
26 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Special Session: Security and RAS in the Computing Continuum / Alonso, Martí; Andreu, David; Canal, Ramon; Di
Carlo, Stefano; Chatzopoulos, Odysseas; Chenet, Cristiano; Costa, Juanjo; Girones, Andreu; Gizopoulos, Dimitris;
Papadimitriou, George; Morancho, Enric; Otero, Beatriz; Savino, Alessandro. - ELETTRONICO. - (2024), pp. 1-6.
(Intervento presentato al convegno IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT) 2024 tenutosi a Didcot, United Kingdom nel 08-10 October 2024)
[10.1109/dft63277.2024.10753548].

Original

Special Session: Security and RAS in the Computing Continuum

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/dft63277.2024.10753548

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2995704 since: 2024-12-20T08:54:49Z

IEEE

Security and RAS in the Computing Continuum
Martı́ Alonso1, David Andreu1, Ramon Canal1, Stefano Di Carlo2, Odysseas Chatzopoulos3,

Cristiano Chenet2, Juanjo Costa1, Andreu Girones1, Dimitris Gizopoulos3, George Papadimitriou3,
Enric Morancho1, Beatriz Otero1, Alessandro Savino2

1Universitat Politècnica de Catalunya, Barcelona, Spain
2Politecnico di Torino, Torino, Italy

3University of Athens, Athens, Greece
Contact email: ramon.canal@upc.edu

Abstract—Security and RAS are two non-functional require-
ments under focus for current systems developed for the comput-
ing continuum. Due to the increased number of interconnected
computer systems across the continuum, security becomes espe-
cially pervasive at all levels, from the smallest edge device to the
high-performance cloud at the other end. Similarly, RAS (Relia-
bility, Availability, and Serviceability) ensures the robustness of a
system towards hardware defects. Namely, making them reliable,
with high availability and design for easy service.

In this paper and as a result of the Vitamin-V EU project,
the authors detail the comprehensive approach to malware
and hardware attack detection; as well as, the RAS features
envisioned for future systems across the computing continuum.

Index Terms—RISC-V, Security, Malware, Hardware Attack,
Computing Continuum, Simulation

I. INTRODUCTION

RISC-V is a revolutionary open-source instruction set ar-
chitecture (ISA) designed to offer simplicity, modularity, and
extensibility [1]. This exciting development brings many ben-
efits over proprietary processor architectures, including the
potential for customization and lower licensing costs [2].

Despite these advantages and the fact that RISC-V ap-
plications have started to see their birth in the embedded
domain [3], several challenges still need to be addressed before
RISC-V can be widely adopted beyond conventional ones
like performance or standardization. Among these challenges,
security and RAS are of utmost importance. As RISC-V
processors become more widely adopted, there is an increasing
potential for security attacks. Ensuring the security of RISC-V-
based applications will be an important challenge that needs
to be addressed as technology develops.

Another key challenge is RAS. Enterprise and cloud data
centers are increasingly integrating complex System-on-Chip
(SoC) architectures to meet the demands of modern computing
workloads. However, the widespread deployment of these
devices raises the risk of undetected faults, which can lead

Funded by the European Union under the Horizon Europe Programme.
Project name: Vitamin-V. Project number: 101093062. Views and opinions
expressed are, however, those of the authors only and do not necessarily reflect
those of the European Union or the HaDEA. Neither the European Union nor
the granting authority can be held responsible for them. This paper is also
funded by HFRI with title REDESIGN and Project Number 16973 and project
SERICS (PE00000014) under the MUR National Recovery and Resilience
Plan funded by the European Union - NextGenerationEU.

to critical issues like system crashes or silent data corruptions
(SDCs). These faults, stemming from manufacturing defects
and in-field reliability concerns, present significant challenges
for data centers. While cosmic ray-induced soft errors have
been extensively studied [4]–[11], modern data centers must
also consider other potential fault sources, such as manufac-
turing defects and thermal variations [12], which may lead to
SDCs during normal operations [13]–[17].

This paper presents AI-based malware and hardware attack
detection. With special emphasis on the reproducible and
cross-platform methodology; as well as RAS.

The paper is organized as follows: Section II describes
the step-by-step methodology used for AI-based security and
Section III provides it for RAS. Then, Section IV presents
the performance and detection capabilities of the AI-based
security and the RAS analysis. Finally, Section V summarizes
the main contributions of the paper.

