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A B S T R A C T

Human activities exhibit a strong correlation between actions and the places where these are performed, such
as washing something at a sink. More specifically, in daily living environments we may identify particular
locations, hereinafter named activity-centric zones, which may afford a set of homogeneous actions. Their
knowledge can serve as a prior to favor vision models to recognize human activities. However, the appearance
of these zones is scene-specific, limiting the transferability of this prior information to unfamiliar areas and
domains. This problem is particularly relevant in egocentric vision, where the environment takes up most of
the image, making it even more difficult to separate the action from the context. In this paper, we discuss
the importance of decoupling the domain-specific appearance of activity-centric zones from their universal,
domain-agnostic representations, and show how the latter can improve the cross-domain transferability
of Egocentric Action Recognition (EAR) models. We validate our solution on the EPIC-Kitchens-100 and
Argo1M datasets.
1. Introduction

The privileged perspective offered by egocentric vision has proven
highly effective in tracking human activities in daily life, thanks to
the camera constantly following the wearer [1,2]. While providing
an advantageous viewpoint on ongoing activities, the first-person per-
spective also brings the background remarkably close to the camera,
inherently increasing its prominence in the field of view compared to
third-person videos.

In this context, the concept of environmental affordance plays a
pivotal role in connecting the wearer’s activity with the underlying
physical space. Specifically, the notion of affordance has been ex-
tensively studied in neuroscience and cognitive psychology since the
seminal work of Gibson [3]. Affordances describe the potential actions
or uses suggested by the physical characteristics of objects or the
surrounding environment. This concept has recently gained attention
in egocentric vision [4,5]. In particular, the work of Nagarajan et al.
[6] refers to environmental affordances as activity-centric zones, defined
as spatial locations, affording a coherent set of interactions, e.g. a sink
or a stove in a kitchen.

This prompts us to explore whether and how activity-centric zones
are currently exploited for egocentric video understanding models,
connecting human actions with the persistent underlying environment.
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In particular, we demonstrate that the co-occurrence of specific actions
in certain locations, predominantly present in egocentric vision, leads
action recognition models to naturally learn a relationship between the
actions and the locations in which they occur, exploiting it for making
context-aware predictions.

This phenomenon, observable in the training data, is commonly
known in computer vision as co-occurrence bias [7] and, in our case,
it aids the model in identifying a limited set of potential actions based
on what is visible in the camera’s field of view. For instance, when a
user looks at a sink, it is more likely that the action being performed
is washing rather than cooking. This process mirrors how people, in
their daily lives, use their understanding of objects and tools to navigate
unfamiliar environments and identify the activities the environment
can afford.

However, despite their ability to exploit activity-centric locations
observed during training, we demonstrate that current Egocentric Ac-
tion Recognition (EAR) networks lack a mechanism to explicitly model
the contribution of the environment in their inference process on un-
observed zones. In other words, the co-occurrence bias, which aids the
model in autonomously learning environmental affordances, leads to
confusion in predictions as soon as the appearance of the zone changes.

Indeed, extensive datasets of egocentric videos, such as EK100 [8]
and Ego4D [9], have a number of actions (i.e. verb-noun combinations)
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Fig. 1. The actions a person performs in a scene are closely related to the specific
places where they are performed (environmental affordances [6]). Current egocentric
action recognition models learn these correlations during training, but struggle when
faced with an unfamiliar environment, losing context.

greatly exceeding the number of environments in which they were
recorded. As a consequence, models trained on these datasets overly
depend on appearance-based features, such as visual representations of
objects and tools, for recognizing actions [7]. This reliance leads the
models to effectively recognize activity-centric zones only when tested
with data from the same training environments, struggling to exploit
the environmental affordances in new domains, as shown in Fig. 1.

To address this issue, this work focuses on universal representations
of the activity-centric zones, which - we show - have the potential
to assist RGB models in removing domain-specific biases from the
encoding of activity-centric zones. By leveraging a domain-agnostic
representations of these locations, we aim to isolate the domain-specific
representation of the activity-centric zones in EAR models and replace
them with a more general, domain-independent equivalent, resulting
in more general EAR models. The main goal of our work is to address
two key questions: how can we detect and identify these locations in real
world conditions? And, can we use a domain-agnostic representation of
these locations to improve the generalization capability of first person action
recognition models?

