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Correlation functions of the Kitaev model with a spatially modulated phase in the superconducting
order parameter

Fabian G. Medina Cuy and Fabrizio Dolcini
Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy

(Received 9 August 2024; revised 4 November 2024; accepted 4 December 2024; published 16 December 2024)

The Kitaev chain model with a spatially modulated phase in the superconducting order parameter exhibits
two types of topological transitions, namely, a band topology transition between trivial and topological gapped
phases, and a Fermi surface Lifshitz transition from a gapped to a gapless superconducting state. We investigate
the correlation functions of the model for arbitrary values of superconducting coupling �0, chemical potential
μ, and phase modulation wavevector Q, characterizing the current flowing through the system. In the cases
μ = 0 or Q = ±π/2 the model turns out to exhibit special symmetries, which are proven to induce an even/odd
effect in the correlations as a function of the distance l between two lattice sites, as they are nonvanishing
or strictly vanishing depending on the parity of l , measured in the lattice spacing unit. We identify a clear
difference between the band topology and the Lifshitz transition through the Q dependence of the short distance
correlation functions, which, in particular, exhibit pronounced cusps with discontinuous derivatives across the
Lifshitz transition. We also determine the long-distance behavior of correlations, finding that in the gapped
phase there can be various types of exponential decays and that in the gapless phase the algebraic decay is
characterized by two different spatial periods, depending on the model parameters. Furthermore, we establish a
connection between the gapless superconducting phase of the Kitaev chain and the chiral phase of spin models
with Dzyaloshinskii-Moriya interaction.

DOI: 10.1103/PhysRevB.110.214512

I. INTRODUCTION

Correlation functions are one of the most powerful tools to
characterize the properties of quantum systems. In topological
phase transitions, which cannot be directly signaled by the
onset of a spontaneously broken local order parameter [1–3],
their role becomes particularly important. In topological insu-
lators [4–6], for instance, topological indices can be extracted
from the ground-state correlation functions, given on any
system portion of the order of the correlation length [7]. In
inversion-symmetric Dirac models, correlation functions are
closely connected to the Fourier component of the Berry con-
nection (in 1D) and of the Berry curvature (in 2D) [8,9]. Also,
quantities like entanglement entropy, fidelity and discord,
borrowed from quantum information theory and harnessed
for detecting topological quantum phase transitions [10–13],
ultimately require the evaluation of correlations. Moreover,
single-particle correlation functions of noninteracting systems
can be used as a training set in machine learning techniques to
predict topological phases of interacting systems [14].

One of the most interesting and widely studied topological
quantum systems is the Kitaev chain model [15], which effec-
tively captures the essential properties of a p-wave topological
superconductor. The ground state of the model is charac-
terized by two topologically distinct gapped phases and, in
the topological nontrivial phase, it exhibits two Majorana
quasiparticle (MQP) edge states, whose braiding properties
could offer the opportunity to realize topologically protected
quantum information [16–22]. For this reason, various imple-
mentations of the 1D Kitaev chain have been proposed, based

on quantum spin Hall edge states contacted to ferromagnets
[23,24], proximitized spin-orbit nanowires [25,26], ferromag-
netic atom chains [27–32], and cold atoms in optical lattices
[33–35], receiving promising, although not yet conclusive,
support from experiments [36–44].

So far, most studies of the correlation functions in the
Kitaev chain have focused on two aspects. Firstly, the anal-
ysis of edge correlations in the case of 1D and 2D lattices
with open boundary conditions, with the purpose of finding a
hallmark of the topological transition between the two gapped
phases [45–49]. Second, the effect of long-ranged hopping
and superconducting terms, which do not allow for the cus-
tomary topological classification. These terms can lead to an
algebraic decay of correlation functions even in gapped phases
[50–53] and their realization in ultracold atom setups has been
proposed [35].

However, in the experiments conducted on
superconductor/semiconducting nanowire setups, where
signatures of MQPs are often searched for in the zero-bias
conductance peaks, an electrical current flow is driven across
the system. This has recently motivated research groups
to investigate the effects of a spatial modulation in the
phase of the superconducting order parameter of the Kitaev
chain [54–58], where the wavevector Q is related to the
net momentum of a Cooper pair, and is nonvanishing in
the presence of a current flow. In particular, in the regime
�0 > w, where the magnitude �0 of the superconducting
order parameter is larger than the bandwidth parameter w,
it has been shown that the spatial modulation wavevector Q
reduces the boundaries of the topological phase. Additionally,

2469-9950/2024/110(21)/214512(23) 214512-1 ©2024 American Physical Society

https://orcid.org/0000-0001-9199-8168
https://orcid.org/0000-0001-9550-9106
https://ror.org/00bgk9508
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.214512&domain=pdf&date_stamp=2024-12-16
https://doi.org/10.1103/PhysRevB.110.214512


FABIAN G. MEDINA CUY AND FABRIZIO DOLCINI PHYSICAL REVIEW B 110, 214512 (2024)

correlation functions have been found to exhibit off-diagonal
long-range order at specific parameter points [57]. A recent
study has shown that, in the more realistic regime �0 < w, an
even richer scenario arises: Two types of transitions can occur
as a function of Q [58]. The first one is related to the band
topology and is the customary topological transition between
the two gapped phases, while the second one is related to the
Fermi surface topology, and is a Lifshitz transition [59,60]
between a gapped and a gapless superconducting phase,
which further reduces the parameter range of observability of
MQPs [58]. Furthermore, by treating Q as the the wavevector
of an extra synthetic dimension, such a Lifshitz transition in
the 1D Kitaev chain can also be seen as a transition between
a type-I to type-II 2D Weyl semimetal.

Motivated by such insightful results, in this paper we
investigate the bulk correlation functions of the 1D Kitaev
chain in the presence of the Q modulation in the supercon-
ducting parameter phase, considering arbitrary values of the
model parameters and of the distance between the lattice
sites of the Kitaev chain. We shall identify the behavior of
the correlation functions across the Lifshitz transition and
highlight the differences from the more conventional band
topology transition between the two gapped phases, at both
short and long distances l , measured in units of the lattice
spacing.

The article is structured as follows. In Sec. II we describe
the model and summarize those aspects of Ref. [58] that are
needed for the present analysis. Then, in Sec. III we intro-
duce the normal and anomalous correlation functions that
we investigate, C(l ) and A(l ) respectively, illustrating the
way Q affects their behavior. Moreover, we present our first
result: For some noteworthy cases, namely for μ = 0 or for
Q = ±π/2, the model acquires some additional symmetries,
resulting into an even/odd effect for the correlation functions
C(l ) and A(l ), which are nonvanishing or vanishing depend-
ing on the parity of the site distance l . In Sec. IV we relax
the above parameter constraints, and analyze the behavior
of C(l ) and A(l ) for short distances (l = 1, 2) as a function
of the system parameters. We show that their behavior as
a function of Q when crossing the Lifshitz transition line
from gapped to gapless superconductor phase is quite different
from the case of the customary transition from topological
to trivial gapped phases. Section V focusses instead on the
long-distance behavior (l � 1), and we determine the asymp-
totic behavior both in the gapped and in the gapless phases.
Furthermore, in Sec. VI we discuss the relation between the
Kitaev chain with superconducting modulation Q and the
XY spin model characterized by Dzyaloshinskii-Moriya in-
teraction, highlighting a link in terms of correlation functions
between a gapless superconductor and a spin chiral phase.
Finally, we summarize our results and draw our conclusions in
Sec. VII.

II. MODEL, EXCITATION SPECTRUM, AND CURRENT
CARRYING STATE

In order to model a 1D p-wave TS crossed by a current
flow, we include a spatial modulation in the phase of the
superconducting order parameter of the Kitaev chain, and

consider the following Hamiltonian on a 1D lattice

H =
∑

j

{
w

(
c†

j c j+1 + c†
j+1c j

) − μ

(
c†

j c j − 1

2

)

+ �0
(
e−iQ(2 j+1)c†

j c
†
j+1 + eiQ(2 j+1)c j+1c j

)}
. (1)

Here, c j (c†
j ) corresponds to the annihilation (creation) oper-

ator at the lattice site j, while w > 0 denotes the tunneling
amplitude of the hopping term determining the bare band-
width 4w, and μ is the chemical potential. Moreover, the
second line of Eq. (1) represents the superconducting term,
with �0 > 0 denoting the superconducting coupling, and Q
the spatial modulation of its phase, related to the finite mo-
mentum −2Q of a Cooper pair in the presence of a current
flow. Assuming an infinitely long chain, where the number of
sites is Ns � 1, we can adopt periodic boundary conditions
(PBCs), and treat Q as a continuum variable.

While details about the model Eq. (1) can be found in
Ref. [58], here we shall briefly recall the essential aspects that
are needed to discuss how Q affects the normal and the anoma-
lous correlation functions. By applying the Fourier transform
and by introducing the Nambu spinors �

†
k;Q = (c†

k−Q , c−k−Q),
the Hamiltonian (1) can be rewritten as

H = 1

2

∑
k

�
†
k;QH (k; Q)�k;Q, (2)

where

H (k; Q) = h0(k; Q)σ0 + h(k; Q) · σ (3)

is the Bogoliubov-de Gennes (BdG) Hamiltonian, σ =
(σx, σy, σz ) denote the Pauli matrices, σ0 the 2 × 2 identity,

h0(k; Q) = 2w sin k sin Q, (4)

h(k; Q) = (0, −Im{�(k)}, ξ (k; Q)), (5)

with

ξ (k; Q) = 2w cos Q cos k − μ, (6)

�(k) = 2�0i sin k. (7)

Denoting h(k; Q) = |h(k; Q)| = [ξ 2(k; Q) + |�(k)|2]1/2, the
spectrum of the single-particle eigenvalues of the BdG Hamil-
tonian Eq. (3) reads

E±(k; Q) = h0(k; Q) ± h(k; Q), (8)

where the two bands fulfill the mutual relation

E−(k; Q) = −E+(−k; Q), (9)

stemming from the redundancy of degrees of freedom
in the Nambu formalism. Moreover, the eigenvectors
(uQ(k), vQ(k))T and ( − v∗

Q(k), uQ(k))T of Eq. (3), where

uQ(k) =
√

1

2

(
1 + ξ (k; Q)

h(k; Q)

)
,

vQ(k) = − i sgn(sin(k))

√
1

2

(
1 − ξ (k; Q)

h(k; Q)

)
, (10)
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enable one to rewrite the Hamiltonian Eq. (1) into its diagonal
form

H =
∑

k

E+(k; Q)

(
γ

†
k−Qγk−Q − 1

2

)
(11)

in terms of the Bogoliubov quasiparticles,

γk−Q =uQ(k)ck−Q + v∗
Q(k)c†

−k−Q,

γ
†
−k−Q = − vQ(k)ck−Q + uQ(k)c†

−k−Q. (12)

The two terms appearing in the spectrum Eq. (8) allow us to
highlight the twofold effect of the superconducting modula-
tion wavevector Q. On the one hand, Q renormalizes the bare
tunneling amplitude w → w cos Q [see Eq. (6)] that appears
in the term h(k; Q) of the spectrum Eq. (8). On the other
hand, Q introduces in Eq. (8) the h0 term Eq. (4), which is
not present in the standard Kitaev chain (Q = 0). The first
effect alters the boundaries between the topological and trivial
gapped phases [57], whereas the second effect can have even
more dramatic consequences. Indeed h0(k; Q) breaks the sym-
metry for k → −k of the spectrum and, when its magnitude
overcomes h(k; Q) for some k’s, it leads to E+(k; Q) < 0.
Importantly, this alters the occupancy of the E+ band and
the nature of the many-particle ground state [55,58]. Indeed,
Eq. (11) implies that, depending on whether E+(k; Q) > 0 or
E+(k; Q) < 0, it is energetically more favorable for the system
to have the k state empty or occupied. For these reasons,
differently from the customary Kitaev chain (Q = 0), where
the lower band E− is completely filled, or equivalently the
upper band E+ is completely empty, the presence of the super-
conducting modulation can induce an indirect closing of the
gap and lead the system to a gapless ground state |G(Q)〉 of
the model (1). As discussed in detail in Ref. [58], such ground
state can be expressed in general as

|G(Q)〉 =
∏

0<k<π
k∈Sp

(
uQ(k) + v∗

Q(k)c†
−k−Qc†

k−Q

) ∏
k∈Se

c†
k−Q |0〉 ,

(13)
where the Brillouin zone (BZ) gets decomposed in three sec-
tors, BZ = Sp ∪ Se ∪ Sh, identified through the three possible
values

η(k; Q) =
⎧⎨
⎩

1 k ∈ Sh

0 k ∈ Sp

−1 k ∈ Se

. (14)

of the spectral asymmetry function

η(k; Q) = 1
2 {sgnE+(k; Q) + sgnE−(k; Q)}. (15)

The sector Sp represents the pair sector, as it involves in the
ground-state Eq. (13) Cooper pairs with a total momentum
−2Q, while Se represents the unpaired electron sector, since
only single electrons appear in Eq. (13) for k ∈ Se, and Sh is
the unpaired hole sector, since no electron state appears in
Eq. (13) for k ∈ Sh. Note that, as a consequence of Eq. (9),
the unpaired hole sector Sh can be seen as the mirror of the
unpaired electron sector Se under k → −k, while the pair
sector Sp is self-mirrored under such transformation.