II. METHODOLOGY FOR AI-BASED SECURITY

This section describes the methodology for the AI-based
malware and hardware attack detection. We propose two dif-
ferent sources of information to detect the malign behaviour:
hardware performance monitors (HPM) and instruction op-
codes. While hardware performance monitors are only avail-
able during the execution of the program (thus, dynamically),
opcodes are both available statically and dynamically. Con-
sequently, in this section we describe the process of using
each of these sources of information to process through ML
algorithms to detect the attacks.

A. Hardware Performance Monitoring

Modern processors include hardware performance monitor-
ing units to track the CPU performance, necessary due to
increased processor complexity, such as hierarchical cache
subsystems, non-uniform memory, and out-of-order execution.
Software that adapts to resource utilization benefits from
better performance and efficiency. The HPM includes registers
and counters for microarchitectural events accessible by the
Operating System (OS) using libraries like Linux perf [18]
and PAPI [19].

HPMs track events such as retired instructions, branch pre-
dictions, cache hits/misses, and clock ticks, but only a limited

number of hardware counters can be active at a time due
to design and cost constraints [20]–[22]. Developers access
counters via performance monitoring instructions, reading, and
writing counter values.

B. Static Analysis of applications

Evaluating software trustworthiness early is essential. We
developed a machine learning (ML) tool that analyzes static
executable content to determine if it is benign or malicious.
Inspired by previous work on detecting software bugs and se-
curity threats using static analysis [23], [24], we incorporated
deep learning (DL) techniques to identify complex patterns.
In cases where the dataset is insufficient or a zero-day attack
is involved, transfer learning (TL) can be used to enhance
detection accuracy by leveraging pre-trained models [25].

Following Haddadpajouh et al. [24] approach, we break-
down the process in four steps: dataset creation, feature extrac-
tion, model training, and deployment. To train the model, we
gather a balanced dataset of benign and malicious programs,
including hardware attacks like Spectre [26], Meltdown [27],
viruses, and malware. Malicious programs will be sourced
from platforms like VirusTotal [28], VirusShare [29], or
SourceFinder [30]. Benign programs will come from regular
Linux applications in the Debian repository.

Programs are converted to feature vectors by disassembling
ELF binaries to extract operation codes (OpCode) sequences.
These sequences are analyzed to generate feature vectors to
train the DL model. The model developed and benchmarked
in Section IV uses AMD64. Yet, the same methodology can
be applied to other ISAs.

C. Dynamic Analysis using Hardware Performance Counters

Anomaly detection using hardware monitoring and AI in-
volves dynamic analysis of microarchitectural events via ML
algorithms to identify abnormal behavior. This approach, first
introduced by Demme et al. in 2013 [31], has been applied to
malware detection [32] and hard and soft errors [33], [34] but
not on RISC-V.

Programs exhibit phase behaviors [35], [36], allowing for
anomaly detection through patterns in hardware performance
counters. The proposed anomaly detection framework includes
three main components: (i) a CPU with HPM, (ii) data collec-
tion, and (iii) anomaly detection via ML classifiers. Challenges
arise due to the cost and complexity of monitoring speculative
execution events, especially in resource-constrained devices,
where balancing hardware events and detection accuracy is
critical. To overcome limited counter availability, some meth-
ods run applications multiple times to capture more events
[31], [37], [38], but this impacts runtime applicability.

Data collection involves selecting events, extracting fea-
tures, and reducing dimensions [32]. Feature extraction cap-
tures HPCs into vector space, while dimensionality reduction
minimizes redundant data that can decrease detection accuracy.
When empirical event selection is not feasible, techniques like
Principal Component Analysis (PCA), Fisher Score, and In-
formation Gain are used to identify relevant features [39]. The

final block, anomaly detection, is carried out by ML classifiers.
These classifiers can vary by type (multi-class or one-class),
learning method (supervised, unsupervised, semi-supervised),
or underlying algorithm (Neural Networks, Decision Trees,
etc.). Multi-class classifiers assume multiple normal classes,
while one-class classifiers identify anomalies based on a single
normal class boundary [40]. Given the challenges of labeling
data, unsupervised learning is often preferred [40]. To improve
accuracy, advanced methods like Ensemble Learning [41],
Boosting [42], and multi-stage classifiers [43] are used.