We evaluate our approach on the EPIC-Kitchens-100 (EK100) [8]
and Argo1M [10] datasets in a Domain Generalization (DG) setting,
where multiple source domains are available at training time but
no target data can be accessed. In summary, this paper presents the
following contributions:

• we shed light on the side-effect of the co-occurrence bias in
egocentric video processing, which steers models in indirectly
learning domain-dependent information about the environments
(i.e. domain-specific activity-centric zones);

• we propose EgoZAR, an architecture which adopts more gen-
eral representations of activity-centric zones to improve action
recognition performance on unseen domains, enabling models to
leverage the environmental affordances even in unknown zones;

• we demonstrate with extensive experiments on the EK100 and
Argo1M datasets how replacing domain-specific environmental
representations with their universal counterparts can help ac-
tion recognition on unseen environments, achieving state-of-the-
art Domain Generalization results on EK100 and competitive
performance on Argo1M.

2. Related works

Objects affordances and activity-centric zones. James J. Gibson defined
the term affordances in 1979 in the field of cognitive psychology [3]
referring to the physical properties of an object (or environment) that
141 
support certain human actions and interactions. The concept of affor-
dance is now being widely explored in computer vision [11,12], robotic
manipulation [13,14] and navigation [15], and human–computer in-
teraction [16]. Most of the previous works on the topic focus on
human-object interactions [5,17,18], object grasping [19] and affor-
dance detection [20]. The concept of affordances has also been recently
generalized to scenes. Most notably, EGO-TOPO [6] extracts environ-
mental affordances from egocentric videos and builds a topological
map of the locations of the environment. These so-called activity-
centric zones represent the main spatial regions in which actions may
occur, driving interest towards their use in action recognition. More
recently, Mur-Labadia et al. [4] built EPIC-Aff, a dataset based on
EK100 providing multi-label pixel-wise affordance annotations with the
camera pose.

Egocentric action recognition. Action recognition is one of the most
studied tasks in egocentric vision [1]. The first architectures used in
this context usually come from the third-person literature and fall
into the categories of 2D CNN-based methods [21,22] and 3D CNN-
based methods [23,24]. LSTM and its variants [25,26] followed this
first wave to better encode temporal information. The most popular
technique is the multi-modal approach [27,28], especially in EK100
competitions [8], to combine the complementary information provided
by different modalities, e.g. RGB and optical flow. However, although
optical flow has proven to be a strong modality for the action recog-
nition task, it is computationally expensive. As shown in Crasto et al.
[29], the use of optical flow limits the application of several methods in
online scenarios, pushing the community either towards single-stream
architectures [26,30], or to investigate alternative modalities [31,32].

Video Domain Adaptation. The goal of Unsupervised Domain Adapta-
tion (UDA) is to close the gap between a labeled source domain and
an unlabeled target domain. This task has been studied in detail in
the context of image classification [33,34]. UDA for video analysis has
been primarily focused on extending existing techniques to include the
temporal dimension [35] and/or the multi-modal nature of videos [27].

Unlike UDA, the goal of DG [36] is to improve generalization to out-
of-distribution data without requiring access to the target data, using
only data from one or more source training domains. DG has been
studied in different contexts from object recognition [37], to semantic
segmentation [38] and face recognition [39]. Applications to video are
more scarce. Among these, RNA-Net [40] improves modalities coop-
eration on unseen scenarios by aligning feature norms. VideoDG [41]
learns to align the local temporal features across different domains.
CIR [10] reconstructs samples from different domains to learn more
domain-agnostic representations. Unlike previous approaches, ours is
the first to emphasize the importance of activity-centric zones in im-
proving domain generalization.

3. Proposed method

Activity-centric zones provide useful insights into which actions are
most likely to occur at a given location in the environment. However,
exploiting these insights across different domains is not straightforward
and requires models to reason about the location while ignoring its
appearance. We provide more intuitions behind this behavior in Sec-
tion 3.1. We describe how to extract domain-agnostic representations
for activity-centric zones in Section 3.2 and show how these features
can be integrated in an action recognition pipeline in Section 3.3.