The ground state of the system can be in two possible type
of phases.

Gapped phase. The gapped phase is characterized by
the condition E+(k; Q) > 0 ∀k ∈ BZ, which in turn implies
E−(k; Q) < 0 ∀k ∈ BZ, on account of Eq. (9). Then, Eq. (15)
implies η(k; Q) ≡ 0 ∀k ∈ BZ, and from Eq. (14) one deduces
that the pair sector Sp covers the entire Brillouin zone, leaving
the Se and Sh sectors empty

Sp ≡ BZ ↔ k ∈ [−π, π ],

Se = Sh = ∅. (16)

In this case, the general expression (13) of the ground state
reduces to the standard form consisting of Cooper pairs only.
The gapped phase occurs if and only if one of the following
three parameter conditions is fulfilled [58]:

(i) |μ| > 2w & ∀�0 > 0 & ∀Q,

(ii) |μ| < 2w &
√

w2 − μ2/4 < �0 & |cos Q| �= |μ|/2w,

(iii) |μ| < 2w & w| sin Q| < �0 <
√

w2 − μ2/4. (17)

As is well known, there exist two topological distinct gapped
phases, separated by the curves |μ| = 2w| cos Q| in the pa-
rameter space, where the gap in the excitation spectrum closes
directly at either k∗ = 0 or k∗ = π , i.e. when E+(k∗; Q) =
E−(k∗; Q) = 0.

Gapless phase. When, however, E+(k; Q) < 0 for some
k, the gap between the two bands closes indirectly since
E−(−k; Q) > 0. In this case Eq. (14) implies that the unpaired
electron sector Se is not an empty set, just like its k-mirror
set Sh. Cooper pairs are present only in a portion Sp of the
Brillouin zone and the ground state is strictly mixed, as given
by Eq. (13). Such type of state arises also in other contexts,
such as s-wave paired superfluids with rotationally symmet-
ric confinement potentials [61,62] and Fermi gases with two
species of Fermions [63]. The ground state of model (1) is
in the gapless phase when both the following conditions are
fulfilled [58]:√

�2
0 + μ2

4
< w and �0 < w| sin Q|. (18)

In particular, one can show that the unpaired fermions (elec-
tron or holes) sector Su = Se + Sh of the Brillouin zone is
given by

Su = {k| |k∗
−| < |k| < π − |k∗

+|} (19)

while the pair sector is

Sp = {k|0 < |k| < |k∗
−| or π − |k∗

+| < |k| < π}, (20)

where

k∗
± = arcsin

⎛
⎜⎝ cos Q√

1 − �2
0

w2

⎞
⎟⎠ ± arcsin

⎛
⎜⎝ μ

2w

√
1 − �2

0
w2

⎞
⎟⎠. (21)

We conclude this section by recalling the phase diagram of
the Kitaev chain (1), obtained in Ref. [58]. Here, it is shown
in Fig. 1 as a function of the superconducting modulation
wavevector Q and the chemical potential μ, for three different
values of �0. Here, cyan and gray areas denote the topological
and trivial gapped phases, respectively, while the green area
denotes the gapless phase. While for �0 > w only the gapped
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FIG. 1. Phase diagram of the Kitaev chain as a function of the wavevector Q (spatial modulation of the superconducting order parameter)
and chemical potential μ, for three different values of the superconducting coupling: (a) �0 = 1.3w; (b) �0 = 0.8w; and (c) �0 = 0.6w.
Grey and cyan areas denote the trivial and topological gapped phases, respectively, while the green region denotes the gapless superconducting
phase. Different symbols in the gapped phases identify three different types of exponential decay in the correlation functions, at long distance
l � 1. In regions marked with “◦”, and “·”, correlations behave as a linear combination of two exponential decays, with or without a relative
sign (−1)l alternating with the distance l [see Eqs. (36) and (37) and Eqs. (47) and (48), respectively], while inside the elliptic region marked
by “−” they decay as one single exponential decay with additional spatial oscillations [Eqs. (55) and (56)]. Inside the gapless phase correlations
decay algebraically with additional two-period oscillations [see Eqs. (61) and (62)]. The crossing between situations (b) and (c), where the
elliptic gapped region and the gapless region touch, occurs at the value �∗

0 = w/
√

2. The wavevector Q∗, given in Eq. (59), identifies the
gapped/gapless boundary, while Q0, given in Eq. (60), determines the boundary between the “◦” and “·” regions.

phase exists [Fig. 1(a)], and the ground state only consists of
Cooper pairs, for the physically realistic regime �0 < w also
the gapless phase appears. It exists for the parameter values
(18), and is the more extended the lower the values of �0

[Figs. 1(b) and 1(c)]. The additional symbols appearing in
Fig. 1 identify different long-distance behavior of the corre-
lation functions, as we shall explain in detail in Sec. V.

III. CORRELATION FUNCTIONS: EXPRESSIONS
AND EVEN/ODD EFFECT

We now determine the real-space behavior of the correla-
tion functions of the model (1). Specifically, we shall consider
the normal and the anomalous correlation, defined as

C(l ) = eiQl〈c†
j c j+l〉, (22)

A(l ) = e−iQ(2 j+l )〈c†
j c

†
j+l〉, (23)

respectively. Here, the expectation values 〈· · · 〉 are computed
with respect to the ground state |G(Q)〉, whose general ex-
pression is given by Eq. (13). Because of the translational
invariance of the model, C and A are independent of the site
location j and only depend on the site distance l , which is
assumed to be l �= 0. All distances are expressed in terms of
the lattice spacing. Straightforward algebra, whose details are
given in Appendix A, enables one to reexpress the correlations
(22) and (23) as integrals in momentum space, and to identify
the different contributions related to the sector Sp, Se, Sh

characterizing the ground state (13). Specifically, one finds

C(l ) = Cp(l ) + i Cu(l ), (24)

where

Cp(l ) = − 1

4π

∫
Sp

dk
cos(kl )ξ (k; Q)

h(k; Q)
(25)

represents the Cooper pair contribution, and is the real part of
C(l ), whereas

Cu(l ) = 1

2π

∫
Se

dk sin(kl ) (26)

represents the unpaired electron contribution, and is the
imaginary part of C(l ). Similarly, the anomalous correlation
function can be reexpressed as

A(l ) = −�0

2π

∫
Sp

dk
sin(kl ) sin k

h(k; Q)
, (27)

and only consists of contributions from Cooper pairs, as
expected.

A comment is in order about how Q enters the expressions
(25)–(27) of the correlation functions. On the one hand, the in-
tegrand functions in these equations depend on Q only through
the effect of renormalization w → w cos Q of the tunneling
amplitude, encoded in the functions h(k; Q) and ξ (k; Q). On
the other hand, the integration domains Sp and Se, which are
determined by the spectral asymmetry values Eq. (14), also
depend on the h0(k; Q) term of the spectrum Eq. (8), which is
responsible for the possible change induced by Q in the band
occupancy.

Let us now turn to the evaluation of the correlation func-
tions (25)–(27). Firstly, we note that the unpaired fermion
contribution Cu can be given an analytical exact expression
for arbitrary parameter values. Indeed, in the gapped phase,
the spectral asymmetry always vanishes, η ≡ 0 ∀k ∈ BZ [see
Eq. (14)], and one has Cu = 0. In contrast, in the gapless
phase, one can rewrite Eq. (26) as

Cu(l ) = − 1

4π

∫
Su

dk sin(kl )η(k; Q)

= − sgn(Q)

2π

1

l
(cos(k∗

−l ) − (−1)l cos(k∗
+l )), (28)
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TABLE I. The case μ = 0. Correlation functions for l �= 0. Both
the normal and the anomalous correlation function (22) and (23) are
strictly vanishing for any even value of the site distance l �= 0, while
they are nonvanishing for l odd. This holds both in the gapped and in
the gapless phase.

Gapped phase Gapless phase

0 0 l evenC(l ) √ √
l odd (μ = 0)

0 0 l evenA(l ) √ √
l odd

where k∗
± are given in Eq. (21) and Eqs. (14) and (19) have

been used. For the Cooper pair contributions Cp(l ) to the
normal correlator, and for the anomalous correlator A(l ),
analytical results are not available in general. Nevertheless,
we can obtain such correlations by numerically exact inte-
gration of Eqs. (25) and (27) and, in some limits, we can
provide analytical expressions. Here and in the next sec-
tions we shall present these results, pointing out the effect of
the Q-wavevector related to the current flow.

A. Even/odd effect for the special cases μ = 0 or Q = ±π/2

We start by discussing two noteworthy cases, namely, μ =
0 and Q = ±π/2, where the correlation functions can be
rigorously shown to exhibit an even/odd effect. Indeed C(l )
and A(l ) are nonvanishing or vanishing depending on the
even/odd parity of the site distance l , measured in units of
the lattice spacing, as summarized in Tables I and II.

Specifically, Table I refers to the case μ = 0 and shows
that both the normal and the anomalous correlation functions
vanish at any even site distance l , for any value of Q and �0,
both in the gapped and in the gapless phase. Table II illus-
trates the case Q = ±π/2. In this case, while the anomalous
correlation A still vanishes at any even site distance l , the real
part Cp of the normal correlation C, which originates from the
Cooper pairs [see Eq. (24)], vanishes for any odd site distance
l . Again, this holds both in the gapped and in the gapless
phase. Note that in the gapless phase where unpaired fermions
are present, C is purely imaginary for odd l , C(l ) = iCu(l ), as it
takes contribution from the unpaired fermions, while for even

TABLE II. The case Q = ±π/2. Correlation functions for l �= 0.
While the anomalous correlation function (23) vanishes for any even
values of l , the normal correlation function exhibits a different behav-
ior depending on whether the system ground state is in its gapped or
in the gapless phase. In the former case it strictly vanishes for any odd
l , while in the latter case it either gets contribution only from Cooper
pairs, C = Cp (for even l) or from the unpaired fermions C = iCu (for
odd l).

Gapped phase Gapless phase
√ ≡ Cp(l ) l evenC(l )
0 ≡ iCu(l ) l odd (Q = ± π

2 )

0 0 l evenA(l ) √ √
l odd

FIG. 2. The even/odd effect of the correlation functions. Panel
(a) is an example of Table I and shows the normal correlation func-
tion (22) as a function of l > 0, for μ = 0, Q = 0.6π , and �0 = 1.3
(ground state in the gapped phase). Panel (b) is an example of Table II
and shows the anomalous correlation (23) as a function of l > 0,
for the values μ = 0.5, Q = π/2, and �0 = 0.8 (ground state in the
gapless phase). In both cases the correlation functions vanish exactly
at l even.

l it is purely real as it takes contribution from Cooper pairs,
C(l ) = Cp(l ).

