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Abstract

Oncolytic viruses are viral particles that specifically infect cancer cells, while mostly
preserving healthy tissues. Their use as cancer treatment has received considerable
attention in recent years, but their clinical use still faces many challenges. Some of the
main obstacles to the propagation of oncolytic viruses inside a tumour include clearance
by the immune system, physical obstacles (such as the extracellular matrix) and inhibition
of the infection in hypoxic areas. Furthermore, stochastic events may play a central role
in blocking viral infection. All these dynamics are still poorly understood from the
biological point of view and the use of mathematical models could help to reach a more
comprehensive understanding. The main aim of this thesis is to develop mathematical
models to study spatial dynamics of infections by oncolytic viruses and obstacles to its
diffusion, with a special emphasis on the role of stochastic events.

Furthermore, in the last Chapter, we describe a hybrid mathematical framework
whose application is not exclusive to oncolytic virotherapy. This framework adopts either
a pointwise or a density-based description for the cells, according to their phenotype:
transitions between the two descriptions are assumed to happen stochastically and are
affected by environmental conditions and gene expression; thus, the model is hybrid, but
not necessarily multiscale. This modelling framework could help reproduce phenomena
such as epithelial-to-mesenchymal transitions, metastasis and, in the future, evaluate the
effect of an oncolytic viral infection on these phenomena.
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1Introduction

The healthy life of multicellular beings is based on the cooperation among a very large
number of cells. When this cooperation is disrupted, cells proliferate uncontrolled and
uncoordinated; this may lead to the invasion of adjacent tissues and, eventually, to the
death of the whole organism. This disease is known as cancer.

Cancer develops as the result of an accumulation of several mutations, which can be
seen as an evolutionary process: random genetic mutations may occasionally lead to the
creation of a fitter variant, which then originates the new predominant population as
a result of its selective advantage (Nowell, 1976). Different kinds of cancers are clearly
characterised by different sets of mutations and it would be very difficult to understand
within a unitary framework the wide variety of molecular processes affected. Despite this
huge complexity, it is believed that a few common hallmarks characterise every kind of
cancer growth, irrespective of the specific underlying biological processes (Hanahan and
Weinberg, 2000; Hanahan and Weinberg, 2011; Hanahan, 2022). Indeed, some traits allow
cancer cells to overcome the body’s natural defences against unregulated proliferation
and must, therefore, be acquired in some way by all tumours.

In this view, some of the primary tumour dynamics appear understandable in terms
of a small number of underlying principles, which are easier to include in mathematical
models than detailed molecular processes (although the specific level of detail that
should be included in the model varies significantly in relation to the phenomenon under
investigation). In the last decades, it has become clear that often experimental results
cannot distinguish between reasonable hypotheses about the dynamics underlying the
development of tumours and a mathematical mechanistic model could allow to gain
deeper insights (Araujo and McElwain, 2004; Byrne et al., 2006; Byrne, 2010). Indeed,
the translation of a verbal hypothesis in mathematical terms and the theoretical analysis
of its consequences can act as a proof of concept: logical verbal chains may hide critical
assumptions and some counter-intuitive predictions may be hard to guess without the
use of the mathematical formalism (Servedio et al., 2014).

Mathematical models can also be used to suggest optimal cancer therapies before
their clinical application, taking into account toxic side effects and the emergence of drug
resistance (Kuznetsov et al., 2021). In recent years, it has become increasingly important to
use targeted therapies that attack cancer cells while mostly sparing healthy tissues (such
as small molecule inhibitors, immunotherapy and oncolytic virotherapy); mathematical
models could be particularly beneficial in this promising field to optimise the combination
of different therapies and limit the therapeutical protocols that should undergo clinical
tests (we refer to Engeland et al., 2022 for a review of the current situation in relation to
immunovirotherapy). It is essential to observe that, in mathematical oncology, a good
quantitative description of the phenomena under investigation may not always be the
ideal goal: indeed, a correct outcome classification that serves as a base for decision-
making is often more important (Enderling and Wolkenhauer, 2021).

This Chapter is organised as follows. In Section 1.1, we briefly review some funda-
mental aspects of cancer biology and its most common therapies, with a particular focus
on oncolytic viruses (OV); this provides the background for the rest of the thesis. In
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Section 1.2, we recall some general approaches to mathematical modelling in biology.
In Section 1.3, we review the mathematical literature related to oncolytic virotherapy.
In Section 1.4, we briefly mention some mathematical models of interactions between
cancer and the immune system; we then explain how these approaches can be extended
to include oncolytic viruses. In Section 1.5, we review the mathematical literature related
to hypoxia and its influence on cancer therapies. Finally, in Section 1.6, we describe the
organisation of the rest of the thesis and highlight the main contributions of the thesis.
Throughout the Chapter, some text boxes explain how the ideas presented relate to other
parts of the thesis.

1.1 Some remarks on the biological background

The vast majority of PhD theses in mathematical biology begin by quoting the World
Health Organisation about statistics on cancer incidence. We refrain from that and assume
that the reader is already familiar with the concept that “cancer is bad and should be
cured”. Instead, we restrict our attention to the biological aspects that are more relevant
to the models developed in the rest of the thesis. Here, we give a general overview
without the aim of being comprehensive; additional details will be provided in relation
to specific mathematical models. We first describe the main cancer features, focusing
on the well-known hallmarks and therapies. We then introduce oncolytic virotherapy
and explain the main obstacles this targeted therapy faces. Finally, we give an overview
of cancer-immune interactions and the ways to enhance immune response through
immunotherapy.

1.1.1 Cancer development

The above-mentioned theses usually continue by explaining the hallmarks of cancer in-
troduced in Hanahan and Weinberg, 2000, later expanded in Hanahan and Weinberg,
2011 and then further increased in Hanahan, 2022. Although the reader is probably also
familiar with them, it is still worth recalling some of these concepts, as they justify the
phenomenological modelling of cancer with relatively simple mathematical equations
that neglect specific molecular pathways; furthermore, this serves as a background to the
rest of the biological introduction. Fig. 1.1 therefore lists the hallmarks that, according
to Hanahan and Weinberg, most (if not all) human tumours share in common. We now
review the more relevant ones to our interests, focusing also on some collateral aspects
that are not directly incorporated in the hallmarks.

Evolutionary aspects: genome instability and mutation As previously mentioned,
the development of cancer requires the sequential accumulation over time of several
mutations, which confer some growth advantage with respect to healthy cells (Nowell,
1976): in this respect, it can be seen as an evolutionary process driven by Darwinian
natural selection, with multiple clonal expansions triggered by the acquisition of a fitter
genotype. Healthy cells have several mechanisms to keep the spontaneous mutation rate
low; hence, in cancer cells, the evolution is facilitated by a breakdown in the genomic
maintenance machinery, which increases the rate of mutations.

The genomic instability also causes a certain degree of intratumoral genetic hetero-
geneity. However, it is important to keep in mind that tumour heterogeneity is not
restricted to genetic mutations: it has been shown that malignant cells within the same
mass exhibit different behaviour despite carrying the same genetic alterations (Marusyk
et al., 2012).
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FIGURE 1.1: Schematic representation of the full list of hallmarks of cancer. Reprinted from Hanahan, 2022 by
permission from the American Association for Cancer Research (license number: 5803560059863).

Ecological aspects: inducing or accessing vasculature The tumour microenvironment
(TME) plays a central role in determining cellular behaviour (Palumbo et al., 2015;
Sonugür and Akbulut, 2019). It can be seen as an ecosystem containing both evolving
cancer cell populations and multiple host components, including immune cells, blood and
lymphatic vessels, and extracellular matrices. Furthermore, nutrients such as oxygen and
glucose are fundamental for cell function and survival. The physiological vasculature
is clearly unable to sustain uncontrolled cell proliferation, hence most tumours are
characterised by hypoxia (i.e., lack of oxygen); this condition is also involved in the
acquisition of several other hallmarks by cancer cells (Ruan et al., 2009). The growth of
a large tumour mass requires the formation of new blood vessels that enable nutrient
delivery (a process known as angiogenesis). The spatially heterogeneous distribution of
intratumoral blood vessels contributes to the development of different phenotypes in
different areas: its role has been compared to the one of rivers in deserts, in which a
riparian habitat establishes close to the river, in sharp contrast with the surrounding
habitat. Microenvironmental conditions are modified by the tumour in several other
ways (e.g., pH reduction and degradation of the extracellular matrix) in a way that
resembles niche construction in ecology (Laland et al., 2016).

Phenotypic heterogeneity: nonmutational epigenetic reprogramming, deregulating
cellular metabolism, unlocking phenotypic plasticity Cells exhibiting different se-
quences of genes and/or phenotypic determinants have been found in several types of
tumours, including breast cancer (Al-Hajj et al., 2003), colorectal cancer (O’Brien et al.,
2007), brain cancer (Singh et al., 2004), and prostate cancer (Collins et al., 2005). In the
just-described ecological view, this is partially due to the fact that the development
of cancer cells is affected by the surrounding molecular landscape, which is, in turn,
actively influenced by those cells in a feedback/feedforward fashion. The adaptation
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to the microenvironmental conditions is only minimally caused by genetic mutations
and mostly follows other pathways such as phenotypic plasticity and nonmutational
epigenetic reprogramming.

Phenotypic plasticity allows some cancer cells to evade the state of terminal differen-
tiation and either go back to a progenitor-like cell state or switch to an entirely different
developmental programme (Hanahan, 2022). The switch between alternative pheno-
typic states may occur spontaneously or in response to ecological inputs. For example,
nutrient-deprived malignant individuals activate downstream pathways that result in
a shift towards more aggressive behaviour. These cells lose epithelial characteristics,
such as high adhesiveness and high duplication capacity, and acquire mesenchymal
features, such as enhanced motility, which allow them to invade surrounding tissue more
effectively. This phenomenon, denoted as epithelial-to-mesenchimal transition (EMT), is
also involved in physiological scenarios, such as morphogenesis and organogenesis. The
inverse process may also occur: tumour cells with mesenchymal determinants can lose
their migratory freedom and re-acquire epithelial hallmarks, including expression of
junctional proteins, when experiencing a sufficient level of environmental substrates
(Nieto et al., 2016).

The modelling of EMT is the main focus of Chapter 6.

The word epimutation refers to heritable modifications in gene expressions not associ-
ated with changes in the deoxyribonucleic acid (DNA) sequences (Oey and Whitelaw,
2014). Its role in embryonic development, differentiation and organogenesis is well-
established; recent evidence suggests that it also contributes to the acquisition of cancer
hallmarks, especially in the context of metabolic reprogramming in adaptation to hypoxia
and EMT transition (Hanahan, 2022).

A common feature in the eco-evolutionary is the need for individuals to perform
multiple tasks; the limited amount of resources available implies that not all of them can
be optimised simultaneously. This leads to trade-offs between the different abilities, in the
sense that the increase of a specific ability corresponds to the decrease of a distinct trait;
consequently, the fittest population depends on the particular situation that is modelled.
Trade-offs are well-documented in the context of cancer (Aktipis et al., 2013; Boddy
et al., 2018; Hausser and Alon, 2020; Jacqueline et al., 2017). Specific examples will be
introduced later, in the context of the modelling of infections (Section 1.3.3) and hypoxia
(Section 1.5).

We remark that it is not trivial to understand all these features just from experimental
evidence; hence, the use of mathematical models could allow for deeper insights.

Activating invasion and metastasis Some tumour cells often acquire the ability to
invade adjacent tissues in search of new areas of the body with more nutrients and fewer
space restrictions; this colonisation may result in the formation of a metastasis, a distant
cancer settlement with properties similar to the primary tumour. Invasion and metastasis
are closely allied processes which utilise similar operational strategies (Hanahan and
Weinberg, 2000): in this respect, they somehow resemble the previously described EMT.
Although metastases are not explicitly modelled in the rest of the thesis, it is still worth
mentioning them due to their central role in human cancer deaths.

Avoiding immune destruction and tumour-promoting inflammation The immune
system constantly monitors tissues to eradicate malignant mutations; therefore, a tu-
mour can develop only if it finds some way to evade immune destruction (Hanahan
and Weinberg, 2011). Due to its relevance in the rest of the thesis, we will describe
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cancer-immune interactions in more detail in Section 1.1.3. We here limit our attention
to the fact that tumour-associated inflammatory response may have the paradoxical
effect of enhancing tumour progression by facilitating the acquisition of other hallmark
capabilities (Hanahan and Weinberg, 2011).

Therapies Some classical cancer therapies include (Abbas and Rehman, 2018):

• surgical removal of the tumour;

• radiotherapy, which uses radiation to damage the DNA of cancer cells to stop their
replication;

• chemotherapy, which consists of the injection of toxic chemical agents able to target
a specific phase of the cell cycle to induce cell death;

• hormone therapy, which relies on the fact that several tumours need hormonal stimuli
to develop.

All those therapies are not specifically targeted against cancer cells; hence, they cause
relevant side effects. As a consequence, in recent years, the attention has been shifting
to therapies that do not harm healthy tissues significantly: two notable examples are
anti-angiogenic therapy (which aims at cutting off the blood supply to the tumour cells)
and small-molecules inhibitors (which target specific molecular defects of cancer cells).

In this thesis, we focus on two other targeted therapies, namely oncolytic virotherapy
and immunotherapy.

Therapies may vary their effectiveness on different tumour subpopulations: for
example, the adaptation to hypoxia is often associated with an increased resistance to
therapies (see also Section 1.5). Furthermore, therapeutic agents substantially modify
the fitness landscape and favour the emergence of resistant clones. Therefore, a good
comprehension of the phenotypic composition of a tumour is a critical factor for the
optimisation of the therapy in a patient-specific approach; evolutionarily informed
strategies could keep the resistant population under control by allowing the survival
of a significant population of sensitive cells, with the aim to control the tumour rather
than eradicate it (Gatenby and Brown, 2020). The use of mathematical models could be
beneficial for the development of such strategies.

1.1.2 Oncolytic virotherapy

As anticipated, the main focus of the thesis is oncolytic virotherapy. Oncolytic viruses
constitute a targeted cancer therapy, which uses viral particles preferentially infecting
tumour cells while mostly sparing healthy tissues (Blanchette and Teodoro, 2023; Fountzi-
las et al., 2017; Kelly and Russell, 2007; Lawler et al., 2017; Russell and Peng, 2018). The
two main delivery routes for the virus are intratumoral injection and intravenous admin-
istration (Jin et al., 2021). Viral particles are genetically modified to infect cells through
receptors highly expressed in tumours (Lawler et al., 2017); virus-infected cells then
burst due to lysis and release a high number of new viral particles, which can infect
neighbouring cells. The infection can often stimulate an antitumour immune response,
contributing to the treatment or, in some cases, hindering an efficient viral diffusion.
The potential of this therapy has been recognised for a long time and in recent years
the clinical use of some oncolytic viruses has been approved, with several clinical trials
still ongoing (Blanchette and Teodoro, 2023). In 2005, the Chinese State Food and Drug
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Administration approved for the first time in the word the clinical use of an oncolytic
virus to treat head and neck cancers (Garber, 2006). A different oncolytic virus was
approved by the United States of America Food and Drug Administration in patients
with accessible and unresectable melanomas; this therapy was later also approved in
Europe, Australia and Israel (Shalhout et al., 2023). Nevertheless, there are still many
challenges that prevent the systematic use of this treatment. The difficulties in creating
a set of rules and practises that make this therapy reliable, reproducible and clinically
mainstream may also be associated with “stochastic”, hard-to-predict events, which
affect consistency in viral delivery, tumour invasion, viral replication and diffusion. Here,
we review the basic biological facts about oncolytic viruses and the main problems that
prevent the success of virotherapy, which will be analysed in the thesis using suitable
mathematical models.

Dynamics of viral infections As we already mentioned, the therapy’s key aspect
is that the viral infection occurs through receptors highly expressed on cancer cells
(Lawler et al., 2017). However, the exact mechanisms of the infection are not entirely
understood. In general, viruses enter target cells with a combination of dynamics, whose
effectiveness depends on several factors (Kalia and Jameel, 2011). In recent years, it has
also become clear that some viruses (such as human immunodeficiency virus type 1 and
hepatitis C virus) may infect both through direct cell-to-cell transmission and cell-free
transmission mediated by diffusing virions (i.e., free viral particles outside cells); the
actual combination of the two processes is hard to establish in full detail (see Graw and
Perelson, 2016 and the references therein). There are also newly investigated mechanisms
that allow cell-to-cell transmission: for example, some viruses, such as the influenza
virus, might exploit tunnelling nanotubes between cells (Kumar et al., 2017).

In the specific case of oncolytic viruses, there are several obstacles to viral diffusion in
the tumour microenvironment, as we explain in the following paragraphs: it is therefore
likely that most of the time, the infection is mainly driven by cell-to-cell contact and
close-range free virions. Effective ways to enhance viral delivery and improve their
circulation are currently under study (Hill and Carlisle, 2019).

Interactions with the tumour microenvironment: extracellular matrix, immune system
and hypoxia As previously highlighted, the tumour microenvironment is crucial in
shaping cancer evolution. It is now clear that it also influences viral infections in several
ways.

First, physical obstacles, such as the extracellular matrix (ECM), inhibit viral diffusion
due to the increased pressure, the interlocked meshwork of secreted proteins and cellular
tight junctions (Jin et al., 2021; Wojton and Kaur, 2010). Indeed, the administration of
ECM-degrading enzymes improves viral diffusion in the tumour, but it is essential to
consider that the destruction of cellular junctions poses some concerns regarding an
increased likelihood for cells to metastasise.

One of the models studied in Chapter 2 implicitly considers these obstacles in viral
intratumoral diffusion.

Secondly, the interplay between oncolytic viruses and immune cells is among the most
complex aspects that involve the microenvironment. Its influence on the therapeutic
outcome is twofold: oncolytic viruses can stimulate immune cells, not only against
viral particles but also against tumour cells; on the other hand, an immune response that
targets the oncolytic virus may prevent an effective infection in the whole tumour, making
virotherapy inefficient (Filley and Dey, 2017; Shi et al., 2020). A complete shutdown of
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the immune response is clearly unfeasible in any realistic scenario; even if possible, it
would not be amenable to stop the antitumour action of the immune system stimulated
by the virus. This suggests that the strength of the immune response should be adapted
and regulated as much as possible in order to optimise the outcome and immunotherapy
is a natural tool for this goal. This concept will be further elucidated in the following
subsection after a brief review of the interactions between cancer and the immune system
in a general context.

Another interesting interaction involves the neovasculature that the tumour originates
through angiogenesis: most oncolytic viruses disrupt it by targeting tumour-associated
vascular endothelial cells (Jin et al., 2021; Wojton and Kaur, 2010). On the one hand,
the decrease in nutrient inflow contributes to slowing down cancer growth and, in this
respect, oncolytic virotherapy could act in the same way as antiangiogenic therapy. On
the other hand, blood vessels also play a vital role in the arrival of viral particles and
immune cells. It is also important to take into account the role of hypoxia, which is
twofold: in general, hypoxic cells have a slower metabolic activity, which results in a
slower infection; nonetheless, some particular oncolytic viruses are able to specifically
target receptors that are upregulated in case of the lack of oxygen (Sadri et al., 2023;
Sheng Guo, 2011). The best strategy appears to be the vasculature’s normalisation so that
viral particles and immune cells can regularly penetrate the tumour, the risk of severe
hypoxia and acidosis is decreased and, at the same time, anomalous vessels are reverted
towards more physiological phenotypes (Santry et al., 2020).

The role of hypoxia on oncolytic viral infections is studied in Chapter 5.

Combination with other therapies For all the reasons we just explained, virotherapy
cannot eradicate a tumour alone in most cases. Consequently, most current efforts are de-
voted toward its combination with other therapies (Martin and Bell, 2018; Ottolino-Perry
et al., 2010). One of the most promising of such combinations is with immunothera-
pies (Engeland et al., 2022), as already mentioned and further explained shortly. We
remark that OV may also be combined with chemotherapy (Binz and Lauer, 2015) and
radiotherapy (Touchefeu et al., 2012), with viruses often used to deliver molecules that
enhance the other therapy; furthermore, the fact that the two therapies are mediated
by different pathways allows them to act synergistically. In light of the difficulties of
standard therapies to be effective in hypoxic tumours, the combination with viruses that
specifically target those cells could be particularly beneficial (Sheng Guo, 2011).

1.1.3 Immunotherapy and immunovirotherapy

From the previous discussion, it is clear that the study of oncolytic virotherapy cannot
ignore the immune component. We first review some elementary aspects of the immune
system, its response against cancer cells and how tumours avoid immune destruction.
We then explain how the most common immunotherapies enhance the immune re-
sponse and the role that oncolytic viruses may play in this context through the so-called
immunovirotherapy.

Overview of the immune system and antitumour immune response The functioning
of the immune system is highly complex and the models presented in this thesis rely just
on very elementary assumptions. Hence, we here restrict our attention to a few essential
features. Broadly speaking, there are two types of immune systems: the innate immune
system, involving cells such as natural killers, macrophages and dendritic cells, is the first
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FIGURE 1.2: Schematic representation of the immune response against cancer and immunoevasion in the
context of CD8+ T-cells. (a) The CD8+ T-cells recognise the major histocompatibility complex (MHC) molecules
of a cancer cell and bind through the T cell receptor. (b) Some cancer cells may lose their tumour antigen
or downregulate the expression of MHC, hence avoiding immune recognition. (c) The expression of an
inhibitory ligand or the presence of immunosuppressive cytokines stops immune killing. (d) CD8+ T-cells
are suppressed by regulatory T-cells (T-reg) or myeloid-derived suppressor cells (MDCSs). Reprinted from Pansy
et al., 2021 by permission from MDPI (CC BY license).

line of defence and does not require any specific activation; the adaptive immune system,
involving B-cells and T-cells (also called lymphocytes), needs to be specifically activated to
target a specific antigen (i.e., a molecule or a protein that characterises the substance that
needs to be eliminated) and its ability to recognise that antigen is maintained as time
passes (Chaplin, 2010). The activation of adaptive immune cells is mediated by antigen
presenting cells, a role that can be played by both innate immune cells (macrophages
and dendritic cells) and adaptive immune cells (CD4+ helper T-cells). In the context of
tumour-immune interactions, the most relevant cells are CD8+ killer T-cells, which use
their T-cell receptor to bind with the major histocompatibility complex molecules of a cancer
cell and kill it, as depicted in Fig. 1.2a (Pansy et al., 2021). The movement of T-cells is
guided by small proteins called chemokines; because of their role, we refer to them with
the generic term chemoattractant. We also mention the existence of a third class of T-cells,
namely regulatory T-cells (T-reg): their role is to down-modulate the immune response
when needed.

Immunoediting As we already mentioned, the appearance of dangerous mutations
in cells is usually recognised by immune cells, which kill the mutants and prevent their
overproliferation. As a consequence, a malignant tumour cannot develop unless it man-
ages to avoid the immune action: this process is known as immunoediting and it involves
the three stages of elimination, equilibrium and escape (Dunn et al., 2002). Figs. 1.2b-d
summarise the main mechanisms that a tumour uses to achieve immune escape: loss of
major histocompatibility complex molecules or antigens; expression of inhibitory ligands;
presence of immunosuppressive cells in the tumour microenvironment (Pansy et al.,
2021). These last two mechanisms are fundamental for cell tolerance in physiological
situations and allow all healthy tissues to avoid immune killing.

These strategies can be combined in several ways and result in different degrees of
immune infiltration. In Galon and Bruni, 2019, starting from these considerations, the
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authors proposed the classification of tumours in four categories:

hot: the tumour is infiltrated by a large number of T-cells and the immunosuppression
is mostly due to immune checkpoints;

altered-immunosuppressed: the tumour is poorly infiltrated (although some T-cells are
present) due to an immunosuppressive environment rich in T-reg and MDSC, and
tumour cells express immune checkpoints;

altered-excluded: T-cells accumulate at the tumour border without being able to infil-
trate due to poor vascularisation (and, consequently, hypoxia), physical barriers
and lack of T-cell recruiting chemokines;

cold: absence of T-cells in the tumour microenvironment and its surroundings due to
low mutational burden and poor tumour antigen presentation.

Immunotherapies Immunotherapy aims to overcome the tumour’s evasion strategies
and enhance the immune response. A first way to do so is a direct increase of the quantity
of CD8+ T-cells that can target the tumour. In this respect, adoptive T-cell transfer consists
in culturing the patient’s immune cells that target specific tumour antigens and then
reinjecting them at the tumour site: while the use of the patient’s own immune cells
minimises side effects, the isolation of the right kind of T-cells poses some challenges;
furthermore, transferred T-cells may lack sufficient specificity or be too few to completely
reject a tumour (Fesnak et al., 2016). An alternative approach requires genetic manipu-
lation of T-cells to enhance antigen recognition: the most common approach involves
the chimeric antigen receptor (CAR), which combines antigen-binding and T-cell activa-
tion in a single receptor (Wang and Rivière, 2016). Both strategies pose the concern of
overactivation of the immune system, which may harm healthy cells (Gross and Eshhar,
2016).

Alternatively, other immunotherapies enhance the cytotoxic action. For example,
immune checkpoint inhibitors (ICI) bind to receptors that suppress the immune response,
such as programmed cell death 1 (PD-1) on cancer cells and the programmed cell death
ligand 1 (PD-L1) on immune cells; in this way, co-inhibitory signalling pathways are
interrupted and immune-mediated elimination of tumour cells is promoted (Darvin
et al., 2018). The proliferation and activation of immune cells can also be enhanced using
bispecific T-cell engagers (BiTEs), bispecific proteins with two linked single-chain variable
fragments, which target respectively immune and cancer cells (Slaney et al., 2018).

Despite some relevant successes, immunotherapies still fail to show substantial bene-
fits in many situations. It appears that the mechanisms of resistance to immunotherapy
are analogous to the ones employed in the starting stage of a tumour to achieve evasion
from the physiological immune response (O’Donnell et al., 2018). As a consequence, the
most effective type of immunotherapy highly depends on the degree of immune infiltra-
tion in a given tumour; the choice of the best therapeutic approach should, therefore, be
based on the knowledge of immune-related features (such as the ones involved in the
previously described characterisation) and could involve the combination of different
strategies.

Immunovirotherapy Oncolytic viruses could be seen as a specific case of immunother-
apy because of their ability to activate the immune system. It is, therefore, natural to
explore how to best combine the viral infection with other kinds of immunotherapies. A
first strategy involves using oncolytic viruses as adjuvants of other therapies: indeed,
the lysis of infected cells increases the release of tumour antigens, helping to turn a
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FIGURE 1.3: Schematic representation of different ways in which oncolytic viruses can be used as genetic
vectors to enhance immune response. Reprinted from Shi et al., 2020 by permission from Frontiers (CC BY
license).

cold tumour into a hot one (Shi et al., 2020). A less intuitive contribution of oncolytic
virotherapy involves the genetic modification of the virus to make infected cells produce
and secret specific molecules (such as, but not limited to, antigens, checkpoint inhibitors
and BiTEs). Some examples of this process are depicted in Fig. 1.3. Again, we remark
that the appropriate type of combination therapy is highly dependent on the features of
the target tumour.

In Chapter 3, we analyse the influence of virotherapy on the immune response and
suggest some strategies of immune enhancement that could be beneficial for tumour
eradication.

1.2 Some general remarks about mathematical modelling in
biology

1.2.1 Discrete and continuous approaches

An important starting point of any model is the choice of the most suitable mathematical
tools, depending on the spatiotemporal scale of the phenomenon under investigation
and on whether stochasticity plays an any role. The main distinction is between discrete,
continuum or hybrid models: although this division applies to all mathematical models,
for the sake of simplicity, we focus on the modelling approaches for cells.

In a discrete setting, every cell is an individual agent and its evolution is described
by some rules, which may be either deterministic or stochastic. In lattice-based models,
individuals are constrained to move on the points of a given discrete lattice; conversely,
in lattice-free models, individuals do not have such a constraint and can occupy any
point in space.
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In a continuum setting, cells are not modelled at the individual level because larger
volume fractions are considered. The most basic continuous models involve ordinary
differential equations (ODEs), which allow the description of a discrete set of homoge-
neous cell populations. On the other hand, partial differential equations (PDEs) consider
a population’s heterogeneity using continuous structuring variables, which may represent
space, size, age or phenotype.