3.1. Intuition

In egocentric vision, cameras are often positioned very close to
the actions and the surrounding environments, causing RGB models to
focus strongly on the environment. We observe empirical evidence of
this phenomenon looking at the feature space of an EAR model (Fig. 2).
Actions occurring in the same activity-centric zone are mapped to the
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Fig. 2. Feature space of an EAR model. On the left (Fig. 2(a)), the features obtained from a model trained and tested in the same environment are well separated based on the
location where the actions are taking place. On the right (Fig. 2(b)), when the same model is used in a different environment, this clustering effect is not present anymore and
different locations are mapped to the same region of the feature space.
Fig. 3. Architecture of EgoZAR. Each modality 𝑚 is processed using a separate features
extractor to obtain the features 𝑥𝑚. CLIP features are then adopted both in the Zone and
Action Extraction modules. This approach helps the network to focus on the activity-
centric zones while minimizing the impact of environmental bias from the training
domains. After temporal aggregation, the contributions from the different modalities
𝑦𝑀 are combined to produce the final prediction of the action label.

same region of the feature space, regardless of their action label, which
suggests that the model has learned a positive correlation between the
environment and the set of actions that can be performed at a given
location. This clustering in feature space highlights the importance of
the environment for action recognition. However, this phenomenon
does not transfer easily to new domains, as activity-centric zones are
strongly coupled to their appearance, and models struggle to recognize
the former (the semantic of the location) while ignoring the latter
(its appearance). Indeed, comparing the feature spaces on the train
and test data, which belong to different visual domains, reveals that
the clustering by activity-centric zones is no longer present when
evaluating test data, as shown on the right side of Fig. 2. To over-
come this limitation, it is essential to allow the model to learn these
activity-centric priors without the domain appearance bias, which is
inherently present in video datasets and results from limited variability
in the number of environments and locations represented. This would
allow models to embed this prior knowledge about the distribution
of actions in a given location while avoiding the negative influence
of domain-specific biases that hinder generalization. Based on these
observations, we identify two main challenges. First, the inclusion of
domain-agnostic representations of the activity-centric zones into EAR
models. Second, the development of a strategy for training an action
recognition model that uses these domain-agnostic representations to
leverage the contextual information provided by the environment.
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3.2. Extracting activity-centric zone features

We propose a method that leverages visual-language models trained
on large-scale image datasets as a zone recognition model to detect the
activity-centric zones from the video stream. Indeed, being trained
on millions of (image, caption) pairs sourced from the internet, these
models are intrinsically able to recognize and generate similar features
for the same location, e.g. a sink or a stove in a kitchen, across different
environments. We use the features obtained from the zone recognition
model to (i) include a domain-agnostic information from the environ-
ment, and (ii) remove the environment information from the input
features of the action recognition model. We adopt an unsupervised
clustering algorithm on the features of the zone recognition model
to discover clusters in the features space that correspond to different
locations in which the actions occur.

Given a dataset of egocentric human actions, we define each sample
𝑥𝑖 as a triplet 𝑥𝑖 = (𝐱𝑚𝑖 , 𝐱𝑧𝑖 , 𝑦𝑖), where 𝐱𝑚𝑖 ∈ R𝑁 ×𝐷𝑚 and 𝐱𝑧𝑖 ∈ R𝑁 ×𝐷𝑧

represent respectively the features extracted from an action recognition
model  and a zone recognition model  from 𝑁 uniformly sampled
clips across the input video segment. Additional implementation details
on the features extraction processes are presented in Section 4.1. Zone
features from all the samples in the training dataset 𝐱𝑠𝑖 are averaged
over the clip dimension and clustered using K-Means in the euclidean
features space. This results in a set of 𝐾 prototypes that represent the
centers of the clusters 𝐜𝑘 ∈ R𝐷𝑧 , each corresponding to a different
location. During training, each sample is assigned to the closest cluster
using euclidean distance to obtain the corresponding activity-centric
zone pseudo-label 𝑦𝑧𝑖 = min𝑘 ‖𝐱𝑧𝑖 − 𝐜𝑘‖2.