Two examples of even/odd effect are shown in Fig. 2.
In particular panel (a) displays C at μ = 0 as a function of
l for �0 = 1.3w, Q = 0.6π (gapped phase), while in panel
(b) the anomalous correlation A is plotted as function of l
for �0 = 0.8w and μ = 0.5w (gapless phase). Note that, in
the two panels, the nonvanishing values of the correlations
decay differently at long distance l � 1. In particular, the
decay exhibited by C in panel (a) is one of the three possible
exponential decays characterizing the gapped phase, namely,
the one highlighted as circles “◦” in Fig. 1. Specifically, it is a
decay without oscillations, where the decay length depends of
the values of �0/w and Q. In contrast, A in panel (b) exhibits
oscillations with a slower algebraic decay. As we shall see,
this is typical of the gapless phase and, for the specific param-
eters of panel (b), the oscillation period is controlled by the
chemical potential. The two special cases shown in Fig. 2 are
just examples of asymptotic behavior of correlation functions,
whose thorough analysis will be presented in details in Sec. V,
for arbitrary values of μ and Q.

The even/odd effects summarized in Tables I and II orig-
inate from special symmetries that the Hamiltonian H in
Eq. (1) acquires for the particular parameter values μ = 0 or
Q = ±π/2, and that do not hold for generic values of μ and
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FIG. 3. Normal and anomalous correlation functions, Eq. (22) and Eq. (23), for l = 1. Contour plots of |C(1)|2 and |A(1)|2 as a function of
the Cooper pair wavevector Q and chemical potential μ. Panels (a) and (b) are obtained for �0 = 1.3w. The behavior of |C(1)|2 in (a) reflects
the phase diagram of Fig. 1(a) where two topologically distinct gapped phases exist. Panels (c) and (d) are obtained for �0 = 0.8w, and both
clearly show the emergence of a gapless region as a sharp rectangular area centered around the high-symmetry points (Q, μ) = (±π/2, 0)
[green areas of Fig. 1(c)]. Horizontal-dashed lines identify the cuts at μ = 0.5w, shown in Figs. 4 and 5.

Q. Specifically, for μ = 0, H exhibits the chiral symmetry,
i.e., it is invariant under the (anti-unitary) transformation

Sc jS−1 = (−1) jc†
j ⇒ SckS† = c†

k−π
, (29)

while for Q = ±π/2 the Hamiltonian is inversion symmet-
ric, i.e., it is invariant under the following (unitary) spatial
inversion

Ic jI−1 = c− j ⇒ IckI−1 = c−k . (30)

The proof that the symmetries [H,S] = 0 and [H, I] = 0
imply the above even/odd effects is provided in details in
Appendix B. Here, we limit ourselves to mention that for
small values of distance (l � 3), it is also possible to find ana-
lytical expressions for the (nonvanishing) correlations in terms
of elliptic functions, which are also reported in Appendix B.

We conclude this subsection by a comment on the two
special points of the parameter space, namely (Q, μ) =
(±π/2, 0), which were recently analyzed in Ref. [57] in the
regime �0 > w, where off-diagonal long-range order was
found in the correlations. Our analysis allows one to obtain
additional information about these points. First, we can iden-
tify them as high symmetry points, where the system exhibits
both chiral and inversion symmetries, S and I. Moreover,
we can generalize the results obtained in Ref. [57] for the
regime �0 > w by observing that, because in such a regime
the system is always in the gapped phase [Fig. 1(a)], normal
correlation at arbitrary site distance l vanishes, C(l ) ≡ 0 ∀l >

0 (even and odd), and only anomalous correlation exists at
such point, as can be deduced from the intersection of Tables I
and II. Finally, our results extend the analysis of correlations

also to the regime �0 < w, where the high-symmetry points
always correspond to the gapless phase. In this case Tables I
and II predict that the normal correlation is vanishing for even
l , while for odd l it only gets contribution from the unpaired
fermion sector, C = iCu. As we shall see in Sec. VI, Cu can be
related to spin chiral gapless phases in spin models.

IV. SHORT DISTANCE BEHAVIOR
OF CORRELATION FUNCTIONS

We analyze now the behavior of the correlation functions
(22) and (23) at short distance l , for arbitrary values of the pa-
rameters Q, μ, and �0. Specifically, by the numerically exact
evaluation of Cp and A in Eqs. (25) and (27), we shall an-
alyze the quantities |C(l )|2 = C2

p(l ) + C2
u (l ) and |A(l )|2. The

former can be considered as the probability for an electron to
hop from site j + l to j, while the latter corresponds to the
probability of creating a Cooper pair at sites j and j + l . We
shall focus here on the short distance values l = 1 and l = 2.

A. The case l = 1

Let us start by analyzing the case l = 1. The two quantities
|C(1)|2 and |A(1)|2 are shown in Fig. 3 as contour plots
over the parameter space (Q, μ), at a fixed value of �0.
Specifically, the two upper panels refer to the regime �0 > w,
where the system exhibits only the two topologically different
gapped phases [see Fig. 1(a)], while the two lower panels of
Fig. 3 refer to the regime �0 < w, where the gapless phase ap-
pears in the (Q, μ) parameter space [green areas of Fig. 1(c)].
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FIG. 4. The squared modulus of the normal and anomalous cor-
relations C(1) and A(1) are plotted as a function of Q, for �0 =
1.3w. Panels (a) and (b) represent cuts of Figs. 3(a) and 3(b), re-
spectively, at μ = 0.5w. Right panels display the Q derivative of
the corresponding curve on the left in the range highlighted by
rectangles. Vertical-dashed lines mark the transition point between
the trivial and the topological gapped phases.

From Fig. 3(a), one can see that the contour plot of the squared
normal correlation function |C(1)|2 qualitatively reproduces
the phase diagram of Fig. 1(a), reaching its maximal values
at the center of the gapped topological phase and being sup-
pressed in the trivial gapped phase. Instead, it would be harder
to infer such phase diagram from the inspection of the anoma-
lous correlation function |A(1)|2, shown in Fig. 3(b). Yet,
from such a plot we deduce that the maximal probability of
finding nearest-neighbors Cooper pairs is at the high symme-
try points (Q, μ) = (±π/2, 0), in agreement with the result
discussed at the end of Sec. III A that all normal correlation
functions vanish (at any distance) for such parameter values.
Focussing now on the �0 < w regime, we observe that both
the normal and the anomalous correlation functions depicted
in Figs. 3(c) and 3(d) clearly exhibit a rectangular shape, cen-
tered around the high-symmetry points (Q, μ) = (±π/2, 0),
identifying the gapless region of Fig. 1(b). It is straightforward
to show that the values of correlations at the high symmetry
points are

C(1)|μ=0;Q=± π
2

= iCu(1)|μ=0;Q=± π
2

=
{

0 for �0 > w

± i
π

for �0 < w
(31)

and

A(1)|μ=0;Q=± π
2

=
{

0 for �0 > w

− 1
π

for �0 < w
. (32)

The question we now want to address is whether the
Q dependence of the bulk correlation functions enables
one to distinguish the two types of transitions, namely, the
band topology transition (from trivial gapped to topological
gapped) and the Fermi surface topology Lifshitz transition
(gapped to gapless). To this purpose, for each panel in Fig. 3,
we have analyzed a horizontal cut at μ = 0.5w. The cuts of
the upper panels (a) and (b) of Fig. 3 are shown in Fig. 4
[panels (a) and (b), respectively], and display the behavior
of |C(1)|2 and |A(1)|2 across the band topology transition,
occurring at the two values Q = arccos(±μ/2w). One of

FIG. 5. The squared modulus of the normal and anomalous cor-
relations C(1) and A(1) are plotted as a function of Q, for �0 =
0.8w. Panels (a) and (b) represent cuts of Figs. 3(c) and 3(d), re-
spectively, at μ = 0.5w. Right panels display the Q derivative of the
corresponding curve on the left in the range highlighted by rectan-
gles. Vertical-dashed lines mark the Lifshitz transition line separating
the gapped from the gapless phases.

them is highlighted as a vertical-dashed line. As one can see,
the behavior appears to be smooth. To have a closer inspec-
tion around the transition point, we have focused on the Q
range enclosed by boxes, and we have depicted the deriva-
tives ∂Q|C(1)|2 and ∂Q|A(1)|2 in the right panels of Fig. 4.
As one can see, while the anomalous correlation has a finite
and continuous derivative, the normal correlation exhibits a
divergent derivative at the transition point, related to the direct
closing at k = π of the gap between the two bands E+ and
E−. Note, however, that the behavior is the same on both sides
(trivial and topological) of the transition, in agreement with
the universality of the correlation length scaling discussed in
Ref. [8]. Indeed the two sides of the transition can only be
distinguished by invoking edge correlation functions in a finite
chain [45–47].

Let us now analyze the cuts of Figs. 3(c) and 3(d), which
are shown in panels (a) and (b) of Fig. 5, and refer to the
Lifshitz transition. We now observe clear cusps appearing in
both |C(1)|2 and |A(1)|2 at the boundaries between gapped
and gapless phases, which are determined by the indirect
closing of the gap between the two bands E+ and E−. The
boundary at the value Q = π − arcsin(�0/w) is highlighted
by the vertical-dashed line, and the related discontinuity in the
derivatives is shown by the focus in the right panels of Fig. 5.
The comparison between Figs. 4 and 5 shows the difference
in the Q dependence of the correlation functions across the
two types of transitions. Because of the presence of cusps,
the Lifshitz transition has a much sharper evidence than the
band topology transition between gapped phases. The origin
of such cusps boils down to the intrinsically different structure
of the ground state on the two sides (gapped vs gapless) of the
transition, which affects the correlation functions. Indeed, as
observed at the beginning of this section, the integral expres-
sions (25) and (27) have a twofold dependence on Q, namely,
through the integrand function and through the integration
domain. In the gapped side of the transition only the former
is present, since Sp ≡ BZ is Q independent, whereas in the
gapless side also the latter leads to a finite contribution, since
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FIG. 6. Normal and anomalous correlation functions, Eqs. (22) and (23), for l = 2. Contour plots of |C(2)|2 and |A(2)|2 as a function of the
Cooper pair wavevector Q and chemical potential μ. Panels (a) and (b) are obtained for �0 = 1.3w, while panels (c) and (d) for �0 = 0.8w.
The behavior of |C(2)|2 in (a) reflects the phase diagram of Fig. 1(a), while both |C(2)|2 and |A(2)|2 in (c) and (d) acquire some local maxima
inside the rectangular region identifying the gapless phase.

Sp is given by Eqs. (20) and (21) and depends on Q. This gives
rise to the discontinuity of the correlation function derivatives
∂Q|C(1)|2 and ∂Q|A(1)|2 shown in the right panels of Fig. 5.

B. The case l = 2

Let us now consider the probabilities |C(2)|2 and |A(2)|2
related to next-nearest-neighbor processes of electron hopping
or pair production. These are shown in Fig. 6 as contour
plots, where again the upper panels (a) and (b) correspond
to the regime �0 > w, and the lower panels (c) and (d) to
the regime �0 < w where the gapless phase appears. A first
striking difference between Fig. 6 (l = 2) and Fig. 3 (l = 1)
is the even/odd effect, which is schematically described in
Tables I and II and can now be appreciated by inspecting
the horizontal line μ = 0 and the vertical lines Q = ±π/2,
respectively. Indeed, at μ = 0 both |C(2)|2 and |A(2)|2 vanish,
in striking contrast with |C(1)|2 and |A(1)|2. For Q = ±π/2
one observes that |A(2)|2 vanishes, while |C(2)|2 does not, in
agreement with Table II. Another striking difference is related
to the gapless region. While from the l = 1 correlations shown
in Fig. 3 the gapless region appears as a uniform rectangular
shape, the l = 2 correlations in Fig. 6 reveal an inner structure
with local maxima.