Discrete individual-based models allow to include randomness in the processes
easily, but are also associated with higher computational costs and do not allow to
easily obtain analytical results. On the other hand, continuum models are amenable
both to numerical simulations and analytical results but cannot easily include stochastic
events; furthermore, the phenomenological assumptions commonly used in this approach
may also hinder the biological interpretation of the mathematical assumptions. For
these reasons, in recent years, the derivation of continuum macroscopic models from
underlying discrete stochastic models has attracted the attention of an increasing number
of researchers (see, for example, Champagnat and Méléard, 2007; Johnston et al., 2015;
Lorenzi et al., 2020; Macfarlane et al., 2022; Penington et al., 2011; we refer to the
introduction of Chaplain et al., 2020 for a more comprehensive literature review). Some
standard techniques include mean-field limits (Carrillo et al., 2010), heuristic laws of
large numbers (Capasso and Morale, 2009), or coarse-graining procedures (Drasdo,
2005); macroscopic formulations have also been derived by selected lattice-gas cellular
automata (LGCA) in Bottger et al., 2012. The comparison between a discrete model and
its continuous counterpart allows us to understand clearly the modelling assumptions
for a continuum model, gain some theoretical intuition on the behaviour of an individual-
based model and, as a consequence, reach a more comprehensive understanding of the
biological system under study.

This approach is used in Chapters 2, 3 and 4.

Finally, some models combine discrete and continuum descriptions and are thus
defined as hybrid models. In most cases, the “discrete vs. continuous" dichotomy refers
to the spatial scale at which the system is modelled: for example, cells are described
as discrete individuals, while chemical elements such as oxygen and nutrients are de-
scribed as continuous functions of time and space. An alternative approach relates the
mathematical description to cells’ behaviours, as described below.

1.2.2 Mathematical models of heterogeneous cell populations and phenotypic
switch

As a first approximation, cells are usually modelled as indistinguishable individuals that
evolve according to a unique set of rules. However, in many situations, it is important to
take into account heterogeneous behaviours due to differences at the genetic, epigenetic
and/or phenotypic levels and even allow for transitions among different classes. In the
context of cancer, cell plasticity has been extensively studied (Weerasinghe et al., 2019).
We now briefly recall some classical approaches relevant to this thesis’ models; we here
present them in a general framework: the application in specific settings will be presented
in the following (both in other sections of the current chapter and in Chapters 4, 5 and 6).

Discrete compartments The most elementary approach to modelling heterogeneous
populations is to structure them in discrete compartments, which evolve according to
different rules. For instance, in individual-based/cellular automata models, each single
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cell is allowed to vary a label indicating its actual phenotype, as in the case of the well-
celebrated Cellular Potts Model (see Scianna and Preziosi, 2012 and the references therein).
Furthermore, models based on a continuous cell description (also in the framework of the
Theory of Mixtures) instead typically associate to each subpopulation a distinct density
function (as in Giverso et al., 2022): phenotypic conversions are then implemented by
mass exchanging terms included in the evolution equations for cell dynamics, as done
for instance in Wise et al., 2008. Finally, we note that hybrid approaches (in which the
discrete setting is used for all cell dynamics while the continuous description is adopted
for microenvironmental dynamics) allow the description of different phenotypes with
different discrete populations, as done in Anderson et al., 2006.

A less common approach consists of choosing the most suitable mathematical repre-
sentation for cells in different compartments based on their phenotypes, as first proposed
in Colombi et al., 2017; Scianna and Colombi, 2017. In this context, cells are described
either as discrete agents or through a continuous density function depending on their be-
haviour. Consequently, the “discrete vs. continuous" dichotomy does not refer to the spa-
tial scale at which the system is modelled. Indeed, a pointwise description is, in fact, more
appropriate for specialised/activated/highly metabolic cells or for cells with mesenchymal de-
terminants, i.e., with the ability to undergo individual directional movement in response
to environmental cues; on the other hand, a density-based representation, characterised
by a lower level of individual detail, is more suitable for non-specialised/quiescent/poorly
metabolic cell ensembles or for cells with epithelial determinants, i.e., which undergo collec-
tive dynamics mainly guided by intercellular communication. Furthermore, in principles,
both mathematical descriptions may be associated with multiple compartments. It is also
possible to model transitions between the two descriptive instances by the definition of a
bubble function that represents a plausible spatial distribution of the mass of a single
individual (Colombi et al., 2017; Scianna and Colombi, 2017).

In Chapter 6, we present an extension of this modelling framework that consid-
ers phenotypic conversions triggered by environmental signals, dependent on cell
genetic traits and affected by randomness.

Continuous trait variable A common alternative approach involves a population
u(t, y) structured on a continuous trait variable y ∈ Y, which may be referred to either
genotype or behavioural determinants (we here restrict to a scalar variable, although
the generalisation to higher dimensions is straight-forward). Its evolution is usually
described by a partial integro-differential equation (PIDE) of the form

∂tu(t, y) = Dy∂2
yyu(t, y) + R

(
y,
∫

Y
u(t, y)dy

)
u(t, y) (1.1)

where the diffusion term on the trait domain models random changes in the trait and
the dependence on the total density ρ(t) :=

∫
Y u(t, y)dy represents the competition for

limited resources; the growth rate R can be interpreted as the fitness landscape. The
growth rate typically takes the form

R(y, ρ) := r(y)− κρ (1.2)

where r(y) is the trait-dependent proliferation rate and −κρ models the interspecific
competition. A common alternative is

R(y, ρ) := p(y)
(

1 − ρ

K

)
− η(y − φ)2 (1.3)
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where the interspecific competition is included in the logistic growth term (with carrying
capacity K) and the selection of the fittest phenotype φ is modelled through a quadratic
term, with η defining the time scale at which the process takes place.

This class of models has been widely studied from the mathematical point of view;
we refer to Lorenzi et al., 2024a for a review. Most of the results rely on a Hamilton–Jacobi
approach (Diekmann et al., 2005; Lorz et al., 2011; Perthame, 2006; Perthame and Barles,
2008). The typical behaviour is the concentration of u on the points that maximise R
as the diffusion coefficient vanishes and the time goes to infinity (Perthame, 2006). A
similar result holds for Dy = 0, although the limit clearly depends also on the initial
condition (Lorenzi and Pouchol, 2020). It is also possible to add a spatial variable and
consider spatial heterogeneity, resulting in the selection of fittest traits that vary in time
and space (Alfaro et al., 2013; Mirrahimi and Perthame, 2015). The spatial context allows
us to account for heterogeneous cell motilities, which is particularly useful in the study
of the proliferation-migration trade-off, also known as Go or Growth (GoG) (Fiandaca et al.,
2022; Lorenzi et al., 2021a).

In Chapters 4, 5 we use equations analogous to Eq. (1.1): we follow the approach of
Eq. (1.2) in Chapter 4 and the approach of Eq. (1.3) in Chapter 5.

The most common way to model random phenotypic transitions in this context is
through a diffusion term on the trait domain, as in Eq. (1.1). We observe that some models
also include a mutation drift that represents the active adaptation of an individual to
the environment (Chisholm et al., 2016); however, we do not adopt this approach in this
thesis.

1.3 Models of oncolytic virotherapy in the absence of immune
response

1.3.1 Models without explicit viral dynamics

The most basic approach consists in modelling only uninfected cancer cells, denoted
by u, and infected cancer cells, denoted by i; in this way, viral dynamics are neglected
for simplicity. This mathematical formulation closely resembles models widely used in
epidemiology and ecology, as explained below; consequently, it is sometimes possible to
partially rely on previous analytical results on the subject.

ODE models A generic model can be written in the form
du
dt

= uF(u + i)− βG(u, i)i

di
dt

= βG(u, i)i − qi
(1.4)

The function F(ρ) with ρ = u + i models cancer growth. Its most common expressions
are:

• exponential growth: F(ρ) = p (independent of ρ)

• logistic growth: F(ρ) = p
(

1 − ρ

K

)
• Gompertz growth: F(ρ) = p ln

(K
ρ

)
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In all these functions, there is a parameter p > 0, which corresponds to the maximal
proliferation rate. In the last two functions, K > 0 is the carrying capacity, with the
property that F(K) = 0 and so the growth stops when it reaches this value. We refer to
Benzekry et al., 2014; Jarrett et al., 2018; Vaghi et al., 2020 for additional examples and
comparisons with experimental data.

The function G models viral infection: the most common choices are density-dependent
infection and frequency-dependent infection, as we explain in the following paragraphs.

Finally, the term −qi models the death of infected cells due to lysis. It is assumed
that infected cancer cells do not proliferate: this may be justified by the fact that the viral
infection disrupts the cellular machinery and does not allow a cell to duplicate.

The simplest form is the basic susceptible-infected (SI) epidemic model, with F = 0
(no growth of susceptibles) and G(u, i) = u (mass-action or density-dependent infection);
this corresponds to the most elementary case presented in Kermack and McKendrick,
1927. Another common form of this equation is the Lotka–Volterra model (Lotka, 1926;
Volterra, 1937), which was developed in the ecological settings to model interactions
between predators (in our notation i) and prey (u); the only difference with respect to
the SI model is the inclusion of exponential growth of prey. A similar model considers
logistic growth (see Eq. (2.14)). The behaviour of these two systems and their differences
will be discussed in Section 2.3.1. We remark that, when the law of mass-action is used
to model the infection, it is often convenient to scale the infection rate β by the carrying
capacity K for dimensional reasons.

The other common choice for the infection term is a frequency-dependent function
(sometimes also referred to as ratio-dependent function), i.e.

G(u, i) =
u

u + i + δ
(1.5)

with either δ = 0 or δ > 0; the latter choice allows the equation to be properly defined
also when both populations vanish. This infection term models a situation in which the
virus remains mostly localised, with the infection rate depending on the frequency of
uninfected cells rather than their numbers; such an approach is not uncommon in the
general modelling of infections (Dobson and Meagher, 1996; Holt and Roy, 2007; Roy
and Holt, 2008; McCallum et al., 2001). In Berezovskaya et al., 2007; Novozhilov et al.,
2006, it is shown that, if G takes this form with δ = 0 and both populations experience
logistic growth, then the singular equilibrium (0, 0) has a non-empty basin of attraction,
consisting of heteroclinic orbits. When infected cells are not allowed to proliferate, the
system exhibits stable limit cycles for δ ≥ 0.

These models always admit (0, 0) as an equilibrium, although it is often unstable. If
the tumour growth saturates at carrying capacity K, then there is also an infection-free
equilibrium (K, 0), which may be stable or unstable depending on the forms of F and G,
as well as on parameter values. In most cases there exists also a coexistence equilibrium
(u∗, i∗) and in some cases stable limit cycles or homoclinic orbits may appear in some
parameter ranges.

The previous discussion highlights the wide variety of behaviours that may be
obtained by varying the functional form of the terms in Eq. (1.4). To overcome the strong
dependence of the outcome to the specific mathematical choices, Eq. (1.4) is studied
under very general assumptions in Komarova and Wodarz, 2010. Two categories of
models are identified based on the infection term: fast spread models, with G such as in
Eq. (1.5), and slow spread models, with G such as

G(u, i) =
u

(u + δ1)(i + δ2)
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In the former case, it is always possible to eradicate the tumour if the infection rate β is
high enough, while in the latter case this may not be true. The situation G(u, i) = i does
not fall in this framework; this infection is faster than the one considered for fast spread.
This analysis is only based on the study of the equilibria, since the authors remark that in
the nonspatial settings the extinction of the tumour due to wide population oscillations
is always associated with the possibility that different initial conditions lead to treatment
failure.

We conclude this discussion by observing that the functional choice

G(u, i) =
(1 + ε)βu

u + ε

is able to correctly model HIV infection (Wodarz et al., 2014). This expression can be
derived from an underlying agent-based model.

PDE models A simple way to include spatial dynamics is to consider the reaction-
diffusion equation {

∂tu = Du∆u + uF(u, i)− βG(u, i)i
∂ti = Di∆i + βG(u, i)i − qi

(1.6)

(see, for example, Eq. (2.7)). This class of model typically admits travelling wave
solutions. In the context of spatial models, the absence of the viral population models
a virus that faces some challenges in propagating in the tumour microenvironment
(Wojton and Kaur, 2010), so that the infection is mainly driven by cell-to-cell contact
and close-range free virions, as explained in Section 1.1.2. The resulting systems fall in
the category of classical spatial Lotka–Volterra models for prey and predators, which
have been widely studied (Dunbar, 1984; Li, 2015; Morozov et al., 2006; Petrovskii et al.,
2005; Petrovskii et al., 2002). Although from the mathematical point of view the diffusion
coefficients may assume any value, in the context of oncolytic virotherapy it is usually
assumed Du = Di, as a priori we have no reason to assume that the infection affects cell
movement. However, we remark that, in some situations, higher motility of infected cells
could be interpreted as a phenomenological way to incorporate some additional viral
diffusion indirectly; we refer to Section 2.4.4 for further discussions.

An interesting variation of Eq. (1.6) is obtained by replacing the standard diffusion
with pressure-driven movement, leading to the equation{

∂tu = Du∇ · (u∇(u + i)) + uF(u, i)− βG(u, i)i
∂ti = Di∇ · (i∇(u + i)) + βG(u, i)i − qi

(1.7)

(see also Eq. (2.10)). This kind of equation was first proposed in Byrne and Drasdo,
2009. Since we consider two cell populations, the movement term becomes a cross-
diffusion and poses several mathematical challenges (see Bubba et al., 2020b; Carrillo
et al., 2018; Gwiazda et al., 2019; Lorenzi et al., 2017 for similar models, although to
our knowledge the case of our interest is not present in the literature). The two models
may show significantly different phenomena: a central localised infection can always
spread in the whole domain in the presence of spatial diffusion, but remains localised if
pressure-driven movement is considered.

In Chapter 2, we derive both Eqs. (1.6) and (1.7) from microscopic considerations.
We then describe their behaviour and compare them to the corresponding agent-
based counterpart, with the aim of improving our understanding of oncolytic viral
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infection in the context of spatial constraints and a particular focus on the effects of
stochasticity.

Agent-based models The most elementary approach requires defining rules for the
proliferation of uninfected cells, death of uninfected cells, infection and movement; viral
particles are assumed to be unable to move far away from infected cells. In Wodarz et al.,
2012, such a model is developed and compared to experiments in vitro; some additional
insights are obtained from a related continuous model. In Chapter 2, we develop a similar
model and formally derive the corresponding continuum PDE. The main difference with
respect to Wodarz et al., 2012 is that we allow several cells to occupy the same lattice
point: this makes it possible to analyse more complex rules for the movement, which
significantly affect the behaviour of the system.

It is helpful to remark once again that the mathematical formulation is analogous to
SI and predator-prey agent-based models due to the absence of a viral population.

In ecological settings, the comparison between discrete and continuum models of
this form has been widely studied, with an approach somehow similar to the one
adopted in Chapter 2 (for example, in Aronson, 1980; Keeling et al., 2002; Wilson
et al., 1993). On the other hand, with the exception of Wodarz et al., 2012, we are
not aware of any other work comparing agent-based and continuous models about
oncolytic viruses; this motivates the model developed in Chapter 2.

1.3.2 Inclusion of viral dynamics

Let us now add viral dynamics to the previous modelling approach. We denote viral
particles by v. As we explain below, we can often recover the formulation without the
virus by making appropriate quasi-steady assumptions.

ODE models We consider a generic system of the form

du
dt

= uF(u, i)− β̃G̃(u, i, v)v

di
dt

= β̃G̃(u, i, v)v − qi

dv
dt

= αqi − qvv

(1.8)

The equation for the virus models the viral release caused by the lysis of infected cells (α
viral particles released for each cell) and viral decay; it does not take into account the
uptake of free virions by cancer cells: a few models include this process (Bajzer et al.,
2008; Pooladvand et al., 2021), but most of the time it is assumed to be negligible. Eq. (1.4)
can be seen as an approximation of (1.8) under the quasi-steady assumption dv

dt = 0,
which is justified by the fact that viral dynamics are much faster than cells’ dynamics.
This assumption implies that v = αq

qv
i and we recover Eq. (1.4) by setting

β =
β̃αq
qv

, G(u, i) = G̃
(

u, i,
αq
qv

i
)

(1.9)

The addition of the third equation allows for stable limit cycles even in the most
elementary case of exponential growth and mass-action infection (Jenner et al., 2018b);
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this remains true in the case of logistic growth (Baabdulla and Hillen, 2024; Pooladvand
et al., 2021). The case of G as in (1.5) with δ and logistic growth, i.e.

F(u) = p ln
(K

u

)
, G̃(u, i, v) =

u
u + i

exhibits several interesting behaviours, such as stable limit cycles and stability of the
extinction singular equilibrium (Jenner et al., 2019). This same model is also employed in
Jenner et al., 2018c to analyse the effectiveness of treatment protocols involving several
viral injections.

PDE models The inclusion of spatial diffusion in Eq. 1.8 yields the reaction-diffusion
system 

∂tu = Du∆u + uF(u, i)− β̃G̃(u, i, v)v
∂ti = Di∆i + β̃G̃(u, i, v)v − qi
∂tv = Dv∆v + αqi − qvv

(1.10)

The case of logistic growth and density-dependent infection (as in Eq. (4.2)) exhibits
either travelling waves or persistent oscillations (Baabdulla and Hillen, 2024; Pooladvand
et al., 2021).

In this formulation, the virus is assumed to diffuse in the full domain perfectly; as a
consequence, the laws that regulate cells’ movement do not significantly affect the
spatial spread of the infection. In Chapter 4 we will further analyse this situation.

Spatial constraints should, therefore, be added in the last equation: for example, in
Pooladvand and Kim, 2022, the viral concentration evolves according to the equation

∂tv = Dv∇ · [(1 − cn)∇v − v∇(1 − cn)] + αqi − qvv

where c(t, x) is the normalised collagen concentration.
A common alternative formulation is a free-boundary problem (Friedman and Tao,

2003; Friedman et al., 2006; Wu et al., 2001); this formulation allows us to take into
account ECM and its degradation due to the viral infection (Kim et al., 2014). We also
mention the approach of Alzahrani et al., 2019, in which a macroscopic model that
takes into account the ECM is derived from the microscopic dynamics of the urokinase
plasminogen activator system. These models differ significantly from the mathematical
formulations of the thesis, therefore we do not provide further details.

Agent-based and hybrid discrete-continuous models The first way to include the viral
population into an agent-based model is to consider a discrete viral population (Jenner
et al., 2020). As we already pointed out, viral dynamics occur at a spatio-temporal scale
that is very different from cell processes. This often leads to models that let viral density
evolve according to a deterministic balance equation, as done in Paiva et al., 2009. This
approach is widely used to model the evolution of several chemical elements, such as
oxygen (Anderson et al., 2006) or chemoattractant (Almeida et al., 2022; Bubba et al.,
2020a; Charteris and Khain, 2014; Cooper and Kim, 2014). Observe that the continuous
description of viral density makes the model hybrid and multiscale.

In Chapter 4, we add viral dynamics to the models of Chapter 2 and analyse the
impact of such a modification. The derivation of the corresponding macroscopic
continuous model follows the same techniques explained in Chapter 3 and presents
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no additional challenges.

1.3.3 Modelling heterogeneity and delay

We now present models that take into account some kind of heterogeneity related either
to cancer cells, viral particles or both at the same time. We remark that the most basic kind
of heterogeneity is spatial, which has already been extensively mentioned in previous
sections. We now focus on other heterogeneities, keeping in mind that adding the spatial
structure is always possible.

Temporal heterogeneity of infected cells In epidemiological settings, the infectivity of
an individual depends strongly on how much time has passed from infection. Including
the time from the infection as a structuring variable for the infected individuals dates
back to the first modern SI model (Kermack and McKendrick, 1927); an extension of the
model taking into account spatial heterogeneity was later studied in Diekmann, 1978.

Analogous considerations hold in the case of oncolytic virotherapy, since it takes
some time for a newly infected cell to start the viral production at the most efficient
rate. Indeed, the age-structured approach was adopted in Ding et al., 2022; Gao et al.,
2022. An alternative approach to model the phenomenon, which is more widely used, is
through delay differential equations (Crivelli et al., 2012; Rioja et al., 2016; Najm et al.,
2023; Rajalakshmi and Ghosh, 2022; Wang et al., 2013; Wang et al., 2019), in which there is
a sharp transition between newly infected cells and “mature” infected cells that produce
viral particles; this approximation is justified by the fact that the period of transition
is relatively short with respect to other processes; hence its exact dynamics may be
neglected. These second kinds of models differ significantly from the mathematical
formulations of the thesis, therefore we do not elaborate further.

Other heterogeneous traits Discrete heterogeneous compartments are commonly em-
ployed in general epidemic models. In the context of oncolytic virotherapy, the model
developed in Crivelli et al., 2012 takes into account the fact that vesicular stomatitis
viruses are unable to replicate in T-lymphocytes in the resting phase. Consequently,
uninfected cells are divided into a quiescent population, which cannot be infected, and
a susceptible population: as time passes, cells move between the two states. Discrete
compartments may also be used in agent-based models, as it is done in Bhatt et al., 2022
in relation to the resistance of uninfected cancer cells to viral infection. An analogous
approach may also be used to model heterogeneity involving the virus, either genetically
(Jenner et al., 2018a) or as a coating level that prevents immune recognition (Lee et al.,
2020).

Another possible approach is to consider a continuous trait variable and describe the
system’s evolution via PDEs, similar to age-structured infections. Several examples can
be found in the epidemiological settings (Almeida et al., 2021; Barbarossa and Röst, 2015;
Bernardi et al., 2022; Lorenzi et al., 2021b; Lorenzi et al., 2024b; Novozhilov, 2008; Veliov
and Widder, 2016), as well as in the ecological settings (de Araujo et al., 2024; Delitala
and Lorenzi, 2013a); in the context of oncolytic virotherapy, this approach was used in
Karev et al., 2006 to model several kinds of heterogeneity (susceptibility to infections,
death rates, virulence).

A common characteristic of continuous structured models is the possibility to easily
model trade-offs between different features, in the sense described in Section 1.1. In the
context of infections, one may consider a trade-off involving the susceptible compartment
between proliferation rate and resistance to the infection (Lorenzi et al., 2021b); in the
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context of oncolytic viral infections, this is a way to model the fact that less proliferative
cells have a slower metabolic activity, resulting in a slower infection. In the absence of
infection, the fittest trait is clearly the more proliferative one, whereas infection does
modify the fitness landscape, making the situation less clear.

To our knowledge, there is no extension of the model presented in Lorenzi et al.,
2021b that takes into account spatial heterogeneity in addition to phenotypic hetero-
geneity. This motivates the model developed in Chapter 4, which we derive from
the underlying stochastic counterpart. In Chapter 5, we consider a similar model
that takes into account oxygen dynamics and hypoxia-driven heterogeneity.

1.4 Models of the interactions between cancer, immune system
and oncolytic viruses

All the models presented so far do not include explicit interactions with the immune
system, although its effects are somewhat implicitly taken into account in some parameter
values: for example, the death rate of infected cells q and the decay rate of the virus qv in
Eq. (1.8) may easily be increased to consider immune clearance. However, the influence
of the immune system is much more complicated than that.

Immune interactions with a tumour involve several different types of immune cells,
which are stimulated and inhibited by a large number of molecules. For notational
simplicity, in this section, we denote by z any kind of immune cell interacting with the
tumour (e.g., T-cells or macrophages), keeping in mind that models often combine more
than one immune population.

1.4.1 Cancer and immune system without oncolytic viruses

Interactions between cancer and the immune system have been widely studied. We
give a quick review of some common modelling approaches, which serve as a base for
including oncolytic viruses in the framework. We also provide some insights on how to
include therapeutic interventions.

ODE models The most elementary models take into account only two equations of
predator–prey type, in which the interactions are not dissimilar from the ones described
in Eq. (1.4) (d’Onofrio, 2005). A general model can be written in the form

du
dt

= uF(u)− Hu(u, z)u

dz
dt

= S(u, z)z − Hz(u, z)z − qz(z)z + S0(t)
(1.11)

where F is the cancer growth rate, as explained in Section 1.3. The term Hu(u, z)u plays a
role analogous to the infection term βG(u, i)i and similar functional forms are often used.
Immune cells are assumed to be recruited by the interactions with the tumour (described
by the function S) and to die due to autoregulation (qz(z)z) and inhibition by the tumour
(Hz(u, z)z); this last term usually represents the actions of other immune cell types or
chemical signals, which are not modelled explicitly. The term S0 models an external
source of immune cells independent of the tumour and the immune cell concentration,
which may vary in time; this allows us to model the effect of generic immunotherapy
on the number of immune cells (d’Onofrio, 2005). We remark that immunotherapy may
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also be implicitly taken into account by modifying some parameters (e.g., an increase
in the immune killing rate may be interpreted as the consequence of enhanced immune
response due to targeted therapeutic interventions).

The basic framework we just described can be modified to include several other
dynamics, such as different kinds of immune cells or signalling proteins (i.e., chemokines
and cytokines). We refer to Eftimie et al., 2011a for a review of models of increasing com-
plexity. Some of those models give rise to persistent oscillations. In the context of complex
models, additional equations may be used to directly incorporate immunotherapies (e.g.,
the concentration of an immune checkpoint inhibitor may be taken into account).

PDE models Spatial heterogeneity can be easily incorporated in Eq. (1.11) by adding a
diffusion term (Singh and Banerjee, 2020), although such models are not so commonly
used. From the application point of view, it makes more sense to consider a chemotactic
movement of immune cells towards the tumour: we, therefore, assume that cancer
cells secrete a chemoattractant ϕ, whose evolution is described by a reaction-diffusion
equation; immune cell concentration is then described by the equation

∂tz = ∇ · (Dz∇z − χz∇ϕ) + S(u, z)z − Hz(u, z)z − qz(z)z + S0(t)

The spatial term models two contributions: diffusion with coefficient Dz and directed
movement towards the gradient of the chemoattractant with coefficient χ. The chemotac-
tic movement has been widely studied from the mathematical point of view (Hillen and
Painter, 2009) and it is commonly used to model self-organisation in several different
settings (Painter, 2019). In the context of the interactions between cancer and the immune
system, it is used, for example, in Knútsdóttir et al., 2014; Matzavinos et al., 2004; Owen
and Sherratt, 1997. Some variations of this equation allow us to take into account the
difficulties of T-cells’ infiltration in the tumour microenvironment (Almeida et al., 2022).

Other kinds of PDEs arise when an alternative structuring variable is considered. For
example, in Atsou et al., 2020 tumour cells are structured in size and space. Another im-
portant modelling approach, which applies specifically to tumour-immune interactions,
is the one introduced in Delitala and Lorenzi, 2013b; Lorenzi et al., 2015: it takes into
account target-antigenic expressions of T cells and the antigenic expressions of tumour
target cells, which are represented by continuous variables; immune cells then may only
interact with cancer cells whose antigen expression is not too different from their target.
This kind of models can mimic the recognition, learning and memory aspects of the
immune response. This approach allows us to consider immunotherapies that enhance
antigen-driven expansion of immune cells, which increases the number of immune cells
compatible with the existing tumour population (Lorenzi et al., 2015).

Agent-based models Individual-based models allow the inclusion of stochasticity in
modelling the two kinds of heterogeneity that we just discussed in relation to PDE,
namely: the spatial distribution and the aspects related to the movement (Macfarlane et
al., 2018) and the infiltration of immune cells in the tumour microenvironment (Almeida
et al., 2022; Kather et al., 2017); the antigens presented by tumour cells and the aspects
related to immunoevasion and immunoediting (Almeida et al., 2023; Christophe et al.,
2015; Leschiera et al., 2022; Macfarlane et al., 2019). Several models use a hybrid approach,
describing immune and cancer cells at the individual level and chemical components
(e.g., nutrients or chemoattractant) as a continuous density (Cooper and Kim, 2014;
Mallet and De Pillis, 2006).

The vast complexity of the biological phenomena related to the immune response
makes individual-based approaches particularly suitable in this context. Some simple
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models are also amenable to be compared with their continuous counterparts (Almeida
et al., 2022; Almeida et al., 2023), as described in Section 1.2.1.

1.4.2 Oncolytic virotherapy with immune response

We now combine all the previous considerations to describe models of cancer, oncolytic
virus and immune system, with some remarks related to additional immunotherapies
leading towards immunovirotherapies. While some of the immune cells stimulated by
the virus specifically target viral particles and infected cells, others can kill every cancer
cell; this distinction clearly has important consequences on the therapy outcome.

ODE models A generic ODE model is obtained by combining Eqs. (1.4) and (1.11) (see
also Eq. (3.11)): 

du
dt

= uF(u, i)− βG(u, i)i − Hu(u, z)z

di
dt

= βG(u, i)i − qi − Hi(i, z)z

dz
dt

= S(u, i, z)z − Hz(u, i, z)z − qz(z)z + S0(t)

(1.12)

An additional equation is sometimes added to model viral dynamics: in this case, the
immune response also affects the virus. Other equations may also be included to model
the effect of immunotherapies (see Storey et al., 2020 for the case of immune checkpoint
inhibitors and Mahasa et al., 2022 for the case of CAR-T cells in the absence of innate
immune response).