3.3. Integration of the activity-centric zones

To integrate the prior information provided by the zone recognition
model we propose EgoZAR (see Fig. 3). Our proposed architecture
introduces two attention-based modules, namely the Zone Extraction
(ZE) and Action Extraction (AE) modules, to explicitly separate the
input features into two components, encoding zone and motion clues
respectively. The ZE module extracts the relevant zone-related infor-
mation from the zone features 𝐱𝑧𝑖 , while the AE module encourages the
action recognition features 𝐱𝑚𝑖 to ignore the zone and domain appear-
ance biases they incorporate. These modules are implemented using
Multi-Head Attention followed by a linear projection and a residual
connection. Queries are computed from the zone features while keys
and values are obtained from the zone or action features for the ZE
and AE modules respectively. Formally, the updated features 𝐱̃𝑧𝑖 and 𝐱̃𝑚𝑖
are computed as follows:

𝐨𝑧𝑖 = 𝐱𝑧𝑖 + 𝜎

(

𝑄𝑧(𝐱𝑧𝑖 )𝐾𝑧(𝐱𝑧𝑖 )
𝑇

√

𝐷𝑧

)

⋅ 𝑉𝑧(𝐱𝑧𝑖 ), 𝐱̃𝑧𝑖 = 𝐨𝑧𝑖 + 𝐹𝑧(𝐨𝑧𝑖 ), (1)

𝐨𝑚𝑖 = 𝐱𝑚𝑖 + 𝜎

(

𝑄𝑚(𝐱𝑧𝑖 )𝐾𝑚(𝐱𝑚𝑖 )
𝑇

√

)

⋅ 𝑉𝑚(𝐱𝑚𝑖 ), 𝐱̃𝑚𝑖 = 𝐨𝑚𝑖 + 𝐹𝑚(𝐨𝑚𝑖 ), (2)

𝐷𝑧
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Fig. 4. Clusters obtained with K-Means (K = 4) on the CLIP features of EK100, showing how the same locations, for example sinks and stoves, but different kitchens are
clustered together.
where 𝑄, 𝐾 and 𝑉 represent the queries, keys and values projections
of the features and 𝐹 is a linear projection. Then, the updated features
are concatenated on the clips dimension and fed to a TRN [42] layer:

𝐱𝑖 = 𝑇 𝑅𝑁 (

[𝐱̃𝑧𝑖 , 𝐱̃
𝑚
𝑖 ]
)

, (3)

where 𝐱𝑖 ∈ R𝐷𝑚 and TRN is implemented as a linear projection,
followed by a Batch Normalization layer, a ReLU activation and a
dropout layer. Finally, features 𝐱𝑖 are fed to a linear classifier that
outputs the action logits 𝐲̃𝑖.

Disentanglement of the action features. The objective of the AE mod-
ule is to leverage the clues brought by the zone features to remove
the appearance component of the motion features. To encourage this
behavior, we introduce an adversarial classifier on top of the output
of the AE module 𝐱̃𝑚𝑖 . The objective of the classifier is to recognize
the activity-centric zone from the motion features. As a result, these
features are pushed to discard any residual zone information. The
classifier is implemented as a two-layers MLP with hidden size 256,
Batch Normalization and ReLU activations. The classifier outputs the
activity-centric zone logits 𝐲̃𝑑𝑖 .

3.4. Training and inference

EgoZAR architecture is trained jointly using Cross Entropy loss
on the action logits 𝐲̃𝑖 and on the output of the adversarial activity-
centric zone classifier 𝐲̃𝑑𝑖 with the supervision of the zone pseudo-labels.
Other modalities, such as optical flow and audio, are less impacted
by environmental bias, even though they can still benefit from the
contextual features extracted from the zone recognition model. As
an example, an audio model aware of its proximity to a sink can
more easily understand if sounds are linked to activities like washing,
leveraging contextual clues for inference. When training with multiple
input modalities, the network is replicated for each modality and the
modality-specific action logits are averaged before computing the loss.
In this context, the network is trained with a double Cross Entropy
loss on both the fused (averaged) logits as well as on the modality-
specific logits. The Disentanglement Cross Entropy loss is computed just
on the RGB modality, as it is the modality most affected by domain
appearance biases.