Then, similar to what was done for l = 1, we have in-
vestigated the difference between two types of transitions by
analyzing the Q dependence of |A(2)|2 and |C(2)|2. The cuts
at μ = 0.5w of the upper panels (a) and (b) of Fig. 6 are
shown in Fig. 7 and are related to the transition between the
gapped phases, while the cuts of the lower panels (c) and (d) of
Fig. 6 are shown in Fig. 8 and highlight the behavior across the

Lifshitz transition. The corresponding derivatives around the
transition boundaries are shown in the right panels of Figs. 7
and 8. As one can see from Fig. 7, |A(2)|2 and |C(2)|2 vary
smoothly across the band topology transition, while cusps
clearly appear in Fig. 8. This means that, despite the above
mentioned differences between the l = 1 and the l = 2 case,
the Q dependence of both cases indicates that the gapped to
gapless Lifshitz transition is far more detectable than the band
topology transition.

FIG. 7. The squared modulus of the normal and anomalous cor-
relations C(2) and A(2) are plotted as a function of Q, for �0 =
1.3w. Panels (a) and (b) represent cuts of Figs. 6(a) and 6(b), re-
spectively, at μ = 0.5w. Right panels display the Q derivative of
the corresponding curve on the left in the range highlighted by
rectangles. Vertical-dashed lines mark the transition point between
the trivial and the topological gapped phases.
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FIG. 8. The squared modulus of the normal and anomalous cor-
relations C(2) and A(2) are plotted as a function of Q, for �0 =
0.8w. Panels (a) and (b) represent cuts of Figs. 6(c) and 6(d), re-
spectively, at μ = 0.5w. Right panels display the Q derivative of the
corresponding curve on the left in the range highlighted by rectan-
gles. Vertical-dashed lines mark the Lifshitz transition line separating
the gapped from the gapless phases.

V. LONG-DISTANCE BEHAVIOR
OF CORRELATION FUNCTIONS

We now turn to evaluate the asymptotic behavior of the nor-
mal and anomalous correlations C(l ) and A(l ) at long distance
l � 1. The behavior significantly changes from the gapped to
the gapless phase. Moreover, even within the gapped phase,
different asymptotic behaviors arise in the regime �0 < w.

A. Asymptotic behavior in the gapped phases

In the gapped phase (17), the asymptotic behavior of
the correlation functions can be obtained by reexpressing
Eqs. (25) and (27) in a different but equivalent form, based on
complex analysis. While the technicalities of this procedure
are given in the Appendix C, here we briefly illustrate its main
steps, which will be useful to elucidate the various asymptotic
behaviors that emerge, depending on the parameter ranges.

As observed above, in the gapped phase the unpaired
fermion sector Su is an empty set [see Eq. (16)], and the
unpaired fermion contribution in Eq. (26) therefore vanishes,

Cu = 0. (33)

As the ground state only involves Cooper pairs, the pair sector
Sp coincides with the entire Brillouin zone [see Eq. (16)].
Thus, by interpreting k ∈ [−π ; π ] as the phase of a complex
number z = eik that spans over the unit circle, it is possible to
recast the correlation functions in the form of integrals in the
complex plane [51,53]

Cp(l ) = − 1

4π
Im

{∮
|z|=1

dz
zl−1g(z)√

g2(z) − f 2(z)

}
, (34)

A(l ) = 1

4π
Im

{∮
|z|=1

dz
zl−1 f (z)√

g2(z) − f 2(z)

}
, (35)

where the functions f (z) = �0(z − z−1) and g(z) = w(z −
z−1) cos Q − μ of the complex variable take the values
f (eik ) = �(k) and f (eik ) = ξ (k; Q) over the unit circle |z| =
1, respectively. The denominator of Eqs. (34) and (35) exhibits

four branch points, whose location depends on the specific
parameter values �0, Q and μ. It is possible to show that
two of such branch points, which we shall denote as z∗

±, lie
inside the unit circle (|z∗

±| < 1), while the other two lie outside
it and are given by 1/z∗

±. Then, Cauchy theorem applied to
Eqs. (34) and (35) enables one to rewrite Eqs. (34) and (35)
as contour integrals over the branch cuts connecting the inner
branch points z∗

±. Thus, it is the location of z∗
± that determines

the different asymptotic behavior of the correlation functions
for l � 1. Details are given in the Appendix C.

With keeping in mind that here the parameter conditions
(17) for the gapped phase are assumed to hold, one can
identify three possible configurations for the location of z∗

±
in the complex plane, which determine three different types
of asymptotic behaviors and are highlighted with different
symbols in Fig. 1.

(a) z∗
± are real and have opposite signs.

When this branch point configuration occurs, the correla-
tion functions decay as

Cp(l ) ∼ − 1

2
√

l
(α+

1 e−κ+l − (−1)lα−
1 e−κ−l ), (36)

A(l ) ∼ − 1

2
√

l
(β+

1 e−κ+l − (−1)lβ−
1 e−κ−l ), (37)

where

κ± = ln
1∣∣z∗±

∣∣ (38)

represent the inverse decay lengths, while the constants α±
1

and β±
1 depend on |z∗

±| and are explicitly given in Appendix C
as a function of the parameter values. Such a configuration
of real branch points with opposite signs occurs when the
conditions

�2
0 + μ2

4 − w2 cos2 Q > 0
�0 > w| cos Q| (39)

are both fulfilled. For a given �0 value, the portions of the
Q − μ phase diagram where the gapped phase fulfills the
additional conditions (39) and the correlation asymptotic be-
havior is given by Eqs. (36) and (37) are highlighted as circles
“◦” in Fig. 1. Note that, in the regime �0 > w, where for any
value of Q and μ the Kitaev chain only exhibits gapped phases
(either trivial or topological) [Fig. 1(a)], the conditions (39)
are fulfilled, whereas for �0 < w it only holds in subregions
of the phase diagram [Figs. 1(b) and 1(c)].

Various features are noteworthy in the expressions
Eqs. (36) and (37). First, they exhibit a combination of two
exponential decays that are further enhanced by the additional
1/

√
l factor. Second, the inverse decay lengthscales are deter-

mined by the moduli |z∗
±| of the inner branch points Eq. (38).

Note that, because the inner branch points z∗
± have opposite

signs, the magnitude of |z∗
+| and |z∗

−| might be comparable,
and both the exponential terms have to be retained in general.
Finally, the relative sign (−1)l between the two terms actually
changes when the site distance l alternates from even to odd
values. This implies that the two exponentials either sum up
or mutually suppress, depending on the parity of l .

This effect is particularly striking for the special cases
μ = 0 and Q = ±π/2, where one can now find an analyti-
cal asymptotic expression of the even/odd effect proven in
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Sec. III. Indeed both these special cases correspond to the con-
figuration where two inner real branch points stemming from
Eqs. (C1) are symmetrically placed with respect to the origin,
z∗
± = ±|z∗

±|. In particular, for μ = 0 the constants become
equal, α+

1 = α−
1 and β+

1 = β−
1 , and the asymptotic expansions

Eqs. (36) and (37) reduce to

Cp(l > 0)|μ=0

∼
{

−sgn(cos Q)
√

�0w| cos Q|
�2

0−w2 cos2 Q
e−κl√

2π l
l odd

0 l even

(40)

and

A(l )|μ=0 ∼
{

−
√

�0w| cos Q|
�2

0−w2 cos2 Q
e−κl√

2π l
l odd

0 l even
(41)

where

κ = κ± = 1

2
ln

(
�0 + w| cos Q|
�0 − w| cos Q|

)
(42)

is the inverse decay length. The case shown in Fig. 2(a) is an
example where the conditions (39) are fulfilled, and the nor-
mal correlation decays as described by Eq. (40). In contrast,
for the case Q = ±π/2, one finds α+

1 = −α−
1 and β+

1 = β−
1 ,

and the asymptotic expansions Eqs. (36) and (37) acquire the
form

Cp(l > 0)
∣∣
Q=± π

2

∼

⎧⎪⎪⎨
⎪⎪⎩

0 l odd

μ

(√
�2

0+ μ2

4 − |μ|
2

)
√(

�4
0−

(√
�2

0+ μ2

4 − |μ|
2

)4) e−κl√
2π l

l even

(43)

whereas

A(l )|Q=± π
2

∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 l odd

√
�2

0−
(√

�2
0+ μ2

4 − |μ|
2

)2

�2
0+

(√
�2

0+ μ2

4 − |μ|
2

)2
e−κl√

2π l
l even

(44)

with

κ = κ± = ln

√
�2

0 + μ2

4 − |μ|
2

�0
. (45)

(b) z∗
± are real and have the same sign.

When the two inner branch points z∗
− < z∗

+ have the same
sign

σ ∗ = sgn(z∗
−) = sgn(z∗

+) = sgn(μ cos Q), (46)

the asymptotic behavior of the correlation functions is

Cp(l ) ∼ −σ ∗l−1

2

{
αM

e−κM l

√
l

− αm
e−κml

√
l

}
, (47)

A(l ) ∼ −σ ∗l−1

2

{
βM

e−κM l

√
l

− βm
e−κml

√
l

}
, (48)

where the values of the constants αM/m and βM/m are given in
Appendix C, while the inverse decay lengths are

κM = ln
1

max(|z∗+|, |z∗−|) , (49)

κm = ln
1

min(|z∗+|, |z∗−|) . (50)

Differently from the case (a) [see Eqs. (36) and (37)], the two
exponential terms in Eqs. (47) and (48) do not compete with
a l-dependent relative factor. Because the two branch points
have the same sign, two limiting situations can occur. If κM �
κm, the leading asymptotic term is dictated by κM , whereas if
κM � κm the two terms give comparable contributions. The
case (b) occurs if and only if the relations

�2
0 + μ2

4
− w2 cos2 Q > 0

�0 < w| cos Q| (51)

are both fulfilled, in addition to the gapped phase condi-
tions (17). In the Q − μ phase diagram shown in Fig. 1, the
subregions where Eq. (51) holds in the gapped phases are
highlighted by dots “·”.

(c) z∗
± = x∗ ± iy∗ are a complex conjugate pair.

A direct inspection of the branch points (C1) shows that
they can exhibit an imaginary part if and only if

�2
0 + μ2

4
− w2 cos2 Q < 0. (52)

Such condition describes the area enclosed by an ellipse in
the variables cos Q and μ, and is identified in Figs. 1(b)
and 1(c) by the cyan regions with horizontal lines “−”, cen-
tered around the origin (Q, μ) = (0, 0) and around (Q, μ) =
(0,±π ). Note that the pole configuration (c) can only occur
for �0 < w and within the gapped topological phase.

In this case, the asymptotic behavior of the correlation
functions exhibits an exponential decay that is combined with
an oscillatory behavior [64]. The suppression is characterized
by one decay length, related to the real part x∗ of the the
branch points,

x∗ =
μ

2 sgn(cos Q)

w| cos Q| + �0
, (53)

while the period of the oscillatory behavior is determined by
their imaginary part

y∗ =
√

w2 cos2 Q − �2
0 − μ2

4

w| cos Q| + �0
. (54)

In this case the inner branch points z∗
± = x∗ ± iy∗ are straight-

forwardly given by Z1,2 in Eq. (C1).
While an asymptotic expression of the correlations cannot

be obtained for arbitrary values, an analytical result can be
obtained in the most interesting regime |x∗| � y∗, where the
imaginary part dominates over the real part. This corresponds
to the relevant case where the period of the oscillations is short
compared to the decay length, and the oscillations become
appreciable. In this case one obtains

Cp(l ) ∼ e−κ+ l

√
l

(
αs

3 sin[ql] + αc
3 cos[ql]

)
(55)
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while

A(l ) ∼ e−κ+ l

√
l

(
βs

3 sin[ql] + βc
3 cos[ql]

)
. (56)

Here,

κ+ = ln
1

|z∗+| , (57)

q = arccos

⎛
⎜⎝ μ

2 sgn(cos Q)√
w2 cos2 Q − �2

0

⎞
⎟⎠ (58)

represent the decay of the exponential suppression and the
period of the oscillatory terms, respectively. The expression
of the constants α

c/s
3 and β

c/s
3 are given in Appendix C. It is

straightforward to check that, for either μ = 0 or Q = ±π/2,
the even/odd effect is recovered.

