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ABSTRACT 

 

Point cloud attribute compression is a challenging task due to the irregularity of the point cloud domain. This makes it 

difficult to extend traditional compression principles like transform coding to such data type, often requiring complex and 
sophisticated schemes. At the same time, deep learning is gaining popularity as a way to design optimized compression 

algorithms. Existing end-to-end signal compression schemes using neural networks are largely based on an autoencoder-

like structure, where a universal encoding function creates a compact latent space and the signal representation in this 

space is quantized and stored. In this paper, we follow a different approach by adopting neural implicit representation 

networks, i.e., neural networks that are queried with a coordinate and returns the signal value at that coordinate. A network 

of this kind is trained to overfit the signal to be compressed and the neural network itself, in its weights and biases, 

becomes the compressed representation of the signal. Efficient techniques to quantize neural network weights are then 

used to limit the rate of the compressed representation. We also show that it is possible to induce prior knowledge about 

the class of signals of interest via meta-learning techniques, thus providing an initialization value for the network weights. 

This procedure has a twofold advantage in terms of complexity and compression efficiency. In particular, it allows to 

finetune the network for the representation of the specific signal of interest with a small number of iterations, limiting 

encoding complexity. Moreover, the weights can be encoded differentially with respect to such initialization to achieve 
greater rate-distortion efficiency. Preliminary experiments show that the proposed method is competitive with the latest 

G-PCC MPEG standard for point cloud attribute compression, and outperforms RAHT, a recent state-of-the-art method. 

 

 

INTRODUCTION 

 

The rise of neural networks due to their exceptional performance on computer vision tasks and beyond has stimulated 

research on their use in domains traditionally focused on model-based techniques rather than data-driven methods. In 

particular, data compression has been traditionally tackled by means of transform coding or predictive coding techniques 

in order to capture the complex correlation patters that real signals exhibit.  

Recently, convolutional neural networks (CNNs) have shown great promise in image, video and point cloud compression 
[1,2,3], either as supplements to existing codecs by replacing specific modules or by entirely replacing the compression 

pipeline. This is the case of the so called end-to-end techniques where the whole codec is a neural network which can be 

fully optimized to achieve the best rate-distortion performance on a class of data. 

The promising performance of such techniques is linked to the exception representation learning capabilities of 

convolutional neural networks. In essence, via suitable training data, they are able to learn compact domains which capture 

the most salient features. 

 

Indeed, the dominating approach in the literature is the use of architectures in the form of auto-encoders. In this 

framework, an encoder neural network maps the input data into a compact latent space, such as a short vector, which 

quantized and entropy coded. A decoder neural network maps such latent vectors back into an estimate of the original 

data. The architecture can be simply trained by means of a loss function which measures the distortion achieved by the 

auto-encoding process, with some technical issues around the non-differentiability of the quantization operation which 
are currently addressed in a number of ways. 

 

The auto-encoder paradigm is based on the idea that a universal encoder function can be learned to generate a compact 

space in which any input signal can be faithfully represented. However, care must placed on the implementation of this 

idea. In fact, practically learning a good universal encoder hinges on collecting large quantities of data which are as 

faithful as possible to the data that will be processed during inference. There is also a potential lack of flexibility in this 
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approach when input signals with widely different characteristics (e.g. different resolutions) must be handled. Moreover, 

developing good encoders for certain signals might be challenging. The is the case of point cloud data which are supported 

on an irregular domain an cannot use conventional designs for grid, like CNNs and must resort to more complex, 

computationally expensive and tricky to optimize designs like graph neural networks. 

 

In this paper, we present a novel paradigm to use neural networks for signal compression that is alternative to the dominant 

autoencoding model. The idea is based on implicit neural representations, which are simple neural networks that take as 

input a single coordinate value from the signal domain (e.g., a pixel position in an image) and return the value of the 
signal at that coordinate (e.g., that pixel brightness). In this framework, the weights of the neural network are overfit on 

a single signal of interest and the neural network in its weights and biases becomes the signal itself. This means that if we 

could design a network that uses a smaller number of weights than the signal coefficients, compression would be achieved. 

 

In this paper we show how to design a signal compressor based on neural implicit representations, propose a method to 

efficiently encode the network weights and provide prior knowledge to the network about the set of signals of interest to 

reduce the computational complexity of the compression procedure as well as improve rate-distortion performance. 

