively.  

The architecture of our backbone and the training 
process using the SSL framework are illustrated in Figure 
2. As depicted in the figure, the input to the SSL 
architecture consists of two distinct augmentations of the 
same base image. These augmentations play a crucial 
role, as they introduce variations of the same input that 
both the online and target networks process. Despite 
receiving different augmented versions, the networks are 
trained to produce similar feature representations. 
Specifically, for the online network (upper branch), the 
input image is subjected solely to spatial augmentations 
(e.g., random crops, horizontal and vertical flips). In 
contrast, the target network (lower branch) receives the 
same source image augmented with both spatial and color 
transformations (e.g., solarization, color jittering). 

Then, in order to learn informative feature 
representations of the input images, a global contrastive 
loss is computed by aligning the feature representations 
output by the global projector and global predictor of the 
online network with those from the target network. The 
goal is to minimize the difference between the predicted 
output from the online network and the projected output 
from the target network. 

It is important to highlight that most state-of-the-art 
SSL methods, including BYOL, are primarily designed 
for image-level tasks, such as classification. However, in 
this work, we aim to pre-train a model that can effectively 
support a variety of application heads, including those 
responsible for pixel-level tasks like semantic 
segmentation and object detection. To achieve this, we 
introduced a Local Contrastive Loss inspired by [11] into 
our SSL training. This loss is specifically designed to 
better capture, and model, dense features, which are 
crucial in solving fine-grained tasks.  

The overall SSL loss is computed as: 
 

𝐿 = 𝜆𝐿!" + (1 − 𝜆)𝐿#" 
 

Where 𝜆 is a trade-off parameter to balance between 
local contrastive loss (𝐿!")  and the classical global 
contrastive loss (𝐿#").  

The local contrastive loss is essentially a Negative 
Log-Likelihood (NLL) to capture fine-grained, pixel-
level correspondences between two differently 
augmented views of the same input image. To do so, first, 
we define a set of key points in one augmented image and 
then map these points to their corresponding locations in 
the second image based on the known spatial 
transformations. These key points in the first image (i.e., 
𝑝$) are matched with corresponding points in the second 
image (i.e., 𝑝%$). For each key point in the first image, the 
model computes the similarity between its feature 
representation and the feature representation of the 
corresponding point in the second image. This is done 
using a dense correspondence map, where the similarity 
score between points is computed. Lastly, The NLL 
quantifies how likely the corresponding points (i.e., 𝑝$ 
and 𝑝%$) are to match in terms of their feature similarity. 
Specifically, it measures how well the feature 
representation of a point in the first image aligns with the 
feature representation of the corresponding point in the 
second image, compared to other possible points in the 
second image. 

On the other hand, the global contrastive loss uses 
cosine similarity to measure how well the global 
representations of the two augmented views align. We 
apply the cosine similarity to the two features (tensors) 
outputted from the online and target network.  

Regarding the architecture of the backbone feature 
extractor, given that the objective is to develop a model 
capable of running within the constraints of a satellite 
payload, we opted for a pre-existing SOTA efficient and 
low-complexity architecture [12]. Nevertheless, it is 
worth noting that the choice of this model as the 
backbone is not restrictive, as the SSL training procedure, 
as well as the entire framework, would remain unchanged 
with any other neural network capable of extracting 
image features. 
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2.2.2 Application Heads 
To evaluate our AI system, we tested the entire model 

on the three tasks described in Section 2 (“Materials and 
Methods”). Consequently, we required three parallel, 
task-specific heads. Since all the tasks are essentially 
segmentation tasks (clouds, fires, and floods), we 
designed a single application head specifically for 
segmentation. As is shown in Figure 3, the segmentation 
head is a neural network that takes in input three different 
features maps, with different resolution, extracted by the 
feature extractor, and aggregate them before performing 
a set of upsampling and lightweight convolution to 
finally obtain the segmentation map. 

Each head, tailored to specific tasks, only requires 
fine-tuning on datasets pertinent to its particular function. 
When introducing a new task, the process involves 
simply creating and fine-tuning an additional application 
head. Importantly, training the entire architecture, 
including both the backbone and the application head, is 
avoided to maintain the modularity and generality of the 
architecture. Instead, by selectively fine-tuning only the 
application heads while keeping the backbone’s weights 
frozen (i.e., unchanged, without any fine-tuning on any 
specific dataset), the system’s modularity is maintained, 
allowing for simultaneous inference of multiple tasks by 
different heads. 

 
3. Results  

We conducted a series of extensive experiments with 
the proposed architecture. The tests were performed by 
first training the backbone using the SSL approach 
explained in Subsection 2.2.1 (“Backbone Feature 
Extractor and SSL Training”). Then, the three 
segmentation heads for clouds, fires and floods 
segmentation have been trained, maintaining the feature 
extractor’s weights frozen (i.e., without updating them), 
in a classical supervised way, thus using the labels of the 
three datasets.  