We conclude this subsection by two remarks about the
regime �0 < w, which is the most realistic one in implemen-
tations of the Kitaev chain. Firstly, the conditions (51) and
(52) related to gapped phases, along with the conditions (18)
for the gapless phase, identify two wavevectors

Q∗ = arcsin(�0/w), (59)

Q0 = arccos(�0/w). (60)

As can be seen from Figs. 1(b) and 1(c), the former determines
the boundaries Q∗ < |Q| < π − Q∗ of the gapless region,
while Q0 specifies the boundary between the two different
asymptotic behaviors “◦” and “·” of the correlation functions
in the gapped region. In turn, Eqs. (59) and (60) imply that
there exists a special value �∗

0 = w/
√

2 � 0.71 w of �0 that
determines the relative order between Q∗ and Q0. Indeed in
Fig. 1(b), which refers to the range �∗

0 < �0 < w, one has
Q0 < Q∗. In this case Q0 also represents the Q boundary
of the striped elliptic region. However, in Fig. 1(c), which
refers to the range �0 < �∗

0, the gapped elliptic region is cut
by the onset of the gapless phase, and its Q boundaries are
determined by Q∗ instead.

The second remark is that the striped elliptic region can be
given a twofold interpretation. On the one side, it is the sub-
portion of the topological gapped phase where the exponential
decay of the long-distance correlation functions is combined
with an oscillatory behavior. On the other hand, it can be seen
as the set of parameter values that are connected to the gapless
region through Q. Indeed for any values of �0 < w and of
chemical potential μ, if the ground state is within the elliptic
region for Q = 0 (no current flows), by increasing Q with
keeping μ and �0 constant, the system will eventually enter
the gapless phase. This is not the case for other parameter
points of the topological gapped phase.

B. Asymptotic behavior in the gapless phase

We now turn to determine the behavior of the normal and
anomalous correlations C(l ) and A(l ) for large distance, l �
1, in the gapless phase. As mentioned above, in the gapless
phase, emerging when the parameters fulfill Eq. (18), the
current carrying ground state (13) is characterized by both
Cooper pairs and unpaired fermions (electron and holes).

As observed above, the unpaired fermion contribution Cu

to the normal correlation C(l ) can be evaluated exactly at arbi-
trary values of parameters, see Eq. (28), and exhibits for l � 1
a power decay as ∼1/l , with oscillations characterized by two
spatial frequencies dictated by k∗

± [see Eq. (21)]. In contrast,
the integrals (25) and (27) yielding the Cooper pair contribu-
tion Cp and the anomalous correlation function A cannot be
computed analytically and an asymptotic expansion must be
determined. We note, however, that the approach adopted to
derive the asymptotic expansion in the gapped case, where k is
treated as the angle of a complex number describing a circle in
the complex plane, is not straightforwardly applicable to the
gapless case. This is because the k-domain Sp appearing in
the integrals (25) and (27) does not coincide with the entire
BZ, and the angle k spans only disconnected arcs, rather
than a closed circle. Nevertheless, an asymptotic expansion
of such integrals can be computed with the method of the
stationary phase. Details of these calculations are given in the
Appendix D. To leading order, the Cooper pair contribution of
the normal correlator is found to acquire the form

Cp(l ) ∼ − 1

2π

1

l
{F−(|k∗

−|) sin (|k∗
−|l )

− (−1)l F+(|k∗
+|) sin (|k∗

+|l ), }, (61)

which is similar to the exact contribution Eq. (28) from the
unpaired fermions, while the anomalous correlation behaves
as

A(l ) ∼ 1

2π

1

l
{G−(|k∗

−|) cos(k∗
−l )

− (−1)l G+(|k∗
+|) cos(k∗

+l )} (62)

where

F±(k∗
±) = ξ±(k∗

±)√
ξ 2±(|k∗±|) + |�(k∗±)|2

, (63)

and

G±(k∗
±) = |�(k∗

±)|√
ξ 2±(k∗±) + |�(k∗±)|2

, (64)

with ξ±(k∗
±) = 2w cos(k∗

±) cos Q ± μ.
Equations (61) and (62), together with (28), show that, in

contrast with the exponential decay ∼e−κl/
√

l obtained in the
gapped phase, in the gapless phase correlation functions al-
ways exhibit an algebraic decay ∼1/l , combined with spatial
oscillations characterized by two periods given by 2π/|k∗

±|,
whose dependence on the parameters in given by Eq. (21).

Before concluding this subsection, we note that, for μ =
0 or for Q = ±π/2 the two periods become equal |k∗

+| =
|k∗

−|, and the expressions given above acquire a simpler
form. Specifically, for μ = 0 one has k∗

Q
.= |k∗

+| = |k∗
−| =

arcsin(w| cos Q|/
√

w2 − �2
0), and Eq. (61) reduces to

Cp(l )
∣∣
μ=0 ∼

⎧⎨
⎩

0 l even

− sin (|k∗
Q|l )

π l sgn(cos Q)
√

w2 sin2 Q−�2
0

w| sin Q| l odd

(65)
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and

A(l )|μ=0 ∼
{

0 l even
cos (k∗

Ql )
π l

�0
w| sin Q| l odd

(66)

In contrast, for Q = ±π/2 one has k∗
μ = |k∗

+| = |k∗
−| =

arcsin(|μ|/2
√

w2 − �2
0). Then, from Eq. (28) one finds

Cu(l )|Q=± π
2

≡
{

0 l even

∓ cos(k∗
μl )

π l l odd
(67)

whereas from Eqs. (61) and (62) one obtains

Cp(l )
∣∣
Q=± π

2
∼

⎧⎨
⎩sgn(μ)

√
1 − �2

0
w2

sin (k∗
μl )

π l l even

0 l odd
(68)

and

A(l )|Q=± π
2

∼
{

0 l even

sgn(μ) �0
w

cos (k∗
μl )

π l l odd
(69)

respectively. This is the asymptotic behavior exhibited by the
anomalous correlation function in Fig. 2(b).

VI. CONNECTION WITH A XY SPIN CHAIN WITH
DZYALOSHINSKII-MORIYA INTERACTION

In this section we discuss the relation between the
Kitaev chain with spatial modulation of the superconducting
order parameter and spin-chain models. As is well known,
1D models of spinless fermions can be mapped onto spin
models through the Jordan-Wigner transformation [65]. For
the conventional 1D Kitaev chain without superconducting
modulation (Q = 0), the mapping returns a XY spin model
under a transverse field. It is worth recalling that, even though
in the thermodynamic limit the first-quantized version of the
fermionic and spin models share the same single-particle
eigenvalues and eigenfunctions, the physical nature of the
many-particle ground states is not equivalent. In particular,
while the 1D Kitaev chain exhibits topological order and two
topologically distinct phases sharing the same symmetries, the
1D spin model exhibits conventional order [66,67]. Indeed,
the gapped trivial and topological phases of the Kitaev chain
correspond to the gapped paramagnetic (PM) and ferromag-
netic (FM) phases in the XY spin chain, respectively.

By applying to Eq. (1) the following Jordan-Wigner repre-
sentation of the fermionic operators:

c†
j = eiQ jσ+

j

j−1∏
n=1

( − σ z
n

)
,

c j = e−iQ j
j−1∏
n=1

( − σ z
n

)
σ−

j , (70)

where σ z
j and σ±

j = (σ x
j ± iσ y

j )/2 are spin component oper-
ators at the jth site, one obtains the following spin model
Hamiltonian:

Hs = 1

2

∑
j

[−μσ z
j + Jx(Q) σ x

j σ x
j+1 + Jy(Q) σ

y
j σ

y
j+1+

− D(Q)
(
σ x

j σ
y
j+1 − σ

y
j σ

x
j+1

)]
. (71)

Here, the coupling constants

Jx,y(Q) = w cos Q ± �0, (72)

D(Q) = w sin(Q) (73)

are independent of the site j because of the phase factors e±iQ j

introduced in Eq. (70). For Q = 0 one recovers from Eq. (71)
the customary XY model, where �0 acts as an anisotropy pa-
rameter for the exchange couplings Jx,y, while μ plays the role
of a transverse field along z. The spatial modulation wavevec-
tor Q of the Kitaev chain gives rise to two effects. Firstly, it
renormalizes the exchange coupling constants Jx,y(Q) through
w → w cos Q and, similarly to renormalization of the tun-
neling amplitude in the fermionic model, it modifies the
boundaries between the gapped PM and FM phases. The
second effect of Q is to introduce the term in the second line
of Eq. (71), characterized by the coupling constant D(Q) in
Eq. (73), and known as the Dzyaloshinskii-Moriya interaction
(DMI) [68,69]. In magnetic systems, this coupling originates
from the interplay of broken inversion symmetry and spin-
orbit interaction and, despite being typically small, it can give
rise to interesting chiral magnetic orders such as spin spirals
and skyrmions [70–73]. In particular, it can lead to a gapless
chiral phase, where the chirality operator

κ j = σ x
j σ

y
j+1 − σ

y
j σ

x
j+1 (74)

exhibits a finite long-range order [73–75].
The correlation functions of the spin model Eq. (71) are

determined by the interplay between the above two effects,
which are both controlled by the parameter Q. By exploiting
the inverse Jordan-Wigner transformation

σ+
j = e−iQ jc†

j

j−1∏
n=1

(1 − 2c†
ncn),

σ−
j = eiQ j

j−1∏
n=1

(1 − 2c†
ncn)c j,

σ z
j = 2c†

j c j − 1, (75)

spin-spin correlations can be expressed in terms of the
fermionic correlations. In particular, for nearest-neighbors
correlations one finds

〈σ+
j σ+

j+1〉 = 〈σ−
j σ−

j+1〉 = A(1),

〈σ+
j σ−

j+1〉 = 〈σ−
j σ+

j+1〉∗ = C(1), (76)

which in turn straightforwardly imply the connection between
spin orders and the paired and unpaired contributions to
fermion correlations, namely,〈

σ x
j σ

x
j+1 + σ

y
j σ

y
j+1

〉 = 4Cp(1), (77)〈
σ x

j σ
x
j+1 − σ

y
j σ

y
j+1

〉 = 4A(1), (78)〈
σ x

j σ
y
j+1 + σ

y
j σ

x
j+1

〉 = 0, (79)

and

κ = 〈κ j〉 = 〈
σ x

j σ
y
j+1 − σ

y
j σ

x
j+1

〉 = −4Cu(1). (80)
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FIG. 9. The squared modulus of the chiral order parameter κ in
Eq. (80) is plotted as a function of Q, at fixed �0 = 0.6w (anisotropy
parameter), for two values of μ (magnetic field). The maximum of
chiral order occurs at Q = ±π/2, its maximal value depends on μ

and the onset of the chiral phase (κ �= 0) is determined by the range
Q∗ < |Q| < π − Q∗, and only depends on the anisotropy parameter
�0 [see Eq. (59)] and not on μ.

In particular, Eq. (80) establishes that the gapless chiral
phase in the XY model, κ �= 0, corresponds to a gapless su-
perconducting phase in the fermionic model, where unpaired
fermions appear in the ground state. The results obtained in
the previous section about the Kitaev chain can now be inter-
preted in terms of the spin model (71). In particular, Eq. (18)
identifies the parameter regimes where such a chiral phase
exists, while the exact result Eq. (28) returns the expectation
value κ = 〈κ j〉. From Fig. 9, which shows |κ|2 as a function
of Q, one can see that its maximal value is always reached
at Q = ±π/2, for any value of the magnetic field μ. Yet,
the value of |κ|2 in such maxima depends on μ, with μ =
0 corresponding to the global maximum. Furthermore, the
boundaries of the chiral phase, given by Q∗ < |Q| < π − Q∗,
only depend on the anisotropy parameter �0 through Eq. (59)
and are independent of the magnetic field μ.

As far as nonlocal spin correlations at arbitrary distance l
are concerned, their evaluation through fermionic correlation
requires to account for the string operators appearing in the
inverse Jordan-Wigner transformation (75)

〈σ+
j σ+

j+l〉 = e−iQ(2 j+l )

〈
c†

j

l−1∏
n= j

(1 − 2c†
ncn)c†

j+l

〉
, (81)

〈σ−
j σ−

j+l〉 = eiQ(2 j+l )

〈
c j

l−.1∏
n= j

(1 − 2c†
ncn)c j+l

〉
, (82)

〈σ+
j σ−

j+l〉 = e−iQl

〈
c†

j

l−1∏
n= j

(1 − 2c†
ncn)c j+l

〉
, (83)

〈σ−
j σ+

j+l〉 = eiQl

〈
c j

l−1∏
n= j

(1 − 2c†
ncn)c j+l

〉
. (84)

The right-hand side of Eqs. (81)–(84) can be computed by
applying Wick’s theorem and expressing spin correlations at
a given distance l as combination of products of the fermionic
two-point correlation functions C(m) and A(m) determined in
the previous section, for various m.