As anticipated, the outcome strongly depends on the type of cancer cells targeted
by the immune response. For example, in Wodarz, 2001, it was observed that virus-
specific T-cells (modelled by setting Hu = 0) are always detrimental to the patient, as
they increase the total number of tumour cells at the equilibrium; on the other hand,
tumour specific T-cells (modelled by setting Hu = Hi) are not. In this setting, the best
therapeutical strategy based on equilibrium values would be to avoid any immune
response (although it appears unattainable in any realistic situation). The conclusion
that an immunosuppressive microenvironment may hinder viral therapy efficacy is
also reached in Vithanage et al., 2023. On the other hand, the presence of immune
response appears beneficial in some situations in which different kinds of macrophages
are considered (Almuallem et al., 2021; Eftimie and Eftimie, 2018). We also remark that
the study of the equilibrium of the equation may not be enough to fully characterise the
dynamics, as sometimes stable limit cycles or chaotic behaviours arise for some parameter
values (Eftimie et al., 2016). Indeed, when two viral populations are considered and the
immune response is taken into account, it is possible to observe complex phenomena
such as multi-stability and multi-instability (Eftimie et al., 2011b); in some situations, the
latter is associated with tumour eradication.

While it is true that the immune response, in general, decreases the efficacy of
oncolytic virotherapy, the emergence of oscillations may be associated with tumour
eradication in some situations. In Chapter 3, we analyse one of such situations in
the ODE settings, observing the presence of a Hopf bifurcation; we then study the
implications on the corresponding spatial continuous and agent-based models. We
also assume that the killing rate of cancer cells by immune cells may be modulated
through immunotherapy (e.g., by inhibition of the binding between PD-1 and PD-L1
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checkpoints, respectively in cancer cells and T-cells).

Spatial models There are not many spatial models in literature for the interaction
between oncolytic virotherapy and the immune system, probably due to the complexities
of the phenomena under investigation and the lack of medical data related to spatial
distribution. The most common approach for PDEs is the free-boundary problem intro-
duced in Friedman and Tao, 2003; Wu et al., 2001, which has been extended to include
innate immune cells (Wu et al., 2004; Friedman et al., 2006), natural killer cells (Kim et al.,
2018) and immune checkpoint inhibitors (Friedman and Lai, 2018; Kim et al., 2018; Storey
and Jackson, 2021; Surendran et al., 2023).

Interactions between oncolytic viruses and the immune system may also be described
through agent-based models (Storey and Jackson, 2021) and hybrid models (Jenner et al.,
2022; Surendran et al., 2023). These approaches are able to describe several complex
features, such as interactions with the stroma and with immune checkpoint inhibitors.
Such biological details make the models hard to be approached with rigorous analytical
techniques.

To our knowledge, the use of chemotaxis to model immune response to oncolytic
viral injection has not been commonly employed. This motivates the agent-based
and continuous models developed in Chapter 3. We keep the model simple enough
to allow some mathematical tractability.

1.5 Mathematical models for hypoxia and its influence on cancer
therapies

The two main motivations for the study of hypoxia in tumours are its effects on therapies
(Zhuang et al., 2023) and cancer invasion (Barrak et al., 2020; Kao et al., 2016). We first
restrict our attention to tumour development alone, with some hints on invasiveness,
and then present extensions that take into account therapies. In both cases, oxygen
concentration may either be modelled directly or be assumed to be stationary and inde-
pendent of cancer. The former approach is clearly more complete, allowing the mutual
interactions with the tumour to be characterised. On the other hand, in many cases, the
assumption that oxygen is stationary allows us to decrease the model complexity and
focus the attention on the effects on the tumour; furthermore, sometimes, this assumption
enhances the mathematical tractability. A few models also consider the intratumoral
vascular network reconstructed from experimental data (Villa et al., 2021a).

We remark that, although similar mathematical approaches have also been used in
relation to other environmental fluctuations, for the sake of brevity, we here restrict our
attention to the specific case of hypoxia.

1.5.1 Tumour development in hypoxic conditions

Discrete compartments A basic way to model the influence of hypoxia is through
discrete compartments that evolve according to different dynamics. For example, in
Martínez-González et al., 2012 tumour cells are considered to be either normoxic or hy-
poxic, cell loss is modelled through a necrotic population and transition rates depend on
the oxygen concentration; it is assumed that hypoxic cells proliferate slower (proliferation-
survival trade-off ) and move faster (proliferation-motility trade-off ) than normoxic cells. A
similar approach is employed in Astanin and Preziosi, 2008 in the context of a mechanical
multiphase model, in which normoxic and hypoxic cells are described by two different
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phases and transitions between them happen at a rate dependent on environmental
conditions; this model is used to describe the transition from aerobic to purely glycolytic
metabolism (also known as Warburg effect).

The same strategy may be adapted to agent-based models: for example, in Rocha
et al., 2021, cells are modelled at the individual level either as normoxic or hypoxic,
with transitions between the two states that depend on the oxygen level; hypoxic cells
are characterised by enhanced motility and this allows to analyse the tumour invasion
lead by post-hypoxic cells, which maintain their hypoxic features even after reaching
a more oxygenated environment. In Gatenby et al., 2007, a hybrid cellular automaton
is developed and cells are associated with a label that depends on their adaptation to
hypoxia and influences their dynamics; this label may change in relation to environmental
conditions. Unlike the two previous situations, this model considers a broad spectrum of
adaptation levels, although discrete.

It is also possible to adopt a hybrid approach and model some compartments with
a continuous density-based representation and others with a discrete individual-based
description.

In Chapter 6, this last modelling approach is applied to the study of hypoxia-driven
epithelial-to-mesenchymal transitions, with hypoxic cells more likely to be associated
with the mesenchymal phenotype.

Continuous trait variables One may also consider a continuous spectrum of adaptation
levels and a common way to do so is by the use of epigenetically structured equations sim-
ilar to Eq. (1.1), with the reproduction rate R also depending on the oxygen concentration
O. When R takes the form given by Eq. (1.2), this can be done by considering

r(y, O) := f (y) + g(y, O)

as in Ardaševa et al., 2020c; Ardaševa et al., 2020b. In this formula, g(y, O) models the
fitness related to the aerobic energy pathways, while f (y) represents the one associated
with anaerobic pathways. The functions are usually chosen in a way that allows rewriting
the reproduction rate as

R(y, O, ρ) = a(O)− b(O)(y − φ(O))2 − κρ

This formulation allows to consider the above-mentioned proliferation-survival trade-
off. The same approach may also be adopted for the agent-based counterpart of these
models (Ardaševa et al., 2020a). Furthermore, in some cases, spatial heterogeneity is also
considered, either with epigenetic diffusion (Fiandaca et al., 2021; Villa et al., 2021a) or
without it (Lorenzi et al., 2018): the heterogeneous spatial concentrations of oxygen leads
to the selection of different cells’ phenotypes in different parts of the spatial domain, with
relevant consequences on the therapeutical level (as we explain below).

Alternatively, in Chiari et al., 2023b the reproduction rate takes the form of Eq. (1.3)
with φ depending on the oxygen concentration, i.e.

R(y, O, ρ) = p(y, O)
(

1 − ρ

K

)
− η(y − φ(O))2

As in the previous case, the fittest epigenetic trait is achieved for y = φ(O). The main
difference is that here the cell density always grows up to the same carrying capacity K,
irrespective of the oxygen level (see also the discussion of Chapter 5).
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The latter approach is adopted in Chapter 5 and serves as a base to include oncolytic
virotherapy.

In hypoxic environments, continuous traits may also be included in agent-based
models, as it is done in Gallaher et al., 2019 in the context of the proliferation-migration
trade-off.

1.5.2 Impact of hypoxia on cancer therapies

We now explain how it is possible to build upon the previously presented models
and include the heterogeneous effects on chemotherapy, radiotherapy and oncolytic
virotherapy. We also briefly recall the standard mathematical description of the first two
therapies.

Chemotherapy The effect of chemotherapy is usually modelled as an additional linear
death term in the equation of cancer evolution, following the well-known log-kill hypoth-
esis. In hypoxic conditions, chemotherapy is less effective due to the higher resistance of
hypoxic cells (mainly caused by their slower metabolism) and the difficulties that the
chemotherapeutic agent faces in reaching areas far from blood vessels. The latter feature
clearly requires spatial effects; on the other hand, the former may be studied even in
nonspatial settings and builds upon a vast literature that keeps into account some kind of
resistance to therapies and its trade-off with proliferation (Almeida et al., 2019; Chisholm
et al., 2015; Lorz et al., 2015; Pouchol et al., 2018; Stace et al., 2020). Chemotherapy in
hypoxic situations was modelled in Lorenzi et al., 2018; Villa et al., 2021b.

Radiotherapy The survival fraction of tumour cells after radiotherapy is usually mod-
elled in a linear-quadratic fashion, with coefficients α and β: this can be justified by the
fact that cell death is caused by either a simultaneous break of both DNA strands or two
consecutive breaks. The therapy may be considered as a jump process (and in this case
the previous expression is an exponential) or as a continuous death process. Hypoxic
conditions constitute an obstacle not only due to the resistance of hypoxic cells, but also
because oxygen plays a direct role in the DNA damage caused by radiation. These two
effects are usually taken into account by varying the parameters α and β as functions
of the oxygen concentration and the epigenetic trait (Celora et al., 2021; Celora et al.,
2023; Chiari et al., 2023a). On the other hand, it is also possible to consider models not
epigenetically structured and take into account just oxygen concentration, as it is done in
Hamis et al., 2019 in the context of agent-based models and in Kuznetsov and Kolobov,
2020; Lewin et al., 2018 for PDE models.

Oncolytic virotherapy The inefficient viral infection of hypoxic cells can be modelled
as a direct influence of oxygen concentration on the infection rate, as done in Ramaj and
Zou, 2023 in the case of ODEs and nested ODEs (the latter models infections in adjacent
lymph nodes). The only spatial model that we know in this context is the one presented
in Boemo and Byrne, 2019, in which the difficulties of treating hypoxic regions with
standard therapies motivate the use of macrophages that release oncolytic viral particles
when experiencing low oxygen concentrations.

To our knowledge, there are no epigenetically structured models for the influence of
hypoxia on oncolytic virotherapy. This motivates the work presented in Chapter 5.
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1.6 Contributions of the thesis

This chapter briefly introduced the biological context and presented the most common
mathematical approaches to model cancer growth and oncolytic virotherapy available in
the literature. Overall, most models suggest that oncolytic virotherapy cannot eradicate
a tumour alone in most situations, which is in line with experimental observation. This
thesis aims to improve the existing modelling approaches by focusing on the effects of
several obstacles that prevent its success. In particular, we aim to address the following
questions:

• What is the most suitable mathematical expression to model cell movement in the
presence of oncolytic viral infections?

• How is virotherapy affected by physical obstacles that hinder viral diffusion in the
tumour microenvironment?

• Is the immune response beneficial to the outcome of the virotherapy, or does it
reduce the efficacy of the infection?

• Can a viral injection enhance the immune recognition of cold tumours?

• Does the emergence of some kind of resistance to the viral infection play any role
in the efficacy of the therapy?

• What is the role of stochasticity in all the above-mentioned processes?

• How does hypoxia affect the virotherapy?

• Is it possible to effectively target hypoxic cells through oncolytic virotherapy?

• What is the most effective way to model epithelial-to-mesenchymal transitions
driven by hypoxia?

Table 1.1 summarises the model variations investigated in the thesis. Some of the key
findings are reported Table 7.1 of Chapter 7. The rest of the thesis is organised as follows.

In Chapter 2, we present some simple agent-based and continuum models for the
infection of oncolytic viruses, which serve as a basis for most of the models developed
later. We consider both undirected random cell movement (as in Eq. (1.6)) and pressure-
driven cell movement (as in Eq. (1.7)). The model described in this chapter and most of
the results shown have been published in Morselli et al., 2023; some sections have been
significantly extended with respect to the published version. The author of the thesis
was in charge of the conceptualisation of the work, the choice of the methodology, the
development of the software, the writing process and the visualisation of the results,
under the supervision of the other authors.

In Chapter 3, we include immune dynamics and explore its effects on oncolytic
virotherapy. The model described in this chapter and the results shown have been
submitted for publication (Morselli et al., 2024b). The author of the thesis was in charge of
the conceptualisation of the work, the choice of the methodology, the development of the
software, the writing process and the visualisation of the results, under the supervision
of the other authors.

In Chapter 4, we present two additional extensions that consider explicit viral dynam-
ics and cell heterogeneity. The models described in this chapter have been developed in
collaboration with Marcello E. Delitala and Federico Frascoli. The author of the thesis
was in charge of the conceptualisation of the work, the choice of the methodology, the
development of the software used in Section 4.1, the writing process and the visualisation
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Chapter Stochasticity Cell movement Viral dynamics Immune system Heterogeneity

2 ✓ undirected/
pressure

✗ ✗ ✗

3 ✓ undirected ✗ ✓ ✗

4 (Sec. 4.1) ✓ undirected/
pressure

✓ ✗ ✗

4 (Sec. 4.2) ✓ undirected ✗ ✗ ✓

5 ✗ pressure ✓ ✗ ✓

6 ✓ undirected NA ✗ ✓

TABLE 1.1: Schematic structure of the models presented in the thesis. Undirected random cell movement
refers to equations analogous to Eq. (1.6); pressure-driven cell movement refers to equations analogous to
Eq. (1.7). Note that the viral dynamics do not apply to Chapter 6, as the model does not relate to virotherapy.

of the results, under the supervision of Marcello E. Delitala and Federico Frascoli; the
software used in Section 4.2 was partially developed by Emma Ciccarelli in preparation
for her master thesis (under the supervision of the author of the thesis, who also run all
the simulations).

In Chapter 5, we develop an epigenetically structured model for the influence of
hypoxia on oncolytic virotherapy. The model described in this chapter and the results
shown have been submitted for publication (Morselli et al., 2024a). The author of the
thesis was in charge of the conceptualisation of the work, the choice of the methodology,
the writing process and the visualisation of the results, with the collaboration of Giulia
Chiari under the supervision of Marcello E. Delitala and Federico Frascoli; the software
was mainly developed by Giulia Chiari (with some minor contributions by the author of
the thesis, who also run all the simulations).

In Chapter 6, we describe a novel approach for the description of cell heterogeneity
at the genotypic and phenotypic level; this approach is then applied to the study of EMT.
The model described in this chapter and the results shown have been published in Chiari
et al., 2022. The author of the thesis contributed to the conceptualisation of the work,
the choice of the methodology, the writing process and the visualisation of the results,
under the supervision of Marcello E. Delitala and Marco Scianna; the software for the
numerical simulations was developed and run by Giulia Chiari.

Finally, in Chapter 7, we present a global thesis conclusion and comment on possible
research perspectives.
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2Agent-based and continuum models for
oncolytic viruses’ infection

In this chapter, we present a stochastic agent-based model describing infected and
uninfected cells for solid tumours that interact with viruses in the absence of an immune
response. Our model takes into account proliferation and death of uninfected tumour
cells, death of infected tumour cells, infection of infected cells and cell movement. We
present two alternative sets of rules governing the latter process (namely, undirected
random cell movement and pressure-driven cell movement) and we show how this choice
strongly influences therapy outcomes. Our intent is to compare different mechanisms for
tumour development, capturing some of the constraints that diverse microenvironments
pose on tumours development.

In the case of undirected movement, the corresponding continuum model is a diffu-
sive Lotka–Volterra model with either logistic or exponential growth: this allows us to
partially rely on previous analytical results on the subject (Dunbar, 1984). In this situation,
we observe a good agreement between agent-based simulations and the numerical and
analytical results of the continuum model. On the other hand, in the case of pressure-
driven cell movement, the corresponding continuum model is a local cross-diffusion
Lotka–Volterra model that we could not find in the literature (although it is similar to
the systems studied in Bubba et al., 2020b; Carrillo et al., 2018; Gwiazda et al., 2019;
Lorenzi et al., 2017). We observe a wide parameter range in which the infection of the
agents remains confined to the centre of the tumour, even though the continuum model
shows travelling waves of infection; outcomes appear to be more sensitive to stochasticity
and uninfected regions appear harder to invade, giving rise to irregular, unpredictable
growth patterns.

Our results show that the presence of spatial constraints in tumours’ microenviron-
ments limiting free expansion has a very significant impact on virotherapy. Outcomes
for these tumours suggest a notable increase in variability. All these aspects can have
important effects when designing individually tailored therapies where virotherapy is
included.

This chapter is organised as follows. In Section 2.1, we introduce the two agent-
based models. In Section 2.2, we formally derive their continuum counterparts. In
Section 2.3, we present some classical analytical results for travelling wave solutions of
the continuum models. In Section 2.4, we compare the results of numerical simulations of
the agent-based models and the numerical solutions of the corresponding PDEs, showing
their consistency with the analytical results. In Section 2.5, we discuss the main findings
in light of existing experimental evidence in vitro and we provide some hints for future
research.

The model described in this chapter and most of the results shown have been pub-
lished in Morselli et al., 2023; the results of Sections 2.3 and 2.4.3 have been significantly
extended with respect to the published version.
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2.1 Description of the agent-based models

In this section, we describe the stochastic dynamics of the two agent-based models and
introduce the different expressions of the probability of cell movement.

2.1.1 Agent-based models

In the agent-based modelling framework, each cell is an agent occupying a position on a
discrete lattice. We consider two cell populations, uninfected and infected; the infection
of a cell then corresponds to an agent passing from the former to the latter population.
Cells can also move, reproduce and die. For ease of presentation, in this section, we only
consider cells arranged along the one-dimensional real line R, but there would be no
additional difficulty in considering higher spatial dimensions. Since we carry out the
comparisons between discrete and continuum models also in two spatial dimensions, in
Remarks 2.1 and 2.2, we explain the small changes of the two-dimensional models.

Let us consider the temporal discretisation tn = τn with n ∈ N0, 0 < τ ≪ 1 and the
spatial discretisation xj = δj, with j ∈ Z, 0 < δ ≪ 1; we assume τ to be small enough to
guarantee that all the probabilities defined hereafter are smaller than 1. We denote the
number of uninfected and infected cells that occupy position xj at time tn respectively by
Un

j and In
j ; the corresponding densities are

un
j :=

Un
j

δ
, in

j :=
In
j

δ

The local pressure is assumed to be given by a barotropic relation of the form ρn
j :=

Π(un
j + in

j ). In the next sections we restrict to the case Π(z) = z (so the pressure is
actually the total cell density), but the discussion of this section is valid also for more
general nondecreasing smooth functions Π : [0,+∞) → [0,+∞) such that Π(0) = 0:
for example, one could think of the functional form proposed in Perthame et al., 2014.
Although there might be differences in the way the system reaches the carrying capacity
and how the model appears in the continuum limit, it seems that the overall behaviour
of the tumour is not profoundly affected by different functional forms (Macfarlane et al.,
2022).

Fig. 2.1 summarises the rules governing the dynamics of the agents. We consider
two different movement mechanisms, i.e. undirected and pressure-driven, giving rise
to different models. The rules for proliferation and death of uninfected cells, as well as
death of infected cells and infection, are common for both models.

Pressure-dependent proliferation of uninfected cells We assume that the proliferation
probability decreases as the pressure increases and stops at some homeostatic pressure
P > 0; a pressure value greater than P results in the cell’s death. Given a smooth
decreasing function G : [0,+∞) → R such that G(P) = 0, we let an uninfected cell that
occupies position xj at time tn reproduce with probability τG(ρn

j )+, die with probability
τG(ρn

j )−, and remain quiescent with probability 1− τG(ρn
j )+ − τG(ρn

j )− = 1− τ|G(ρn
j )|.

In these formulas, z+ := max{z, 0} and z− := max{−z, 0}. When a reproduction takes
place, a new cell is placed at the same lattice site. The fact that proliferation stops above
P guarantees that, as τ → 0, a population of cells whose initial pressure is below the
homeostatic value becomes less likely to acquire a pressure value above this level at later
times. This kind of probability has already been employed in Chaplain et al., 2020.
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Proliferation and death

 of uninfected cells

Cells’ movement

Infection Death of infected cells

Infected cell:Uninfected cell:

FIGURE 2.1: Schematic representation of the rules governing cell dynamics in the stochastic models.
Uninfected cells are represented in blue and infected cells in red. Uninfected cells may proliferate or die
according to the pressure value, move and become infected upon contact with infected cells. Infected cells
may move and die with constant probability. We consider different expressions for the probabilities of
movement, given respectively in Eqs. (2.2) and (2.3).

For the sake of simplicity, in the following sections, we mainly restrict our analysis to
the logistic growth, i.e.

G(ρ) = p
(

1 − ρ

P

)
(2.1)

where p > 0 is the maximal duplication rate. Let us observe that the carrying capacity of
the system is K := Π−1(P); since in the case of our interest Π(z) = z, we actually have
P = K. In the case of undirected cell movement, we also consider the case of pressure-
independent proliferation, i.e. G(ρ) ≡ p; unlimited exponential growth is clearly not
feasible in any biological scenario, but we could imagine that in some cases the carrying
capacity is too high to give any significant contribution in the initial phases of the tumour
dynamics.

Death of infected cells We do not model the proliferation of infected cells, as the virus
disrupts the cellular machinery. Sometime after the infection, the cell undergoes lysis
and dies: we assume that at every time step this happens with probability τq, where
q > 0 is a constant death rate.

Infection We do not model explicitly the oncolytic virus, as we assume that its dynamics
are faster than cellular dynamics and can thus be approximated by a quasi-steady state (as
in Komarova and Wodarz, 2010; Novozhilov et al., 2006; see also Section 2.4.1). Thus, we
assume that infection takes place upon contact between infected and uninfected cells with
probability proportional to the density of infected cells. This means that an uninfected
cell that occupies position xj at time tn becomes infected with probability τβin

j /K, where
K is the carrying capacity and β > 0 is a constant infection rate. Although the carrying
capacity could be easily incorporated in the infection parameter, this formulation allows
the easy rescale of the cell densities by only modifying K and the initial conditions.
This process is similar to the interaction between the tumour and the immune system
described, for example, in Almeida et al., 2022; Almeida et al., 2023.
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Cell movement As we already mentioned, we consider two different rules governing
cell movement. In view of the formal derivation of the continuum models, it is convenient
to adopt the same notation for both processes. We thus state that an uninfected cell that
occupies position xj at time tn moves to the lattice point xj±1 with probability Fn

j→j±1 and
remains at its initial position with probability 1 − Fn

j→j−1 − Fn
j→j+1. The same happens for

the infected cells, but with probabilities F̃n
j→j±1 that in principle may be different from

Fn
j→j±1.

Let us now give the explicit expressions for these probabilities. The simplest model
of movement assumes no influence of the cell density and no preferential direction of
motion; in this case we set

Fn
j→j±1 :=

θu

2
, F̃n

j→j±1 :=
θi

2
(2.2)

with θu, θi ∈ [0, 1]. This is a standard unbiased random walk.
On the other hand, since cellular proliferation is limited by a carrying capacity, it also

makes sense to take into account a reduction of motility in a crowded environment and
allow cells to only move following the pressure gradient: the probability of movement
thus depends on the difference between the pressure at the initial position of the cell and
the pressure at the target point. In this case, we set

Fn
j→j±1 := θu

(ρn
j − ρn

j±1)+

2P
, F̃n

j→j±1 := θi
(ρn

j − ρn
j±1)+

2P
(2.3)

where z+ := max{z, 0}, P is the homeostatic pressure and θu, θi ∈ [0, 1] as before. Observe
that, if ρn

j ≤ P for every j, then all the probabilities are between 0 and 1. This kind of
reasoning and the probabilities associated have already been employed in Chaplain et al.,
2020.

In the special case ρn
j = P and ρn

j−1 = ρn
j+1 = 0 the two definitions give the same

probability values; in any other case, the probabilities of movement given in Eq. (2.2) are
higher than the ones given in Eq. (2.3). This, as we will see shortly, strongly affects the
therapy outcomes.

2.2 Formal derivation of the corresponding continuum models

We now derive the continuum counterparts of the agent-based models described in
the previous section, using techniques analogous to those employed in various ref-
erences (Champagnat and Méléard, 2007; Johnston et al., 2015; Lorenzi et al., 2020;
Macfarlane et al., 2022; Penington et al., 2011; Chaplain et al., 2020; Almeida et al., 2022;
Almeida et al., 2023).

2.2.1 Uninfected cells

Uninfected cells can first move, then reproduce or die based on the pressure value and
finally become infected, as explained in Section 2.1. The principle of mass balance gives
the equation

un+1
j =

[
Fn

j−1→j un
j−1 + Fn

j+1→j un
j+1 + (1 − Fn

j→j−1 − Fn
j→j+1)u

n
j

]
×
[
1 + τG(ρn

j )+ − τG(ρn
j )−
](

1 − τ
β

K
in
j

)
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and using the algebraic relation x+ − x− = x, this simplifies to

un+1
j =

[
Fn

j−1→j un
j−1 + Fn

j+1→j un
j+1 + (1 − Fn

j→j−1 − Fn
j→j+1)u

n
j

]
×
[
1 + τG(ρn

j )
](

1 − τ
β

K
in
j

)
Let us define

Φ := −(Fn
j→j−1 + Fn

j→j+1)u
n
j + Fn

j−1→ju
n
j−1 + Fn

j+1→ju
n
j+1 (2.4)

so that the previous equation becomes

un+1
j = (un

j + Φ)
[
1 + τG(ρn

j )
](

1 − τ
β

K
in
j

)
= un

j + τG(ρn
j )u

n
j − τ

β

K
un

j in
j + Φ − τ2G(ρn

j )
β

K
un

j in
j

+ τΦ
[

G(ρn
j )−

β

K
in
j − τG(ρn

j )
β

K
in
j

]
We now divide both sides of the previous equation by τ and rearrange the terms to get

un+1
j − un

j

τ
= G(ρn

j )u
n
j −

β

K
un

j in
j +

1
τ

Φ + H1 (2.5)

where
H1 := −τG(ρn

j )
β

K
un

j in
j + Φ

[
G(ρn

j )−
β

K
in
j − τG(ρn

j )
β

K
in
j

]
We will shortly see that in the cases of interest H1 is the sum of higher order terms and
therefore vanishes as τ, δ → 0.

Let us now assume that there are two functions u ∈ C2([0,+∞) × R) such that
un

j = u(tn, xj) = u and i ∈ C2([0,+∞)× R) such that in
j = i(tn, xj) = i (from now on we

omit the arguments of functions computed at (tn, xj)); thus, we can use Taylor expansions
for u in time and space as follows

un+1
j = u(tn + τ, xj) = u + τ∂tu +O(τ2)

un
j±1 = u(tn, xj ± δ) = u ± δ∂xu +

1
2

δ2∂2
xxu +O(δ3)

Furthermore, we are assuming that the function Π is smooth, so that ρ = Π(u + i) ∈
C2([0,+∞)× R) and we can use a Taylor expansion for ρ as well

ρn
j±1 = ρ(tn, xj ± δ) = ρ ± δ∂xρ +

1
2

δ2∂2
xxρ +O(δ3)

Let us now treat separately the cases in which movement does or does not depend on
pressure.