4. Experiments and results

4.1. Experimental setup

Dataset. We evaluate EgoZAR on the Unsupervised Domain Adaptation
(UDA) benchmark subset from EK100 [8], a large dataset of fine-
grained activities in a kitchen environment. The dataset includes two
forms of domain shift: (i) each participant records its actions in a
different kitchen (location shift) and (ii) the source and target splits
partially share environments, although they are separated by a time
interval (time shift). Our approach focuses on Domain Generalization
143 
Fig. 5. Cluster-wise verbs and nouns distributions showing quite distinct functional
dependencies between clusters and the corresponding actions. Lighter colors indicate
higher density.

(DG), thus the target split is not used during the training process. Each
action is annotated using a (verb, noun) pair from a combination of
97 verb classes and 300 noun classes. Performances are reported using
Top-1 and Top-5 accuracies for verbs, nouns and actions on the target
validation set of EK100.

We also evaluate EgoZAR on Argo1M [10], a large scale egocentric
vision dataset for Domain Generalization across different scenarios and
locations. Argo1M consists of 10 splits, in each of which a specific
scenario and location are not seen during training and only used for
evaluation. Performance are reported using Top-1 Accuracy.

Implementation and training details. For EK100, RGB, optical flow and
audio features are extracted using the TBN architecture [43] finetuned
on the source train split on EK100, following the protocol described
in Damen et al. [8]. The projection layers and the attention modules
are trained for 30 epochs, using the SGD optimizer with weight decay
1𝑒− 5 and momentum 0.9. The learning rate is initially set to 1𝑒− 3 and
reduced by a factor 0.1 after epochs 10 and 20. For the zone recognition
model, we adopt various variants of CLIP [44] and SWAG [45]. For
Argo1M, we reuse the same hyperparameters as CIR [10] and learning
rate 1𝑒 − 6. RGB and zone features are extracted using SlowFast [24]
and CLIP ViT-L/14 respectively. The features extractors and the zone
recognition models are not updated during training.

4.2. Analysis of unsupervised environment clustering

Our approach identifies the locations in which actions are being
performed through an unsupervised clustering of the features extracted
with the zone recognition model. Fig. 4 shows samples from clusters
derived from the EK100 dataset. The data was clustered using K-Means
with a value of K set to 4, employing the L2 distance metric on features
extracted with CLIP ViT-L/14. We observe that functionally similar
locations are naturally clustered together in the CLIP’s features space.
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Table 1
Results on the validation set of EPIC-Kitchens-100 dataset in Unsupervised Domain Adaptation (UDA) and Domain Generalization (DG) settings using RGB, Optical Flow and Audio.
To ensure a fair comparison we report the Source Only performance for each method. Our results are averaged over three runs. Best in bold. Second best is underlined.

Method Modality EAR Network Setting Top-1 Accuracy (%) Top-5 Accuracy (%) Mean Accuracy (%)

Action Verb Noun Action Verb Noun

Source Only RGB-Flow-Audio TBN-TRN – 19.20 46.70 27.78 42.12 75.42 48.27 38.95
TA3N [35] RGB-Flow-Audio TBN-TRN UDA 19.61 48.44 28.87 43.36 75.95 50.12 41.25 (▴ +2.30%)

Source Only RGB-Flow-Audio TBN-TRN – 18.99 47.14 27.35 41.82 75.27 49.36 43.32
MM-SADA [27] RGB-Flow-Audio TBN-TRN DG 19.15 47.76 27.93 42.90 77.07 49.77 44.10 (▴ +0.78%)
MM-SADA [27] RGB-Flow-Audio TBN-TRN UDA 19.25 48.44 28.26 43.41 77.56 50.59 44.59 (▴ +1.27%)

Source Only RGB-Flow-Audio TBN-TRN – 18.29 46.79 26.79 41.36 75.39 48.44 42.84
RNA [40] RGB-Flow-Audio TBN-TRN DG 19.81 50.75 27.92 46.76 80.64 51.37 46.21 (▴ +3.37%)
RNA [40] RGB-Flow-Audio TBN-TRN UDA 20.05 50.82 29.19 46.04 80.89 52.18 46.53 (▴ +3.69%)

Source Only RGB-Flow-Audio TBN-TRN – 19.61 47.69 28.48 – – – –
CIA [46] RGB-Flow-Audio TBN-TRN UDA 20.30 48.34 29.50 – – – –