Table 1 shows a summary of the computational 
complexity of each component of the proposed 
architecture, computed by forwarding an input image of 
shape 512 × 512 × 5 . It is easily noticed that the 
bottleneck of our architecture is found, as expected, in the 
backbone feature extractor, where the computational 
complexity is most concentrated, while the segmentation 
head design is significantly more efficient, with a small 
number of floating-point operations (FLOPs) and 
parameters compared to the backbone. 

Fig. 2. SSL training of the backbone feature extractor using both global and local contrastive loss. The input 
images are obtained by applying to the same source image two different sets of augmentations: spatial 
transformations (upper branch) and spatial and color transformations (lower branch).  

Fig. 3. Architecture of the segmentation head which 
takes in input multi-resolution features. The shape of the 
different features is marked in squared brackets; F 
identify the number of channels computed by the feature 
extractor, C the number of output classes in the 
segmentation map, H and W are the height and width of 
the image/features, respectively. 
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To evaluate the performance of our model across the 
three tasks, cloud segmentation, fire segmentation, and 
flood segmentation, we adopted the Mean Intersection 
over Union (mIoU) metric. Since all of these tasks are 
fundamentally segmentation problems, mIoU is 
particularly well-suited as it is one of the most widely 
used metrics for assessing the quality of predicted 
segmentations in image analysis. The mIoU is calculated 
by first determining the Intersection over Union (IoU) for 
each class in the segmentation task. The IoU measures 
the overlap between the predicted segmentation and the 
ground truth for each class, where the intersection is the 
common area between the predicted and ground truth 
masks, and the union is the total area covered by both the 
predicted and ground truth masks combined. The mIoU 
extends this concept by averaging the IoU values across 
all the classes, providing a single performance measure. 

Mathematically, for N classes, the mIoU is expressed 
as: 

𝑚𝐼𝑜𝑈 =
1
𝑁2𝜔& ⋅ 5

𝑃& ∩ 𝐺&
𝑃& ∪ 𝐺&

5
'

&()

 

 
Where 𝑃& is the predicted set of classes for class i, 𝐺& 

is the ground truth set of pixels for class i, and 𝜔& is the 
weight assigned to class i, based on the proportion of 
pixels in the ground truth for that class.  

 
Table 1. Computational complexity of each component 
of the proposed Architecture. 
 

 FLOPs Params 
Backbone Feature 
Extractor 

4.50 ⋅ 10* 9.55 ⋅ 10+ 

Segmentation Head 187 ⋅ 10+ 402 ⋅ 10, 
 

The mIoU metric is particularly advantageous in our 
case since it balances the contributions of all classes in 
the segmentation task, ensuring that performance is not 
disproportionately affected by classes that occupy larger 
areas (e.g., background), furthermore, using the weight 
factor 𝜔 ensures that larger classes (in terms of pixels) 
have a proportionally higher weight in the final mIoU 
calculation.  By using mIoU as our evaluation metric, we 
can comprehensively assess how well our model 
performs across different segmentation tasks and ensure 
a fair comparison of its efficacy on cloud, fire, and flood 
segmentation tasks. This metric also allows for easy 
interpretability: a value closer to 1 indicates a higher 
degree of overlap between the predicted and true 
segmentation, whereas a value closer to 0 indicates poor 
overlap, making it a clear indicator of model 
performance. 

In the following subsections we discuss in details the 
evaluation setting and the results obtained for each of the 

three tasks. As a term of comparison, we evaluate or 
architecture under two configurations: 

• SSL: the backbone feature extractor is 
pretrained using the aforementioned SSL 
approach, after which its weights are frozen. 
The three task-specific heads are then fine-
tuned independently for each task. This 
configuration allows for parallel inference 
across all three heads. 

• SL: the backbone feature extractor and a 
single segmentation head are treated as one 
single network and trained using a classical 
supervised learning (SL) approach. In this 
setup, parallel inference is not possible; 
only one task can be addressed at a time. 
However, the backbone is fine-tuned 
specifically for that task, producing task-
specific features rather than general features 
shared across multiple tasks. 

 
3.1. Clouds Segmentation 

To evaluate our architecture on the cloud 
segmentation task, we utilized only the high-quality 
images (i.e., images with a corresponding high-quality 
segmentation mask as ground truth) from the 
CloudSen12 dataset [10], specifically those that were 
manually labelled. We excluded the low-quality images, 
as they are either automatically annotated or contain 
labelling inaccuracies, which could introduce noise and 
negatively impact the model's training and evaluation 
process. By focusing on the high-quality subset, we 
ensured more reliable ground truth data, allowing for a 
more accurate assessment of the model's segmentation 
performance. 