Undirected cell movement In this case, we have Fn
j→j±1 = Fn

j±1→j = θu, which is a
constant independent of n, j. We then obtain

Φ = θu(un
j−1 + un

j+1 − 2un
j ) = θuδ2∂2

xxu +O(δ3)
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and thus

H1 = −τG(ρn
j )

β

K
un

j in
j +

[
G(ρn

j )−
β

K
in
j − τG(ρn

j )
β

K
in
j

]
Φ = O(τ) +O(δ2)

Eq. (2.5) then becomes

∂tu +O(τ2) = θu
δ2

2τ
∂2

xxu + pu − β

K
ui +O(τ) +O(δ2)

Letting τ, δ → 0 in such a way that δ2

2τ → D, we obtain

∂tu = θuD∂2
xxu + pu − β

K
ui

Pressure-driven cell movement In this case, we modify the terms as follows:

Fn
j→j±1 := θu

(ρn
j − ρn

j±1)+

2P
=

θ1

2P

(
∓δ∂xρ − 1

2
δ2∂2

xxρ +O(δ3)
)
+
= O(δ)

It is then easy to see that H1 → 0 as τ, δ → 0, as each term is multiplied either by τ or by
some F. We then use the Taylor expansion of u in Eq. (2.4) to get

Φ = −(Fn
j→j−1 + Fn

j→j+1)u + Fn
j−1→j

(
u − δ∂xu +

1
2

δ2∂2
xxu +O(δ3)

)
+ Fn

j+1→j

(
u + δ∂xu +

1
2

δ2∂2
xxu +O(δ3)

)
= (Fn

j−1→j − Fn
j→j−1 + Fn

j+1→j − Fn
j→j+1)u + δ(−Fn

j−1→j + Fn
j+1→j)∂xu

+
1
2

δ2(Fn
j−1→j + Fn

j+1→j)∂
2
xxu +O(δ3)

Now, let us observe that

Fn
j±1→j − Fn

j→j±1 =
θ1

2P
[(ρn

j±1 − ρn
j )+ − (ρn

j − ρn
j±1)+]

=
θ1

2P
(ρn

j±1 − ρn
j ) =

θ1

2P

(
±δ∂xρ +

1
2

δ2∂2
xxρ +O(δ3)

)
using the relation x+ − (−x)+ = x+ − x− = x. We therefore have

Φ =
θu

2P

{
δ2∂2

xxρu + δ[−(−δ∂xρ +O(δ2))+ + (δ∂xρ +O(δ2))+]∂xu +O(δ3)
}

Finally, Eq. (2.5) becomes

∂tu +O(τ2) = G(ρ)u − β

K
ui +

θu

P
δ2

2τ

{
∂2

xxρu

+ [(∂xρ +O(δ))+ − (−∂xρ +O(δ))+]∂xu +O(δ)
}
+ H1
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Letting τ, δ → 0 in such a way that δ2

2τ → D we arrive at the final result:

∂tu =
θuD

P
{∂2

xxρu + [(∂xρ)+ − (−∂xρ)+]∂xu}+ G(ρ)u − β

K
ui

=
θuD

P
(∂2

xxρu + ∂xρ∂xu) + G(ρ)u − β

K
ui

=
θuD

P
∂x(u∂xρ) + G(ρ)u − β

K
ui

2.2.2 Infected cells

Infected cells can first move, then die based on the pressure value, as explained in Section
2.1. Also, uninfected cells may be infected. The computations follow the same strategy of
uninfected cells, so we only sketch the main points. The principle of mass balance gives
the equation

in+1
j =

[
F̃n

j−1→j in
j−1 + F̃n

j+1→j in
j+1 + (1 − F̃n

j→j−1 − F̃n
j→j+1)i

n
j

]
(1 − τq)

+ τ
β

K
in
j (1 + τG(ρn

j ))
[

Fn
j−1→j un

j−1 + Fn
j+1→j un

j+1 + (1 − Fn
j→j−1 − Fn

j→j+1)u
n
j

]
which simplifies to

in+1
j = (1 − τq)

[
F̃n

j−1→j in
j−1 + F̃n

j+1→j in
j+1 + (1 − F̃n

j→j−1 − F̃n
j→j+1)i

n
j

]
+ τ

β

K
un

j in
j + τH2

=
[

F̃n
j−1→j in

j−1 + F̃n
j+1→j in

j+1 − (F̃n
j→j−1 + F̃n

j→j+1)i
n
j

]
+ (1 − τq)in

j

+ τ
β

K
un

j in
j + τH2 + τH3

= Ψ + (1 − τq)in
j + τ

β

K
un

j in
j + τH2 + τH3

where
Ψ := F̃n

j−1→j in
j−1 + F̃n

j+1→j in
j+1 − (F̃n

j→j−1 + F̃n
j→j+1)i

n
j

and

H2 := τG(ρn
j )

β

K
un

j in
j +

β

K
in
j (1 + τG(ρn

j ))

×
[

Fn
j−1→j un

j−1 + Fn
j+1→j un

j+1 − (Fn
j→j−1 + Fn

j→j+1)u
n
j

]
︸ ︷︷ ︸

=Φ

H3 := −q
[

F̃n
j−1→j in

j−1 + F̃n
j+1→j in

j+1 − (F̃n
j→j−1 + F̃n

j→j+1)i
n
j

]
︸ ︷︷ ︸

=Ψ

Dividing both sides by τ and rearranging the terms we get

in+1
j − in

j

τ
=

1
τ

Ψ − qin
j +

β

K
un

j in
j + H2 + H3 (2.6)
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Let us now make the same regularity assumptions of the previous subsection and
use the Taylor expansions for i to arrive at

in+1
j = i(tn + τ, xj) = i + τ∂ti +O(τ2)

in
j±1 = i(tn, xj ± δ) = i ± δ∂xi +

1
2

δ2∂2
xxi +O(δ3)

Again, we treat separately the case in which movement does not depend on pressure and
the case in which it does.

Undirected cell movement In this case, we have

Φ = θu(un
j−1 + un

j+1 − 2un
j ) = θuδ2∂2

xxu +O(δ3)

and
Ψ = θi(in

j−1 + in
j+1 − 2in

j ) = θiδ
2∂2

xxi +O(δ3)

This means that H2 + H3 = O(τ) +O(δ2). Eq. (2.6) then becomes

∂ti +O(τ2) = θi
δ2

2τ
∂2

xxi +
β

K
ui − qi +O(τ) +O(δ2)

Letting τ, δ → 0 in such a way that δ2

2τ → D we obtain the required term:

∂ti = θiD∂2
xxi +

β

K
ui − qi

Pressure-driven cell movement In this case Fn
j→j±1 and F̃n

j±1→j are O(δ). It is then easy
to see that H2 + H3 → 0 as τ, δ → 0, as each term is multiplied either by τ, by some F
or by some F̃. We can then repeat the calculations already performed for the uninfected
cells to show that, letting τ, δ → 0 in such a way that δ2

2τ → D yields

1
τ

Ψ → θiD
P

∂x(i∂xρ)

Therefore, in the required limit Eq. (2.6) becomes

∂ti =
θiD
P

∂x(i∂xρ) +
β

K
ui − qi

2.2.3 Summary of the continuum models

In the case of undirected cell movement, we have obtained the following system of
reaction-diffusion PDEs:

∂tu(t, x) = Du∂2
xxu(t, x) + pu(t, x)G(ρ(t, x))− β

K
u(t, x)i(t, x)

∂ti(t, x) = Di∂
2
xxi(t, x) +

β

K
u(t, x)i(t, x)− qi(t, x)

(2.7)

where Du := θuD and Di := θiD.
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If we take the function G as in Eq. (2.1) and ρ = u + i, then the system becomes
∂tu = Du∂2

xxu + pu
(

1 − u + i
K

)
− β

K
ui

∂ti = Di∂
2
xxi +

β

K
ui − qi

(2.8)

This model is a simplified version of the one studied in Pooladvand et al., 2021, as here
we do not consider viral dynamics explicitly. A similar diffusive Lotka–Volterra model
with logistic growth has been studied in Dunbar, 1984; it is important to observe that in
our case the infected cells, which play the role of predators, contribute to the saturation
of the growth of uninfected cells, which play the role of prey, hence Eq. (2.8) cannot be
adimensionalised exactly in the same way as the model in Dunbar, 1984.

On the other hand, if we take the function G(ρ) ≡ p, then the system becomes
∂tu = Du∂2

xxu + pu − β

K
ui

∂ti = Di∂
2
xxi +

β

K
ui − qi

(2.9)

which is a simplification of the previous system. Observe that in this setting, the carrying
capacity has no specific meaning and we only keep it as a scaling parameter of the
infection rate in order to facilitate the comparison with the results obtained with the
other models.

Remark 2.1 When the spatial domain is the two-dimensional real plane R2 instead of the one-
dimensional real line R, the scalar index j ∈ Z should be replaced by the vector j = (jx, jy) ∈ Z2

and the probability that a cell moves to one of the four neighbouring lattice points is θk/4, with
k = u, i. We then need to scale τ and δ in such a way that δ2

4τ → D. The corresponding
continuum model is

∂tu(t, x) = Du∆u(t, x) + pu(t, x)G(ρ(t, x))− β

K
u(t, x)i(t, x)

∂ti(t, x) = Di∆i(t, x) +
β

K
u(t, x)i(t, x)− qi(t, x)

In the case of pressure-driven cell movement, we have obtained the following local
cross-diffusion system:

∂tu(t, x) =
Du

P
∂x[u(t, x)∂xρ(t, x)] + pu(t, x)G(ρ(t, x))− β

K
u(t, x)i(t, x)

∂ti(t, x) =
Di

P
∂x[i(t, x)∂xρ(t, x)] +

β

K
u(t, x)i(t, x)− qi(t, x)

(2.10)

where Du := θuD and Di := θiD. This model can be thought as the natural generalisation
to infections of the model presented in Perthame et al., 2014; Byrne and Drasdo, 2009.
A similar system is studied in Gwiazda et al., 2019, although it is important to remark
that our infection term does not fit in the framework of reaction terms considered in that
paper.
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If we take the function G as in Eq. (2.1) and ρ = u + i (so that also P = K), then the
system becomes 

∂tu =
Du

K
∂x[u∂x(u + i)] + pu

(
1 − u + i

K

)
− β

K
ui

∂ti =
Di

K
∂x[u∂x(u + i)] +

β

K
ui − qi

(2.11)

Remark 2.2 When the spatial domain is the two-dimensional real plane R2 instead of the one-
dimensional real line R, the scalar index j ∈ Z should be replaced by the vector j = (jx, jy) ∈ Z2

and the probability that a cell moves to one of the four neighbouring lattice points is

θk
(ρn

j − ρn
j+e)+

4P

with k = u, i and e ∈ {(±1, 0), (0,±1)}. As in the case of Remark 2.1, we need to scale τ and δ

in such a way that δ2

4τ → D. The corresponding continuum model when G as in Eq. (2.1) and
ρ = u + i is 

∂tu =
Du

K
∇ · [u∇(u + i)] + pu

(
1 − u + i

K

)
− β

K
ui

∂ti =
Di

K
∇ · [u∇(u + i)] +

β

K
ui − qi

2.3 Travelling waves for the continuum models

In view of the forthcoming comparison of the different models, it is useful to keep in
mind some well-known analytical results about travelling waves. We first describe the
equilibria of the corresponding nonspatial models, which serve as a starting point for the
search of travelling wave solutions. We then recall some well-known results related to
one dimensional waves and we describe some standard techniques that can be applied
in more general situations. We then conclude by applying this considerations to the case
of our interest.

2.3.1 Equilibria of the corresponding nonspatial models

We first recall that the system 
du
dt

= pu − β

K
ui

di
dt

=
β

K
ui − qi

(2.12)

(which is the spatially homogeneous analog of Eq. (2.9)) has two equilibria, (0, 0) and(qK
β

,
pK
β

)
(2.13)

The Jacobian matrix computed at the first equilibrium point has eigenvalues p and −q,
so it is unstable; the Jacobian matrix computed at the second equilibrium point has
eigenvalues ±i

√
pq, so it is neutrally stable.
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Let us also recall that the system
du
dt

= pu
(

1 − u + i
K

)
− β

K
ui

di
dt

=
β

K
ui − qi

(2.14)

(which is the spatially homogeneous analogue of Eqs. (2.8) and (2.11)) has three equilibria:
(0, 0), (K, 0) and

(u∗, i∗) :=
(qK

β
,

pK(β − q)
β(β + p)

)
(2.15)

The Jacobian matrix computed at the first equilibrium point has eigenvalues p and −q,
so it is unstable (recall that all the parameters are strictly positive). The Jacobian matrix
computed at the second equilibrium point has eigenvalues −p and β − q, so it is stable
when β < q (i.e., i∗ < 0) and unstable when β > q (i.e., i∗ > 0). The expression for
the eigenvalues of the Jacobian matrix computed at the last equilibrium point is more
complicated, but their sum is − pq

β and their product is pq(β−q)
β : hence, when i∗ > 0 the

eigenvalues are either both real and negative or complex with negative real part; in both
cases, the equilibrium is stable.

Observe that, in the case of β < q and positive initial data, the only possible outcome
predicted by Eq. (2.14) is the extinction of infected cells and the growth of the uninfected
cells to the carrying capacity, which in our biological interpretation corresponds to a
complete failure of the treatment. As also pointed out in other works, the interplay
between the infection rate and the death rate of infected cells is responsible, to some
extent, for the success of the overall therapy (Jenner et al., 2018b; Pooladvand et al.,
2021). Infections that start and develop too quickly seem to carry less ability to effectively
control the tumour in the long run. This can be circumvented, to some extent, by encasing
the virus in gels or implementing strategies to retard and prolong its release (Jenner et al.,
2019; Pooladvand et al., 2021; Jenner et al., 2020; Jenner et al., 2018c). On the other hand,
the case of an ineffective treatment does not exist mathematically in the case of Eq. (2.12),
as the equilibrium values (qK/β, pK/β) are positive for all values of the parameters. The
shortcoming is the fact that for β ≪ q, all the dynamics happen at much higher density
levels than those involved in the case of logistic growth and, as such, appear biologically
irrelevant. From now on, we focus on the situation β > q.

2.3.2 Travelling waves involving a single equation and linearisation

We recall that the equation

∂tu = D∂2
xxu + pu

(
1 − u

K

)
(2.16)

admits as solutions travelling waves with speed at least 2
√

Dp and an initial condition
with compact support evolves into a wave that travels with the minimal speed (Fisher,
1937; Kolmogorov et al., 1937). Any reaction-diffusion equation of the form ∂tu =
D∂2

xxu + f (u)u such that f ′(0) = p has the same invasion speed 2
√

Du p (Kolmogorov
et al., 1937); this result can be easily obtained using standard linearisation techniques
(Van Saarloos, 2003, §2.1), which we now briefly sketch for the sake of completeness.

Let us consider a nonlinear PDE

∂tϕ(t, x) = F [ϕ]
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and let ∂tϕ(t, x) = L[ϕ] be its linearization close to 0; we assume that the state ϕ = 0 is
linearly unstable. Let us also assume that

ϕ(0, x) =
∫ +∞

−∞
ϕ̄(k)eikx dk

(which means that ϕ̄ is the Fourier transform of the initial condition). We can then
substitute e−iω(k)t+ikx in the linear equation to obtain the dispersion relation ω(k); then, we
formally have

ϕ(t, x) =
∫ +∞

−∞
ϕ̄(k)eikx−iω(k)t dk

In the moving frame given by ξ := x − v∗t the previous expression becomes

ϕ(t, x) =
∫ +∞

−∞
ϕ̄(k)eikx−ikv∗t−iω(k)t+ikv∗t dk =

∫ +∞

−∞
ϕ̄(k)eikξ−i[ω(k)−v∗k]t dk (2.17)

For ξ finite and t → +∞ we use the Laplace method to obtain that the dominant
contribution of the integral is e−i[ω(k∗)−v∗k∗]t, where k∗ is given by the relation

d[ω(k)− v∗k]
dk

∣∣∣
k∗
= 0 =⇒ v∗ = ω′(k∗)

In order to avoid exponential growth and decay, we must have ℜ{i[ω(k∗)− v∗k∗]} = 0,
which means

ℑ[ω(k∗)]− v∗ℑ[k∗] = 0 =⇒ v∗ = ω′(k∗) =
ℑ[ω(k∗)]
ℑ[k∗]

We then approximate the integral of Eq. (2.17) and obtain

ϕ(t, x) ≈ 1√
4πD̂t

eik∗ξ−iℜ[ω(k∗)]te−ξ2/4D̂tϕ̄(k∗) where D̂ :=
i
2

ω′′(k∗)

eik∗ξ describes the dominant spatial behaviour, while D̂ is the effective diffusion coefficient,
which characterises the Gaussian correction to the exponential behaviour.

We can now apply these results to the equation

∂tϕ = D∂2
xxϕ + f (ϕ)ϕ

We have L[ϕ] = D∂2
xxϕ + f ′(0)ϕ and thus

−iω(k) = −Dk2 + f ′(0) =⇒ ω(k) = i( f ′(0)− Dk2), ω′(k) = −2iDk

Then from the equation −2iDk∗ = ℑ[i( f ′(0)− Dk2)]/ℑ[k] we easily obtain

k∗ = ±i

√
f ′(0)

D

which yields v∗ = ±2
√

D f ′(0) (depending on the direction of the wave) and D̂ = D. A
special case is f (u) constant and equal to p, which corresponds to exponential growth.

On the other hand, the application of these techniques to an intrinsically nonlinear
equation, such as

∂tu =
D
K

∂x(u∂xu) + f (u)u (2.18)
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does not give any meaningful information. In the specific case of the equation

∂tu =
D
K

∂x(u∂xu) + pu
(

1 − u
K

)
(2.19)

it is known that there exist travelling wave solutions with speed at least
√

Dp/2 and an
initial condition with compact support evolves into a wave that travels with the minimal
speed (Aronson, 1980; Newman, 1980). The main difference with respect to Eq. (2.16) is
the fact that initial data with compact support evolve into sharp waves with compact
support.

2.3.3 Travelling waves involving two equations

We now focus our attention on travelling wave solutions of systems in the form of Eqs.
(2.8), (2.9) and (2.11). We first recall that in Dunbar, 1984 it was proven that a system
similar to Eq. (2.8) (in which “predators” do not contribute to the saturation of uninfected
cells’ growth) admits travelling waves connecting (u∗, i∗) to (K, 0) with speed greater or
equal to 2

√
Di(β − q) and damped oscillations after the front of the wave may appear.

Since we are mostly interested in the case of a tumour that is still expanding, it makes
more sense to look for travelling waves connecting (u∗, i∗) to (0, 0) and we expect to
observe a race between the uninfected cells (evolving according to Eq. (2.16) in the
absence of infected cells) and the infected cells at the centre of the tumour. This situation
is shown in Fig. 2.2a and it is clearly more complex than the one examined in Dunbar,
1984. Let us observe that the density of a population of infected cells invading a region
of uninfected cells at constant density û satisfies the equation

∂ti = Di∂
2
xxi +

( β

K
û − q

)
i

According to the previous discussion about linearisation techniques, we expect infected

cells to travel at speed 2
√

Di(
β
K û − q); for û = K we recover the expression 2

√
Di(β − q)

(as it is shown in Fig. 2.2a).
To our knowledge there are no rigorous analytical results for travelling waves solving

Eqs. (2.9) and (2.11). Since the substitution of the logistic growth with the exponential
growth keeps the linear form of the equation unchanged, it is reasonable to expect that
travelling waves are not too affected by this change: indeed, the numerical simulation in
Fig. 2.2b confirms this expectation. We remark that, although the equilibrium given by
Eq. 2.13 is only neutrally stable and not asymptotically stable, this does not prevent the
formation of waves: indeed, the eigenvalues of the matrix(

p − β
K i − β

K u
β
K i β

K u − q

)∣∣∣∣∣
(u,i)=(qK/β,pK/β)

+

(
−Duσ2 0

0 −Diσ
2

)
=

(
−Duσ2 −q

p −Diσ
2

)

are either both negative or complex with negative real part −Du+Di
2 σ2. In other words,

the addition of diffusion to the system is enough to make the equilibrium asymptotically
stable (see also Murray, 2003).

On the other hand, the situation of pressure-driven movement is more complicated.
Clearly, an initial condition in which the function i has compact support surrounded by
an area with u = K cannot evolve into a travelling wave connecting (K, 0) to (u∗, i∗), as
the spatial movement of i is inhibited in the areas in which u is at carrying capacity (see
Fig. 2.3a). As a consequence, the classical problem of a new predator or a new infection
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FIGURE 2.2: Numerical solutions of (a) Eq. (2.8) and (b) Eq. (2.9). Theoretical results correctly estimate
the speeds of the travelling waves of uninfected cells in both cases and of infected cells in panel (a). The
results are discussed more in-depth in the following sections. The parameters employed are the ones given
in Table 2.1.

invading an established population makes no sense in this context. On the other hand,
the numerical results in Fig. 2.3b show the existence of a travelling wave evolving from
(0, 0) to (u∗, i∗). Let us also observe that the movement depends on the local density,
so the speed expression

√
Du p/2 is only valid when the invading front is at carrying

capacity; when the front is smaller due to the infection, it also moves slower. In the case
of Fig. 2.3b, the invading front is close enough to K, so that the value

√
Du p/2 is still a

good approximation for the speed of uninfected invasion.
Let us conclude this section by recalling the fact that all the speed wave expressions

are accurate in one spatial dimension. In two spatial dimensions, the same formulas
describe the asymptotic speed for the radially symmetric equation (see, for example,
Murray, 2002, §13.2); our numerical simulations show that the formulas of this section
approximate the wave speed well enough in the parameters’ range of our interest.

2.4 Comparison between agent-based and continuum models

In this section, we compare numerical simulations for the agent-based models with the
corresponding PDE systems.

2.4.1 Details of numerical simulations

Parameter values In Table 2.1, we list the parameters we adopt as a reference in the
numerical simulations. Some simulations use other parameter values to explore different
behaviours emerging from our model, as explained in the text.

Most of the parameters in the model have been estimated from the existing experi-
mental literature. The maximal duplication rate in the logistic growth p has been taken
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FIGURE 2.3: Numerical solutions of Eq. (2.11) show that theoretical results correctly estimate the speed of
the travelling waves for uninfected cells. The parameters employed are the ones given in Table 2.1, with the
exception of the infection radius Ri in panel (b). Observe that a central initial infection remains constrained
in the centre of the domain. The results are discussed in more depth in the following sections.

Parameter Description Value [Units] Reference

p maximal duplication rate of uninfected cells 1.87 × 10−2 [h−1] Ke et al., 2000

q death rate of infected cells 4.17 × 10−2 [h−1] Ganly et al., 2000

Du, Di diffusion coefficients (undirected movement) 1.88 × 10−4 [mm2/h] estimate based on
Kim et al., 2006

Du, Di diffusion coefficients (pressure-driven move-
ment)

1.50 × 10−3 [mm2/h] estimate based on
Kim et al., 2006

K1D tissue carrying capacity in one dimension 103 [cells/mm] model estimate

K2D tissue carrying capacity in two dimensions 104 [cells/mm2] Lodish et al., 2008

β infection rate 1.02 × 10−1 [h−1] estimate based on
Friedman et al., 2006

Ru initial radius of uninfected cells 2.6 [mm] Kim et al., 2006

Ri initial radius of infected cells 1 [mm] model estimate

TABLE 2.1: Reference parameter set for this chapter.

equal to log(2)/37 h−1 ≈ 1.87 × 10−2 h−1; the duplication time of 37 hours is approxi-
mately the highest among the ones reported in Ke et al., 2000 and has been chosen so
that the exponential growth is not too fast. The death rate of infected cells q has been
taken equal to 1/24 h−1 = 4.17 × 10−2 h−1, following Ganly et al., 2000.

The diffusion coefficient of uninfected cells Du has been estimated from the experi-
mental data of the U343 control group of Kim et al., 2006, as already done in Pooladvand
et al., 2021: the tumour volume passes in 40 days from 70 mm3 to 1000 mm3, which
corresponds to a change in the tumour radius from approximately 2.6 mm to approx-
imately 6.2 mm; since in absence of viral infection the dynamic of uninfected cells
follows Eq. (2.16) in the case of undirected movement and Eq. (2.19) in the case of
pressure-driven movement, we can estimate the diffusion coefficient from the wave
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speed formulas described in Section 2.3 and obtain

Du =
c2

4p
=
(6.2 − 2.6 mm

40 × 24 h

)2
× 1

4 × 1.87 × 10−2 h−1 ≈ 1.88 × 10−4 mm2/h

in the former case and

Du =
2c2

p
≈ 8 × 1.88 × 10−4 mm2/h ≈ 1.50 × 10−3 mm2/h

in the latter case. We assume Di = Du, as a priori we have no reason to believe that the
infection affects cellular movement.

In the agent-based models, cellular movement is governed by the parameters θu
and θi. Having in mind the formal derivation of the continuum models, we set them
according to the formula

θk =


2τDk

δ2 in one dimension

4τDk

δ2 in two dimensions
(2.20)

where k = u, i and τ, δ are the temporal and spatial discretisations. For the sake of
simplicity, in the text, we always refer to the the variation of the diffusion coefficients
(which have a clear macroscopic meaning), keeping in mind that θu and θi are adjusted
accordingly.

The carrying capacity K has been estimated assuming that a cell has radius 10 µm=
10−2 mm (Lodish et al., 2008, §1.1): this implies that the carrying capacity is 102 cells/mm
in one spatial dimension and 104 cells/mm2 in two spatial dimensions. Since we observed
that K = 100 cells/mm is too little to obtain a good agreement between agent-based and
continuum models, we decided to increase it to K = 1000 cells/mm in the case of one
spatial dimension.

Let us now estimate the infection rate β. In Friedman et al., 2006 the authors assume
that oncolytic viruses have an infection rate of β̃ = 7 × 10−10 mm3/(viruses×h) and
cells have a carrying capacity of K̃ = 106 cells/mm3. Clearly, this value cannot be used
directly in our model, which does not explicitly take viral dynamics into account. Let us
assume that viral density satisfies the PDE

∂tv(t, x) = Dv∂2
xxv(t, x) + αqi(t, x)− qvv(t, x)

where Dv is the diffusion coefficient, α is the number of viruses released by the lysis
when an infected cell dies, q is the death rate of infected cells (which is also present in
our model) and qv is the clearance rate of the virus. Since viral dynamics are faster than
cellular dynamics, we can assume that the viral density is quasi-steady, leading to the
algebraic relation

v(t, x) =
αq
qv

i(t, x)

We, therefore, have β = β̃αqK̃/qv, with the values of the parameters α and qv to be
chosen. We set qv = 1/6 h−1 as in Mok et al., 2009. The viral load released by the
death of infected cells depends highly on the type of virus and ranges from the value
157± 23.4 viruses/cell estimated in Workenhe et al., 2014 to the value 3500 viruses/cell of
Chen et al., 2001; we chose an intermediate value of α = 580 viruses/cell. In conclusion,
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we have

β =
(

7 × 10−10 mm3

viruses × h

)
× 580 viruses/cell × 1/24 h−1

1/6 h−1 × 106 cells
mm3 ≈ 0.102 h−1

It is important to observe that the parameter β incorporates a wide variety of dynamics
related to the virus; hence different parameter values could result in the same value of
β: for example, if we assume a faster viral decay of qv = 1 h−1 and a higher number of
viruses released during lysis α = 3500 viruses/cell as in Chen et al., 2001, then the value
of β remains unchanged.

Finally, we use the following initial conditions

u0(x) =

{
0.9 K for |x| ≤ Ru

0 for |x| > Ru
i0(x) =

{
0.1 K for |x| ≤ Ri

0 for |x| > Ri
(2.21)

The value of Ru has been set to 2.6 mm, as in Kim et al., 2006. Remembering that we
postulate a central injection (Russell and Peng, 2018), we observe that it is not easy to find
reliable estimates for the radius of the region occupied by infected cells right after such
an injection. We thus chose the value Ri = 1 mm, which is slightly less than half of the
tumour radius. In the model with undirected movement, initial conditions do not really
affect the long-time dynamics of the system. On the other hand, varying initial conditions
in the model with pressure-driven movement may result in opposite outcomes, as the
infection is unable to propagate in areas of constant total density.

Numerical simulations are run until the final time T = 1500 h, since their behavior up
to this moment is also representative of later dynamics. For the spatial domain [−L, L] (or
[−L, L]2) we set L = 10 mm so that wavefronts do not hit the boundary before T and the
domain is representative of typical extensions of solid tumours. Since some simulations
of the model with pressure-driven movement have been performed with a higher value
of Du, Di (and, consequently, a higher speed wave) in these situations L has been slightly
increased.

Numerical simulations for the discrete models We used a temporal step τ = 0.02 h
and a spatial step of δ = 0.1 mm both for the one-dimensional and the two-dimensional
simulations. Some additional simulations (not shown) demonstrated that a further
refinement on the grid does not result in a significant improvement of the agreement
between discrete and continuous models, while greatly affecting the computation time.
All simulations have been performed in MATLAB 2021B.

At every iteration, we first computed the sum of the two populations and then
cell numbers are updated according to the rules described in Section 2.1. We first
consider movement, then reproduction and death, finally infection. Zero-flux boundary
conditions are implemented by not allowing cells at the boundary to leave the domain.
This, however, does not have any particular influence on the results, as all the simulations
are stopped before the wave front reaches the boundary.

Observe that the sum of the two populations is not updated during the iteration,
in accordance with the formulas of Section 2.1. As a consequence, cell densities may
fluctuate above the carrying capacity for short periods of time, before the dynamics
make them decrease again. In order to avoid problems with the formula in Eq. (2.3), we
truncate the pressure at the carrying capacity K. In the case of undirected movement,
the fluctuations above the carrying capacity are more frequent because of the lack of
movement inhibition in crowded regions (see Fig. 2.4); this, however, does not cause any
problem in the formulation of the model.
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Since we only need to keep track of the collective fate of cells in the same lattice point,
we used the built-in MATLAB functions binornd and mnrnd, which compute random
arrays according to binomial and multinomial distributions.