Source Only RGB-Flow-Audio TBN-TRN DG 19.96 50.27 29.04 46.74 81.74 52.14 46.65
Gradient Blending [47] RGB-Flow-Audio TBN-TRN DG 20.26 50.18 29.60 46.86 81.82 52.57 46.88 (▴ +0.23%)

Source Only RGB-Flow-Audio TBN-TRN – 19.41 49.09 29.17 45.89 80.72 52.42 46.16
CIR [10] (w/o text)a RGB-Flow-Audio TBN-TRN DG 19.41 49.45 29.13 46.82 80.64 53.49 46.49 (▴ +0.33%)
CIR [10]a RGB-Flow-Audio TBN-TRN DG 19.43 48.82 29.08 46.94 81.07 53.25 46.43 (▴ +0.27%)

Source Only RGB-Flow-Audio TBN-TRN – 19.41 49.09 29.17 45.89 80.72 52.42 46.16
EgoZAR (RN50) RGB-Flow-Audio TBN-TRN DG 20.32 50.05 29.53 46.95 81.18 53.65 46.95 (▴ +0.79%)
EgoZAR (ViT-L/14) RGB-Flow-Audio TBN-TRN DG 21.83 50.41 31.99 50.06 81.27 58.13 48.95 (▴ +2.79%)

a Reproduced.
r

a

Table 2
Contribution of the attention and disentanglement components of EgoZAR across
ifferent input modalities.

Top-1 Accuracy (%) Top-5 Accuracy (%) Mean

Action Verb Noun Action Verb Noun Acc. (%)

RGB 10.91 33.76 21.80 36.97 75.40 43.72 37.09
+ Attn. 13.17 36.13 24.32 41.76 76.71 49.22 40.22
+ Disent. 13.63 37.33 25.06 42.46 77.18 50.34 41.00

Flow 13.05 44.69 20.57 35.51 77.44 40.50 38.63
+ Attn. 16.80 46.02 25.92 43.97 79.00 51.37 43.85

Audio 8.18 32.36 13.78 27.07 70.47 31.89 30.63
+ Attn. 14.97 39.74 23.65 40.34 75.90 47.99 40.43

Additionally, we integrate these qualitative observations with the per-
cluster verbs and nouns distributions, computed for different number of
lusters, as shown in Fig. 5. The plot confirms the presence of functional
ependencies between the clusters and the labels distributions, with
he exception of some verbs, e.g., take and put that are not tied to
pecific locations.

4.3. EK100 results

We present a comparison of state-of-the-art methods on EK100 in
Table 1, comparing EgoZAR with MM-SADA [27], Gradient Blend-
ing [47], RNA [40] and CIR [10] in the DG setting and with TA3N [35]
nd CIA [46] in UDA. To account for variations in the network archi-

tectures used by these models and ensure a fair comparison, we report
each model with its Source Only performance, corresponding to stan-
dard training using cross-entropy only. This dataset poses significant
challenges, with limited improvements and difficulties in comparing
the results of different methods, e.g. Source Only of Gradient Blend-
ing outperforms TA3N or MM-SADA. Comparison of UDA and DG
approaches leads to similar observations, as the gap between the best
approaches in these two settings is quite small. We also evaluate CIR
on EK100, using the same Source Only as EgoZAR. CIR benefits from the
detailed narrations in Argo1M, the dataset for which it was originally
proposed, while EK100 narrations are less descriptive, mostly a simple
concatenation of the verb and noun labels, limiting its performance.

Our solution shows significant improvements over the previous
OTA without access to target data. We observe noticeable gains es-
ecially in action and noun accuracy, indicating that EgoZAR enables
144 
better reasoning about the manipulated objects and their interactions
in key locations across environments. Indeed, the domain-agnostic
clues introduced by the zone features reduce the negative effect of
appearance biases, focusing less on the environment and helping the
model in recognizing the same objects in different domains. Overall,
EgoZAR achieves a considerable improvement over the previous SOTA,
without access to the target data.