Moreover, since there is essentially no difference 
between “thin clouds” and “thick clouds” classes, we 
aggregated the two classes in one, resulting in a 3-classes 
dataset (“Clouds”, “Clouds Shadow”, “Background”).  

Table 2 presents quantitative performance 
comparisons for the cloud segmentation task using both 
the SSL and SL configurations. As anticipated, the SL 
architecture exhibits superior performance since both the 
backbone feature extractor and the segmentation head are 
specifically trained and fine-tuned for the cloud 
segmentation task. However, this highest performance 
comes at a cost: it precludes the ability to perform other 
tasks in parallel, strongly increasing latency in the 
multitask approach. In Figure 4 (first column) are 
reported the confusion matrices computed for the cloud 
segmentation task. 

For cloud segmentation, the SSL model performs 
reasonably well in detecting the background (47.48%), 
but shows notable confusion between clouds (6.5%) and 
cloud shadows (2.95%). Cloud shadow detection in the 
SSL model is relatively weak, with significant overlap 
with the cloud and background classes. In contrast, the 
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SL model exhibits an improved performance, with 
background detection at 49.01%. Furthermore, cloud 
shadows are better recognized (6.72%) with reduced 
confusion. The better performance of the SL model in 
this task can be attributed to the direct supervision 
provided during training, which likely allows the model 
to learn more precise boundary definitions between 
clouds, shadows, and background, minimizing 
ambiguity. 

 
Table 2. Clouds Segmentation Performance Comparison. 
 

Configuration mIoU 
SSL 70.65 
SL 82.00 

 
3.2 Floods Segmentation 

The dataset used for flood segmentation, as detailed 
in Subsection 2.1 (“Datasets”), initially included four 
distinct classes: “no event,” “floods,” “floods trace,” and 
“permanent water.” However, differentiating between 
flood water and permanent water using multispectral 
imagery proved to be extremely challenging, if not nearly 
impossible. Consequently, we opted to aggregate these 
two classes into a single “water” class to simplify the 
segmentation task and improve the model's performance. 
Globally, the class distribution of pixels after the merge 
of the two water classes is as follows: 

• No event: 75.12%. 
• Water: 21.45%. 
• Floods Trace: 3.43%. 

We used 14805 images for the training process of the 
application heads and 4643 images for testing. 

Table 3 presents quantitative performance 
comparisons for the floods segmentation task using both 
the SSL and SL configurations. 

 
Table 3. Floods Segmentation Performance Comparison. 
 

Configuration mIoU 
SSL 91.83 
SL 92.96 

 
In Figure 4 (second column) are reported the 

confusion matrices computed for the floods segmentation 
task. In Figure 4 (second column) are reported the 
confusion matrices computed for the floods  
segmentation task.  

In the flood segmentation task, the SSL model shows 
strong performance in detecting the "no event" class 
(74.69%) but struggles with water detection, achieving 
20.72% and significant confusion with the "no event" 
class (0.64%). Flood trace detection is notably weak at 
2.53%, indicating that the model struggles to distinguish 

flood traces from other classes. The SL model offers a 
slight improvement, maintaining high accuracy for the 
"no event" class (74.53%) and increasing water detection 
to 21.06%. Flood trace detection, however, remains low 
at 2.09%. The marginal improvement in the SL model's 
performance could be due to the availability of labelled 
data that helps the model differentiate subtle features of 
water and flood traces, although the intrinsic complexity 
of flood patterns still poses a challenge. 
 
3.3 Fires Segmentation 

For the fire segmentation task, we utilized the dataset 
in its original form, without any aggregation of classes or 
modifications. However, it is crucial to highlight the 
significant class imbalance present in this dataset: 

• No event: 80.53%. 
• Burnt area: 19.43%. 
• Active flames: 0.04%. 

This imbalance arises because it is extremely rare to 
capture remote-sensed images directly over areas with 
active flames. Additionally, due to their intrinsic nature, 
accurately recognizing and labelling active flames is 
challenging, leading to their minimal representation in 
Sentinel-2 imagery.  

We used 14876 images for the training process and 
4233 images for testing. 

Table 4 presents quantitative performance 
comparisons for the cloud segmentation task using both 
the SSL and SL configurations. In Figure 4 (third 
column) are reported the confusion matrices computed 
for the fires segmentation task. As shown from the 
matrices, the SSL model performs well in classifying the 
"no event" class (76.2%) but shows confusion with the 
burnt area class (4.32%). Burnt area detection reaches 
13.44%, though much of it is misclassified as "no event." 
The model is almost entirely ineffective at detecting 
active flames, with an accuracy of just 0.01%. The SL 
model slightly improves performance, with a "no event" 
detection of 76.89% and a burnt area classification 
accuracy rising to 17.53%. However, active flame 
detection remains extremely poor (0.01%). The difficulty 
that both models face in distinguishing burned areas and 
active flames certainly stems from the visual similarities 
between these features and the background, as well as the 
challenge of capturing small regions of dynamic flames, 
which are extremely rare in the dataset, as discussed at 
the beginning of this subsection; this scarcity of features 
related to active flames is amply visible by noting how 
only 0.04% of the pixels in the entire dataset contain 
active flames.  