VII. SUMMARY AND CONCLUSIONS

In this article we have investigated the correlation func-
tions of the 1D Kitaev chain model in the presence of a
spatially modulated phase of its superconducting order param-
eter, which describes a p-wave topological superconductor
crossed by an electrical current. It has recently been shown
that, depending on the parameters w (single-particle hop-
ping parameter), Q (wavevector of the superconducting phase
modulation), �0 (magnitude of the superconducting order
parameter), and μ (chemical potential), the model exhibits
two types of topological transitions. Indeed, in addition to the
band topological phase transition separating the topologically
trivial and nontrivial gapped phases, a Fermi surface Lifshitz
transition between gapped and gapless phases can arise. Here,
we have found that such a rich scenario emerging in the pres-
ence of a current flow leads to various interesting effects in
the normal and anomalous correlation functions, which have
not been reported so far.

First, we have shown that in the special cases μ = 0 and
Q = ±π/2 the model acquires chiral and inversion symme-
tries, respectively, which are otherwise broken for generic
values of Q and μ. These symmetries cause an even/odd
effect in both the normal and the anomalous correlation func-
tions, C(l ) and A(l ), which turn out to strictly vanish at either
even or odd values of the site distance l , measured in units of
the lattice spacing.

Then, we have shown that the difference between the band
topology and the Lifshitz transitions can be signalled by ana-
lyzing the behavior of the bulk correlation functions at short
distance (l = 1, 2) as a function of the modulation wavevec-
tor Q. Across the band topology transition the anomalous
correlation function A turns out to behave very smoothly
in Q and is not very informative about the transition, while
the normal correlation function C signals the transition only
through a divergence of its Q derivative. This is a consequence
of the direct closing of the gap at k = 0 or k = π across
the two topologically distinct gapped phases, and the related
divergence of the correlation length is the same on both sides
of the transition, in agreement with the universality of the
correlation length scaling discussed in Ref. [8]. In contrast,
across the Lifshitz transition both correlations functions C and
A exhibit sharp cusps, which reflect discontinuity jumps in
their derivative. We have shown that a jump is the hallmark of
the indirect closing of the gap at the Lifshitz transition and the
appearance of unpaired fermions in the ground state.

Furthermore, we have been able to determine the asymp-
totic behavior of C(l ) and A(l ) for long distance l � 1. In
particular, in the gapped phase we have found that the corre-
lation functions can exhibit three types of exponential decay.
Indeed, depending on the parameter range, C(l ) and A(l ) can
acquire the form of (i) a linear combination of two exponential
decays with a relative sign (−1)l alternating with the distance
l , or (ii) two exponential decays without any alternating sign,
or (iii) one single exponential decay with additional spatial
oscillations. These three types of behavior are identified by
the symbols “◦”, “·” and “−”, respectively, in the cyan and
grey regions of Fig. 1. Moreover, we have found that in the
gapless phase, correlations decay algebraically as ∼l−1, with
an additional spatially oscillatory behavior characterized by
two periods related to Q, μ/w, and �0/w.
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Finally, we have shown that the Kitaev chain with super-
conducting phase modulation can be mapped in a XY spin
model, where Q controls both the exchange coupling con-
stants (72) and the strength (73) of a Dzyaloshinskii-Moriya
interaction. We have argued that the gapless superconducting
phase of the Kitaev chain, where unpaired fermions appear in
the ground state, can be interpreted as the spin chiral phase
of the XY model, whose order parameter reaches its maxi-
mal values around for Q = ±π/2. We have used our results
about fermionic correlations to evaluate also spin correlations
between neighboring sites.

Implementations. Before concluding, we would like to
briefly discuss some possible setups where the results ob-
tained in this paper could be applied. At the moment, there
are mainly two promising setups for the realization of topo-
logical superconductivity. The first one is semiconductor
nanowires with strong spin-orbit coupling, such as InSb and
InAs, proximitized by a superconducting layer (e.g., Al or
Nb) and exposed to a longitudinal magnetic field [36–41].
The second one is ferromagnetic atom chains deposited
on a superconducting film [42–44]. Scanning tunneling mi-
croscopy has been proposed as a technique to measure
local correlation functions in magnetic atom chains [27,28],
while spatial correlations in nanowires have been probed by
x-ray scattering [76,77]. Transport measurements are also
closely related to correlation functions. Indeed the current I =
2ew Im 〈c†

j c j+1〉/h̄ can be expressed in terms of the normal
correlation function C(1) as

I = 2ew

h̄
(cos(Q)Cu(1) − sin(Q)Cp(1)). (85)

In particular, we would like to outline a connection between
our results and the recent prediction that the electrical cur-
rent through a topological superconductor exhibits cusps as a
function of Q [58]. On the one hand, the cusps in the current
can now be interpreted as a straightforward consequence of
the correlation singularity across the Lifshitz transition. On
the other hand, because our findings show that such cusps are
a general hallmark of such type of transition, their signature
is expected to be observable in other correlation functions
as well, like the anomalous correlation A. The latter can be
extracted from Andreev reflection spectroscopy [78,79] and
nonlocal correlations are accessible via crossed Andreev re-
flection and cross-correlation measurements [80–83].

Moreover, because our findings can also be interpreted in
terms of spin-chain models, we mention that nuclear magnetic
resonance techniques enable one to determine correlation
functions in magnetic systems even in out of equilibrium
conditions [84]. Finally, spin models with adjustable spin-spin
interactions can also be implemented with ions confined in a
linear Paul trap, which can be manipulated using lasers. This
approach allows both collective and individual control over
ion spins through laser interactions, and enables one to access
single-shot measurements of spin correlations [85,86].
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APPENDIX A: DERIVATION OF THE REAL-SPACE
CORRELATIONS FUNCTIONS

In this Appendix we provide some details about the eval-
uation of the correlation functions (22) and (23) given in the
main text. By reexpressing the real-space operators through
their Fourier modes, c j = N−1/2

s

∑
k∈BZ eik jck , one can rewrite

Eqs. (22) and (23) as

C( j2 − j1) = eiQ( j2− j1 )〈c†
j1

c j2〉

= eiQ( j2− j1 )

Ns

∑
k1,k2

e−ik1 j1 eik2 j2〈c†
k1

ck2
〉

= 1

Ns

∑
k,k′

e−i(k j1−k′ j2 )〈c†
k−Q ck′−Q〉, (A1)

and

A( j2 − j1) = e−iQ( j2+ j1 )〈c†
j1

c†
j2
〉

= e−iQ( j2+ j1 ) 1

Ns

∑
k1,k2

e−ik1 j1 e−ik2 j2〈c†
k1

c†
k2
〉

= 1

Ns

∑
k,k′

e−i(k j1−k′ j2 )〈c†
k−Qc†

−k′−Q〉, (A2)

respectively. The correlations 〈c†
k−Qck′−Q〉 and 〈c†

k−Qc†
−k′−Q〉

appearing in Eqs. (A1) and (A2) can now be computed by
inverting Eqs. (12) in favor of the ck−Q, c†

k−Q operators

ck−Q = uQ(k)γk−Q − v∗
Q(k) γ

†
−k−Q

c†
k−Q = uQ(k)γ †

k−Q − vQ(k)γ−k−Q (A3)

and by exploiting the action of the γ -Bogoliubov quasiparti-
cles onto the current carrying ground state |G(Q)〉 given in
Eq. (13). Such an action depends on the specific Brillouin
sector Sp, Se or Sh where the k wavevector is located, namely,
γk−Q |G(Q)〉 = 0 for k ∈ S+ ≡ Sp ∪ Sh and γ

†
k−Q |G(Q)〉 = 0

for k ∈ S− ≡ Se. Therefore, one has to consider the following
cases:

(1) k, k′ ∈ Sp

〈γ †
k−Qγk′−Q〉 = 〈γ †

k−Qγ
†
−k′−Q〉

= 〈γ−k−Qγk′−Q〉 = 0,

〈γ−k−Qγ
†
−k′−Q〉 = δk,k′ . (A4)

(2) k ∈ Sh, −k ∈ Se

〈γ †
k−Qγk′−Q〉 = 〈γ †

k−Qγ
†
−k′−Q〉

= 〈γ−k−Qγk′−Q〉 = 〈γ−k−Qγ
†
−k′−Q〉 = 0. (A5)

(3) k ∈ Se, −k ∈ Sh

〈γ †
k−Qγk′−Q〉 = 〈γ−k−Qγ

†
−k′−Q〉 = δk,k′ ,

〈γ †
k−Qγ

†
−k′−Q〉 = 〈γ−k−Qγk′−Q〉 = 0. (A6)
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Exploiting the above results one obtains the correlations in
momentum space

〈c†
k−Qck′−Q〉 =

⎧⎨
⎩

|vQ(k)|2δk,k′ k ∈ Sp

0 k ∈ Sh

δk,k′ k ∈ Se

, (A7)

〈c−k−Qc†
−k′−Q〉 =

⎧⎨
⎩

|uQ(k)|2δk,k′ k ∈ Sp

0 k ∈ Sh

δk,k′ k ∈ Se

, (A8)

〈c−k−Qck′−Q〉 =
⎧⎨
⎩

−uQ(k)v∗
Q(k)δk,k′ k ∈ Sp

0 k ∈ Sh

0 k ∈ Se

, (A9)

〈c†
k−Qc†

−k′−Q〉 =
⎧⎨
⎩

−uQ(k)vQ(k)δk,k′ k ∈ Sp

0 k ∈ Sh

0 k ∈ Se

, (A10)

where uQ(k) and vQ(k) are given by Eq. (10). Replacing
Eqs. (A7)–(A10) in Eqs. (A1) and (A2), and denoting l =
j2 − j1, it is straightforward to obtain

C(l ) = 1

Ns

⎛
⎝∑

k∈Sp

eikl |vQ(k)|2 +
∑
k∈Se

eikl

⎞
⎠, (A11)

A(l ) = − 1

Ns

∑
k∈Sp

eikl uQ(k)vQ(k). (A12)

Substituting Eq. (10) into Eq. (A12), and taking the thermo-
dynamic limit Ns → ∞, one obtains Eq. (27) of the main
text. Moreover, exploiting the mirror symmetries Se → Sh and
Sp → Sp under k → −k, one can rewrite Eq. (A11) as

C(l ) = 1

2Ns

⎛
⎝ ∑

k∈BZ

cos(kl ) −
∑
k∈Sp

ξ (k; Q)

h(k; Q)
+ 2

∑
k∈Se

sin(kl )

⎞
⎠,

(A13)

whence Eqs. (25) and (26) of the main text are obtained by
recalling that l �= 0 is assumed, and by taking the thermody-
namic limit Ns → ∞.

APPENDIX B: DETAILS ABOUT CORRELATION
FUNCTIONS IN THE CASES μ = 0 AND Q = ±π/2

In this Appendix we prove the even/odd effect occurring
for μ = 0 or Q = ±π/2 and discussed in Sec. III. Moreover,
we provide the analytical expressions of the nonvanishing
correlation functions at some values of l .