Single modality training. The integration of the zone information may
be also beneficial for modalities that lack visual clues of the envi-
onment. These modalities suffer less from environmental biases but

can benefit from the integration of zones information. We show the
effect of the integration of the AE and SE modules in unimodal AR
models in Table 2, observing a significant improvement compared to
the baselines, especially on the noun metric. For RGB, the modality
most affected by visual domain bias, we report results using both
the attention and disentanglement modules of EgoZAR. Compared to
the baseline, we observe an overall improvement of +3.13% using the
attention modules and +3.91% when also the disentanglement loss
is introduced. Notably, the better Top-1 verb accuracy indicates that
the network is leveraging the contextual and domain-agnostic location
clues provided by CLIP features to identify the action being performed.

Comparison of different zone recognition models. We evaluate in Table 4
the impact of different backbones for features extraction, using mul-
tiple CLIP and SWAG [45] variants. The latter is a ViT architecture
trained for image classification using weak supervision of hashtags
nd is the current SOTA for scene classification on Places-365 [53],

suggesting it could be useful in our context to recognize the activity-
centric zones. Even the least capable model (CLIP RN50) considerably
outperforms the baseline, proving the effectiveness of the attention
modules of EgoZAR, and larger models consistently provide higher
average accuracy. Additionally, EgoZAR shows robust performance
improvements using different zone recognition models. We attribute
the better performance of CLIP compared to SWAG to the former
being trained on more descriptive captions using an image-language
contrastive objective, compared to the weak supervision of the hashtags
used in the training process of SWAG.

Ablation on the number of clusters. We analyze in Table 5, the impact of
different number of clusters. All configurations exceed the performance
of attention modules alone and we observe similar performances across
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Table 3
Top-1 accuracy on ARGO1M [10]. Best results in bold, second best underlined.

DG strategies

D A M P R T Z Ga US-PNA Cl US-MN Kn IND Sh IND Bu US-PNA Me SAU Sp COL Co JPN Ar ITA Pl US-IN Mean

Random 8.00 10.64 9.13 14.36 9.55 13.04 8.35 10.13 9.86 15.68 10.84
ERM 20.75 22.35 18.69 22.14 20.73 23.51 18.97 24.81 22.75 23.29 21.80

CORALa [48] ✓ 22.14 22.55 19.07 24.01 22.18 24.31 19.16 25.36 23.89 25.96 22.86
DANNa [34] ✓ ✓ 22.42 23.85 19.27 22.89 22.23 23.70 18.64 25.86 23.86 23.28 22.60
MMDa [49] ✓ 22.42 23.60 19.66 24.46 22.08 24.64 19.59 25.87 23.84 24.78 23.09
Mixup [50] ✓ 21.97 22.21 19.90 23.81 21.45 24.35 19.01 25.90 23.85 24.41 22.69
BoDAa [51] ✓ 22.17 22.78 19.62 22.94 21.46 23.97 19.18 25.68 23.92 24.90 22.66
DoPrompta [52] ✓ 21.92 22.77 20.40 23.67 22.75 24.67 18.24 25.04 24.74 25.24 22.94
CIR w/o text [10] ✓ 23.39 24.52 21.02 26.62 24.64 27.00 19.66 25.42 25.71 30.17 24.81
CIR [10] ✓ ✓ 24.10 25.51 20.46 27.78 24.93 26.83 19.75 26.34 25.67 30.94 25.23

EgoZARa ✓ 24.53 26.12 21.70 25.82 24.05 24.88 18.91 26.02 26.05 29.94 24.80

Domain labels required during training. D: distribution matching, A: adversarial learning, M : label-wise mix-up, P: domain-prompts, R: reconstruction, T : video-text association,
: activity-centric zone learning.
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able 4
omparison of models for zone features extraction using the cross attention component.
xperiments conducted with RGB only.
Arch. Top-1 Acc. (%) Top-5 Acc. (%) Mean

Action Verb Noun Action Verb Noun Acc. (%)

Baseline 10.91 33.76 21.79 36.97 75.40 43.72 37.09

SWAG [45]

ViT/B-16 11.60 34.24 22.58 39.35 75.44 46.80 38.34
ViT/L-16 12.06 34.24 23.64 40.19 75.59 48.10 38.97

CLIP [44]