III. METHODOLOGY FOR RAS

A. Reliability, Availability, and Serviceability in Large-Scale
SoC Deployment

Detecting and managing faults that result in SDCs is par-
ticularly challenging due to the specific conditions required
for them to manifest [44]–[46]. These conditions can include
particular machine instruction sequences, variations in oper-
ating voltages [47], temperature fluctuations, and platform-
level behaviors like interrupts. This complexity results in low
repeatability in SDC testing, necessitating extended testing pe-
riods to uncover potential issues. Developing effective testing
methodologies to identify and address SDCs is therefore cru-
cial for maintaining reliability, availability, and serviceability
(RAS) in data centers. These strategies may involve repeated
execution of specific code sequences to trigger SDCs or the use
of pseudo-random instruction sequences to increase variability
and expose latent faults during testing [48].

B. Sources of Faults and Impact on Reliability

SoCs can experience faults from various sources, including
radiation, electrical marginalities, and silicon defects that may
not be detectable during manufacturing. These issues may
manifest in the field, impacting system reliability. The effects
of such faults vary depending on where they occur within
the SoC circuitry. For example, faults in error detection and
correction-equipped circuits, such as caches, can be corrected
at the hardware level, preventing system disruption [49]. How-
ever, SDCs where data errors propagate without triggering an
interruption can have unpredictable consequences depending
on the application [50]. A minor data error in a graphical
operation might be negligible, but the same issue in a financial
transaction could have serious implications.

Managing SDCs at scale is particularly crucial when de-
ploying millions of processing cores, as even a single defect
can cause significant operational disruptions. For instance, a
modest-sized data center with 100,000 SoCs could experience
at least one SDC per month at a 10 failures in time (FIT) rate
[13] (where 1 FIT corresponds to one failure per billion hours
of operation) [46], [48]. This occurrence rate underscores the
need for rigorous reliability, availability, and serviceability
(RAS) strategies to mitigate the effects of SDCs in large-
scale computing environments. Hyperscale data centers, with
millions of deployed SoCs, face a more acute risk, making
reliability assessments and fault management an ongoing pri-
ority.

C. RAS-Oriented Approach

Ensuring the reliability, availability, and serviceability of
data center infrastructure requires more than simply detecting
data corruption and defective chips. It demands a compre-
hensive strategy that encompasses both hardware and soft-
ware design. Reliability can be enhanced by identifying and
isolating defective components through regular testing, while
availability ensures systems continue to function smoothly
even in the presence of faults. Serviceability emphasizes quick
fault diagnosis and repair to minimize downtime and provide
useful information for system debug and defect root causing.

One effective strategy for early-stage mitigation is
simulation-based testing. Researchers can use architectural and
microarchitectural models to simulate SoC behavior under
various conditions, identifying potential faults before physical
chips are manufactured. These models allow prediction of FIT
rates early in the design process, enabling adjustments when
they are less costly. However, early-stage models only approx-
imate final hardware behavior, as they often lack complete
design details.

In the late stages of development, more precise measure-
ments can be made using gate-level models and actual silicon.
However, these methods are more resource-intensive and time-
consuming, limiting their applicability to scenarios where
extremely high accuracy is required, such as in critical systems
or hyperscale environments. By combining early predictive
models with late-stage testing, data centers can implement a
robust RAS framework to proactively address SDC risks.

IV. RESULTS

A. AI-based security

The preliminary results on detecting malware and hardware
attacks using HPCs are presented in this section, leveraging
both supervised and unsupervised learning classifiers.

1) Supervised learning: With supervised classifiers, the
detection of a specific type of hardware attack, i.e., side-
channel attacks, is analyzed during runtime by monitoring
HPCs.

Dataset creation: We selected 7 hardware-based attacks
(i.e., Meltdown [27], Spectre [26](V1, V2 and V4), Zom-
bieLoad [51], Fallout [52] and Crosstalk [53]) and 7 benign
programs (i.e., Matrix multiplier, Debian stress tool [54],
MiBench Bitcount [55], STREAM benchmark [56], bzip2 [57]
and FFmpeg [58]) to construct the dataset.

