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Abstract—Phase Change Memory (PCM) represents a tech-
nology that exploits the reversible phase transition of a chalco-
genide material to create nanoscale memory components, which
can be used for the development of brain-inspired computing
approaches. These PCM devices have been examined both as
non-volatile storage-class memory and as computing elements for
in-memory and neuromorphic computing applications. It is also
known that PCM exhibits several characteristics of a memristive
device. In this study, we consider a PCM array as an encoder
within a system for applying Compressed Sensing (CS) to images
of skin ulcers. We then use a decoding strategy that compensates
for the non-linearity of PCM devices through an iterative
optimization approach. The quality of image reconstruction was
evaluated by classifying the images using a Convolutional Neural
Network (CNN) according to Wound Bed Preparation (WBP)
severity scale, which is used in clinical practice for the assessment
of skin lesions. The effectiveness of the image compression and
reconstruction was demonstrated by comparing the automatic
classification performance on before and after CS images.

Index Terms—PCM, Memristor, Compressed Sensing,
Telemedicine, Wound Care, CNN

I. INTRODUCTION

A skin ulcer is a pathological condition that manifests as a
chronic wound that has not healed or cannot completely restore
its anatomical and functional integrity. This condition is most
found in individuals over 65 years of age and affects about 1-
2% of the global population. Rapid and precise assessment of
the lesion is crucial for defining the correct treatment plan and
promoting healing. For this reason, the Wound Viewer (WV)
was developed by Omnidermal Biomedics s.r.l., a telemedical
device capable of capturing an image of the wound through
its camera and automatically classifying it according to the
Wound Bed Preparation (WBP) scale using an integrated
Artificial Intelligence algorithm. WBP scale is a common skin
wound assessment methodology used in clinic to assess its

pathological state, i.e. to understand whether the wound is
healing, or the tissue is undergoing necrosis [1].

The idea of applying a compression algorithm to the images
acquired through the WV arises from the need to reduce
the costs of transmitting and storing such images, thereby
making data sharing more efficient and reducing storage
costs on cloud platforms. In this context, we introduce the
Compressed Sensing (CS) theory which has been widely used
in the literature for acquiring and reconstructing signals from
a number of scalars, called measurements, that is smaller than
in a traditional system based on the Nyquist theorem. The
encoding step, in which these measurements are obtained,
can be represented as a matrix-vector product that can be
implemented using a Phase Change Memory (PCM) array.

PCM devices encode information through the phase configu-
ration characterized by a layer of material placed between two
metal electrodes. This type of material shows high conductiv-
ity in the crystalline state (SET) and much lower conductivity
in the amorphous state (RESET). In our work, we considered
the Encoder model shown in Fig. 1, which was used and
validated in a recent study by C. Antolini et al. for signal
acquisition and reconstruction [2].

The authors demonstrated the possibility of using analog
elements to perform matrix operations by exploiting Ohm’s
and Kirchhoff’s laws, applying PCM technology for Analog
In-Memory Computing (AIMC). We have therefore used the
same model, considering that a digital image is nothing more
than a signal represented in a two-dimensional space rather
than a one-dimensional one. According to this model, given a
cell with conductance g and applying an input voltage v to the
cell, an output current is read as a single multiplication i = gv.
By combining the outputs of multiple cells, each characterized
by a conductance gk,j and its own applied voltage vj , a sum
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Fig. 1. Architecture of a PCM-based system for CS and decoding applications.
Adapted from [2].

of products ITOT,k is obtained, where j = 1, 2, 3, . . . , n and
k = 1, 2, 3, . . . ,m.. The entire memory can thus be assimilated
to a conductance matrix G of m×n dimensions. By applying
a voltage vector to each row, a matrix-vector multiplication is
achieved [3].

For the reconstruction, we adopted an iterative technique
that has been shown to be capable of reconstructing a signal
even when the measurements are produced by highly variable
conductances. For the current application, at each iteration, the
input signal is estimated, yielding an improved representation
of the signal-dependent conductance matrix. Then this updated
matrix is used in the subsequent iteration until convergence is
reached.

II. PCM TECHNOLOGY

PCM devices are characterized by a nonlinear dynamic be-
havior resulting from a complex interaction between thermal,
electrical and structural dynamics [4], [5]. These dynamics
have been described as a memristive system, introduced in
1976 by S. Kang and L. O. Chua [6], in a previous work
by F. Marrone et al. [7], showing the characteristic current-
voltage loop of PCM devices when subjected to a periodic
bipolar input. This behavior clearly classifies them within the
category of memristive systems.

In the previous work by Antolini et al. [2], three different
models, labelled 1, 2 and 3, were obtained by programming
5120 cells with different SET pulse intensities and character-
izing them in the i/v domain. The conductance model type 2
proved to be the most performant and was therefore used for
the CS performed in the current work.

Each instance of the vectorized image is encoded using a
matrix based on a PCM, whose cells in the SET state are
described by the selected model.

III. COMPRESSED SENSING

CS [8], [9] allows for signal compression through a low-
complexity linear encoding phase, which can be considered a
simple matrix-vector multiplication. The complexity is shifted
to the decoding phase, where an optimization problem must
be solved to reconstruct the signal.C S can be applied to
an n-dimensional signal x ∈ Rn only if it is sparse when
represented in any vector space. Given x = Ψs, where
Ψ ∈ Rnxn represents an orthogonal sparsity basis, i.e. it
satisfies the condition ΨΨT = In, where In is the n × n
identity matrix, and ΨTΨ = I, x is defined as sparse if only

a small fraction of the coefficients in s are significantly non
zero. If this condition is met, the CS process can be expressed
as y = Ax, where y ∈ Rm represents the measurements vector
and A ∈ Rmxn is called the measurement matrix. Therefore,
to represent x, m measurements y1, y2. . . , ym with m ≪ n
are required, each calculated as yk =

∑n
(j=1) akjxj .