Figs. 2.4, 2.5, 2.6a-b, 2.7, 2.8, 2.9a-b, 2.10, 2.11 and 2.13 show the average of five
simulations. On the other hand, Figs. 2.6 (with the exception of Figs. 2.6a-b), 2.9 (with
the exception of Figs. 2.9a-b) and 2.14 have the purpose of explaining the influence of
stochastic effects and therefore show a single simulation. Averaging simulations in two
dimensions results in nonzero cell densities below 1

δ2 , which makes no sense in the case
of a single simulation; for the sake of consistency, we decided to truncate these values to
zero.

In order to allow reproducibility, a random seed has been set at the beginning of each
new simulation, ranging from 1 to 5. In the figures representing a single simulation,
only the one with random seed equal to 1 is shown. Fig. 2.12 shows the average of one
hundred simulations, which were obtained using random seeds ranging from 1 to 100.

Numerical simulations for the continuum models Eqs. (2.8) and (2.11) complemented
with homogeneous Neumann boundary conditions have been solved in MATLAB 2021B

using the built-in function pdepe; in the two-dimensional case we exploited the radial
symmetry of the equations. We considered a uniform discretisation of the spatial interval
[0, L] consisting of 500 points and a uniform discretisation of step 1 of the temporal
interval [0, T].

The application of this strategy to the simulation depicted in Figs. 2.10a, 2.11a caused
some numerical instabilities. We solved this issue by using a forward upwind scheme
for the transport term, following LeVeque, 2007. This method is able to deal with such
instabilities even at long times if we take the discretisation ∆x = 0.05, ∆t = 10−4. We
then used the same algorithm for all the numerical solutions of Eq. (2.11) for the sake of
coherence, with discretisations ∆x = 0.1, ∆t = 10−4. In the two-dimensional case, we can
rely upon the radial symmetry of the problem; hence, the analogue of Eq. (2.11) becomes

∂tu =
Du

K
1
r

∂r[r u∂r(u + i)] + pu
(

1 − u + i
K

)
− β

K
ui

∂ti =
Di

K
1
r

∂r[r i∂r(u + i)] +
β

K
ui − qi

In the two-dimensional plots of the supplementary material of Morselli et al., 2023,
we truncated the solutions at a value 1

δ2 to be consistent with the representation of the
agent-based model. We also use the same threshold 1

δ2 to identify the wavefront, which
is depicted in some of the figures. However, it is important to observe that in some
simulations the density of infected cells is positive almost in the whole domain occupied
by uninfected cells; the definition of the front as the location in which cell density is above
1
δ2 makes visual comparison between the discrete and the continuous model clearer.

2.4.2 Undirected movement and logistic growth

We are now ready to compare numerical simulations for the agent-based models and
the corresponding systems of PDE. We start from the model with standard diffusion
and logistic growth since, in this case, there exist comprehensive analytical results for
travelling waves. We first present the results obtained with the reference parameters
listed in Table 2.1 in both one and two dimensions; we then investigate how different
parameters allow us to obtain other spatial patterns.
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FIGURE 2.4: Comparison in one spatial dimension between numerical simulations of the discrete model
with undirected movement and logistic growth (solid lines) and the numerical solution of Eq. (2.8) (dotted
black lines) at three different times, with the parameters given in Table 2.1. For the agent-based model, the
density of the uninfected cells is represented in blue and the density of infected cells in red. The vertical
dashed lines represent the expected positions of the uninfected and infected invasion fronts, travelling
respectively at speed 2

√
Du p (blue lines) and 2

√
Di(β − q) (red lines); the latter has no biological meaning

in panel (c), as the infection cannot go beyond the uninfected front. The horizontal solid black lines show the
equilibrium of the ODE given by Eq. (2.15) and the horizontal dashed yellow line represents the expected
uninfected density at the front given by Eq. (2.22) (only relevant in panel (c)). The results of the agent-based
model are averaged over five simulations and the maximum of the cell density axes corresponds to the
maximum over time of this average (which is larger than the carrying capacity).
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FIGURE 2.5: Numerical simulation of the discrete model with undirected movement and logistic growth in
two spatial dimensions at three different times with the parameters given in Table 2.1. The dotted green
circles represent the internal minimum of the numerical solution of Eq. (2.8) (not shown in panel (a), as this
minimum is in 0). The dashed cyan circles represent the expected positions of the uninfected and infected
invasion fronts, travelling respectively at speed 2

√
Du p and 2

√
Di(β − q). The latter has no biological

meaning in panel (c), as the infection cannot go beyond the uninfected front; therefore, in this figure, we
also show with a dashed red circle the front of the infected cells given by the numerical solution of Eq. (2.8).
The results of the agent-based model are averaged over five simulations and the maximum of the colorbars
for uninfected and infected cells correspond to the maximum over time of the averages (which for the
uninfected cells is larger than the carrying capacity).
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Reference parameters Fig. 2.4, along with the video accompanying it (see electronic
supplementary material S2 of Morselli et al., 2023), shows an excellent quantitative
agreement between numerical solutions of the system of PDEs (2.8) and the average over
five numerical simulations of the agent-based model in one spatial dimension. At the
beginning of the simulations, the central region of the tumour is quickly infected, while
the outer region (which is only occupied by uninfected cells) grows up until reaching the
carrying capacity. At the same time, a travelling wave of uninfected cells starts to invade
the surrounding area at the speed 2

√
Du p (vertical blue lines in Fig. 2.4), as predicted

by theoretical results. As soon as the uninfected cells reach the carrying capacity, the
invasion speed of the infected cells stabilises to the value 2

√
Di(β − q) (vertical red

lines in Fig. 2.4), which again confirms our expectations from analytical results. In the
meantime, cell densities at the centre of the tumour converge with damped oscillations
to the equilibrium of the corresponding ODE (horizontal solid black lines in Fig. 2.4),
given by Eq. (2.15). This is shown in Fig. 2.4a.

The parameters we chose are such that 2
√

Du p < 2
√

Di(β − q), meaning that the
infection eventually reaches the front of the wave of uninfected cells. This happens
around time t = 200 h: as a consequence, the peak at the front starts to decrease for both
populations and infected cells slow down (see Fig. 2.4b). The final peak of the uninfected
cells is approximately

ū :=
( q

β
+

Du p
Diβ

)
K = u∗ +

Du pK
Diβ

(2.22)

which is the solution of the equation

2
√

Du p = 2

√
Di

( β

K
ū − q

)
In other words, an uninfected population of cell density ū is invaded by infected cells at
speed 2

√
Du p, which is the speed of the uninfected front. A higher uninfected density

at the front would result in a faster invasion of the infection, which would cause the
front to decrease again; similarly, a smaller uninfected density at the front would slow
down the infection and thus allow the uninfected front to grow. In our case, the density
of the uninfected population is not constant, but the value ū given in Eq. (2.22) is still a
good approximation of the density at the front (see the horizontal dashed yellow line in
Fig. 2.4c). As time passes, both front waves keep moving at the speed 2

√
Du p and the

central area; the fronts are followed by a few damped oscillations that converge to the
equilibrium of the ODE. This is shown in Fig. 2.4c.

Fig. 2.5, along with the video accompanying it (see electronic supplementary mate-
rial S3 of Morselli et al., 2023), shows that the same excellent agreement also holds in
two spatial dimensions; the comparison with the continuum model and the analytical
expressions of the wave speeds is shown through dashed and dotted coloured circles,
as explained in the caption of the figure. Observe that, before cell densities converge to
the equilibrium in the centre of the tumour, some concentric circles appear, in line with
experimental observation (Wodarz et al., 2012); the internal circle, however, disappears
as time passes.

Impact of the parameters on the treatment outcome Let us show how varying the
parameters affects the success of the therapy, still for the case of growth that is unhindered
by spatial or pressure constraints, but is only limited by carrying capacity. We only focus
on two-dimensional simulations, but the one-dimensional case is analogous.

We start by analysing some instances of treatment failure. As we already pointed out
in Section 2.3, the worst possible case is the situation in which the infection ceases after a
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FIGURE 2.6: Numerical simulation of the discrete model with undirected movement in two spatial dimen-
sions with different parameter values. The dotted green circles represent the internal minimum of the
numerical solution of Eq. (2.8) (not shown when this minimum is in 0). The dashed cyan circles represent
the expected positions of the uninfected invasion fronts, travelling at speed 2

√
Du p. The dashed red

circles represent the front of the infected cells given by the numerical solution of Eq. (2.8). The parameters
employed are the ones given in Table 2.1, with the exception of the infection rate β in panel (a) (which is
set to 4.86 × 10−2 h−1, i.e. less than half of the reference value), the death rate of infected cells q in panel
(b) (which is set to 4.17 × 10−3 h−1, i.e. one-tenth of the reference value), the initial conditions in panel
(c) (whose densities are set to 0.09 K for uninfected cells and 0.01 K for infected cells, i.e. one-tenth of the
reference values of Eq. (2.21)) and the carrying capacity K in panel (d) (which is set to 103 cells/mm; initial
conditions are scaled accordingly). The first two figures are the averages over five simulations, while the last
two represent single simulations. In both cases, the maximum of the colorbars for uninfected and infected
cells correspond to the maximum over time of the quantity plotted, which for uninfected cells is larger than
the carrying capacity (note the different values between different simulations).
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finite time and uninfected cells grow at carrying capacity: this corresponds to parameter
values such that β < q, which do not allow the equilibrium (u∗, i∗) to be positive. A more
interesting case of failure, which has no analogue in the spatially homogeneous ODE, is
the one in which the equilibrium (u∗, i∗) is positive and stable, the infected cells form a
travelling wave, but the spread of the infection is smaller than the speed of the uninfected
wave and so the outer region of the tumour is completely unaffected by the therapy.
Fig. 2.6a shows this situation, obtained by decreasing the infection rate β with respect to
the reference value. In this case, the value of u∗ is more than 85% of the carrying capacity,
so the invasion front is at carrying capacity and even in the central area the role of the
infection is not really relevant, despite never ceasing completely. Similar situations are
obtained whenever parameter values are such that

2
√

Di(β − q) < 2
√

Du p

If Du = Di, this condition is equivalent to β < q + p. We can thus conclude that, as we
could easily expect, a decrease in the infection rate β or an increase either of the death
rate of the infected cells q or the proliferation rate of the uninfected cells p with respect
to the reference value makes the therapy less successful and, in extreme cases, useless.
This scenario mimics, to some extent, that of an aggressively expanding tumour whose
developing front is moving very fast, as in existing clinical settings (Eissa et al., 2018). We
remark that our model assumes unrestricted tumour invasion in the surrounding tissues,
allowing the front of the uninfected cell wave to escape from the infection indefinitely.
This is a reasonable assumption for a tumour in vitro. On the other hand, the presence of
physical obstacles in the tumour microenvironment that hinder tumour invasion in vivo
may facilitate the infection of the whole tumour, reaching the equilibrium (u∗, i∗).

Whenever the infection reaches the boundary of the tumour (as in the reference
situation), we can consider the therapy to be at least partially successful. Some variations
of the parameter values then allow for the improvement of therapy achievements. For
example, as the death rate of the infected cells q decreases, the infection propagates
faster and u∗ decreases, therefore the therapy becomes more effective. This situation is
shown in Fig. 2.6b and captures the typical case when the virus has sufficient potency,
as current clinical trials and therapeutic practice strive to achieve (Lawler et al., 2017;
Hemminki et al., 2020). The centre of the tumour is almost completely void for most
of the time, as the number of uninfected cells is negligible and the number of infected
cells is quite small (although slightly bigger). At later times, some other inner circles
emerge as a consequence of the damped oscillations leading to equilibrium; nevertheless,
the emerging spatial structure can still be described as an empty ring. It is clear from
these results that a way to make the therapy more efficient would be to increase β, as this
would again result in a faster infection and a smaller uninfected population. A decrease
of p would leave the number of uninfected cells at the equilibrium unchanged; yet, the
tumour expansion would slow down and, as a consequence, the infection would reach
the tumour boundary faster. Unlike the continuous model, the agent-based model may
show extinction in finite time of both populations, which corresponds to the eradication
of the tumour (not shown here). However, this would require changing parameters
beyond the values that appear biologically meaningful. This is in line with results
obtained from deterministic spatially homogenous models, for example, the simple one
in Jenner et al., 2018c.

In all the cases described above, the results of the agent-based model perfectly agree
with the ones given by the numerical solution of the corresponding PDE. Let us stress the
fact that taking into account a single simulation in most cases reduces the quantitative
agreement, but not the overall qualitative behavior: individual variations occur but a
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β < q uninfected cell wave at speed 2
√

Du p and height K, no infection.

q < β < q + Du
Di

p uninfected cell wave at speed 2
√

Du p and height K, central infection ex-
panding at speed 2

√
Di(β − q) without reaching the uninfected front; inter-

nal densities reach the values
(

qK
β , pK(β−q)

β(β+p)

)
.

β > q + Du
Di

p uninfected cell wave at speed 2
√

Du p and height
(

q
β +

Du p
Di β

)
K, infection up

to the uninfected front; internal densities reach the values
(

qK
β , pK(β−q)

β(β+p)

)
.

TABLE 2.2: Summary of the different scenarios for the travelling waves as the infection rate β increases.

general, consistent trend is achieved.

Impact of stochasticity for lower cell densities We now present two simulations
in which stochastic effects give rise to notable differences between the discrete and
continuum approach, due to the fact that a smaller number of cells reduces the quality of
the continuum approximation. This could correspond to a moderately extended tumour
in its first stages of growth, for example. Fig. 2.6c shows the result of a single simulation
with the parameters of Table 2.1 and smaller initial cell densities. Clearly, uninfected cells
take longer than in the reference case to reach carrying capacity. As soon as they do, the
infected area is much less regular than what the PDE predicts: this comes from the fact
that the infection starts among a small number of cells and thus a few stochastic events
affect the spatial distribution of the infection relevantly. As time passes, these differences
tend to disappear.

Fig. 2.6d shows the situation in which the carrying capacity K is decreased and initial
cell densities are scaled accordingly, in agreement with Eq. (2.21). At initial times, it is
still possible to recognise the same qualitative behaviour of the PDEs, but as time passes,
stochastic events drive the system into a very irregular spatial configuration.

Let us also mention what happens when we change the reference parameters for the
scaled system (not shown here). If we decrease the death rate of infected cells, we still
observe the void ring structure, although much less precise than the one of Fig. 2.6b.
If the infection rate is decreased as in Fig. 2.6a, then the number of infected cells is so
low that the infection undergoes extinction in a short time. We can, therefore, conclude
that the PDEs remain a good description of the treatment outcome, even though the
quantitative agreement is lost due to stochastic effects.

2.4.3 Undirected movement and exponential growth

We now analyse whether the growth of a small tumour that is not limited by the lack
of external resources may be stopped only by viral infections. Unlimited exponential
growth is clearly not feasible in any biological scenario, but we could imagine that in
some cases, the carrying capacity is too high to make any significant contribution in the
initial phases of the tumour dynamics. We thus let G(ρ) ≡ p and study what happens
in the situations we have analysed so far. It is important to remind once again that in
case of unlimited growth the factor K does not represent the carrying capacity and it is
only a scaling factor, which we keep for the sake of consistency with the other models;
this factor affects the infection rate and the initial conditions. As in the previous case, we
start presenting the results obtained with the reference parameters listed in Table 2.1 in
both one and two dimensions; we then investigate how different parameters allow us to
obtain other spatial patterns.
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FIGURE 2.7: Comparison in one spatial dimension between numerical simulations of the discrete model
with undirected movement and exponential growth (solid lines) and the numerical solution of Eq. (2.9)
(dotted black lines) at three different times, with the parameters given in Table 2.1. For the agent-based
model, the density of the uninfected cells is represented in blue and the density of infected cells in red.
The vertical dashed lines represent the expected positions of the uninfected and infected invasion fronts
for Eq. 2.15, travelling respectively at speed 2

√
Du p (blue lines) and 2

√
Di(β − q) (red lines); while the

former is confirmed also in this case, the latter only holds when the uninfected population is at value K: we
therefore observe that the invasion front is much faster in the first infection phase and then quickly slows
down as the infection reaches the front of uninfected cells (see also Fig. 2.2b). The horizontal solid black
lines show the equilibrium of the ODE given by Eq. (2.13) and the horizontal dashed yellow line represents
the expected uninfected density at the front given by Eq. (2.22) (only relevant in panel (c)). The results of the
agent-based model are averaged over five simulations. In panel (a), the maximum of the cell density axes
of the panel (a) corresponds to the maximum over time of this average; in panels (b) and (c), the axes are
scaled in order to enhance visibility.

Reference parameters Fig. 2.7 shows an excellent quantitative agreement between
numerical solutions of the system of PDEs (2.9) and the average over five numerical
simulations of the agent-based model in one spatial dimension. At the beginning of the
simulations, the central region of the tumour is quickly infected, while the outer region
(which is only occupied by uninfected cells) starts to grow exponentially and reaches
much higher density values than in the case of logistic growth. As time passes, cell
densities at the centre of the tumour slowly converge with damped oscillations to the
equilibrium of the corresponding ODE, given by Eq. (2.13): since the ODE equilibrium is
not asymptotically stable, this is only due to the stabilising effect of the diffusion; hence,
this causes high oscillations that are still clearly observable at late times.

Uninfected cells do not form a travelling wave due to the unlimited growth. As
discussed in Section 2.3, the speed of the invasion front in the absence of infection is
2
√

Du p as in the case of Eq. (2.16). We also recall that the linear spreading speed of
infected cells in a homogeneous region of uninfected cells with constant density ū is
2
√

Di(βū − q); even though we do not have constant uninfected density, this formula is
still a good approximation if we interpret ū as the average density at the invasion front. It
follows that the speed of infected cells increases as the number of uninfected cells grows
until the infection eventually reaches the front of uninfected cells: this happens around
time t = 100 h, which is approximately half the time it takes for the same process in the
case of logistic growth; however, in this case, the peak of uninfected cells is more than
five times the value of K.

After that, the peak of uninfected cells quickly drops to approximately the value
ū predicted by Eq. (2.22). Infected cells experience the same drop and the following
dynamics at the invasion front resemble closely the ones observed in the case of logistic
growth (except for the fact that the equilibrium of infected cells is now given by Eq. (2.12)).
On the other hand, in the centre of the tumour, there are several secondary waves with a
peak of size comparable to the front peak, which propagate both towards the interior
and the exterior of the tumour. These waves are led by uninfected cells, with infected
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FIGURE 2.8: Numerical simulation of the discrete model with undirected movement and exponential growth
in two spatial dimensions at three different times with the parameters given in Table 2.1. The dotted green
circles represent the internal minimum of the numerical solution of Eq. (2.9) (not shown when this minimum
is in 0). The dashed cyan circle represents the expected positions of the uninfected invasion front, travelling
at speed 2

√
Du p. The dashed red circle represents the front of the infected cells given by the numerical

solution of Eq. (2.9). The results of the agent-based model averaged over five simulations. In panel (a), the
maximum of the colorbar corresponds to the maximum over time of this average; in panels (b) and (c), the
colorbars are scaled in order to enhance visibility.

cells following: when two uninfected waves merge, they quickly disappear because they
get surrounded by infected cells.

Fig. 2.8, along with the video accompanying it (see electronic supplementary material
S4 of Morselli et al., 2023), shows that the same excellent agreement also holds in two
spatial dimensions. Observe that, in this case, concentric circles persist even at long
times.

The density values obtained with this model are probably too high to be realistic. Nev-
ertheless, it is interesting to observe that infection alone is enough to stop an exponential
growth, which otherwise would be unbounded.

Other parameters Let us now briefly mention how varying the parameters affects the
success of the therapy. The situation of a highly effective therapy does not present any
relevant difference with respect to the case of logistic growth, as it is clear by comparing
Figs. 2.6b and 2.9b: the only difference is that inner circles are more visible and persistent
at late times.

On the other hand, the case of an ineffective treatment does not exist mathematically,
as the equilibrium given by Eq. (2.13) exists for all values of the parameter. Furthermore,
the propagation speed of the infection increases as the number of infected cells increases:
since the growth is unlimited, the infection will inevitably reach the front of the uninfected
cells. The shortcoming is the fact that all the dynamics happen at much higher density
levels, as Fig. 2.9a shows. This situation is probably unrealistic, so we should conclude
that in this situation logistic growth describes the underlying biological phenomenon
much better.

Lower cell densities Since there is no deterministic limit to cell growth, we expect that
for low cell densities stochasticity plays a more important role in this model: indeed,
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FIGURE 2.9: Numerical simulation of the discrete model with undirected movement and exponential growth
in two spatial dimensions, with different parameter values. The dotted green circles represent the internal
minimum of the numerical solution of Eq. (2.9) (not shown when this minimum is in 0). The dashed cyan
circles represent the expected positions of the uninfected invasion fronts, travelling at speed 2

√
Du p. The

dashed red circles represent the front of the infected cells given by the numerical solution of Eq. (2.9). The
parameters employed are the ones given in Table 2.1, with the exception of the infection rate β in panel (a)
(which is set to 4.86 × 10−2 h−1, i.e. less than half of the reference value), the death rate of infected cells q
in panel (b) (which is set to 4.17 × 10−3 h−1, i.e. one-tenth of the reference values), the initial conditions
in panel (c) (whose densities are set to 0.09 K for uninfected cells and 0.01 K for infected cells) and the
carrying capacity K in panel (d) (which in this case only affects the infection and is set to 103 cells/mm;
initial conditions are scaled accordingly). The first two figures are the averages over five simulations, while
the last two represent single simulations. The maximum values of the colorbars have been chosen in order
to make the figures clear and are much smaller than the maximum reached by uninfected cell densities (note
the different values between different simulations).
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small fluctuation of the cell density may grow exponentially without any limit, leading
the system significantly far from the average. Fig. 2.9c shows that scaling only the initial
conditions leads again to spatial patterns much less regular than what the PDE predicts;
furthermore, these features are still evident even for long times. Fig. 2.9d shows that
as we scale the whole system by a factor of ten (i.e., both the initial conditions and the
infection rate) we still maintain some qualitative agreement with the PDE, although the
importance of stochastic effects is evident; we also observe that local peaks may get very
high before the infection manages to control them.

Despite the increasing importance of stochasticity in this situation, it is important
to observe that the PDE is still able to correctly predict the outcome of the therapy as
parameters change.

2.4.4 Pressure-driven movement

Finally, let us discuss the numerical simulations for the model with pressure-driven
movement and logistic growth. As we already pointed out, the linear spreading speed
does not give any meaningful information. An additional difficulty comes from the
fact that varying initial conditions may result in opposite therapy outcomes: this is a
consequence of cells’ inability to propagate in areas of constant total density. We will also
see that the role of stochasticity is more important than in the previous models and in
many cases the PDEs are unable to correctly predict the therapy outcome. This represents
an important insight when assessing the efficiency of virotherapy for tumours that are
either highly constrained or hard to infect or penetrate.

Given the intrinsic variability, we do not give a comprehensive description of all the
possible outcomes in the way we did in the previous section and limit to the description
of some cases of failure and success of the therapy, with a special emphasis on the
situations in which results from the agent-based model and the PDE do not agree.

Reference parameters: ineffective treatment Let us first analyse Figs. 2.10a and 2.11a,
which show an excellent quantitative agreement between numerical solutions of the
system of PDEs (2.11) and the average over five numerical simulations of the agent-based
model both in one and two spatial dimensions. Unlike the previous situations, this model
predicts the infection to be confined at the centre of the tumour: this is due to the fact
that the central infection quickly causes the total cell density to drop, while external
uninfected cells proliferate; since cells cannot move towards an area with higher cell
density, the outer cells are never going to be infected and the tumour keeps expanding at
speed

√
Du p/2 (vertical dashed blue line in 2.10a and dashed cyan circle in Fig. 2.11a),

in the same way it would do in absence of treatment. This situation is similar to the
case of ineffective infection already observed in Fig. 2.6a, but it is important to observe
that here the infection rate has not been decreased with respect to the reference value.
Therefore, it is clear that in this model constraints to cell movement are responsible for
treatment failure.

It is important to remark that adding explicit viral dynamics to the model and
allowing the virus to diffuse without any constraint due to crowding effects would
result in an effective infection even in the case of pressure-driven cell movement (see
Section 4.1), but does not entirely capture the realism of the process. We are considering
a situation in which the virus faces some challenges in penetrating the tumour and thus
cell movement is clearly a major driver of viral propagation.

Treatment success in the continuous setting Since treatment failure is due to the
inability of the infection to propagate in the tumour, a simple solution to improve
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FIGURE 2.10: Comparison in one spatial dimension between numerical simulation of the discrete model
with pressure-driven movement (solid lines) and the numerical solution of Eq. (2.11) (dotted black lines) at
the same time t = 1500 h with different parameter values, all resulting in treatment failure according to
the discrete model. For the agent-based model, the density of the uninfected cells is represented in blue
and the density of infected cells in red. The vertical dashed blue lines represent the expected positions
of the uninfected invasion front, travelling at speed

√
Du p/2. The horizontal solid black lines show the

equilibrium of the ODE given by Eq. (2.15). The parameters employed are the ones given in Table 2.1,
with the exception of the infection radius Ri in panels (b) and (c) (which is set to 2.6 mm) and the carrying
capacity K in panel (c) (which is set to 105 cells/mm). The results of the agent-based model are averaged
over five simulations and the maximum of the cell density axes corresponds to the maximum of this average.
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FIGURE 2.11: Numerical simulation of the discrete model with undirected movement in two spatial
dimensions at the same time t = 1500 h with different parameter values, all resulting in treatment failure.
The dotted green circles represent the internal minimum of the numerical solution of Eq. (2.11). The dashed
cyan circles represent the expected positions of the uninfected invasion fronts, travelling at speed

√
Du p/2.

The dashed red circles represent the front of the infected cells given by the numerical solution of Eq. (2.11).
The parameters employed are the ones given in Table 2.1, with the exception of the infection radius Ri
in panels (b) and (c) (which is set to 2.6 mm) and the carrying capacity K in panel (c) (which is set to
105 cells/mm2). The results of the agent-based model are averaged over five simulations and the maximum
of the colorbars for uninfected and infected cells correspond to the maximum over time of the averages.
Note the finger-like formations.
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FIGURE 2.12: Comparison in one spatial dimension between numerical simulation of the discrete model
with pressure-driven movement (solid lines) and the numerical solution of Eq. (2.11) (dotted black lines)
at the same time t = 1500 h. The settings are the same ones as Fig. 2.10b, with the only difference that
the results of the agent-based model are now averaged over one hundred simulations. This allows us to
conclude that the mismatch is indeed consistently observed and should not be ignored.

outcomes could be to consider that infected cells are initially present in the whole tumour,
i.e. take Ri = Ru in Eq. (2.21). From the biological point of view, this corresponds to
multiple locations for the initial viral injection in contrast to a single central injection,
which has been considered so far. Figs. 2.10b and 2.11b indeed show that using this
approach the PDEs predict infected cells to be at all times at the tumour front, giving
rise to travelling waves qualitatively similar to the ones we observed in the model with
undirected movement. Nevertheless, the agent-based model again shows an infection
that fails to propagate in the whole tumour. This is due to the fact that, in this model,
demographic stochasticity plays a much more important role than in previous models:
any growth above the average of uninfected cells stops the movement of infected cells and
hence cannot be compensated at later times by other processes. Let us also observe that
the PDE predicts the presence of a very small infected cell density up to the uninfected
invasion front: in the discrete model, this corresponds to a number of infected cells
too low to guarantee a good quality of the continuous approximation (in these regards,
see also the discussions in Johnston et al., 2020; Macfarlane et al., 2022). Taking the
average over a higher number of realisations of the model does not significantly improve
the agreement, since the stochasticity of each simulation is not affected (see Fig. 2.12).
Overall, at this scale the discrete model cannot be accurately described by the continuum
model.

According to the formal derivation of the PDEs from the agent-based model, an
increase of cell number (which ensures that the evolution of the stochastic system diverges
less from the average behaviour described by the continuum model) and a decrease of the
temporal and spatial discretisation improve the quality of the continuum approximation.
Hence, we scaled the system by setting K = 105 cells/mm in one dimension and
K = 105 cells/mm2 in two dimensions. While this increase has no biological justification,
from the mathematical point of view it still makes sense to analyse at what scale we
obtain good agreements between the discrete and the continuous model. Figs. 2.10c and
2.11c show that, despite an excellent quantitative agreement at initial times, stochastic
events at some point inevitably cause external cells to start to grow: a positive feedback
loop then promotes cellular growth until carrying capacity, stopping any further spatial
propagation of the infection. We can thus conclude that only a further increase in the cell
number could guarantee a better agreement between the discrete and the continuum
model, although the biological meaning would be lost.