 

Preliminary results are presented on the task of point cloud attribute compression, which is challenging for traditional 

encoders to the irregular nature of point clouds.  

 

 
 

COMPRESSION WITH NEURAL IMPLICIT REPRESENTATIONS 

 

Neural implicit representations have recently enjoyed great success in the computer graphics community [4] where they 

are used to represent the lightfield of a scene and render images from novel viewpoints. A neural implicit representation 

is a simple multilayer perceptron (MLP, a neural network with multiple fully-connected layers) that takes as input a 

coordinate x from the D-dimensional signal domain and returns the value of the signal at that coordinate f(x). In the point 

cloud attribute compression sample application that we discuss in the experiments, x is the 3D position of a point and f(x) 

is the attribute (e.g. color) value at that point. Notice that the input is a single coordinate, so that weights and biases of the 

network are the same for any coordinate that is processed. The network overfits a specific signal f, so that it becomes the 

signal. The rate of the signal representation is entirely determined by how many weights the network has and how  
efficiently we are able to store them. The distortion is determined by how faithful the network output is to the original 

signal. 

 

 

Figure 1. A neural implicit representation network maps a coordinate from the signal domain into the signal 

value at that coordinate. 

 

Only recently these kind of networks achieved interesting performance due to the realization that special care must be 

placed in the design of the first layer which maps the low-dimensional coordinate value into a high-dimensional feature 

space. This operation is referred to as positional encoding, and the most successful positional encodings currently known 

is the use of sinusoid activation functions as in SIRENs [5] (actually, the authors propose the use of sinusoidal activations 

for all the layers in the network due to stable behavior of their derivatives of any order) or Fourier embeddings [6]. These 

solutions for positional encoding allow to better represent the high-frequency content of the signal. 

 

Therefore, in order to compress a signal via neural implicit representations, the following operations must be performed: 
1. Design an MLP with a suitable positional encoding mechanism, number of layers and number of neurons in the 

hidden layers. Scaling laws (is it better to use more layers or more neurons?) for the these models are still unclear 

at this point. 
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2. Define a suitable regression loss to measure distortion (e.g., the mean squared error) and use it to train the 

network.  

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 ∑‖𝑓𝜃(𝒙) − 𝑓(𝒙)‖2

𝒙

  

For signals with very large domains, the set of all coordinates can be split into minibatches with random subsets 

of coordinates. 

3. Represent the weights and biases of the network in a compact way. This involves techniques like sparsification 

and quantization. We notice that implicit representation network are much more sensitive to weight quantization 

than their classification counterparts and significant losses in rate-distortion performance appear for too 

aggressive quantization. 

4. Use an entropy encoder to on the quantized weights and biases and save any side information like sparsification 
patterns, etc. 

 

Decoding the compressed signal just amounts to a forward pass through the network for all the coordinates of interest.   

 

A naïve usage of the proposed framework would require training the neural network from random initialization for every 

signal to be compressed. However, this has a number of limitations and it is possible to devise a pretraining procedure 

which serves the both the purpose of improving the rate-distortion performance of the method and reducing the 

computational complexity. 

A randomly initialized neural implicit representation neuron does not possess any prior knowledge about our signals of 

interest. For example, it does not know that locality is important in representing images. We therefore would like to instil 

some general knowledge about the class of signals we want to compress. This is possible by pretraining the network with 

a meta-learning procedure. This procedure simply amounts to training the network to represent not one single signal, but 
an entire dataset of signals that are representative of the ones of interest. This training simply iteratively updates the 

weights to represent a randomly drawn minibatch of signals from the dataset. We notice that this procedure will not 

converge to a good representation of any of the signals in the dataset, but rather to a sort of  “average” signal. In doing 

so, however, the network layers learn extractors of features that can be found in the signals of interest, building some 

form of prior. 

 

Once we need to compress a signal, we can finetune the pretrained network on the single target signal. Thanks to the 

pretraining step, this typically will converge to the same distortion of the naïve procedure but in a significantly smaller 

number of iterations. As an example, in the experiments on point cloud attribute compression we observe converge in 

about 10000 iterations instead of several hundreds of thousands, making the finetuning (compression) more feasible on 

hardware with limited capabilities instead of powerful GPUs. 
 