We executed these applications and recorded multiple HPCs
during binary execution using the perf tool. To streamline
operations, we restricted execution to a single CPU core using
the taskset Linux tool, ensuring that the collected HPC data
remains unaffected by workload distribution across cores.

Some hardware attacks, like those in the Spectre family, ex-
ploit wrong speculative execution, triggered when the branch
predictor mispredicts the outcome of a branch instruction.
Therefore we selected both branch-instructions and
branch-misses generic perf events, which provide the
ratio between total branches and those where the predictor

TABLE I
SAMPLES DISTRIBUTION FOR THE 3 SCENARIOS: BALANCED, ONLY

MALIGN, AND ONLY BENIGN.

Dataset Train Test
Malign Benign Malign Benign

Balanced 11200 11200 2800 2800
Malign 11200 0 2800 14000
Benign 0 11200 14000 2800

missed. This selection is supported by previous work, such as
Congmiago Li et al. [59].

Additionally, side-channel hardware-based attacks heav-
ily stress the computer’s cache memory. A high count of
cache misses on the last-level cache (LLC) memory may
indicate the presence of a FLUSH+RELOAD side-channel
attack, known as the most effective and popular among
hardware-based attacks. The first-level cache is also a com-
mon target in other attacks, as used by Stefano Carnà et
al. [60]. Thus, we also selected the LLC-load-misses and
L1-dcache-load-misses events.

Previous works have used sampling rates ranging from
1 ms per sample to 100 ms per sample. Congmiago Li et
al. [59] even dynamically change the sample rate to prevent
evasive malware. To generate a large number of samples for
the machine learning model, the aim was to use the lowest
possible sample rate. However, experimental results showed
that rates below 10 ms caused anomalies in perf, such as
missed samples. As a result, we chose a 1 ms sample rate. We
extract 2,000 samples from each application, either by running
the application for 2 seconds or repeating the execution until
we get those samples.

Dataset preparation: The dataset for the 14 applications
contains 28,000 samples, we created 3 different scenarios:
Balanced, Only malign, and Only benign. Each scenario was
split using 80% for training and 20% for testing (as shown in
Table I).

Model evaluation: We used different models for training:
Support Vector Machine (SVM) and One-Class SVM. The
SVM model shows the best results for detecting side-channel
attacks with a 99% accuracy, where only 2 of the attacks were
misdetected (as observed in the confusion matrix of Figure 1
left).

Figure 1 (center and right) shows the scenarios where a
single class dataset is used for training (either benign or
malign). In these cases, we observed many false positives
because the model encounters samples that were unseen during
training and therefore misclassifies them as malware.

2) Unsupervised learning: To evaluate the effectiveness of
unsupervised learning techniques, an experiment was designed
to detect Stack Buffer Overflow (SBO) attacks. Four appli-
cations from the MiBench suite were selected—AES, RSA,
SHA, and Dijkstra—and were subjected to SBO attacks. These
attacks triggered the execution of a malicious function, with its
size parametrized relative to the original code (i.e., the smaller
the malicious function, the more stealthy its execution).

Fig. 1. Confusion matrices for detecting malware using a balanced data set (left), a benign dataset (center) and a malign dataset (right).

Fig. 2. Accuracy of unsupervised SBO detection for different benchmarks and classifiers. The malicious function runs a number of instructions lower than
1% of those of the original application.).

For each application, 20,000 executions were collected
(10,000 for training and 10,000 for testing), with benchmark
inputs randomly varied. The training dataset consisted solely
of benign executions, while the testing dataset included 50%
benign executions and 50% with attacks. Four anomaly de-
tection models—OC-SVM, LOF, Isolation Forest, and Ellip-
tic Envelope—were trained to assess their effectiveness on
the dataset. Preliminary results, shown in Figure 2, indicate
promising performance for the Elliptic Envelope classifier, ex-
cept the RSA benchmark, which remains under investigation.

B. RAS

This subsection showcases the effects of Permanent faults
on program execution. We focus on SDC outcomes, showing
the probability that a fault in a specific hardware unit results

TABLE II
MAJOR SIMULATOR CONFIGURATIONS FOR EACH ISA.