We start by proving that the special symmetries acquired
by the Hamiltonian (1) for these parameter values imply the
vanishing of some correlation functions. To this purpose,
the first straightforward step is to realize, as mentioned in the
main text, that, by applying the (antiunitary) chiral transfor-
mation (29) to the Hamiltonian (1), one obtains SHS† = H
when μ = 0. Similarly, when Q = ±π/2, one has IHI† =
H, where the (unitary) inversion transformation I is defined
in Eq. (30). The second step is to show that the ground state
(13) is also an eigenstate of S (for μ = 0) and of I (for Q =
±π/2), both in the gapped and in the gapless phase, which
justifies why the even/odd effect is robust across the Lifshitz
transition. To this purpose, we observe that, by rewriting the
Hamiltonian in k space [see Eq. (2)], both the S and the I

symmetry separately imply the relation

E±(k) = E±(π − k) (B1)

for the two bands (8). As a consequence of Eq. (B1), each of
the three sectors Sp, Se, and Sh, defined through the Eqs. (14)
and (15) and entering the expression (13) of the ground state,
becomes symmetric under k → π − k for either μ = 0 or
Q = ±π/2. Moreover, the fermionic vacuum |0〉 transforms
as I|0〉 = |0〉 and S|0〉 = |F 〉, where |F 〉 = ∏

k∈BZ c†
k |0〉 is

the completely filled state, as straightforwardly follows by
applying I or S on the left of the relation ck|0〉 = 0 ∀k ∈ BZ
characterizing the vacuum. By exploiting the action of S or
I on |0〉 and the expression of the coefficients (10) appearing
in the ground state (13) of H, it is easy to show that |G(Q)〉
also exhibits the above symmetries. Specifically, for μ = 0,
one has S|G(Q)〉 = ±|G(Q)〉, where the sign depends on
the specific parameter values, while for Q = ±π/2 one has
I|G(Q)〉 = |G(Q)〉.

We now have all the ingredients to prove that the even/odd
effects originate from symmetry arguments. Let us first con-
sider the case μ = 0 and prove that both the normal and the
anomalous correlation function vanish for even l , as sketched
in Table I. Indeed, we observe that the expectation value of a
second-quantized operator O on the S-symmetric ground state
|G(Q)〉 is

〈G|OG〉 = 〈G|O†G〉∗ = 〈SG|SO†G〉
= 〈SG|SO†S†|SG〉
= 〈G|SO†S†|G〉, (B2)

where we have exploited the antiunitarity of S . Now, the prop-
erty 〈G|O|G〉 = 0 straightforwardly follows for any operator
O fulfilling SO†S† = −O. This is the case for O = c†

j c j+l and

for O = c†
j c

†
j+l for any even l . Since these are precisely the

operators appearing in the normal and anomalous correlation
functions (22) and (23), the above symmetry argument ex-
plains the vanishing of the normal and anomalous correlations
functions appearing in Table I.

Let us now turn to the case Q = π/2, and prove that the
real part of the normal correlation function vanishes for any
odd l , while anomalous correlation function vanishes for even
l , as sketched in Table II. Indeed, for the normal correlation
function (22) one has for any odd l ,

C(l ) = il 〈G|c†
j c j+l |G〉

= il 〈G|I†c†
− jc− j−lI|G〉

= il 〈IG|c†
− jc− j−l |IG〉

= il 〈G|c†
− j−l c− j |G〉∗ =

= (−1)l (il〈G|c†
− j−l c− j |G〉)∗

= − C∗(l ), (B3)

where we have exploited the I symmetry of the ground state
|G〉 and the property that C(l ) only depends on the site dis-
tance l . From Eq. (B3) we deduce that C can only be purely
imaginary at odd l . In particular, because its imaginary part
originates from the unpaired fermions [see Eq. (24)], C ≡ 0 in
the gapped phase. Considering now the anomalous correlation
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function (23), one has

A(l ) = (−1) j (−i)l〈G|c†
j c

†
j+l |G〉

= (−1) j (−i)l〈G|I†c†
− jc

†
− j−lI|G〉

= (−1) j (−i)l〈IG|c†
− jc

†
− j−l |IG〉

= −(−1) j (−i)l〈G|c†
− j−l c

†
− j |G〉

= (−1)l+1 (−1) j il〈G|c†
− j−l c

†
− j |G〉

= (−1)l+1 A(l ). (B4)

From Eq. (B4) we deduce that the anomalous correlation
vanishes for any even l , as described by Table II. A quite
similar argument holds for Q = −π/2.

So far, we have used the symmetry arguments to prove
that correlation functions vanish depending on the parity of
l . We now turn to provide the analytically exact expression
for some of the nonvanishing correlations functions. Let us
first consider the case μ = 0 and analyze first the normal
correlation function C(l ). We start by analyzing the unpaired
fermion contribution Cu(l ), which vanishes in the gapped
phase, Cu(l ) ≡ 0, while in the gapless phase is exactly given
by Eq. (28). We now note that, for μ = 0, the two wavevectors
in Eq. (21) share the same magnitude, which we can denote as

k∗
Q = |k∗

±(μ = 0)| = arcsin

⎛
⎜⎝ | cos Q|√

1 − �2
0

w2

⎞
⎟⎠. (B5)

Thus, from Eq. (28) one obtains

Cu(l )|μ=0 = − sgn(Q)

2π

1

l
(1 − (−1)l ) cos

(
k∗

Ql
)
, (B6)

where we also recover that Cu(l ) vanishes for even values of
l . Turning now to the pair contribution Cp, we observe that
in its general expression Eq. (25) both the integrand function
and the integration domain Sp are symmetric under k → −k,
implying that this expression can be rewritten as an integral
over the positive-k values of Sp only. Focussing first on the
gapless phase, where the Sp domain is given by Eq. (20), one
can rewrite Eq. (25) as

Cp(l )
∣∣
μ=0 = −cos Q

π

{∫ k∗
Q

0

cos(kl ) w cos k

h(k; Q)
dk

+
∫ π

π−k∗
Q

cos(kl ) w cos k

h(k; Q)
dk

}
.

The band symmetry relation (B1) that holds for μ = 0 in
turns implies that h(k) = h(π − k). Thus, changing k →
π − k in the second integral, and exploiting cos(π l − kl ) =
(−1)l cos(kl ), one finds

Cp(l )
∣∣
μ=0 = −1 − (−1)l

2
Qn

p(l; k∗
Q), (B7)

where we have introduced

Qn
p(l; α)

.= sgn(cos Q)

π

∫ α

0
dk

cos k cos(kl )√
cos2 k + δQ sin2 k

, (B8)

with

δQ = �2
0

w2 cos2 Q
. (B9)

A similar argument applies to the evaluation of the anomalous
correlation function A(l ) in Eq. (27), and leads to conclude
that

A(l )|μ=0 = −1 − (−1)l

2
Qa(l; k∗

Q), (B10)

where

Qa(l; α)
.=

√
δφ

π

∫ α

0
dk

sin k sin(kl )√
cos2 k + δφ sin2 k

. (B11)

From Eqs. (B7) and (B10) we recover that the normal and
anomalous correlations vanish for even l , while for odd l they
are given by (minus) the quantities Qn

p and Qa, respectively.
Interestingly, these quantities can be given analytically exact
expressions in terms of elliptic functions of the first and sec-
ond kind, F and E . Here, we limit ourselves to provide the
expressions for l = 1 in the gapless phase, namely,

Cp(1) = sgn(cos Q)

π

(
δQF (k∗

Q; 1 − δQ) − E (k∗
Q; 1 − δQ)

1 − δQ

)
(B12)

and

A(1) =
√

δQ

π

(
E (k∗

Q; 1 − δQ) − F (k∗
Q; 1 − δQ)

1 − δQ

)
. (B13)

For the gapped phase, the corresponding results are obtained
from the above formulas by replacing k∗

Q → π/2 and k∗
μ →

π/2, thereby obtaining expressions in terms of the complete
elliptic integrals K and E .

Let us now turn to the case Q = ±π/2. Following similar
arguments and denoting

k∗
μ = |k∗

+
(

Q = ±π

2

)
| = arcsin

⎛
⎜⎝ |μ|

2
√

w2 − �2
0

⎞
⎟⎠, (B14)

one finds for the gapless phase

Cp(l )
∣∣
Q=± π

2
= 1 + (−1)l

2
Rn

p(l; k∗
μ), (B15)

and

A(l )|Q=± π
2

= 1 − (−1)l

2
Ra(l; k∗

μ). (B16)

Here, we have introduced

Rn
p(l; α)

.= sgn(μ)

π

∫ α

0
dk

cos(kl )√
1 + 4δμ sin2 k

(B17)

and

Ra(l; α)
.= 2

√
δμ

π

∫ α

0
dk

sin k sin(kl )√
1 + 4δμ sin2 k

(B18)

with

δμ = �2
0

μ2
. (B19)
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(a) (b) (c)

FIG. 10. The three different configurations of the inner branch points z∗
± of the denominator D(z) = √

g2(z) − f 2(z) appearing in Eqs. (C2)
and (C3). (a) two real branch points with opposite sign; (b) two real branch points with the same sign; (c) two complex conjugate branch points.
The branch cuts are highlighted in red.

From Eq. (B15) we recover that Cp, i.e., the real part of the normal correlation, vanishes for odd l , in agreement with the
symmetry-based argument given above. Moreover, Eq. (B16) implies that A vanishes for even l , in both the gapped and gapless
phase. Also in this case, the quantities Rn

p and Ra in Eqs. (B17) and (B18) can be given an exact expression for small l , namely,

Cp(2) = sgn(μ)

π

(
(1 + 2δμ)F (k∗

μ; −4δμ)

2δμ

− E (k∗
μ; −4δμ)

2δμ

)
(B20)

and

A(1) =
√

δμ

π

(
F (k∗

μ; −4δμ) − E (k∗
μ; −4δμ)

2δμ

)
. (B21)

Again, for the gapped phase the same formulas (B15) and (B16) apply, upon replacing k∗
μ → π/2.

APPENDIX C: ASYMPTOTIC EXPANSION OF THE CORRELATIONS FUNCTIONS IN THE GAPPED PHASE

In this Appendix we provide details of the derivation of results about the asymptotic behavior of the correlation functions at
long distance (l � 1) given in Sec. V A. The functions appearing in Eqs. (34) and (35) exhibit four branch points at z = Zj given
by

Z1,2 =
μ

2 sgn(cos Q) ±
√

�2
0 + μ2

4 − w2 cos2 Q

w| cos Q| + �0
, Z3,4 =

μ

2 sgn(cos Q) ±
√

�2
0 + μ2

4 − w2 cos2 Q

w| cos Q| − �0
, (C1)

whose location depends on the parameters �0, μ, and Q. Note that the case |μ| = 2w| cos Q| is ruled out from the gapped phase
parameter conditions (17), since in such a case two of the branch points (C1) coalesce into a pole on the circle at either z = +1
or z = −1. This corresponds to the direct closing of the superconducting gap at k = 0 or k = π , and identifies the separatrix
between the two topologically distinct gapped phases, as observed above. Avoiding this singularity and focusing on the gapped
phases, two branch points, which we shall denote as z∗∗

± , lie outside the unit circle (|z∗∗
± | > 1), whereas, as observed in the main

text, the two inner branch points (|z∗
±| < 1) can have three different configurations in the complex plane, namely (i) both real

and with opposite sign; (ii) both real and with equal signs; and (iii) complex conjugate pair. These are illustrated in Fig. 10, and
determine the three different types of asymptotic behavior in the gapped phase. By applying Cauchy theorem to Eqs. (34) and
(35), one can rewrite

Cp(l ) = + 1

4π
Im

{∮
b.cut

dz
zl−1 g(z)

D(z)

}
, (C2)

A(l ) = − 1

4π
Im

{∮
b.cut

dz
zl−1 f (z)

D(z)

}
, (C3)

where D(z) =
√

g2(z) − f 2(z), and “b.cut” denotes the inner branch cuts, taken clockwise, as also shown in Fig. 10. Here,
we have exploited the fact that the integrals along infinitesimally small circles around the branch cuts vanish. One can now
determine the values of the denominator D(z) appearing in Eqs. (C2) and (C3) along the branch cuts, analyzing the three
possible configurations of the branch points z∗

±.
(a) z∗

± real with opposite sign
This configuration occurs when the conditions (39) are fulfilled. In this case, the outer branch points are given by z∗∗

+ =
1/z∗

+ > 0 and z∗∗
− = 1/z∗

− < 0. The values of D(z) along the inner branch cut in Fig. 10(a) are

D(x ± iε) = ±iD1(x)x > 0 D(x ± iε) = ∓iD1(x)x < 0, (C4)
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where