Concerning the rate of the compressed representation, we observe that the finetuned values of the network weights are 

highly correlated with the starting values provided by pretraining. Since pretraining is universal, it could performed once 

and the pretrained weight values provided as part of a standard specification. It would just then suffice to store the 

difference between the finetuned values and the pretrained values, which has a significantly smaller dynamic range and 

allows for more faithful representation of the weights. 

 

 

EXPERIMENTS ON POINT CLOUD ATTRIBUTE COMPRESSION 

 

In this section, we present the application of the proposed compression framework to a notoriously challenging task: point 

cloud attribute compression. This task is challenging because the attributes are supported on an irregular domain, due to 
the points of the cloud taking arbitrary positions in 3D space, instead of aligning on a grid like the pixels of an image. 

In the following experiments, we consider a SIREN neural network for our implicit neural representations. We use the 

Microsoft Voxelized Upper Bodies [7] and the 8i Voxelized Full Bodies [8] datasets for our experiments. In particular, 

we pretrain the network using the Microsoft Voxelized Upper Bodies, MAML [9] as meta-learning algorithm with an 

outer loop over the dataset which optimizes the weights using Adam with 10−5 learning rate and inner loop over 

coordinates using Stochastic Gradient Descent with 10−2 learning rate. The number of outer iterations is 1000 and the 

number of inner iterations is 10. Finetuning is performed on the signals to be compressed from the 8i Voxelized Full 

Bodies. Notice that the two datasets are strictly disjoint in content. For finetuning we use Adam optimizer with 10−5 

learning rate for up to 20000 iterations. The loss function to be minimized the MSE in the YUV color space: 
 

𝐿 = 𝛼𝑀𝑆𝐸𝑌 + 𝛽𝑀𝑆𝐸𝑈 + 𝛾𝑀𝑆𝐸𝑉 

 

where 𝛼 = 0.6, 𝛽 = 0.2, 𝛾 = 0.2 modulate the relative contributions of luminance and chrominance. 

After finetuning, weights and biases are differentially encoded with respect to the pretrained values. The differences are 

quantized with uniform scalar quantizer, whose quantization step size is optimized layer-by-layer. Finally, the quantized 

differences are entropy coded with an arithmetic encoder. 
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First, we analyse how the pretained values of the weights can serve as a good predictor of the final value after finetuning. 

Figure 2 shows that the dynamic range is significantly compressed by considering the differences with respect to the 

pretrained value rather than the raw weight value. 

 

 

Figure 2. Distribution of network weights and differences between finetuned and pretrained weights. 

 

Then, we look at the rate-distortion performance obtained by compressing the attributes of the Loot_vox10_1200, 

Longdress_vox10_1300, Redandblack_vox10_1550, and Soldier_vox10_0690 point clouds from the test set. Figure 3 

shows the comparison with a recent state-of-the-art algorithm called RAHT [10] and the latest MPEG G-PCC standard 

(v12.0). The rate-distortion curve for the proposed method (NIC – Neural Implicit Compression) is obtained as the 

envelop of the curves spanning the design degrees of freedom, namely number of layers, neurons and quantization step 
sizes. We restricted our choice to networks with 60,80 or 130 neurons per hidden layer and 5,7, or 9 layers. Quantization 

step sizes vary corresponding to a number of levels ranging from 22 to  212. We notice that the proposed method 

outperforms RAHT and is very close to the highly optimized MPEG standard. 

 

 

Figure 3Rate-distortion performance on Y-PSNR. 
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Table 1 also reports the BD-Rate results over total PSNR for the proposed method against RAHT. 

 

Table 1. BD-Rate over total PSNR versus RAHT. 

Loot Longdress Redandblack Soldier 

-10.23% -38.88% -22.10% -33.39% 

   

 

CONCLUSIONS 

 
We introduced a novel framework for compression using neural networks and tested its preliminary performance on the 
challenging task of point cloud attribute compression. The framework has potential to be competitive with the dominant 
approach of auto-encoders and its per-signal optimization could outperform it if domain gaps exist between training and 
inference data in the autoencoding framework. Further work is needed to optimally design and compress neural implicit 
representations, especially for images where it is hard to exploit strong priors like conventional methods do. 
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