The reconstruction of the original signal x̂ can be found by
seeking the sparsest among all signals that generate the same
y, through solving an l0 minimization problem that can be
expressed as:

x̂ = Ψ ∗ argmins|s|1 s.t. AΨs = y (1)

Where | · |0 is the l1 pseudonorm, counting the number
of non-zero elements of its argument. The decoding phase
therefore requires the exact knowledge of the matrix A,
which is impossible due to the voltage dependence of the
conductance of PCM cells, resulting in y = A(x)x. Even if
the exact dependency is known, the decoder cannot derive the
matrix A(x) since x is unknown. Previous studies have already
conducted preliminary investigations regarding the decoding of
a signal after non-linear sensing [10], [11]. However, in the
current work, we have adopted the method proposed by C.
Paolino et al., which has shown promising results [2].

IV. METHODS

Given the three conductance models we utilized the model
in state 2. Each instance of the input signal is encoded
through the model describing the SET state of the PCM-based
array. From the corresponding measurement vector y the input
signal is reconstructed, knowing the conductance model and
iteratively using it to estimate the actual conductances of the
encoder.

Given the ideal matrix A ∈ {0, 1}mxn, the measurement
vector y, a reference value xref and the model describing
the voltage dependency of the conductance elements g(x) :
R → R, the initial conductance matrix is estimated as
Ĝ|0 = Ag(xref ). This matrix is used to compute x̂|1, which is
the first estimate of the input signal. The conductance matrix
is then updated by recalculating all its elements using the
first estimate of the input signal and used to compute a new
estimate of the signal x̂|2. The algorithm is applied until
convergence of the estimated signals x̂|p, which inevitably
leads to the convergence of the conductance matrices Ĝ|p.

The compression and reconstruction technique were applied
to a total of 446 images of skin ulcers, using the Discrete
Cosine Transform (DCT). To represent the images in a one-
dimensional space, we divided the images into blocks, then
vectorized and processed each block individually using a
Block CS approach. The technique was implemented with
n = 144 and a sparsity level of 19 non-zero coefficients.
The measurement matrix for each block is binary and with
72× 144 dimensions, with ideal zeros and ones implemented
by conductance model 2. Then, the blocks were reconstructed
and assembled into an image.
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With the reconstructed images after BCS, we performed
automatic detection and classification of the acquired lesions.
By comparing the classification performance obtained on the
original images and on those estimated after CS, it is possi-
ble to numerically evaluate the quality of the reconstruction
and the relevant information content for classification that
is retained. For the classification phase, we utilized a CNN
trained on a balanced Training Set of 200 images. We used a
Validation Set of 119 images the network parameters tuning
and finally a Test Set of 127 images for validating the results.
For the calculation of wound detection and classification
performance, we used Precision and Recall metrics for each
object class to be recognized:

Precisioni =
True Positivei

True Positivei + False Positivei
(2)

Recalli =
True Positivei

True Positivei + False Negativei
(3)

where i = A,B,C,D According to the WBP score.
A general measure of Precision and Recall is calculated as

the arithmetic mean of the values obtained for each individual
class. Finally, F1 Score is obtained as the harmonic mean of
Precision and Recall:

F1 =
Precision ∗ Recall
Precision + Recall

(4)

V. NUMERICAL RESULTS

The validation of the proposed method for image compres-
sion and reconstruction has been conducted by performing
automatic wound classification with a CNN and comparing the
classifier performance obtained on original images and those
obtained on reconstructed images after CS. The network can
detect and automatically classify the wound with a certain
percentage of confidence. An example of the CNN output is
shown in Fig.2-a and -b.

Fig. 2. (a) Input image. (b) Network detection and classification.

Regarding the original images, we achieved values of Pre-
cision equal to 0.812, Recall equal to 0.799 and F1 equal to
0.781. On the other hand, on the reconstructed images, the
network obtained a Precision of 0.757, a Recall of 0.776.
The CS technique implemented, based on the behavior model
of a PCM array, appears promising, showing a reduction in
classification performance of only 6.77% in terms of Precision,

2.88% in terms of Recall and 1.92% in terms of F1 Score
compared to the original images.

VI. CONCLUSIONS

Phase-Change Memory is a promising technology with
applications in non-volatile memory, computing elements for
in-memory and neuromorphic computing and also as compo-
nents of reconfigurable electronic circuits. In this work, we
present the Compressed Sensing technique implemented by
leveraging the conductive behavior model of a PCM array
followed by an iterative decoding procedure to address the
introduced non-linearity. The aim of this study is to find
and validate a compression technique for skin ulcer images
with a view to optimizing data transmission and storage in
clinical settings, based on a device with memristive behavior.
Additionally, CS has been extensively analyzed as a viable
technique for image encryption, thus presenting itself as a
method to enhance data privacy and security, which is of
considerable relevance in healthcare [12]. The performance
of lesion detection and automatic classification performed
through CNN network on images before and after CS confirms
the validity of the technique and therefore the use of images
associated with a weight an order of magnitude lower than
the original ones, while still retaining the relevant features for
automatic classification of skin ulcers.
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