Parameter Value

ISA RISC-V / Arm / x86
Pipeline 64-bit OoO (8-issue)

L1 Instruction Cache 32KB, 64B line, 128 sets, 4-way
L1 Data Cache 32KB, 64B line, 128 sets, 4-way

L2 Cache 1MB, 64B line, 2048 sets, 8-way
Physical Register File 128 Int; 128 FP

LQ/SQ/IQ/ROB entries 32/32/64/128

in an SDC. The basic parameters of the gem5 configuration
we use in this paper can be seen in Table II.

1) SDCs due to Permanent Faults in L1 instruction and
data caches: Fig. 3 illustrates the SDC probability outcomes
for permanent faults in the L1 Instruction Cache across fifteen

0%

1%

2%

3%

ad
pc
m
_d
ec

ad
pc
m
_e
nc

ba
sic
m
at
h

bi
tc
ou
nt

bl
ow
fis
h_
de
c

bl
ow
fis
h_
en
c

co
rn
er
s
cr
c3
2

di
jks
tra

ed
ge
s

fft
_in
v

pa
tri
cia
qs
or
t
sh
a

sm
oo
th

wA
VF

SD
C

 P
ro

b
ab

il
it

y

Benchmarks

Permanent Faults (L1I Cache)

x86 Arm RISC-V

Fig. 3. SDC probability due to permanent faults in L1 instruction cache [46].

0%

20%

40%

60%

80%

ad
pc
m
_d
ec

ad
pc
m
_e
nc

ba
sic
m
at
h

bi
tc
ou
nt

bl
ow
fis
h_
de
c

bl
ow
fis
h_
en
c

co
rn
er
s
cr
c3
2

di
jks
tra

ed
ge
s

fft
_in
v

pa
tri
cia
qs
or
t
sh
a

sm
oo
th

wA
VF

SD
C

 P
ro

b
ab

il
it

y

Benchmarks

Permanent Faults (L1D Cache)

x86 Arm RISC-V

Fig. 4. SDC probability due to permanent faults in L1 data cache [46].

benchmarks of the MiBench [61] suite for the three ISAs
(Arm, x86, RISC-V). As shown in Fig. 3, the SDC probability
ranges from 0.1% to 2.3% for Arm ISA, 0.1% to 1.3% for x86,
and 0.3% to 2.7% for RISC-V ISA. These results are expected
because a workload running with a persistent fault in any level
of cache memory that stores instructions is unlikely to survive
to the end and produce a corrupted output. Faults in most
fields of instruction will primarily impact the execution flow
or the instruction operands, and thus, lead to a crash [10]. On
average across all benchmarks, the x86 ISA demonstrates the
lowest SDC probability among the ISAs studied in this paper,
while the RISC-V ISA shows the highest SDC probability in
most benchmarks.

Fig. 4 displays the SDC probability results for permanent
faults in the L1 Data Cache across the same fifteen MiBench
benchmarks for the three ISAs (Arm, x86, RISC-V). As shown
in Fig. 4, the SDC probability varies from 5.1% to 53.3% for
Arm ISA, 4.4% to 64.7% for x86, and 4.4% to 70.8% for
RISC-V ISA. On average across all benchmarks, the RISC-
V ISA exhibits the highest SDC probability among all ISAs
studied in this paper. It is important to note that the L1
Data Cache is considered unprotected in our experiments, i.e.,
there is no ECC-related protection scheme. The actual SDC
probability can be much lower in real systems due to these
protection mechanisms.

Overall, for the microarchitecture and workloads analyzed,
the RISC-V ISA demonstrates a significantly higher probabil-
ity of SDCs due to permanent faults compared to the other
ISAs, i.e., Arm and x86.

V. CONCLUSIONS

This paper provided an overview of AI-based security and
RAS solutions in the computing continuum. The paper de-
scribes the comprehensive approach to malware and hardware
attack detection; as well as, the RAS features envisioned for
future systems across the computing continuum. AI-based
detection is shown to be a highly effective way to detect
malware either statically or dynamically and with several
ML methods. The paper also provides an analysis of the
vulnerability to SDCs of L1 data and instruction caches for the
same core but different ISA. The results show the importance
of RAS features in future systems as the vulnerability to SDCs
increases in each technology.