RN-50 11.69 35.23 22.43 38.54 75.69 45.56 38.19
ViT-B/32 11.56 34.38 22.44 38.26 75.00 45.51 37.86
ViT-B/16 11.88 34.82 22.87 39.30 75.23 46.73 38.47
ViT-L/14 13.17 36.13 24.32 41.76 76.71 49.22 40.22

able 5
blation on the number of clusters for disentanglement of unimodal RGB model.
K Top-1 Accuracy (%) Top-5 Accuracy (%) Mean

Action Verb Noun Action Verb Noun Acc. (%)

– 13.17 36.13 24.32 41.76 76.71 49.22 40.22

2 13.71 37.10 24.97 41.96 77.04 49.62 40.73
4 13.63 37.33 25.06 42.46 77.18 50.34 41.00
8 13.44 37.12 24.37 42.30 76.76 49.92 40.65
16 13.08 36.68 24.12 42.00 76.86 49.57 40.38
32 13.29 37.33 24.59 42.33 77.36 49.89 40.80

 large set of values. We attribute this behavior to two factors. First,
he number of locations in EK100 is limited and mostly dominated
y sinks and stoves, which occur frequently. Second, having more
lusters means that the larger clusters are broken into smaller chunks,
lthough the disentanglement objective, which encourages the network
o become more confused about the locations, remains the same. Unless
therwise specified, we set 𝐾 = 4 for all disentanglement experiments.

.4. ARGO1M results

Argo1M [10] features actions from a collection of different sce-
arios (e.g., Cooking and Sport) and locations (e.g., United States and
ndia). While certain scenarios, such as cooking or cleaning, benefit
rom EgoZAR’s activity-centric zones, others, such as shopping, are less
uitable due to the even distribution of the same actions across different
ocations in the environment. The heterogeneity in Argo1M’s data
istribution required some minor adjustments to the clustering process
dopted in EgoZAR. Indeed, activity-centric zones are typically associ-
ted with the scenario, e.g. a sink and an oven in the kitchen, but the
 h

145 
ocation can introduce confounding factors. For example, kitchens in
he USA can differ significantly from those in Saudi Arabia. To account
or this, we clustered zone features separately by location and then
erged clusters from different locations based on similarity of action
istributions. This approach clusters zones that are visually distinct
ut support similar actions and may represent the same underlying
ctivity-centric zone.

Despite these limitations, Argo1M can be considered the largest and
ost diverse setting for DG in egocentric vision and a valuable addition

o our analysis (Table 3). EgoZAR outperforms all previous methods
CORAL [48], DANN [34], MMD [49], MixUp [50], BoDA [51] and
oPrompt [52]) and is on-par with CIR [10], which was specifically
esigned to deal with the many different scenarios and locations of
rgo1M. CIR recombines samples from different scenarios and locations

o learn a more agnostic representation that does not depend on the
ontext in which the action occurs. On the contrary, we argue that
he role of the environment is crucial in action recognition across
ifferent domains, and therefore build EgoZAR to leverage the location
nformation while reducing the impact of the appearance bias. The
dvantage of EgoZAR compared to CIR is more evident in settings
ike EK100 where environmental affordances are more dominant, as
iscussed in Section 4.3.

. Limitations and future works

EgoZAR heavily relies on the assumption that human activities are
ighly correlated with the locations in which they occur. This behavior
s very evident in datasets like EK100, and more noisy in other datasets
uch as Argo1M. This may impact the applicability of EgoZAR to
ew datasets and partially reduce its effectiveness. Also, our approach
equires to tune the number of clusters which is a very dataset-dependent
arameter. Future works could focus on making the clustering process
ore flexible to discover the activity-centric zones in a completely
nsupervised way, without using any prior knowledge on the number
f clusters.

. Conclusions

In this paper, we showcase the impact of environmental affordances
n action recognition. We argue that leveraging this environmental
nformation is significantly influenced by their appearance, strongly
imiting the generalization ability to other areas and domains. We pro-
ose EgoZAR, a method to exploit zone-recognition models as source
f a domain-agnostic information on the activity-centric zones where
he actions are taking place, and to replace domain-specific appearance
f activity-centric zones. Extensive experiments on EK100 show the
ffectiveness of EgoZAR, achieving SOTA performance and highlighting
ow the integration of zone information may help in action recognition.
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