As we previously pointed out, although our model assumes unrestricted tumour
invasion in the surrounding tissues, physical obstacles may hinder the growth in vivo.
This might be particularly relevant for the kind of tumours that we consider in this
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section, as the same constraints could affect both the tumour cells and the viral particles.
The inhibition of the movement of cancer cells makes the tumour less aggressive and is
beneficial for virotherapy, as a confined tumour is more likely to be fully infected. In the
extreme case of a complete inhibition of cancer movement, a viral injection across the
whole tumour would clearly be enough to decrease the tumour burden. On the other
hand, the previous discussion explains how stochastic events prevent the infection from
propagating in the full domain; such stochastic events are likely to take place well before
a malignant tumour reaches an area in which cell movement is severely inhibited.

Treatment success in the discrete setting Let us now describe two parameter settings
that allow the discrete model to create travelling waves, so that the therapy is at least
partially successful. Figs. 2.11b and 2.11c show that in two dimensions the infection
propagates more easily than in one dimension, as there is more space to overcome the
unexpected growth of uninfected cells at single points; we therefore expect to observe
travelling waves in two dimensions by changing the reference parameter values in ways
less significant than in one dimension. Indeed, Fig. 2.13, along with the video accompa-
nying it (see electronic supplementary material S6 of Morselli et al., 2023), shows that an
increase in the number of cells and a decrease in the death rate of infected cells q give
rise to a wave in the two-dimensional discrete model, in agreement with the numerical
solution of the PDE. We recall that, in the model with undirected cell movement, the
decrease of the parameter q is associated with a highly effective therapeutic outcome; we
thus have an additional confirmation that in the discrete model, with pressure-driven
movement, partial success is not viable.

As we have already mentioned, in one spatial dimension, a good propagation of
infection in the discrete model is harder to achieve. The electronic supplementary video
S5 of Morselli et al., 2023 shows that a good agreement between the agent-based model
and the numerical solution of the PDE is still possible, but can only be attained in
unrealistic parameter ranges. Observe that in that simulation the diffusion coefficients
are much higher than the reference values, indicating again that cell movement is the
main obstacle to overcome for full success.

In both cases, reasonable increases in the infection rate β do not lead to a more
effective infection, as this causes a decrease in central cell density and creates the need for
infected cells to move against a pressure gradient. Clearly, further increases of β allow for
a fast eradication of the tumour in the case of spread infection and the problem caused
by the inhibition of movement becomes irrelevant; this, however, can be attained only if
we go beyond the biologically meaningful setting.

Other spatial patterns In this model, the role of stochasticity is so important that we
can see irregular configurations even maintaining the carrying capacity at the reference
value. Furthermore, let us set the death rate of infected cells at the same value of the
simulation in Fig. 2.13, as otherwise the therapy would not be effective in the discrete
model.

Fig. 2.14a shows that in this setting an increase of diffusion coefficients allows the
infection to propagate until approximately 1000 h, when it starts to be blocked by the
increase of the uninfected front. Observe how the stochastic events stopping the infection
take place at different times in different locations, giving rise to interesting finger-shaped
structures. The other simulations depicted in Fig. 2.14 have been obtained by considering
a higher probability of movement of infected cells with respect to uninfected cells: while
there is no clear biological evidence supporting this assumption, we may still interpret
it as a way to indirectly incorporate in our model, for example, a viral diffusion that is
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FIGURE 2.13: Numerical simulation of the discrete model with pressure-driven movement in two spatial
dimensions at three different times. The dotted green circles represent the internal minimum of the numerical
solution of Eq. (2.11) (not shown when this minimum is in 0). The dashed cyan circles represent the expected
positions of the uninfected invasion fronts in the absence of treatment, travelling at speed

√
Du p/2. The

dashed red circles represent the front of the infected cells given by the numerical solution of Eq. (2.11). The
parameters employed are the ones given in Table 2.1, with the exception of the carrying capacity K (which is
set to 105 cells/mm2, i.e. ten times the reference value) and the death rate of infected cells q (which is set to
8.33 × 10−3 h−1, i.e. one-fifth of the reference values). These parameter choices allow a perfect agreement
between the discrete and the continuous model, although their biological value is disputable. The results of
the agent-based model are averaged over five simulations and the maximum of the colorbars for uninfected
and infected cells correspond to the maximum over time of the averages.
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FIGURE 2.14: Numerical simulation of the discrete model with pressure-driven movement in two spatial
dimensions with different parameter values. The dotted green circles in panel (a) represent the internal
minimum of the numerical solution of Eq. (2.11). The dashed cyan circles represent the expected positions
of the uninfected invasion fronts in the absence of treatment, travelling at speed

√
Du p/2. The dashed red

circle in panel (a) represents the front of the infected cells given by the numerical solution of Eq. (2.11).
The parameters employed are the ones given in Table 2.1, with the exception of the death rate of infected
cells q (which is set to 8.33 × 10−3 h−1, i.e. one-fifth of the reference values), the diffusion coefficient
of infected cells Di (which is set to 1.50 × 10−1 mm2/h, i.e. ten times the reference value) the diffusion
coefficient of uninfected cells Du in panels (a), (b) and (d) (which is set to 1.50 × 10−1 mm2/h in panel (a), to
7.50 × 10−2 mm2/h in panel (b) and to 3.00 × 10−3 mm2/h in panel (d)) and the infection rate β in panel (d)
(which is set to 2.04× 10−1 h−1, i.e. twice the reference value). The maximum of the colorbars for uninfected
and infected cells correspond to the maximum over time of the simulation.
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slightly more efficient in the tumour microenvironment (so that both cell-to-cell contacts
and free viral particles contribute to new infections and thus the therapy is only partially
inhibited by the pressure). Fig. 2.14b shows that the lower motility of uninfected cells
allows the infection to occupy the whole tumour area. In few areas, uninfected cells
manage to survive and become harder to be infected as they keep growing, but the
therapy can still be considered effective. A further decrease of uninfected motility does
not improve the situation: Fig. 2.14c shows that, despite a very effective initial infection,
a few cells manage to survive and give rise to segregated structures that are almost
impossible to infect, due to the low uninfected cell motility. In the majority of the tumour,
uninfected cells are at carrying capacity and the tumour invasion of the surrounding
tissues has been only slightly slowed down with respect to the case without infection.
We can thus conclude that such a high difference in the motilities does not favour the
therapy. Finally, let us consider again the value of Du used for Fig. 2.14b and double the
infection rate β: as we may expect, this kind of infection makes the pressure decrease
in the infected areas and it is thus too fast to be effective. Fig. 2.14d shows the result of
this simulation, which is much more similar to 2.14c than to 2.14a. It is interesting to
observe that this strong segregation happens with parameter values quite close to the
ones that would cause a highly effective treatment, indicating how delicate the balance
between the different populations is. The general message is that a pressure-driven
scenario generates patterns and structures that can be hard for the virus to clear.

2.5 Conclusions

A minimal, individual-based model for the infection of tumour cells due to oncolytic
viruses, assuming two different mechanisms for cellular movement, has been developed.
In both cases we formally derive the deterministic continuum counterpart and compare
the numerical results in one and two spatial dimensions. The outcomes of the comparison
are highly dependent on the rules governing cells’ movement and show typical traits for
failure and successful outcomes.

In the model with undirected cell movement, the solution of Eq. (2.8) faithfully
mirrors the qualitative and quantitative properties of the results of the simulations of
the agent-based model: this agreement is robust to parameter variations and holds even
if the logistic growth is replaced by exponential growth. When lower cell densities
are considered, the quantitative agreement is partially lost, but the PDEs are still able
to correctly predict the treatment outcome. We can thus use our knowledge of the
continuous model to better understand the outcome of the therapy in different parameter
regimes and establish strategies and trends to help clinicians.

On the other hand, in the model with pressure-driven cell movement, the solution
of Eq. (2.11) exhibits travelling waves in situations in which simulations of the agent-
based model result in a localised infection in the centre of the tumour, especially in one
dimension. From the mathematical point of view, this can be addressed by increasing the
number of agents in the simulations and decreasing the temporal and spatial discreti-
sations. However, from the biological point of view, it makes no sense to consider such
a high cell density and stochastic effects cannot simply be neglected: therapy may fail
only because of the inhibition of movement due to the pressure. This represents quite a
hurdle from the treatment’s perspective and suggests that, in the absence of an immune
response, virotherapy is intrinsically limited for tumours whose microenvironments
constrain cell movement.

Note also that the two-dimensional patterns obtained from the agent-based simula-
tions are consistent with the ones discussed in the literature regarding oncolytic viral
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infection: for example, in Wodarz et al., 2012 the authors describe filled rings (similar
to our Figs. 2.5 and 2.6d), hollow rings (similar to our Fig. 2.6b), concentric rings (sim-
ilar to our Figs. 2.9, 2.13) and disperse patterns (similar to our Figs. 2.6d, 2.9d, 2.14b)
obtained both via in silico experiments and numerical simulations of an agent-based
model. But, in Wodarz et al., 2012, only a single cell can occupy a lattice point and,
therefore, concentric rings are due to stochasticity, whereas they are also originated by
PDEs in our model. Results are also consistent with the spatial patterns observed in Kim
et al., 2014, for glioma and ECM-degrading enzyme Chase-ABC. Structures like these
appear to be universal whenever tumour expansion is hindered. The different spatial
patterns are clearly associated to different degrees of therapeutic success: indeed, hollow
rings correspond to a better outcome than filled rings or disperse patterns. Our results
show how parameter variations are associated to the different structures, suggesting the
features that an ideal oncolytic virus would need. For example, the decrease of the death
rate of infected cells appears always beneficial; on the other hand, the increase of the
infection rate may not be associated to a more effective treatment if spatial constraints
are relevant. In any case, virotherapy alone appears unable to fully eradicate tumours.

We were also able to obtain segregated regions of uninfected cells (Figs. 2.14c and
2.14d) by considering a faster movement for infected cells in the agent-based model when
diffusion is pressure-driven. This kind of results resembles those of stochastic invasion
models (Lewis, 2000; Lewis and Pacala, 2000) and deterministic PDEs of predator and
prey with an Allee effect, due to the instability of the propagation front (Li, 2015; Morozov
et al., 2006; Petrovskii et al., 2005; Petrovskii et al., 2002). Unlike these two models,
though, in our case the segregation is due to the combination of pressure’s inhibition of
movement and stochasticity. It is interesting to observe that, despite all the differences
in the model, our results are in agreement with the observation of Li, 2015; Morozov
et al., 2006; Petrovskii et al., 2005; Petrovskii et al., 2002 that this “patchy invasion” takes
place for parameter values very close to the ones that would result in the extinction of
both populations. This could be important from a therapeutic perspective, suggesting to
exercise extra care when tumours’ growth is subject to pressure-related effects.

In all these cases, the comparison between the discrete and the continuous approach
allows us to better understand which phenomena are mainly driven by stochasticity and
which others can be described equally well by deterministic rules. It is interesting to
observe that the experiments in vitro of Wodarz et al., 2012 were performed in conditions
that prevent long-range spread of the virus away from infected cells and the different
patterns are observed in identical experimental conditions; this confirms our observation
that, in constrained environments, stochasticity should be taken into account. Although
our models do not have predictive power on those experiments, our results are still
useful to highlight the mechanisms that determine different outcomes.

From the mathematical point of view, a rigorous way to characterise the travelling
wave solutions of the system of PDEs (2.11) is lacking. While waves connecting (K, 0)
to (u∗, i∗) cannot be obtained starting from initial conditions in which the support of
i is surrounded by an area where u = K (and therefore, it is not possible to describe
a homogeneous population invaded by a new infection or predator), our numerical
simulations show that it makes sense to look for waves connecting (0, 0) to (u∗, i∗),
corresponding to the race between two expanding populations.

The models presented in this chapter do not include the immune response, whose
interactions with oncolytic viruses are still not entirely clear (Hemminki et al., 2020).
In recent years, the combination of oncolytic viruses with immunotherapy has shown
promising results (see Engeland et al., 2022 for a review of the topic); hence we tackle
such a shortcoming in the next chapter.
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3Interactions of the immune system with
oncolytic viral infections

The interplay between oncolytic viruses and immune cells is twofold: oncolytic viruses
are able to stimulate immune cells, not only against viral particles but also against tumour
cells; conversely, an immune response that targets the oncolytic virus may prevent an
effective infection in the whole tumour, making virotherapy inefficient (Shi et al., 2020).
The complexities of these dynamics motivate the use of mathematical models to gain a
deeper understanding, with the goal of suggesting optimal treatment schedules for the
combination of virotherapy and immunotherapies.

In Chapter 2, we observed partial tumour remission in absence of the immune
response in the case of unrestricted cell movement. The goal of the present chapter is to
analyse the impact of the immune system in this situation, with the aim of determining
whether eradication or long-term control of the tumour is attainable, at least in the
absence of relevant physical constraints.

Immune interactions with a tumour involve several different types of immune cells,
which are stimulated and inhibited by a large number of molecules. An accurate de-
scription of these processes goes beyond the scope of the present work. In order to
facilitate some theoretical understanding of the model, we restrict our attention to a
single type of immune cell, namely cytotoxic T-cells, with the ability to kill both infected
and uninfected tumour cells. We then assume that tumour cells secrete chemoattractant
and immune cells follow the chemotactic stimuli towards the tumour (see Painter, 2019
and the references therein); this leads to a hybrid and multiscale modelling approach.
Although the derivation of this kind of model from microscopic rules is well-known (see
Almeida et al., 2022 for the specific case of immune interactions with cancer and Bubba
et al., 2020a; Charteris and Khain, 2014 for more general situations), we are not aware
of any other work comparing agent-based and continuous models for the interactions
between the immune system and oncolytic viruses.

We consider a tumour with poor immune infiltration (i.e., a cold tumour in the
classification of Galon and Bruni, 2019) and assume that the infection by the oncolytic
virus induces an immune anti-tumour response by increasing immune cell inflow and
improving immune recognition. We also assume that the immune killing rate can be
enhanced (e.g., by inhibition of the PD-1 and PD-L1 checkpoints (Iwai et al., 2002)) and
we evaluate its consequences on the therapy. First, the spatially homogeneous ODE is
considered, revealing that some parameter regions give rise to stable limit cycles: this
is not surprising, as the same behaviour is also observed in similar models describing
interactions of cancer with immune cells (Eftimie et al., 2011a), oncolytic virus (Baabdulla
and Hillen, 2024; Jenner et al., 2018c; Jenner et al., 2019; Pooladvand et al., 2021) and both
entities together (Eftimie et al., 2016). Then, the effects of the oscillations are explored
in spatial models: in some situations, we observe the extinction of infected agents even
though the continuous model shows the recurrence of infection. Overall, our results
suggest that the enhancement of the immune response may either increase or decrease
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the effectiveness of oncolytic virotherapy, depending on the time and location of the viral
injection.

The chapter is organised as follows. In Section 3.1, we introduce the agent-based
model and present its continuum counterpart. In Section 3.2, we formally derive its
continuum counterpart. In Section 3.3, we study the equilibria of the spatially homoge-
neous ODE and the emergence of a stable limit cycle; this analysis provides some insights
into the oscillations observed in the full system. In Section 3.4, we compare the results
of numerical simulations of the agent-based model and the numerical solutions of the
corresponding PDEs, comparing it with the situation in which the immune response is
negligible. In Section 3.5, we discuss the main findings and provide some suggestions
for future research.

The model described in this chapter and the results shown have been submitted for
publication (Morselli et al., 2024b).

3.1 Description of the agent-based model

3.1.1 Agent-based model

We extend and improve upon the modelling framework described in Section 2.1 by
including immune cells, which are described as agents that occupy a position on a
discrete lattice in the same way as cancer cells. We also consider a chemoattractant
secreted by cancer cells that guide the movement of immune cells; its concentration
is described as a discrete, non-negative function. Observe that we are using a hybrid
discrete-continuous modelling framework, since the chemoattractant concentration is
the discretisation of a continuous function. For ease of presentation, in this section, we
restrict our attention to one spatial dimension, but there would be no additional difficulty
in considering higher spatial dimensions. In the following sections, we mainly focus
on two spatial dimensions, so, in Remark 3.1, we explain the small difference in this
situation.

Let us consider the temporal discretisation tn = τn, with n ∈ N0, 0 < τ ≪ 1, and the
spatial domain Ω ⊆ R with discretisation xj = δj, with j ∈ Z, 0 < δ ≪ 1; we assume τ
to be small enough to guarantee that all the probabilities defined hereafter are smaller
than 1. We denote the number of immune cells, uninfected and infected cancer cells that
occupy position xj at time tn respectively by Zn

j , Un
j and In

j ; the corresponding densities
are

zn
j :=

Zn
j

δ
, un

j :=
Un

j

δ
, in

j :=
In
j

δ

We then denote by ϕn
j the concentration of chemoattractant at time tn and position xj.

Since the spatio-temporal scales for the chemoattractant’s dynamics are very different
from cellular ones, we describe them with a deterministic discrete balance equation, as
in Almeida et al., 2022; Cooper and Kim, 2014. Table 3.1 summarises the variables of
the hybrid agent-based model and their macroscopic counterparts; Fig. 3.1 summarises
the rules governing the dynamics of the agent-based model. Cancer cells proliferate,
move, become infected and die in the same way as in Chapter 2. The dynamics of the
chemoattractant and of the immune cells represent a novelty with respect to our previous
work and resemble some other models in the literature, as explained in the following.
We assume that the infection stimulates the immune system by increasing the number of
immune cells in the area and guiding them towards infected cells; once an immune cell
comes in contact with a cancer cell, it is able to kill it even if it is not infected.
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FIGURE 3.1: Schematic representation of the rules governing cell dynamics in the stochastic models.
Uninfected cells are represented in blue, infected cells in red and immune cells in green. Uninfected cells
may proliferate or die according to the total density, move, become infected upon contact with infected cells
and die upon contact with immune cells. Infected cells may move, die with constant probability and die
upon contact with immune cells. Immune cells may enter the domain, move with the probabilities given in
Eq. (3.3) and die with constant probability. The model also considers the dynamics of the chemoattractant,
which are not included in the figure due to the different modelling approach adopted (i.e., density-based
and deterministic instead of individual-based and stochastic).
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Quantity Microscopic variable [Units] Macroscopic variable [Units]

uninfected cancer cells Un
j [cells] u(t, x) [cells/mm2]

infected cancer cells In
j [cells] i(t, x) [cells/mm2]

immune cells Zn
j [cells] z(t, x) [cells/mm2]

chemoattractant ϕn
j [µg/mm2] ϕ(t, x) [µg/mm2]

TABLE 3.1: List of the variables for both approaches, with their units of measurement.

Basic dynamics of cancer cells We refer to Section 2.1 for the description of proliferation,
infection, movement and death of cancer cells. In this chapter, we restrict our attention
to the case of undirected random movement; furthermore, for the sake of simplicity, we
consider that infected and uninfected cells move with the same probability, which we
denote by θ.

Dynamics of the chemoattractant We assume that uninfected and infected cells produce
chemoattractant at rates γϕ and αϕ, respectively. We choose their values so that αϕ ≫
γϕ > 0, in line with our assumption that the tumour is initially cold and the infection
by the oncolytic virus is enough to induce an immune anti-tumour response, as often
observed in vivo and in vitro (Galon and Bruni, 2019). Chemoattractant density cannot
grow unlimited, therefore it saturates at ϕ∗ > 0. The chemoattractant also decays at rate
qϕ > 0 and diffuses. The resulting balance equation is

ϕn+1
j = ϕn

j + τDϕ

ϕn
j+1 + ϕn

j−1 − 2ϕn
j

δ2 + τ(αϕin
j + γϕun

j )(ϕ
∗ − ϕn

j )− τqϕϕn
j (3.1)

where Dϕ > 0 is the diffusion coefficient. This equation closely resembles the ones used
in Almeida et al., 2022; Bubba et al., 2020a to model the evolution of a chemoattractant
concentration.

Dynamics of immune cells We assume that there is a constant influx of immune cells
into the microenvironment independent of the presence of cancer cells. In addition to
this, we assume that infection by the oncolytic virus stimulates an immune response
in the whole tumour. Hence, an immune cell appears at point xj at time step tn with
probability τδSn

j , given by

Sn
j =

(
S0 + αz ∑

h
In
h

)
1ω(xj) (3.2)

where 1ω is the indicator function of the set ω ⊂ Ω, S0 > 0 is the base inflow rate and
αz > 0 is the additional inflow rate due to the infection; the latter takes into account the
total number of infected cells in the domain. In principle, we could vary ω to model the
fact that some areas of the tumour are harder to reach for immune cells (e.g. due to poor
vascularisation), although this goes beyond the scope of the present work. It is important
to observe that the increase of the inflow due to infected cells is nonlocal, as in Almeida
et al., 2022; this resembles the recruitment of immune cells from adjacent lymph nodes
and the subsequent arrival through blood vessels.

We then assume that an immune cell that occupies position xj at time tn moves to
the lattice point xj±1 with probability Fn

j→j±1 and remains at its initial position with
probability 1 − Fn

j→j−1 − Fn
j→j+1. We include both undirected, random movement and

chemotactic movement up the gradient of the chemoattractant: this latter part depends
on the difference between the chemoattractant concentration at the initial position of the
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cell and the concentration of chemoattractant at the target point. We therefore set

Fn
j→j±1 :=

θz

2
+ ν

(ϕn
j±1 − ϕn

j )+

2ϕ∗ (3.3)

where z+ := max{z, 0}, ϕ∗ is the saturation density of the chemoattractant and θz, ν ∈
[0, 1] with θz + ν < 1. Observe that, if 0 ≤ ϕn

j ≤ ϕ∗ for every j, then all the probabilities
are between 0 and 1. This kind of reasoning and the probabilities associated have already
been employed in Almeida et al., 2022; Bubba et al., 2020a.

Finally, we assume that at every time step an immune cell dies with probability τqz,
where qz > 0 is a constant death rate.

Cytotoxic action of the immune cells We assume that cancer cells may be killed by the
cytotoxic action of immune cells upon contact; this happens at a rate proportional to the
density of immune cells. To be precise, a cancer cell that occupies position xj at time tn
dies with probability τζzn

j /K, where K is the carrying capacity and ζ > 0 is a constant
killing rate. For the sake of simplicity, we assume that the killing rate is the same for
every cancer cell, although it could make sense to consider situations in which infected
cells are more easily recognised by immune cells and, thus, are killed at a higher rate.
This process is analogous to the infection of cancer cells described above.

3.2 Formal derivation of the corresponding continuum model

We now derive the continuum counterparts of the agent-based models described in the
previous section, using techniques analogous to those employed in Section 2.2 and in the
references mentioned there.

3.2.1 Uninfected cancer cells

Uninfected cells can first move, then reproduce or die based on the pressure value, then
become infected and finally be killed by immune cells, as explained in Section 3.1. The
principle of mass balance gives the equation

un+1
j =

[ θ

2
un
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θ

2
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j

][
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j )−
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×
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β

K
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j

)(
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ζ

K
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j

)
where rhon

j := un
j + in

j . Using the algebraic relation x+ − x− = x, this simplifies to
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2
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)
Let us define
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θ

2
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2
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2
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j+1 − 2un
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so that the previous equation becomes
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We now divide both sides of the previous equation by τ and rearrange the terms to get
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j

τ
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j )u
n
j −

β

K
un

j in
j −

ζ

K
un

j zn
j +

1
τ

Φ + H1 (3.4)

and observe that every term of H1 is multiplied either by τ or by Φ.
Let us now assume that there is a function u ∈ C2([0,+∞) × R) such that un

j =

u(tn, xj) = u (from now on we omit the arguments of functions computed at (tn, xj));
thus, we can use Taylor expansions for u in time and space as follows

un+1
j = u(tn + τ, xj) = u + τ∂tu +O(τ2)

un
j±1 = u(tn, xj ± δ) = u ± δ∂xu +

1
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δ2∂2
xxu +O(δ3)

This implies that
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θ

2
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and thus H1 = O(τ) +O(δ2). Eq. (3.4) then becomes
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K
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K
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Letting τ, δ → 0 in such a way that δ2

2τ → D̃, we obtain
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xxu + G(ρ)u − β

K
ui − ζ

K
uz

3.2.2 Infected cancer cells

Infected cells can first move, then die, as explained in Section 3.1. Also, uninfected cells
may be infected. The principle of mass balance gives the equation
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which simplifies to
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Let us observe that every term of H2 and H3 is multiplied either by τ, Φ or Ψ. Dividing
both sides by τ and rearranging the terms, we get
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Ψ − qin
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Let us now assume that there is a function i ∈ C2([0,+∞) × R) such that in
j =

i(tn, xj) = i, so that

in+1
j = i(tn + τ, xj) = i + τ∂ti +O(τ2)

in
j±1 = i(tn, xj ± δ) = i ± δ∂xi +

1
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δ2∂2
xxi +O(δ3)

This implies that

Ψ =
θ

2
δ2∂2

xxi +O(δ3)

and thus H2 + H3 = O(τ) +O(δ2). Eq. (3.5) then becomes

∂ti +O(τ2) = θ
δ2

2τ
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xxi +
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K
ui − ζ

K
iz − qi +O(τ) +O(δ2)

Letting τ, δ → 0 in such a way that δ2

2τ → D̃ we obtain

∂ti = θD̃∂2
xxi +

β

K
ui − ζ

K
iz − qi

3.2.3 Chemoattractant

The chemoattractant is produced by cancer cells, decays at a constant rate and diffuses,
as explained in Section 3.1; its dynamics are described by Eq. (3.1), which can be written

3.2. Formal derivation of the corresponding continuum model 67



as
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j − ϕn
j

τ
= Dϕ

ϕn
j+1 + ϕn
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j

δ2 + (αϕin
j + γϕun

j )(ϕ
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j )− qϕϕn
j (3.6)

Let us now assume that there is a function ϕ ∈ C2([0,+∞)× R) such that ϕn
j = ϕ(tn, xj)

= ϕ. Then clearly the discrete diffusion term converges to the second derivative of ϕ,
hence for τ, δ → 0 we obtain

∂tϕ = Dϕ∂2
xxϕ + (αϕi + γϕu)(ϕ∗ − ϕ)− qϕϕ

3.2.4 Immune cells

Immune cells can first move, then die, as explained in Section 3.1. Also, new immune
cells may enter the domain. The principle of mass balance gives the equation
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Observe that the source term is no longer multiplied by δ, since we are considering the
cell density. The previous equation can be written as
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Dividing both sides by τ and rearranging the terms, we get
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Let us now assume that there is a function z ∈ C2([0,+∞) × R) such that zn
j =

z(tn, xj) = z, so that

zn+1
j = z(tn + τ, xj) = z + τ∂tz +O(τ2)

zn
j±1 = z(tn, xj ± δ) = z ± δ∂xz +

1
2

δ2∂2
xxz +O(δ3)

This implies that

Ξ1 =
θz

2
δ2∂2

xxz +O(δ3)
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Furthermore, the assumptions on ϕ imply that
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and we can easily conclude that Ξ = O(δ). We then use the Taylor expansion of z in the
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Ξ2 =
ν

2ϕ∗

{
−δ2∂2

xxϕz + δ[−(δ∂xϕ +O(δ2))+ + (−δ∂xϕ +O(δ2))+]∂xz +O(δ3)
}
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Letting τ, δ → 0 in such a way that δ2

2τ → D̃ we arrive at the final result:
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3.2.5 Summary of the continuum model

The system we have formally obtained is the following:

∂tu(t, x) = D∂2
xxu(t, x) + pu(t, x)

(
1 − u(t, x) + i(t, x)

K

)
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K
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K
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∂x(z(t, x)∂xϕ(t, x))− qzz(t, x) + S(t, x)

∂tϕ(t, x) = Dϕ∂2
xxϕ(t, x) + (αϕi(t, x) + γϕu(t, x)) (ϕ∗ − ϕ(t, x))− qϕϕ(t, x)

(3.8)

where D := θD̃, Dz := θzD̃, χ := νD̃ and

S(t, x) :=
(

S0 + αz

∫
Ω

i(t, y)dy
)
1ω(x)

The first two equations are the ones of Eq. (2.8) with the addition of the death term
related to the immune system; we therefore expect to recover similar results for small ζ.
This system resembles some of the models discussed in Painter, 2019 for the interactions
between cancer and different kinds of immune cells, with the relevant differences being
that one of our equations is integro-differential (as in Almeida et al., 2022) and that the
infection significantly affects the dynamics, spatially and temporally.