REFERENCES

[1] A. Waterman, Y. Lee et al., “The RISC-V instruction set manual volume
ii: Privileged architecture version 1.9,” EECS Department, University of
California, Berkeley, Tech. Rep., 2016.

[2] S. Greengard, “Will RISC-V revolutionize computing?” Communica-
tions of the ACM, vol. 63, no. 5, pp. 30–32, 2020.

[3] A. Dörflinger, M. Albers et al., “A comparative survey of open-source
application-class RISC-V processor implementations,” in Proceedings
of the 18th ACM International Conference on Computing Frontiers, ser.
CF ’21. New York, NY, USA: Association for Computing Machinery,
2021, pp. 12–20.

[4] G. Papadimitriou and D. Gizopoulos, “Anatomy of on-chip memory
hardware fault effects across the layers,” IEEE Transactions on Emerging
Topics in Computing, vol. 11, no. 2, pp. 420–431, 2023.

[5] G. Papadimitriou and D. Gizopoulos, “Avgi: Microarchitecture-driven,
fast and accurate vulnerability assessment,” in 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2023,
pp. 935–948.

[6] G. Papadimitriou and D. Gizopoulos, “Demystifying the system vulnera-
bility stack: Transient fault effects across the layers,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021, pp. 902–915.

[7] A. Chatzidimitriou, G. Papadimitriou et al., “Multi-bit upsets vulnera-
bility analysis of modern microprocessors,” in 2019 IEEE International
Symposium on Workload Characterization (IISWC), 2019, pp. 119–130.

[8] P. Bodmann, G. Papadimitriou et al., “The Impact of SoC Integration
and OS Deployment on the Reliability of Arm Processors,” in 2021
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2021, pp. 223–225.

[9] P. Bodmann, G. Papadimitriou et al., “Impact of cores integration and
operating system on arm processors reliability: Micro-architectural fault-
injection vs beam experiments,” in 2020 20th European Conference on
Radiation and Its Effects on Components and Systems (RADECS), 2020,
pp. 1–4.

[10] G. Papadimitriou and D. Gizopoulos, “Silent data corruptions: Microar-
chitectural perspectives,” IEEE Transactions on Computers, vol. 72,
no. 11, pp. 3072–3085, 2023.

[11] P. R. Bodmann, G. Papadimitriou et al., “Soft error effects on arm
microprocessors: Early estimations versus chip measurements,” IEEE
Transactions on Computers, vol. 71, no. 10, pp. 2358–2369, 2022.

[12] P. Koutsovasilis, C. D. Antonopoulos et al., “The impact of cpu
voltage margins on power-constrained execution,” IEEE Transactions
on Sustainable Computing, vol. 7, no. 1, pp. 221–234, 2022.

[13] D. P. Lerner, B. Inkley et al., “Optimization of tests for managing silicon
defects in data centers,” in 2022 IEEE International Test Conference
(ITC), 2022, pp. 578–582.

[14] H. D. Dixit, S. Pendharkar et al., “Silent Data Corruptions at Scale,”
2021. [Online]. Available: https://arxiv.org/abs/2102.11245

[15] P. H. Hochschild, P. Turner et al., “Cores That Don’t Count,” in
Proceedings of the Workshop on Hot Topics in Operating Systems,
ser. HotOS ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 9–16.

https://arxiv.org/abs/2102.11245

[16] S. Wang, G. Zhang et al., “Understanding silent data corruptions in a
large production cpu population,” in Proceedings of the 29th Symposium
on Operating Systems Principles, ser. SOSP ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 216–230.

[17] D. Gizopoulos, “Sdcs: A b c,” Sep 2024. [Online]. Available:
https://www.sigarch.org/sdcs-a-b-c/

[18] J. M. Domingos, P. Tomas, and L. Sousa, “Supporting RISC-V
performance counters through performance analysis tools for linux
(perf),” in 5th Workshop on Computer Architecture Research with
RISC-V (CARRV ‘21), 2021, pp. 935–948. [Online]. Available:
https://arxiv.org/pdf/2112.11767.pdf

[19] S. Browne, J. Dongarra et al., “A scalable cross-platform infrastructure
for application performance tuning using hardware counters,” in SC ’00:
Proceedings of the 2000 ACM/IEEE Conference on Supercomputing,
2000, pp. 42–42.