It is also plausible that during the SSL training of the 
backbone feature extractor, very few images, if any, 
contain active flames inside it, thus making it difficult to 
learn semantically representative features of the 
phenomenon that, even in the case of SL configuration is 
extremely difficult to detect correctly. 
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Table 4. Fires Segmentation Performance Comparison. 
 

Configuration mIoU 
SSL 81.93 
SL 89.91 

 
4. Discussion  

Looking at the results presented in the previous 
section we notice how, in general, the SL generally 
model performs better than the SSL model across all 
tasks, particularly in the detection of clouds and burnt 
areas. The primary reason for this improvement, how we 
might expect, is the presence of labelled data in the SL 
configuration, which enables the model to learn clearer 
class distinctions during the end-to-end training of the 
whole architecture. In contrast, the SSL model, lacking 
explicit supervision (except for the small finetune of the 
task-specific heads), struggles with overlapping or 
visually ambiguous features, leading to more confusion 
between classes. However, neither model performs 
optimally in detecting smaller or more complex classes, 
such as flood traces or active flames, which suggests that 
both configurations could benefit from more advanced 
techniques or, even better, by training on datasets that 
better represent these features. 

However, it is worth noting that, even though the SSL 
configuration performs slightly worse than the SL in 
terms of segmentation accuracy, it successfully addresses 
our first objective: performing all of the three tasks with 
overall high accuracy while reducing the computational 
complexity. The SSL model allows for parallel inference, 
enabling the simultaneous resolution of all three tasks 

(clouds, floods, and fires segmentation), this parallel 
approach offers a significant advantage in terms of 
efficiency, as it minimizes the need for sequential 
processing. 

In Table 5, we provide an analysis of the latencies for 
computing the three tasks using both configurations 
(quantized, INT8 precision) on a 7W low-power edge-
device with an accelerator specifically tailored for DL 
models, highlighting how the SSL setup offers reduced 
latency. Additionally, we present a comprehensive 
comparison of the energy-latency-quality trade-off 
demonstrating that while the SL configuration slightly 
edges out in quality, the SSL model excels in energy 
efficiency and latency. The SSL configuration maintains 
a stable latency even when adding a finite number of 
task-specific heads, this is because the tasks are executed 
in parallel, allowing the system to handle multiple tasks 
simultaneously without a significant increase in 
processing time. On the other hand, in the SL 
configuration, latency increases linearly with the addition 
of task-specific heads. Each time a new head is added, it 
must be executed sequentially, leading to two main 
drawbacks: (1) increased latency due to the serial 
execution of tasks and (2) higher memory consumption 
on board, as each task requires its own model instance 
(backbone + head). This creates inefficiencies, 
particularly in systems with limited computational 
resources, where managing multiple models 
simultaneously can lead to performance bottlenecks. 
Therefore, while the SL model might offer slight 
improvements in accuracy, the SSL configuration proves 
more scalable and efficient, especially when dealing with 
multiple tasks in real-time applications. 

 
 

Fig. 4. Confusion matrices of segmentation tasks reporting the absolute percentage value of true and predicted 
classes. Columns of two matrices from left to right indicates: clouds segmentation, floods segmentation and fires 
segmentation. Rows of matrices from top to bottom indicates: SSL configuration, SL configuration. 
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Table 5. Quality metric and latency comparisons in 
performing the three segmentation tasks. 
 

Configuration mIoU  
(avg on all tasks) 

Latency 

SSL 81.47 37.47ms 
SL 88.29 114.41ms 

 
6. Conclusions  

We presented the design of an onboard Edge-AI 
system capable of performing inference of multiple tasks 
in parallel, demonstrating its potential through three 
segmentation tasks, two of which were tested on custom 
novel datasets. The combination of our self-supervised 
learning technique and a modular design enables the 
creation of an efficient system that can address complex 
tasks with low latency and minimal computational 
demands. The ability to run multiple tasks 
simultaneously highlights the advantage of the SSL 
configuration, particularly in resource-constrained 
environments where parallel processing is essential. 
However, further research is required to refine the self-
supervised training strategy to ensure that the SSL model 
achieves performance levels comparable to the SL 
configuration, in terms of quality metrics such as the 
mIoU.  
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