In the next section, we consider the two-dimensional radially equivalent version of
this problem. Hence, we assume that

ω := { x ∈ Ω | |x| ≤ R } (3.9)

with R > 0; this corresponds to the situation of a well-vascularised tumour in which
immune cells can easily reach any point of the domain or that of a solid tumour that is
easily accessible by the immune system both from the histological and topological point
of view. The system of PDEs then becomes

∂tu = D
1
r

∂r(r ∂ru) + pu
(

1 − u + i
K

)
− β

K
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uz
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K
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1
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∂r(r ∂rz)− χ

ϕmax

1
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∂r(rz ∂rϕ)− qzz + S

∂tϕ = Dϕ
1
r

∂r(r ∂rϕ) + (αϕi + γϕu) (ϕ∗ − ϕ)− qϕϕ

(3.10)

with

S(t, r) :=
(

S0 + 2παz

∫ r

0
i(t, s)s ds

)
1[0,R](r)

Remark 3.1 When the spatial domain is the two-dimensional real plane R2 instead of the one-
dimensional real line R, the scalar index j ∈ Z should be replaced by the vector j = (jx, jy) ∈ Z2

and the probability that a cell moves to one of the four neighbouring lattice points is θk/4, with
k = u, i. We then need to scale τ and δ in such a way that δ2

4τ → D̃.
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3.3 Corresponding ODE model and bifurcation analysis

Before comparing the agent-based and the continuous model, it is useful to consider a
homogeneous spatial configuration and analyse the equilibria of the corresponding ODE
model and their stability. The chemoattractant has the sole purpose of guiding immune
cells, therefore it can be neglected in this nonspatial model. Hence, we now consider the
system 

du
dt

= pu
(

1 − u + i
K

)
− β

K
ui − ζ

K
uz

di
dt

=
β

K
ui − qi − ζ

K
iz

dz
dt

= αi − qzz + Sz

(3.11)

It is important to observe that the inflow of immune cells in Eq. (3.8) depends on the
total number of infected cells and not just on the local infected cell density. If we consider
that u, i and z are homogeneous in the spatial domain Ω and ω = Ω, then

1ω(x)
∫

Ω
i(t, y)dy =

∫
Ω

i(t)dy = |Ω| i(t)

Hence, in this situation, the parameter α in Eq. (3.11) corresponds to the parameter αz of
Eqs. (3.8) and (3.2) multiplied by the measure of the set Ω (denoted by |Ω|).

The equilibria are (0, 0, Sz
qz
), (K − ζSz

pqz
, 0, Sz

qz
), (u∗, i∗, z∗) and (0,− qqzK

αζ − Sz
α ,− qK

ζ ). The
latter exists only for α, ζ ̸= 0; it is always negative, so we can neglect it. The third one is
defined by the expressions

u∗ :=
qK
β

+ ζz∗, i∗ :=
Kpqz(β − q)− Szβ(ζ + p

β ζ)

β[qz(β + p) + α(ζ + p
β ζ)]

, z∗ :=
α

qz
i∗ +

Sz

qz
(3.12)

When α = Sz = 0, we recover the equilibria in the absence of the immune response (see
also Chapter 2). As α and Sz increase, u∗ increases and i∗ decreases. Similarly, when
ζ = 0, the equilibria are analogous to the situation without immune response (although
the value of z at the equilibrium may not be 0).

The Jacobian matrix computed at the equilibrium point (0, 0, Sz
qz
) has eigenvalues

(−qz, p − Szζ
Kqz

,−q − Szζ
Kqz

) and the Jacobian matrix computed at the equilibrium point

(K − ζSz
pqz

, 0, Sz
qz
) has eigenvalues (−qz,−p + Szζ

Kqz
, β − q − Sz(βζ+pζ)

Kpqz
). The first equilibrium

is stable when
Kpqz < Szζ

corresponding to the situation in which the uninfected cell density of the second equilib-
rium is negative. This means that the immune system alone may be able to eradicate the
tumour without the need for any oncolytic virus. The second equilibrium is stable in case
neither the first equilibrium is stable nor i∗ > 0. In this case, the oncolytic virotherapy is
not effective and the outcome of the therapy depends entirely on the immune response.
Let us observe that the density of uninfected cells K − ζSz

pqz
is increasing in the parameters

ζ, Sz and decreasing in p, qz: while a complete tumour eradication is unattainable, we
may still keep the tumour at an acceptable size if the immune response is strong enough.

The expressions for the eigenvalues of the Jacobian matrix computed at the third
equilibrium point are more complicated. Numerical simulations show that, in the
parameter region where i∗ > 0, either this equilibrium is stable or there appears a stable
limit cycle. Fig. 3.2 shows numerical bifurcation diagrams for the parameters α, β and
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FIGURE 3.2: One parameter bifurcations in α, ζ and β of Eq. (3.11), with other parameters as in Table 3.2.
The immune killing rate ζ has been set to the base value 0.50 h−1. In order to facilitate comparison with the
forthcoming two-dimensional simulations, we set α = πr2αz with r = 5 mm (corresponding to a late stage
of tumour growth). The green dots show the maximum and minimum values of U/K during the oscillations
of the stable limit cycle. The solid lines show the value of the equilibrium of U divided by K; the line is red
if the equilibrium is stable and black if it is unstable. Hopf bifurcations are denoted by HB. Observe that for
low values of β the infection-free equilibrium close to carrying capacity is stable.
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FIGURE 3.3: Numerical simulation of Eq. (3.11) with the parameters as in Table 3.2 and different values of
the immune killing rate ζ. As in Fig. 3.2, we set α = πr2αz with r = 5 mm. Uninfected tumour cells are
plotted in blue, infected tumour cells in red and immune cells in green. The oscillations become wider as ζ
increases, in accordance with the bifurcation diagram of Fig. 3.2b.

72 3. Interactions of the immune system with oncolytic viral infections



Parameter Description Value [Units] Reference

p maximal duplication rate of unin-
fected cells

1.87 × 10−2 [h−1] Ke et al., 2000

q death rate of infected cells 8.34 × 10−3 [h−1] model estimate

D diffusion coefficients of cancer cells 1.88 × 10−4 [mm2/h] estimate based on Kim
et al., 2006

β infection rate 1.02 × 10−1 [h−1] estimate based on Fried-
man et al., 2006

K tissue carrying capacity 104 [cells/mm2] Lodish et al., 2008

Dϕ diffusion coefficients of chemoattrac-
tant

3.33 × 10−2 [mm2/h] Matzavinos et al., 2004

ϕ∗ saturation density of chemoattrac-
tant

2.92 [µg/mm2] Gao et al., 2014

αϕ secretion of chemoattractant by in-
fected cells

2.50 × 10−4 [mm2/(h·cells)] model estimate

γϕ secretion of chemoattractant by un-
infected cells

5.00 × 10−6 [mm2/(h·cells)] model estimate

qϕ decay of chemoattractant 8.33 × 10−2 [h−1] Cooper and Kim, 2014

Dz diffusion coefficients of immune
cells

4.20 × 10−3 [mm2/h] Almeida et al., 2022

χ chemotactic coefficient of immune
cells

1.65 × 10−1 [mm2/h] model estimate

qz death rate of immune cells 7.50 × 10−3 [h−1] Hao et al., 2014

S0 base inflow rate of immune cells 5.00 × 10−2 [cells/(mm2·h)] model estimate

αz inflow rate of immune cells due to
the infection

3.75 × 10−5 [(mm2·h)−1] model estimate

ζ immune killing rate of cancer cells 0.50 or 5.00 [h−1] model estimate

Ru initial radius of uninfected cells 2.60 [mm] Kim et al., 2006

Ri initial radius of infected cells 1.00 [mm] model estimate

TABLE 3.2: Reference parameter set used in this chapter.

ζ. The diagrams were obtained using the software auto, which allows the study of
the stability of equilibria and limit cycles through numerical continuation. In all three
cases, we observe the appearance of a Hopf bifurcation; in these continuations, the other
parameters of Eq. (3.11) are set to the values of Table 3.2. The size of the oscillations of the
limit cycle increases as α and ζ increase, and decreases as β increases. As a consequence,
the enhancement of the immune response may significantly decrease the effectiveness
of the therapy. However, it is fundamental to also consider that, in some cases, the
oscillations have a minimum very close to zero, as it is clear from the time series of
Fig. 3.3: if we take into account a discrete number of cells, they may go extinct when
approaching the minimum due to stochastic events and the following regrowth may not
take place. Variations of the parameter p never result in a bifurcation of this equilibrium
(at least when all the other parameters are within the range of our interest), but the
size of the oscillations during the convergence decreases as p increases; a few particular
parameter combinations result into a monotone convergence towards the equilibrium
(e.g., for a high value of p).

3.4 Comparison between agent-based and continuum models

In this section, we compare numerical simulations for the agent-based model with the
corresponding PDE system. It is useful to recall that, in the absence of an immune
response, the uninfected cells form a travelling wave invading the surrounding area
at speed 2

√
Dp and infected cells invading a region in which uninfected cells are at
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carrying capacity form a travelling wave moving at speed 2
√

D(β − q), as discussed
in Chapter 2. These results cannot be easily generalised to Eq. (3.8), as the chemotactic
movement of immune cells does not fall within this framework. We may still expect that
uninfected cells invade a region where the number of immune cells can be neglected and
thus the expression 2

√
Dp is still a good approximation of the invasion speed. However,

we should not expect the considerations about the equilibria of Eq. (3.11) to directly
apply to the expanding central region, due to both chemotaxis and the nonlocal term in
the equation.

3.4.1 Details of numerical simulations

Parameter values The majority of the parameters of the model have been estimated
from the empirical literature, while a few others are specific to our formulation of the
model and have been set to reasonable values in order to reproduce plausible dynamics.
The parameters p, D, K and β assume the values listed in Table 3.2, which are the same
used in Chapter 2. On the other hand, the basic death rate of infected cells q has been
decreased to 8.34 × 10−3 h−1, which is one-fifth of the value used in Chapter 2. This
is due to the fact that, in the current model, q does not take into account the death of
infected cells due to immune killing, which is considered separately.

The diffusion coefficient of the chemoattractant Dϕ has been taken equal to 3.33 ×
10−2 mm2/h following Matzavinos et al., 2004. The saturation density of the chemoattrac-
tant ϕ∗ and the secretion rates of chemoattractant by infected cells αϕ have been adapted
from the values reported in Jenner et al., 2022, which fit the data of IFN γ taken from Gao
et al., 2014. The value of ϕ∗ has been obtained by rescaling the estimate of Jenner et al.,
2022 to our two-dimensional setting, yielding a value of 2.92 µg/mm2. The secretion rate
reported in Jenner et al., 2022 refers to a single CD4+T and these cells are assumed to be
stimulated by infected tumour cells; we have adapted their value to our setting by divid-
ing it by the carrying capacity K, obtaining the value αϕ = 2.50 × 10−4 mm2/(h·cells).
Since we are assuming that immune cells are much less stimulated by uninfected tu-
mour cells, we have set the secretion rate of chemoattractant by uninfected cells γϕ

to 5.00 × 10−6 mm2/(h·cells), which still allows obtaining a considerable reduction
of the tumour load when the infection stimulates the immune system. The decay of
chemoattractant qϕ has been taken equal to 8.3 × 10−2 h−1, as in Cooper and Kim, 2014.

While it is clear from experimental results that the speed of an immune cell is around
1.08 mm/h (Textor et al., 2011), the estimate of the diffusion and chemotactic coefficients
Dz and χ from this consideration constitute a particular challenge. The diffusion coef-
ficient of immune cells has been set to Dz = 4.20 × 10−3 mm2/h, as in Almeida et al.,
2022, noting that similar values are used elsewhere in the literature (such as in Atsou
et al., 2020). We remark that, following the approach of Hillen and Swan, 2016; Othmer
and Hillen, 2002, one could estimate a value in the same order of magnitude relying on
reasonable biological assumptions (although the precise quantities needed are hard to
estimate). We performed several simulations of our agent-based model to conclude that
for χ = 1.65 mm2/h immune cells move toward a gradient of chemoattractant similar to
the one present in our simulations (i.e., the stationary profile of the chemokines for the
initial condition of our simulations) with an average speed of approximately 0.6 mm/h.
We decrease this value to χ = 0.165 mm/h2 to avoid an excessive concentration of
immune cells; the resulting average speed is around 0.06 mm/h, which is plausible
considering that immune cells face many physical obstacles in penetrating the tumour
microenvironment.

The death rate of immune cells qz has been taken equal to 7.5 × 10−3 h−1, which is
the value used in Hao et al., 2014 for T4 cells. The base inflow rate of immune cells S0 has
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been set to 5.00× 10−2 cells/(mm2·h) in order to have a density of immune cells inside the
tumour coherent with experimental observations (Chatzopoulos et al., 2020; Yasuda et al.,
2011). The additional inflow rate of immune cells due to the infection αz is one of the main
peculiarities of our model and summarises several biological processes; hence, it is hard
to find meaningful estimates in the literature. We have set it to 3.75 × 10−5 (mm2·h)−1,
which allows us to have an immune cell density comparable with the aforementioned
experimental references. The same problem arises with the immune killing rate of cancer
cells ζ: since the model is very sensitive to this parameter, we compare the differences
between setting it to 0.50 h−1 and 5.00 h−1, corresponding respectively to weak and
enhanced immune responses.

In our simulations, we consider a spatial domain Ω := [−L, L]2 with L = 10 mm and
we adopt zero-flux boundary conditions. We define ω as in Eq. (3.9) in order to maintain
the radial symmetry of the problem, with R = L. The initial conditions are

u0(x) =

{
0.9 K for |x| ≤ Ru

0 for |x| > Ru
i0(x) =

{
0.1 K for |x| ≤ Ri

0 for |x| > Ri
(3.13)

where Ru and Ri are respectively the initial radius of uninfected and infected cells; initial
conditions for z and ϕ are 0 across the whole domain. The reference case with Ru > Ri
corresponds to the intratumoral injection of the virus (Jin et al., 2021). On the other hand,
in some simulations, we assume that Ru = Ri, which corresponds to an infection of the
whole domain: since we consider a tumour that can be infiltrated by the immune system
without major obstacles, it is reasonable to assume that this could be obtained with an
intravenous administration of the virus (Jin et al., 2021).

Numerical simulations for the discrete models We used a temporal step τ = 0.02 h
and a spatial step of δ = 0.1 mm, as already done in Chapter 2. All simulations have
been performed in MATLAB 2021B.

At every iteration, the cell numbers and the chemoattractant density are updated
according to the rules described in Section 3.1. We first consider movement, then repro-
ductions and deaths of all cell populations, the inflow of immune cells, infections and
finally chemoattractant dynamics. Since we only need to keep track of the collective fate
of cells in the same lattice point, we again used the built-in MATLAB functions binornd
and mnrnd. Zero-flux boundary conditions for cell populations are implemented by not
allowing cells at the boundary to leave the domain. The density of the chemoattractant is
updated through the two-dimensional analogue of Eq. (3.1); Neumann boundary condi-
tions are then implemented by considering additional grid points outside the domain,
with the same density value as the boundary points of the grid.

The one-dimensional plots in Figs. 3.4a, 3.5 and 3.6a are obtained by averaging
ten simulation. The cell sums of Fig. 3.17 are obtained by averaging five simulations
(although the cell sum obtained from a single simulation does not show any significant
difference). All the two-dimensional plots show a single simulation. We remark that,
in all cases, we performed at least five simulations and did not observe any relevant
qualitative difference with respect to the result shown; the only exception is Fig. 3.13 and
the electronic supplementary material S6 of Morselli et al., 2024b, as explained in the
following.

In order to allow reproducibility, a random seed has been set at the beginning of
each new simulation. In the figures representing a single simulation, only the one with
random seed equal to 1 is shown (with the exception of the electronic supplementary
material S6 of Morselli et al., 2024b, in which it has been set to 4, and Fig. 3.11, in which
it varies between 2 and 5).
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Numerical simulations for the continuum models The system of equations (3.10) has
been solved with a finite difference scheme explicit in time, using the discretisations
∆t = 10−4, ∆x = 0.01; such a low space step allows to appropriately describe the high
peaks of immune cells of some simulations. The only exceptions are the simulations of
Fig. 3.9, which are run for a very long time in a bigger domain: there, the discretisation
for space is ∆x = 0.02, which guarantees stability at late times without the need to
decrease the time step. We used a forward upwind scheme for the chemotactic term
in the equation for immune cell density, following LeVeque, 2007; this is a common
strategy to deal with this kind of equations (Almeida et al., 2022; Bubba et al., 2020a).
The integrals are computed through the built-in MATLAB function trapz, which is based
on a linear interpolation of functions. We also use again the threshold 1

δ2 to identify the
wavefront of infected cells in the solution of the PDE; this allows us to be consistent with
the representation of the agent-based model.

3.4.2 Interactions between the tumour and the immune system in the absence
of virotherapy

We first describe the behaviour of the model without oncolytic viral infection, in order to
better understand the basic interactions between the tumour and the immune system.
Fig. 3.4 shows an excellent qualitative agreement between numerical solutions of the
system of PDEs (3.10) with i0(x) = 0 and a single simulation of the agent-based model.
The number of immune cells involved is so low that stochastic fluctuations cannot be
neglected; hence, the quantitative difference between the two modelling approaches is
significant; however, it is enough to consider the average over ten simulations to obtain
an improved quantitative agreement. For the sake of clarity, Fig. 3.4a represents the
central section of the domain, i.e. the set [−L, L]×{0}. At the beginning of the simulation,
there are no immune cells in the domain, hence the tumour starts to grow towards the
carrying capacity and to invade the surrounding area at the speed 2

√
Dp (vertical blue

lines in Fig. 3.4a). In the meantime, immune cells enter the domain at the constant rate
S0. Although uninfected cells secrete much less chemoattractant than infected cells, the
high number of cells guarantees a chemoattractant secretion sufficient to guide immune
cells. Therefore, the immune cell density stabilises around the equilibrium value S0/qz
(lower horizontal black line in Fig. 3.4a) only far from the tumour, while it is higher
inside the tumour and almost 0 around the boundary due to chemotaxis. The presence of
immune cells decreases the tumour cell density to approximately K − ζ

p z(t, x) (the upper
horizontal black line in Fig. 3.4a uses the value z(t, 0) for simplicity).

As time passes, the area of the tumour increases and the total number of immune
cells reaches a steady state; this is due to our assumption that uninfected tumour cells are
unable to stimulate the immune system. As a consequence, immune cell density decreases
and tumour cell density increases. The maximum density of the chemoattractant stabilises
around a value slightly larger than 1 µg/mm2, which is slightly more than a third of ϕ∗

(see Fig. 3.7b). Overall, the total number of tumour cells increases in time, although at a
lower rate than it would do in the absence of an immune response.

When the immune killing action is enhanced, clearly, the tumour cell density de-
creases, as Fig. 3.5 shows. It is important to observe that in this situation, even though
the total number of immune cells does not change, the immune cell density inside the
tumour is smaller than before: this is due to the fact that fewer tumour cells secrete less
chemoattractant (the maximum value is now around 0.85 µg/mm2, as shown in Fig. 3.7b);
as a consequence, the chemotactic component of the immune cell movement is weaker
than before and the immune density is more homogeneous in the whole domain due to
diffusion. The tumour is still very far from eradication and even a more effective immune
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FIGURE 3.4: Numerical simulations of the agent-based model with the parameters given in Table 3.2 and
ζ = 0.50 h−1 in the absence of oncolytic viral infection (i.e., with Ri = 0). Panel (a) represents cell densities
obtained on the horizontal section of the domain [−L, L]× {0} by averaging ten simulations: the density
of the uninfected tumour cells is the blue solid line and the density of the immune cells is the green solid
line; observe that the scales are different. The dotted black lines show the numerical solution of Eq. (3.10).
The vertical blue dashed lines represent the expected positions of the uninfected invasion front, travelling
at speed 2

√
Du p. The horizontal solid black lines show respectively the equilibrium of the ODE for the

immune cell density in the absence of infected cells S0/qz (the actual concentration is larger inside the
tumour due to chemotaxis) and the expected central tumour density K − ζ

p z(t, 0) with t = 1000 h. All the
other panels show the result of a single simulation. The dashed cyan circles in panels (b) and (c) represent
the expected positions of the tumour invasion front, travelling at speed 2

√
Du p. The dotted green circle in

panel (b) represents the internal minimum of the numerical solution of Eq. (3.10). In panel (d), solid lines
refer to the agent-based model and dotted lines refer to the continuum model. In all the cases, the maximum
of the axes and the colorbars correspond to the maximum over time of the quantity plotted.
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FIGURE 3.5: Numerical simulations of the agent-based model with the parameters given in Table 3.2 and
ζ = 5.00 h−1 in the absence of oncolytic viral infection (i.e., with Ri = 0). All the graphical elements have
the same meaning as Fig. 3.4.
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FIGURE 3.6: Numerical simulations of the agent-based model with the parameters given in Table 3.2,
ζ = 0.50 h−1 and central oncolytic viral infection. Panel (a) represents cell densities on the horizontal section
of the domain [−L, L]× {0} obtained by averaging ten simulations: the density of the uninfected tumour
cells is the blue solid line and the density of the infected tumour cells is the red solid line; immune cell
density is not shown, as it would superimpose the infected tumour cell density. The dotted black lines show
the numerical solution of Eq. (3.10). The vertical blue dashed lines represent the expected positions of the
uninfected invasion front, travelling at speed 2

√
Du p. The horizontal solid black lines show the equilibrium

of the ODE given by Eq. (3.12) with the value α = αzπr(t)2, where r(t) is the radius of infected cells at
time t = 1000 h. All the other panels show the result of a single simulation. The dashed cyan circles in
panels (b) and (c) represent the expected positions of the tumour invasion front, travelling at speed 2

√
Du p.

The dotted green circle in panels (b) and (c) represents the internal minimum of the numerical solution of
Eq. (3.10). In panel (d), solid lines refer to the agent-based model (uninfected, infected and immune cells
are represented respectively in blue, red and green) and dotted lines refer to the continuum model. The
maximum of the axes and the colorbars correspond to the maximum over time of the quantity plotted,
except panel (a), in which the maximum was scaled to enhance readability.

system may not be able to eradicate the mass completely, as a few tumour cells do not
secrete enough chemoattractant to guide immune cells. This is in line with the empirical
observation that immunotherapy alone usually cannot eradicate cold tumours (Galon
and Bruni, 2019). We remark that an analogous situation is observed when the immune
inflow is multiplied by a factor of ten (not shown), i.e. no eradication is achieved even
when the immune inflow is highly enhanced.

3.4.3 Central infection by oncolytic virus and weak immune response

Expanding on the results of the previous section, we now investigate the effects of an
oncolytic viral infection on the immune response and tumour growth. Fig. 3.6, along
with the videos accompanying it (see electronic supplementary material S2 and S3 of
Morselli et al., 2024b), shows an excellent quantitative agreement between numerical
solutions of the system of PDEs (3.10) and the average over ten numerical simulations
of the agent-based model. The dynamics in this reference situation are very similar to
the ones described in Chapter 2 in the absence of an immune response; therefore, we
briefly present the major ideas. At the beginning of the simulation, the central region
of the tumour is quickly infected; the outer region starts to grow, but does not reach
carrying capacity due to the immune response. The invasion speed of uninfected cells is
2
√

Dp (vertical blue lines in Fig. 3.6), as predicted by theoretical results. On the other
hand, the invasion speed of the infected cells in the uninfected region is slightly less
than 2

√
D(β − q) (vertical red lines in Fig. 3.6), which is the speed value observed in

the absence of immune response; the reason is that the density of uninfected cells is
below K. The highest peak of immune cell density corresponds to the invasion front of
infected cells, as this is the region of the steepest gradient of chemokines. In the central
region, the chemokines’ density is constantly at ϕ∗; hence, the chemotactic component of
the movement is weaker and the density of immune cells is almost constant due to the
diffusion, although at a value much higher than S0/qz.
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FIGURE 3.7: Comparison of cell densities (a) and chemoattractant concentration (b) for the three previous
numerical simulations. The solid lines refer to the case of Fig. 3.4, i.e., ζ = 0.50 h−1 and Ri = 0. The dashed
lines refer to the case of Fig. 3.5, i.e., ζ = 5.00 h−1 and Ri = 0. The dotted lines refer to the case of Fig. 3.5,
i.e., ζ = 0.50 h−1. All the other parameters take the values given in Table 3.2. The vertical blue dashed lines
represent the expected positions of the uninfected invasion front, travelling at speed 2
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Du p. The results of

the agent-based model are averaged over ten simulations and the maximum of the axes corresponds to the
maximum over time of these averages: in panel (a), the maximum corresponds to the maximum value of the
simulation in Fig. 3.4; in panel (b), the maximum takes the value ϕ∗, which is achieved in the simulation of
Fig. 3.6.

The parameters we chose are such that the infection eventually reaches the front of
the wave of uninfected cells around time t = 200 h; as a consequence, the peak at the
front starts to decrease for both populations and infected cells slow down. The final
peak of the uninfected cells is approximately the value given in Eq. (2.22), which allows
the infected front to move at speed 2

√
Dp in absence of infection. The fact that all the

formulas related to the invasion speeds are not affected by the immune system is not
surprising, since the linearised equations do not change. On the other hand, the central
densities are affected by immune cells: the exact values are hard to predict due to the
presence of the chemotactic term, but we can verify that uninfected cell density is higher
than in the absence of immune response and infected cell density is lower, as predicted
by the analysis of Eq. (3.11). As time progresses, both front waves keep moving at speed
2
√

Dp and central densities of tumour cells and immune cells have some oscillations
while converging towards an equilibrium. In the central region, the chemokines’ density
decreases to approximately 1.5 µg/mm2 due to the reduced amount of cells (see Fig.
3.7): this is still higher than the values we observed in the absence of viral infection and
enough to guide a high number of immune cells towards the tumour, although the peak
of immune cell density at the boundary of the tumour is lower than at earlier times.

It is interesting to observe that, overall, the immune response reduces the efficacy of
the infection: in comparison to the results of Chapter 2, the invasion speed of the infected
cells is lower, the equilibrium value of uninfected cells is higher and the one of infected
cells is lower (see Eq. (3.12) and the comments thereafter). This suggests that some care
is needed when virotherapy is combined with immunotherapy. Despite this difference,
most of the conclusions of Chapter 2 to optimise virotherapy remain valid: as it is clear
from Eq. (3.12), the efficacy of the infection increases as β increases and q decreases.

3.4.4 Emergence of oscillations

The discussion of Section 3.3 suggests that some parameter ranges may lead to persistent
oscillations in the centre of the domain. We should also take into account that these oscil-
lations may be biologically relevant even if they converge towards a stable equilibrium,
as the convergence may be very slow. Fig. 3.8 along with the video accompanying it
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FIGURE 3.8: A single numerical simulation of the agent-based model with the parameters given in Table 3.2,
ζ = 0.50 h−1 and wide oncolytic viral infection (i.e., Ri = Ru). The dashed cyan circles in panels (a) and
(c) represent the expected positions of the tumour invasion front, travelling at speed 2

√
Du p. The dotted

green circles in panels (a), (b) and (c) represent the internal minimum of the numerical solution of Eq. (3.10).
The dashed red circle in panel (b) represents the front given by the numerical solution of Eq. (3.10). In
panel (d), solid lines refer to the agent-based model (uninfected, infected and immune cells are represented
respectively in blue, red and green) and dotted lines refer to the continuum model. In all the cases the
maximum of the axes and the colorbars correspond to the maximum over time of the quantity plotted.

(see electronic supplementary material S4 of Morselli et al., 2024b), indeed shows an
example of this situation: the only difference with respect to the reference case is the
initial condition Ri = Ru (i.e., the initial viral injection covers the whole domain); we,
therefore, expect the same asymptotic behaviour of the reference situation, but up to
time t = 1500 h the difference is very significant. This can be explained by noting that
the initial number of infected cells is higher; hence, more immune cells are involved,
which causes wider oscillations. It is interesting to observe that the oscillations of the
agent-based model are delayed with respect to the ones of the continuum model (this
is easy to see from the total number of cells): when the infected cell density is very low,
stochasticity becomes relevant and, in some regions, infected cells go extinct; hence, the
following infected cell regrowth is at first inhomogeneous and it takes some time to
diffuse in the whole domain. The spatial inhomogeneities quickly disappear, and the
delay in the oscillations is the main difference between the two modelling approaches.