[20] B. Sprunt, “The basics of performance-monitoring hardware,” IEEE
Micro, vol. 22, no. 4, pp. 64–71, 2002.

[21] C. Malone, M. Zahran, and R. Karri, “Are hardware performance
counters a cost effective way for integrity checking of programs,” in
Proceedings of the Sixth ACM Workshop on Scalable Trusted Computing,
ser. STC ’11. New York, NY, USA: Association for Computing
Machinery, 2011, pp. 71–76.

[22] N. C. Doyle, E. Matthews et al., “Performance impacts and limitations
of hardware memory access trace collection,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017, 2017, pp.
506–511.

[23] Y. Ding, W. Dai et al., “Control flow-based opcode behavior analysis for
malware detection,” Computers & Security, vol. 44, pp. 65–74, 2014.

[24] H. HaddadPajouh, A. Dehghantanha et al., “A deep recurrent neural
network based approach for internet of things malware threat hunting,”
Future Generation Computer Systems, vol. 85, pp. 88–96, 2018.

[25] E. Rodrı́guez, P. Valls et al., “Transfer-learning-based intrusion detection
framework in iot networks,” Sensors, vol. 22, no. 15, p. 5621, 2022.

[26] P. Kocher, J. Horn et al., “Spectre attacks: Exploiting speculative
execution,” in 40th IEEE Symposium on Security and Privacy (S&P’19),
2019.

[27] M. Lipp, M. Schwarz et al., “Meltdown: Reading kernel memory from
user space,” in 27th USENIX Security Symposium (USENIX Security
18), 2018.

[28] “VirusTotal,” https://www.virustotal.com/.
[29] “VirusShare,” https://www.virusshare.com/.
[30] M. O. F. Rokon, R. Islam et al., “{SourceFinder}: Finding malware

{Source-Code} from publicly available repositories in {GitHub},” in
23rd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2020), 2020, pp. 149–163.

[31] J. Demme, M. Maycock et al., “On the feasibility of online malware
detection with performance counters,” SIGARCH Comput. Archit. News,
vol. 41, no. 3, pp. 559–570, jun 2013.

[32] C. P. Chenet, A. Savino, and S. Di Carlo, “A survey on hardware-
based malware detection approaches,” IEEE Access, vol. 12, pp. 54 115–
54 128, 2024.

[33] S. Dutto, A. Savino, and S. Di Carlo, “Exploring deep learning for in-
field fault detection in microprocessors,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2021, pp. 1456–1459.

[34] D. Kasap, A. Carpegna et al., “Micro-architectural features as soft-error
induced fault executions markers in embedded safety-critical systems: a
preliminary study,” 2023.

[35] T. Sherwood, E. Perelman et al., “Discovering and exploiting program
phases,” IEEE Micro, vol. 23, no. 6, pp. 84–93, 2003.

[36] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitor-
ing and prediction on real systems with application to dynamic power
management,” in 2006 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06), 2006, pp. 359–370.

[37] B. Singh, D. Evtyushkin et al., “On the detection of kernel-level rootkits
using hardware performance counters,” in Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, ser.
ASIA CCS ’17. New York, NY, USA: Association for Computing
Machinery, 2017, pp. 483–493.

[38] H. Sayadi, N. Patel et al., “Machine learning-based approaches for
energy-efficiency prediction and scheduling in composite cores archi-
tectures,” in 2017 IEEE International Conference on Computer Design
(ICCD), 2017, pp. 129–136.

[39] H. Peng, F. Long, and C. Ding, “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[40] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, jul 2009.

[41] H. Sayadi, N. Patel et al., “Ensemble learning for effective run-
time hardware-based malware detection: A comprehensive analysis
and classification,” in 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), 2018, pp. 1–6.

[42] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer
and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[43] H. Sayadi, H. M. Makrani et al., “2smart: A two-stage machine learning-
based approach for run-time specialized hardware-assisted malware
detection,” in 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2019, pp. 728–733.

[44] D. Gizopoulos, G. Papadimitriou, and O. Chatzopoulos, “Estimating the
failures and silent errors rates of cpus across isas and microarchitec-
tures,” in 2023 IEEE International Test Conference (ITC), 2023, pp.
377–382.