D1(x) =
√

�2
0 − w2 cos2 Q

x2

√
(z∗+ − x) (x − z∗−) (z∗∗+ − x) (x − z∗∗− ). (C5)

Inserting Eqs. (C4) and (C5) into Eq. (C2) one obtains

Cp(l ) = − 1

2π

1√
�2

0
w2 − cos2 Q

{∫ z∗
+

0
dx

x(l−1)√
z∗+ − x

f n,+
reg (x) − (−1)l

∫ |z∗
−|

0
dx

x(l−1)√|z∗−| − x
f n,−
reg (x)

}
(C6)

where

f n,+
reg (x) = (1 + x2) cos Q − μ

w
x√

(|z∗−| + x)
(

1
z∗+

− x
) (

1
|z∗−| + x

) , (C7)

f n,−
reg (x) = (1 + x2) cos Q + μ

w
x√

(z∗+ + x)
(

1
z∗+

+ x
) (

1
|z∗−| − x

) . (C8)

In the first integral the term xl−1 ranges from 0 to (z∗
+)l−1, which is exponentially small for l → ∞ and strongly suppresses the

contribution from f n,+
reg (x) away from x � z∗

+. Similarly, in the second integral, the contribution from f n,−
reg (x) away from x � |z∗

−|
is negligible. Therefore, in the l � 1 limit one can approximate Eq. (C6) as

Cp(l ) ∼ − 1

2π

1√
�2

0
w2 − cos2 Q

{
f n,+
reg (z∗

+)
∫ z∗

+

0

x(l−1)√
z∗+ − x

dx − (−1)l f n,−
reg (|z∗

−|)
∫ |z∗

−|

0

x(l−1)√|z∗−| − x
dx

}
. (C9)

A similar expression can be obtained for A(l ) inserting Eq. (C4) into Eq. (C3). Using the identity∫ a

0

x(l−1)

√
a − x

dx = al− 1
2
√

π
�(l )

�
(
l + 1

2

) �
√

π

a l
al (C10)

where we have exploited �(l + 1
2 ) ∼ �(l ) l1/2 for l → ∞, one obtains Eqs. (36) and (37), where

α±
1 = wA±

1√
π

√
�2

0 − w2 cos2 (Q)
, (C11)

β±
1 = �0B±

1√
π

√
�2

0 − w2 cos2 (Q)
, (C12)

with

A±
1 = (1 − |z∗

±|2) cos (Q) ∓ μ

w
|z∗

±|√
|z∗±|(|z∗+| + |z∗−|)( 1

|z∗∓| + |z∗±|)(
1

|z∗±| − |z∗±|) , (C13)

B±
1 = 1 − |z∗

±|2√
|z∗±|(|z∗+| + |z∗−|)( 1

|z∗∓| + |z∗±|)(
1

|z∗±| − |z∗±|) . (C14)

(b) z∗
± real with the same sign

This configuration occurs when the parameters fulfill Eqs. (51). In this case one has z∗∗
+ = 1/z∗

− and z∗∗
− = 1/z∗

+. The values
of D(z) along the inner branch cut in Fig. 10(b) are

D(x ± iε) = ±i σ ∗ D2(x), (C15)

where σ ∗ is given by Eq. (46), and

D2(x) =
√

w2 cos2 Q − �2
0

x∗2 + y2

√
(z∗+ − x) (x − z∗−) (z∗∗+ − x) (z∗∗− − x). (C16)

Inserting Eqs. (C15) and (C16) into Eq. (C2), and denoting

xM = max(|z∗
+|, |z∗

−|), xm = min(|z∗
+|, |z∗

−|), (C17)

one obtains

Cp(l ) = 1

2π

σ ∗l−1√
cos2 Q − �2

0
w2

∫ xM

xm

dx
xl−1

(
(1 + x2) cos Q − μ

w
x σ ∗)

√
(xM − x) (x − xm)

(
1

xM
− x

) (
1

xm
− x

) . (C18)
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A similar expression is obtained for A(l ). Applying the same approximation strategy as in the case (1) for l � 1, one obtains
Eqs. (47) and (48), where

αM = 1√
cos2 Q − �2

0
w2

(
1 + x2

M

)
cos Q − μ

w
xMσ ∗√

π (xM − xm)
(

1
xm

− xM
) (

1 − x2
M

) , (C19)

αm = 1√
cos2 Q − �2

0
w2

(
1 + x2

m

)
cos Q − μ

w
xmσ ∗√

π (xM − xm)
(

1
xM

− xm
) (

1 − x2
m

) , (C20)

βM =
�0
w√

cos2 Q − �2
0

w2

√
1 − x2

M

π (xM − xm)
(

1
xm

− xM
) , (C21)

βm =
�0
w√

cos2 Q − �2
0

w2

√
1 − x2

m

π (xM − xm)
(

1
xM

− xm
) . (C22)

(c) z∗
± = x∗ ± iy∗ a complex conjugate pair

This configuration occurs in the parameter range (52). In this case z∗∗
+ = 1/z∗

− and z∗∗
− = 1/z∗

+, as displayed in Fig. 10(c).
The real and imaginary parts of the inner roots are given in Eqs. (53) and (54) of the main text, while for the outer roots
z∗∗
± = x∗∗ ± iy∗∗, one has

x∗∗ =
μ

2 sgn(cos Q)

w| cos Q| − �0
, (C23)

y∗∗ =
√

w2 cos2 Q − �2
0 − μ2

4

w| cos Q| − �0
. (C24)

The values of D(z) along the branch cut are given by

D(x∗ ± ε + iy) = ± D3(y)e−i(�ϕ(y)+θ (y)), (C25)

where

D3(y) =
√

w2 cos2 Q − �2
0

x∗2 + y2

√
ρ+(y) ρ−(y) r+(y) r−(y), (C26)

with

ρ±(y) = y∗ ∓ y , (C27)

r±(y) =
√

(x∗ − x∗∗)2 + (y ∓ y∗∗)2 , (C28)

|z(y)| =
√

x∗2 + y2, (C29)

θ (y) = arg(x∗ + iy) ∈ [−π, π ], (C30)

�ϕ(y) = 1

2

{
arctan

(
x∗∗ − x∗

y∗∗ − y

)
− arctan

(
x∗∗ − x∗

y∗∗ + y

))
. (C31)

Inserting Eqs. (C25) and (C26) into Eq. (C2) one obtains

Cp(l ) = 1

π

1√
cos2 Q − �2

0
w2

∫ y∗

0

|z(y)|l√
(y∗2 − y2) r+(y) r−(y)

{
sin [�ϕ(y) + l θ (y)] cos Q (|z(y)| − |z(y)|−1) sin θ (y)

− cos [�ϕ(y) + l θ (y)]
(

cos Q (|z(y)| + |z(y)|−1) cos θ (y) − μ

w

)}
dy

=
∫ y∗

0

(x∗2 + y2)
l−1

2√
y∗ − y

{
F n

s (y) sin[lθ (y)] + F n
c (y) cos[lθ (y)]

}
dy, (C32)
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where

F n
s (y) = 1

π

1√
cos2 Q − �2

0
w2

1√
(y∗ + y) r+(y) r−(y)

×
{

cos [�ϕ(y)] cos Q (|z(y)|2 − 1) sin θ (y) + sin [�ϕ(y)]
(

cos Q (|z(y)|2 + 1) cos θ (y) − μ

w

)}
, (C33)

F n
c (y) = 1

π

1√
cos2 Q − �2

0
w2

1√
(y∗ + y) r+(y) r−(y)

×
{

sin [�ϕ(y)] cos Q (|z(y)|2 − 1) sin θ (y) − cos [�ϕ(y)]
(

cos Q (|z(y)|2 + 1) cos θ (y) − μ

w

)}
. (C34)

A similar expression can be obtained for A(l ). In the regime |x∗| � y∗, we observe that, for l � 1, the function (x∗2 + y2)
l−1

2

suppresses exponentially in l the contribution from F n
c/s(y) away from y � y∗. Therefore, we can approximate Eq. (C32) as

Cp(l ) ∼ {
F n

s (y∗) sin[lθ∗] + F n
c (y∗) cos[lθ∗]

} ∫ y∗

0

(x∗2 + y2)
l−1

2√
y∗ − y

dy (C35)

where

θ∗ = θ (y∗) = arg(z∗
+). (C36)

Moreover, again for |x∗| � y∗, the integral appearing in Eq. (C35) can be fairly well approximated as∫ y∗

0

(x∗2 + y2)
l−1

2√
y∗ − y

dy ∼ (x∗2 + y∗2)
l
2

√
π

y∗ l
= |z∗

+|l
√

π

y∗ l
. (C37)

Inserting Eq. (C37) into Eq. (C35) and proceeding in a similar way for A(l ), one obtains Eqs. (55) and (56), where

αs
3 = 1√

2π

1√
cos2 Q − �2

0
w2

1√
y∗2 r+(y∗) r−(y∗)

{
cos [�ϕ(y∗)] cos Q (|z∗

+|2 − 1) sin θ∗

+ sin [�ϕ(y∗)]
(

cos Q (|z∗
+|2 + 1) cos θ∗ − μ

w

)}
, (C38)

αc
3 = 1√

2π

1√
cos2 Q − �2

0
w2

1√
y∗2 r+(y∗) r−(y∗)

{
sin [�ϕ(y∗)] cos Q (|z∗

+|2 − 1) sin θ∗

− cos [�ϕ(y∗)]
(

cos Q (|z∗
+|2 + 1) cos θ∗ − μ

w

)}
, (C39)

βs
3 = − 1√

2π

�0
w√

cos2 Q − �2
0

w2

1√
y∗2 r+(y∗) r−(y∗)

{cos [�ϕ(y∗)] (|z∗
+|2 + 1) sin θ∗ + sin [�ϕ(y∗)] (|z∗

+|2 − 1) cos θ∗}, (C40)

βc
3 = − 1√

2π

�0
w√

cos2 Q − �2
0

w2

1√
y∗2 r+(y∗) r−(y∗)

{sin [�ϕ(y∗)] (|z∗
+|2 + 1) sin θ∗ − cos [�ϕ(y∗)] (|z∗

+|2 − 1) cos θ∗}, (C41)

and r±(y) and �ϕ(y) are given in Eqs. (C28) and (C31), respectively.

APPENDIX D: ASYMPTOTIC EXPANSIONS OF THE
CORRELATION FUNCTIONS IN THE GAPLESS PHASE

In this Appendix, we provide details about the derivation of
the asymptotic expansions of the correlation functions found
in the gapless phase, and given in Sec. V B [see Eqs. (61) and
(62)]. For definiteness, we shall provide the derivation for Cp,
as the one for A follows along the same lines.

As mentioned in Appendix B, recalling that in the gapless
phase the Sp domain is given by Eq. (20) and exploiting the
symmetry under k → −k of both the integrand function in

Eq. (25) and of the integration domain Sp, one can rewrite
the Eq. (25) as

Cp = − 1

2π

∫ |k∗
−|

0
dk cos(kl )

ξ (k; Q, μ)

h(k; Q, μ)

− 1

2π

∫ π

π−|k∗+|
dk cos(kl )

ξ (k; Q, μ)

h(k; Q, μ)
. (D1)
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By applying a change of variable k → π − k in the second
term, one obtains

Cp(l ) = − 1

2π
Re{I− − (−1)lI+}, (D2)

where

I± =
∫ |k∗

±|

0
dk eikl F±(k), (D3)

and

F±(k) = ξ±(k; Q, μ)

h±(k; Q, μ)

= 2w cos(k) cos(Q) ± μ√
(2w cos(k) cos(Q) ± μ)2 + |�(k)|2

. (D4)

For l � 1, one can apply the stationary phase method to
Eq. (D2), obtaining

I± ∼
∑
n=0

(−1)n

(il )n+1
{F (n)

± (|k∗
±|)ei|k∗

±|l − F (n)
± (0)}. (D5)

To leading order in the asymptotic expansion (n = 0) one
obtains the Eq. (61) given in the main text. Following the very
same lines, one also obtains the asymptotic expansion Eq. (62)
given for the anomalous correlation function.
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