[45] T. Macieira, S. Gurumurthy et al., “Silent data corruptions in computing:
Understand and quantify,” in 2024 IEEE 30th International Symposium
on On-Line Testing and Robust System Design (IOLTS), 2024, pp. 1–7.

[46] D. Gizopoulos, G. Papadimitriou et al., “Silent data corruptions in
computing systems: Early predictions and large-scale measurements,”
in 2024 IEEE European Test Symposium (ETS), 2024, pp. 1–10.

[47] G. Papadimitriou, M. Kaliorakis et al., “A system-level volt-
age/frequency scaling characterization framework for multicore cpus,”
in IEEE Silicon Errors in Logic – System Effects (SELSE 2017), 2017.

[48] N. Karystinos, O. Chatzopoulos et al., “Harpocrates: Breaking the
silence of cpu faults through hardware-in-the-loop program generation,”
in 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA), 2024, pp. 516–531.

[49] D. Agiakatsikas, G. Papadimitriou et al., “Impact of voltage scaling on
soft errors susceptibility of multicore server cpus,” in Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’23. New York, NY, USA: Association for Computing
Machinery, 2023, p. 957–971.

[50] G. Papadimitriou, D. Gizopoulos et al., “Silent data corruptions: The
stealthy saboteurs of digital integrity,” in 2023 IEEE 29th International
Symposium on On-Line Testing and Robust System Design (IOLTS),
2023, pp. 1–7.

[51] M. Schwarz, M. Lipp et al., “ZombieLoad: Cross-privilege-boundary
data sampling,” in CCS, 2019.

[52] C. Canella, D. Genkin et al., “Fallout: Leaking data on meltdown-
resistant cpus,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, 2019.

[53] H. Ragab, A. Milburn et al., “CrossTalk: Speculative Data Leaks Across
Cores Are Real,” in S&P, May 2021, intel Bounty Reward. [Online].
Available: https://download.vusec.net/papers/crosstalk sp21.pdf

[54] R. O. S. Projects, “stress,” https://github.com/
resurrecting-open-source-projects/stress.

[55] U. of Michigan, “Mibench version 1.0,” https://vhosts.eecs.umich.edu/
mibench/, 2002, accessed: 14-05-2024.

[56] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high
performance computers,” https://www.cs.virginia.edu/stream/, accessed:
28-05-2024.

[57] “bzip2,” https://sourceware.org/bzip2/, accessed: 28-05-2024.
[58] “Ffmpeg,” https://ffmpeg.org/, accessed: 28-05-2024.
[59] C. Li and J.-L. Gaudiot, “Detecting spectre attacks using hardware

performance counters,” IEEE Transactions on Computers, vol. 71, no. 6,
pp. 1320–1331, 2022.

[60] S. Carnà, S. Ferracci et al., “Fight hardware with hardware: Systemwide
detection and mitigation of side-channel attacks using performance
counters,” Digital Threats, vol. 4, no. 1, 3 2023.

[61] M. R. Guthaus, J. S. Ringenberg et al., “Mibench: A free, commercially
representative embedded benchmark suite,” in Proceedings of the fourth
annual IEEE international workshop on workload characterization.
WWC-4 (Cat. No. 01EX538). IEEE, 2001, pp. 3–14.

https://www.sigarch.org/sdcs-a-b-c/
https://arxiv.org/pdf/2112.11767.pdf
https://www.virustotal.com/
https://www.virusshare.com/
https://download.vusec.net/papers/crosstalk_sp21.pdf
https://github.com/resurrecting-open-source-projects/stress
https://github.com/resurrecting-open-source-projects/stress
https://vhosts.eecs.umich.edu/mibench/
https://vhosts.eecs.umich.edu/mibench/
https://www.cs.virginia.edu/stream/
https://sourceware.org/bzip2/
https://ffmpeg.org/

	Introduction
	Methodology for AI-based security
	Hardware Performance Monitoring
	Static Analysis of applications
	Dynamic Analysis using Hardware Performance Counters

	Methodology for RAS
	Reliability, Availability, and Serviceability in Large-Scale SoC Deployment
	Sources of Faults and Impact on Reliability
	RAS-Oriented Approach

	Results
	AI-based security
	Supervised learning
	Unsupervised learning

	RAS
	SDCs due to Permanent Faults in L1 instruction and data caches

	Conclusions
	References