This example suggests that oscillations may bring the cell density to such low levels
that the agents go extinct, even though the continuum model predicts recurrence. Infected
cells are much more likely to be eradicated than uninfected cells since even a small
population of the latter tends to regrow; this means that, in practice, most of the time
after the first oscillation, the tumour keeps growing as it would do in the absence
of virotherapy. It makes sense to take the bifurcation diagrams of Section 3.3 as a
starting point and study whether system (3.10) has the same behaviour as parameters
vary. Fig. 3.9 indeed shows that, as ζ increases, the oscillations that appear show an
increasing maximum value and a decreasing minimum value, suggesting that, in the
agent-based model, both uninfected and infected cells should become close to eradication.
The influence of the parameter p is more interesting: the stability of the equilibrium
(u∗, i∗, z∗) appears independent of its value, but the size of the oscillations during the
convergence decreases as p increases (see Fig. 3.9); this leads to the counter-intuitive
result that a fast-growing tumour has a more predictable behaviour under therapy than
one with slower growth.
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FIGURE 3.9: Oscillations at the origin from numerical simulations of the PDE for different values of ζ and p,
with the other parameters as in Table 3.2, ζ = 0.50 h−1 in panel (b) and the chemotactic coefficient χ reduced
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stars show the value of u in the centre at the last time in cases where oscillations dampen significantly.
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FIGURE 3.10: A single numerical simulation of the agent-based model with the parameters given in Table 3.2,
ζ = 5.00 h−1 and central oncolytic viral infection. The dashed cyan circles in panels (a) and (c) represent the
expected positions of the tumour invasion front, travelling at speed 2
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panels (a), (b) and (c) represent the internal minimum of the numerical solution of Eq. (3.10). The dashed
red circle in panel (b) represents the front given by the numerical solution of Eq. (3.10). In panel (d), solid
lines refer to the agent-based model (uninfected, infected and immune cells are represented respectively in
blue, red and green) and dotted lines refer to the continuum model. In all the cases the maximum of the
axes and the colorbars correspond to the maximum over time of the quantity plotted.
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FIGURE 3.11: Comparison between four different simulations of the agent-based model with the parameters
given in Table 3.2, ζ = 5.00 h−1 and central oncolytic viral infection. These simulations use the same
parameter values as the simulation in Fig. 3.10 and only differ by the random seed. The dotted green circles
represent the internal minimum of the numerical solution of Eq. (3.10). The dashed red circles represent
the front given by the numerical solution of Eq. (3.10). The maximum of the colorbars is the same as in
Fig. 3.10b to facilitate the comparison.

3.4.5 Enhanced immune response in the presence of viral infection

The previous discussion motivates our interest in exploring different parameter ranges.
While the increase of the infection rate β may be challenging to implement biologically,
the enhancement of the immune response appears more feasible, for example, through
the use of immune checkpoint inhibitors or other immune boosting techniques (T-cell
transfer, immune system modulators, etc.). Fig. 3.10 along with the video accompanying
it (see electronic supplementary material S5 of Morselli et al., 2024b), shows this situation,
with the immune killing rate of cancer cells increased to 5.00 h−1. The central region of
the tumour is quickly infected and the total cancer cell density decreases significantly
shortly after due to the action of immune cells. When the central cell concentration is
very low, the immune cells move quickly towards the outer region of the tumour, as it
secretes more chemoattractant. As the number of infected cells decreases, the inflow of
immune cells significantly reduces: as a consequence, around time t = 200 h, while the
cell density in the outer region is still decreasing, the central uninfected cell density starts
to increase again due to the absence of infected and immune cells. The agent-based model
and the continuum model show an excellent quantitative agreement up to approximately
t = 490 h, when we observe the recurrence of the infection only in the continuum model,
which also stimulates again the immune system. In the agent-based model, infected cells
are extinct in most of the domain; hence, the second infection is less efficient because it
takes more time for the infected cells to diffuse again in the whole tumour. It is interesting
to observe that the infection remains confined in the centre of the tumour even at later
times due to the strong immune response. Overall, the dynamics of the two models
differ significantly: Fig 3.11 shows that the same behaviour is consistently observed in all
the agent-based simulations we performed in these settings. In the agent-based model,
the cancer cell number at later times is significantly higher than in the case of Fig. 3.6,
meaning that the stronger immune response decreases the efficacy of the therapy.

The main reason for the failure of the therapy in the previous case is the fact that the
immune response is strong enough to eradicate infected cells, but too weak to do the same
with uninfected cells. A possible solution is to try and increase the immune cell density:
a natural way to do so is having more infected cells to increase immune inflow; in the
previous case, the infection was stopped before reaching the tumour boundary, therefore
we now assume that the initial infection is spread in the whole tumour so that we avoid
such issue. The result is shown in Fig. 3.12. In this situation, the tumour is infected
everywhere and the immune cells kill all infected cells and most of the uninfected cells.
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FIGURE 3.12: A single numerical simulation of the agent-based model with the parameters given in Table
3.2, ζ = 5.00 h−1 and wide oncolytic viral infection (i.e., Ri = Ru). The dashed cyan circles in panels (a) and
(c) represent the expected positions of the tumour invasion front, travelling at speed 2
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green circles in panels (a), (b) and (c) represent the internal minimum of the numerical solution of Eq. (3.10).
The dashed red circle in panel (b) represents the front given by the numerical solution of Eq. (3.10). In
panel (d), solid lines refer to the agent-based model (uninfected, infected and immune cells are represented
respectively in blue, red and green) and dotted lines refer to the continuum model. In all the cases the
maximum of the axes and the colorbars correspond to the maximum over time of the quantity plotted.

As time passes, the number of immune cells in the domain decreases; the few remaining
uninfected cells left secrete too little chemoattractant to guide the immune action; hence,
they start to regrow. Despite the low cell numbers involved, stochasticity does not play a
key role in the process: we performed thirty identical simulations with different random
seeds and they all showed the same qualitative behaviour and negligible quantitative
differences. Overall, the regrowth is only slightly delayed with respect to the continuum
model. At long times, this situation is even worse than the previous one, since the
infection has completely extinguished; nevertheless, the initial tumour reduction is still
remarkable and should not be neglected.

It is interesting to observe that the increase of immune cell density at later times
(due, for example, to CAR-T therapy (He et al., 2023)) is not enough alone to eradicate
the few tumour cells left, as T-cells are unable to effectively detect tumour cells (not
shown). On the other hand, for higher chemoattractant secretion rates, the immune
system may be able to keep the few surviving cancer cells under control and, in some
cases, even to completely eradicate the tumour. In this setting, we observe a significant
effect of stochasticity due to the very low uninfected cell number involved; hence,
we performed one hundred simulations and compared the final cell number for three
different values of the chemoattractant secretion rates, as shown in Fig. 3.13. When αϕ

has the reference value and γϕ = αϕ (Fig. 3.13a), tumour eradication is observed only
in a few simulations and, in some others, the tumour appears under control for a long
time (see supplementary material S6 for an example of this); nevertheless, the majority
of the simulations show recurrence. As the values of αϕ and γϕ increase (Fig. 3.13b),
eradication becomes more likely to happen; in the few cases in which recurrence is
observed, it happens later. When the secretion rates are even higher (Fig. 3.13c), the
immune system appears able to eradicate the tumour in the wide majority of cases. As the
secretion rates increase, the number of simulations in which the tumour is not completely
eradicated becomes negligible. These scenarios could be interpreted as the situation of a
tumour with a very high mutational burden that is well recognised by the immune cells
in the area, despite not stimulating the immune system by itself (see, for example, the
review O’Donnell et al., 2018 and type 1 tumours described there); it is therefore highly
likely that such a tumour never reaches a significant size, as any attempt to grow would
be immediately stopped by the immune cells already present in the area. Our results
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FIGURE 3.13: Violin plots of the final cell number at time t = 1500 obtained from one hundred simulations
of the agent-based model with the parameters given in Table 3.2, ζ = 5.00 h−1, wide oncolytic viral infection
(i.e., Ri = Ru) and different chemoattractant secretion rates. The blue dots show the single results, not
shown when they are at 0; this happens in 6% of simulations of panel (a), 72% of simulations in panel (b)
and 92% of simulations in panel (c). The white dots show the median and the blue horizontal lines show the
average. The dark blue areas show the region between the first and the third quartile; in panel (c), this is not
shown, as both quartiles coincide with 0. Randomness plays a very important role in therapeutic outcomes.

show that immunovirotherapy could be efficient in the few cases in which this kind of
tumour evades immune control. However, it appears unlikely that a direct increase in
the chemokine secretion of uninfected tumour cells could be implemented clinically. We
remark that, in all these situations, the agent-based model differs significantly from the
continuous model, which always shows tumour relapse.

3.4.6 Different treatment protocols

The best outcome that we have achieved so far without changing the chemoattractant
secretion rate is a temporary tumour remission in the situation of an initial infection
that affects the whole area of the tumour. It is natural to wonder whether the same
result can be obtained when the initial infection is only in the centre. Fig. 3.14, along
with the video accompanying it (see electronic supplementary material S7 of Morselli
et al., 2024b), shows that this is possible if the immune killing rate is increased at time
t = 200 h, corresponding to the moment in which the infected front reaches the tumour
boundary. This is because the number of infected cells at that time is enough to stimulate
an appropriate immune response, and its spread configuration allows the immune system
to attack every area of the tumour. The following dynamics are similar to the ones of
Fig. 3.12, except that the relapse is slightly faster.

Our goal is now to exploit this temporary remission and try to achieve a better
therapeutic outcome, keeping in mind that a persistent infection reduces the tumour
burden for indefinitely long times (as in Fig. 3.6). A possible solution would be to have
a second viral injection when the tumour starts to relapse, but this is challenging for
several reasons. First of all, it is not clear when this should be done: on the one hand, we
do not want to wait until the tumour is too big as this is inconvenient for the patient; on
the other hand, if we do it early when the number of cells is too low, the infection quickly
dies away. A second challenge is the location of the injection: the spatial configuration
during the remission is very sparse and it is impossible to predict where the infection
should start in order to be effective. We ignore the second issue, assuming that the virus
may easily reach any area of the tumour, and focus on the first one. We assume that the
immune system is enhanced all the time and the first wide injection is followed by a
second one at time t = 900 h; we assume that this second viral injection causes 30% of
the tumour cells to become infected, irrespective of their location. Fig. 3.15, along with
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FIGURE 3.14: A single numerical simulation of the agent-based model with the parameters given in Table
3.2, central oncolytic viral infection, ζ = 0.50 h−1 up to time t = 200 h and ζ = 5.00 h−1 afterwards. The
dashed cyan circles in panels (a) and (c) represent the expected positions of the tumour invasion front,
travelling at speed 2

√
Du p. The dashed red circle in panel (b) represents the front given by the numerical

solution of Eq. (3.10). The internal minimum of the numerical solution of Eq. (3.10) is not shown, as it is in 0
in all three cases. In panel (d), solid lines refer to the agent-based model (uninfected, infected and immune
cells are represented respectively in blue, red and green) and dotted lines refer to the continuum model.
In all the cases the maximum of the axes and the colorbars correspond to the maximum over time of the
quantity plotted.
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FIGURE 3.15: A single numerical simulation of the agent-based model with the parameters given in Table
3.2, ζ = 5.00 h−1 and wide oncolytic viral infection (i.e., Ri = Ru); a second viral injection is performed at
time t = 900 h, infecting 30% of cells everywhere. The dashed cyan circles in panels (a) and (c) represent the
expected positions of the tumour invasion front, travelling at speed 2

√
Du p. The dotted green circles in

panels (a), (b) and (c) represent the internal minimum of the numerical solution of Eq. (3.10) (not shown
when this minimum is in 0). The dashed red circle in panel (b) represents the front given by the numerical
solution of Eq. (3.10). In panel (d), solid lines refer to the agent-based model (uninfected, infected and
immune cells are represented respectively in blue, red and green) and dotted lines refer to the continuum
model. In all the cases the maximum of the axes and the colorbars correspond to the maximum over time of
the quantity plotted.

3.4. Comparison between agent-based and continuum models 85



0 1000 2000 3000
0

1

2

3

4

5

6

C
e
ll

 n
u

m
b

e
r

10
5

1 2 3 4 5 6

10
5

1.5

2

2.5

3

3.5

4

C
e
ll

 n
u

m
b

e
r

10
8

1 2 3 4 5 6

10
5

300

400

500

600

700

800

900

h

FIGURE 3.16: Numerical solutions of Eq. (3.10) with the parameters given in Table 3.2, ζ = 5.00 h−1 and
wide oncolytic viral infection (i.e., Ri = Ru); after the first 500 h, a new wide viral injection is performed
in the whole tumour as soon as the cell count reaches a given threshold (decided a priori) and as a result
30% of cells in every location become infected. Panel (a) shows the total tumour cell numbers for some
thresholds. Panels (b) and (c) show respectively the total tumour cell number from t = 0 h to t = 3000 h
and the average time between two consecutive injections for different values of the threshold at which the
injection is performed.

the video accompanying it (see electronic supplementary material S8 of Morselli et al.,
2024b), shows that we can indeed keep the tumour under control for a longer period of
time, although in the end we always observe recurrence.

This suggests that a good therapeutical approach could be to perform periodic re-
peated viral injections: let us now focus on optimising the schedule. Fig. 3.15 shows a
very good quantitative agreement between numerical solutions of the system of PDEs
(3.10) and single numerical simulations of the agent-based model. We exploit this fact to
reduce our attention to the continuum model and simulate an automatic viral injection
when the cell count reaches a fixed threshold decided a priori. Fig. 3.16 shows that, as
this threshold increases, the minimum tumour size achieved decreases, but the total
area under the curve increases. An ideal treatment would require very frequent viral
injections, but its implementation in real life may be inconvenient. Nonetheless, for
some chronic conditions where the patient requires lifelong, periodic monitoring, this
approach should not be completely discarded.
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FIGURE 3.17: Comparison between the sum of tumour cells obtained as the average of five agent-based
simulations in different regimes in case of central viral injection (a) and wide viral injection (b). It is here
evident that the enhancement of the immune system during virotherapy may worsen the outcome. The
delay of the enhancement in the case of central injection is very similar to the case of a wide injection with
the immune system enhanced from the beginning.
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3.5 Conclusions

A minimal, hybrid discrete-continuum model for the interactions between tumour cells,
oncolytic viruses and the immune system has been developed. The deterministic contin-
uum counterpart is formally derived and the numerical results of the two approaches
are compared. The main assumption is that the tumour under investigation is immuno-
logically cold (i.e., its immunogenicity is very low) and the viral infection stimulates an
immune response.

The continuum model is an excellent approximation of the underlying microscopic
model in several cases. This allows us to improve our understanding of the therapeutical
outcome in different settings, relying on some analytical insights coming from the analysis
of the nonspatial model and performing extensive numerical simulations in a reasonable
amount of time. On the other hand, in some situations, we observe significantly different
behaviours between the two models. The main explanation for this is the appearance of
oscillations that bring the cell density to very low levels: the continuum model may then
exhibit a quick regrowth, which does not take place in the same way in the agent-based
model due to the extinction of a cell population in some locations. This extinction is
more likely to happen for infected cells, since uninfected cells have the ability to regrow;
therefore, it appears as a major obstacle to the effectiveness of immunovirotherapy.
Even though stochasticity plays a key role in the process, it is still possible to predict
when the phenomenon may be observed based on the bifurcations of the corresponding
ODE (which mirrors the oscillations of the spatial continuum model). We remark on
the importance of taking into account also the transient behaviour of the system, since
oscillations may dampen on a time scale much longer than the biologically meaningful
one.

Our results show that, according to the continuum model, any immune response
has the tendency to decrease the effectiveness of the virotherapy. This holds true for the
agent-based model whenever oscillations are absent or too weak to drive the uninfected
cell number very low; in the latter situation, the partial extinction of the solely infected
populations may result in a complete failure of virotherapy. On the other hand, stronger
oscillations are sometimes able to lead all the cancer cells close to extinction in the
individual-based model. This happens when the infection has the possibility to propagate
in the whole tumour before the enhancement of the immune system; hence, it can only
be achieved if the time and location of the therapies are correctly calibrated. Fig. 3.17
summarises the total number of cells of the agent-based model in different scenarios,
clearly showing that the combination of treatments may worsen the outcome; this result
is in line with several experimental evidence (Filley and Dey, 2017). At the final time
of the simulations t = 1500 h, the best outcome is achieved through virotherapy alone
and any kind of immune enhancement worsens it. On the other hand, other treatment
protocols show much more promising results at earlier times. Even though our model
shows recurrence of the tumour at later times in most cases, such a low number of
cells suggests that it would be possible to completely eradicate the tumour (e.g., by
implementing an additional therapy) or at least to keep it under control (e.g., by repeated
viral injections, as shown in Fig. 3.16).

It is fundamental to keep in mind that there are several factors that may hinder this
partial success. First, we assume that immune cells kill uninfected and infected cells at
exactly the same rate, but it would be reasonable to assume that infected cells are more
easily recognised and killed: this highlights the risk that the immune response could stop
the infection and the need to enhance it only when a sufficient number of infected cells
are present. Furthermore, our model neglects spatial constraints or immunorefractory
aspects of some tumour microenvironments that could affect the viral diffusion and the
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immune infiltration inside the tumour, which are well-known obstacles to the success
of both virotherapy (as already discussed in Chapter 2) and immunotherapy (Almeida
et al., 2022) administered alone. On the other hand, in the present work, we only take
into account an increase in the immune killing rate that resembles a generic immune-
boosting therapy, such as immune checkpoint inhibition. Several immunotherapies have
shown their success when combined with oncolytic virotherapy (Shi et al., 2020), such
as, but not limited to, adoptive T-cell transfer (Krabbe et al., 2021), CAR-T (He et al.,
2023), CAR-T and BiTE (Wing et al., 2018). It could, therefore, be interesting to analyse
whether the combination of different immunotherapies could partially overcome the
above-mentioned obstacles by refining and augmenting our model.

From the mathematical point of view, it could also be important to perform a rigorous
analysis of the PDE that we have obtained. It is well-known that chemotactic models
may lead to blow-up in finite time (Hillen and Painter, 2009); hence, the well-posedness
for long times may not be completely trivial.

The rest of the models of oncolytic virotherapy presented in the thesis focus on
different aspects of the therapy and do not consider immune response for the sake of
simplicity. Nevertheless, it is important to keep in mind that in some situations the
immune system may significantly affect the dynamics, as demonstrated in the current
chapter.
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4Viral dynamics and cells’ heterogeneity in
discrete and continuous models

All the models analysed so far rely on the two assumptions of quasi-steadiness of the
virus and homogeneity of cancer populations. The present chapter aims to relax those
assumptions and explore the outcomes to understand their influence on the models
better. We here neglect the immune response for the sake of simplicity and extend the
modelling framework of Chapter 2 in different ways than the one presented in Chapter 3.

This chapter is organised as follows. In Section 4.1, we include explicit viral dynamics
to the models of Chapter 2 and explore the consequences of this inclusion. In Section 4.2,
we present the discrete model of infections with heterogeneous uninfected cells, derive
its continuum counterpart, present a preliminary asymptotic analysis and compare
numerical simulations of discrete and continuous models. In Section 4.3, we discuss the
results in the context of the other chapters and provide some hints for future research.

The models described in this chapter have been developed in collaboration with
Marcello E. Delitala and Federico Frascoli; some of the results of Section 4.2 have been
obtained with Emma Ciccarelli in preparation for her master thesis. Although the findings
are not ready for publication at the present stage, they still provide meaningful insights
in the thesis context, bridging the gap between the two previous chapters (concerning
homogeneous populations and without viral dynamics) and the following one (relating
to a heterogeneous population and with viral dynamics).

4.1 Explicit viral dynamics

4.1.1 Description of the agent-based models

We again build upon the modelling framework presented in Section 2.1 and include
viral particles, whose concentration is described by a discrete non-negative function
analogous to the one relative to the chemoattractant in Chapter 3. As a consequence, the
modelling framework is again hybrid discrete-continuous. As in the previous chapters,
we restrict our attention to one spatial dimension in the formulation of the models and
refer to Remarks 2.1 and 2.2 for the adaptation to two spatial dimensions.

Let us consider the temporal discretisation tn = τn with n ∈ N0, 0 < τ ≪ 1 and the
spatial discretisation xj = δj, with j ∈ Z, 0 < δ ≪ 1; we assume τ to be small enough to
guarantee that all the probabilities defined hereafter are smaller than 1. We denote the
number of uninfected and infected cells that occupy position xj at time tn respectively by
Un

j and In
j ; the corresponding densities are

un
j :=

Un
j

δ
, in

j :=
In
j

δ
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The local pressure is again given by a barotropic relation of the form ρn
j := Π(un

j + in
j )

and we restrict to the case Π(z) = z (hence, the pressure is actually the total cell density).
We then denote by vn

j the concentration of viral particles at time tn and position xj. Since
the spatio-temporal scales for the viruses’ dynamics are very different from cellular ones,
we describe them with a discrete balance equation; we remark that this equation contains
stochastic elements, as will be explained shortly.

The rules governing the dynamics of the agents correspond precisely to the ones
presented in Chapter 2 and depicted in Fig. 2.1, with the only exception of the infection,
which here involves the viral concentration. We then consider an additional equation for
the evolution of the viral density.

Dynamics of cancer cells We refer to Section 2.1 for the description of the proliferation,
movement and death of cancer cells. Here, we consider both undirected random move-
ment and pressure-driven movement. For the sake of brevity, we restrict our attention to
logistic growth.

The main difference concerning the models studied in Chapters 2 and 3 is the infection,
which in this case is caused by contact between uninfected cells and viral particles. This
means that an uninfected cell that occupies position xj at time tn becomes infected with
probability τβ̃vn

j /K, where K is the carrying capacity and β̃ > 0 is a constant infection
rate; we use the tilde as a “friendly” reminder that it does not coincide with the parameter
β used in Chapters 2 and 3.

Dynamics of the virus We assume that infected cells release viral particles when they
die due to lysis. Since cell death is stochastic, the balance equation for viral density needs
to take it into account. The virus also decays at rate qv > 0 and diffuses. The resulting
balance equation is

vn+1
j = vn

j + τDv
vn

j+1 + vn
j−1 − 2vn

j

δ2 +
αLn

j

δ
− τqvvn

j (4.1)

where Dv > 0 is the diffusion coefficient and Ln
j denotes the number of infected cells at

position xj that die at time tn; this last term is multiplied by α, which is the number of
viral particles released, and divided by δ to pass from the number of the particles to the
density. This equation closely resembles Eq. (3.1), with the main difference given by the
presence of stochasticity.

4.1.2 Corresponding continuum models

The derivation of the continuum counterparts of the previously described individual
models for cancer cells is almost identical to the computations performed in Section 2.2,
with the only difference that now the term τβ̃vn

j /K replaces τβin
j /K. On the other

hand, the continuum counterpart of Eq. (4.1) follows the same approach adopted for
the chemoattractant in Section 3.2: we first take the expected values of Eq. (4.1) and
rearrange the terms to obtain

vn+1
j − vn

j

τ
= Dv

vn
j+1 + vn

j−1 − 2vn
j

δ2 + α
qE[In

j ]

δ
− qvvn

j
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Parameter Description Value [Units] Reference

p maximal duplication rate of uninfected cells 1.87 × 10−2 [h−1] Ke et al., 2000

q death rate of infected cells 4.17 × 10−2 [h−1] Ganly et al., 2000

Du, Di diffusion coefficients (undirected movement) 1.88 × 10−4 [mm2/h] estimate based on
Kim et al., 2006

Du, Di diffusion coefficients (pressure-driven move-
ment)

1.50 × 10−3 [mm2/h] estimate based on
Kim et al., 2006

K1D tissue carrying capacity in one dimension 103 [cells/mm] model estimate

K2D tissue carrying capacity in two dimensions 104 [cells/mm2] Lodish et al., 2008

qv virus clearance rate 1.67 × 10−1 or 1.00 [h−1] Mok et al., 2009,
model estimate

α viral burst size 580 or 3500 [viruses/cells] Workenhe et al., 2014;
Chen et al., 2001

β̃ infection rate 7.00 × 10−4 [h−1] Friedman et al., 2006

Dv virus diffusion coefficient 3.6 × 10−2 [mm2/h] Kim et al., 2006

Ru initial radius of uninfected cells 2.6 [mm] Kim et al., 2006

Rv initial radius of oncolytic virus 0.5 [mm] Pooladvand et al.,
2021

Ri initial radius of infected cells 0 [mm]

TABLE 4.1: Parameters set for the models of infection with viral dynamics

where E[·] is the expected value. We then assume that there is a function v ∈ C2([0,+∞)×
R) such that vn

j = v(tn, xj) = v and let τ, δ → 0 to get

∂tv = Dv∂2
xxv + αqi − qvv

In the case of undirected cell movement, we have the following system of reaction-
diffusion PDEs: 

∂tu = Du∂2
xxu + pu

(
1 − u + i

K

)
− β̃

K
uv

∂ti = Di∂
2
xxi +

β̃

K
uv − qi

∂tv = Dv∂2
xxv + αqi − qvv

(4.2)

In the case of pressure-driven cell movement, we have the following local cross-
diffusion system:

∂tu =
Du

K
∂x[u∂x(u + i)] + pu

(
1 − u + i

K

)
− β̃

K
uv

∂ti =
Di

K
∂x[u∂x(u + i)] +

β̃

K
uv − qi

∂tv = Dv∂2
xxv + αqi − qvv

(4.3)

We will see shortly that several of the previously analysed characteristic features of
Eq. (2.11) disappear due to viral spatial diffusion.

4.1.3 Comparison between agent-based and continuum models

We now compare numerical simulations for the agent-based models and the correspond-
ing PDE systems. All the simulations are performed with the techniques described in
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FIGURE 4.1: Comparison in one spatial dimension between numerical simulations of the discrete model
with undirected cell movement (solid lines), the numerical solution of Eq. (2.8) (dashed lines) and the
numerical solution of Eq. (4.2) (dotted black lines) at three different times, with the parameters given in
Table 4.1, α = 3500 viruses/cells and qv = 1 h−1. The viral density of the agent-based model is multiplied by
qv/(αq) to allow the comparison with cell numbers; on the other hand, the viral density for Eq. (4.2) is not
shown, as it would superimpose with infected cells. For the agent-based model, the densities of uninfected
cells, infected cells and virus are represented respectively in blue, red and purple; the numerical solutions
of Eq. (2.8) are represented using the same colours. The horizontal solid black lines show the equilibrium
of the ODE given by Eq. (2.15) (with β = β̃αq/qv) and the horizontal dashed yellow line represents the
expected uninfected density at the front given by Eq. (2.22) (only relevant in panel (c)). The results of the
agent-based model are averaged over five simulations. The maximum of the cell density axes in panels (b)
and (c) corresponds to the maximum over time of this average (which is larger than the carrying capacity);
on the other hand, in panel (a), it has been reduced to allow the comparison between infected cells and virus
(and, as a consequence, uninfected cells are not shown).

Section 2.4.1. We use the following initial conditions:

u0(x) =

{
0.9 K for |x| ≤ Ru

0 for |x| > Ru
i0(x) = 0 v0(x) =

{
V0 for |x| ≤ Rv

0 for |x| > Rv
(4.4)

with V0 = 2.67 × 104 in one spatial dimension and V0 = (2.67 × 103)2 in two spatial
dimensions; these values are obtained by appropriately rescaling the one used in Poolad-
vand et al., 2021, which comes from the number of viral particles used in Kim et al.,
2006.

The parameters are set to the same values adopted in Chapter 2, with the only
exception of β̃, qv, α, Dv and Rv that are not present in those models. The spatial diffusion
coefficient of viral particles Dv has been set to 3.6 × 10−2 mm2/h, as in Friedman et al.,
2006, and the viral injection radius Rv is taken equal to 0.5 mm, following Pooladvand
et al., 2021; the values of the other three parameters have been already discussed in
Chapter 2. We report the full parameters list in Table 4.1 for the reader’s convenience.

As explained in Chapter 1, if the virus is assumed to be quasi-steady, then the infection
rate β can be obtained as a combination of several parameters related to viral dynamics,
given by Eq. (1.9). Our first goal now is to remove the quasi-steadiness assumption
and test how different combinations of α and qv that maintain their ratio approximately
constant affect the dynamics, comparing it with the corresponding model from Chapter 2.
We then describe the appearance of oscillations, which do not occur for a quasi-steady
virus.

High viral burst size and high viral decay We start by considering the higher values
of α and qv from Table 4.1, chosen in such a way that the ratio β̃αq/qv corresponds
approximately to the reference value of β from Chapter 2. Fig. 4.1 shows an excellent
quantitative agreement between numerical solutions of the system of PDEs (4.2) and the
average over five numerical simulations of the corresponding agent-based model in one
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FIGURE 4.2: Comparison in one spatial dimension between numerical simulations of the discrete model
with pressure-driven cell movement (solid lines), the numerical solution of Eq. (2.8) (dashed lines) and the
numerical solution of Eq. (4.2) (dotted black lines) at three different times, with the parameters given in
Table 4.1, α = 3500 viruses/cells and qv = 1 h−1. We remark that the diffusion coefficient in Eq. (2.8) was
modified to keep the propagation speed constant. All the graphical elements have the same meaning as in
Fig. 4.1. Observe that, this time, the maximum value reached by the average uninfected cell density is lower
than the carrying capacity.

spatial dimension. Furthermore, the approximation

i =
qv

αq
v

holds most of the time, even in the agent-based model (despite some small stochastic
fluctuations), as it is evident from Fig. 4.1a. The initial invasion profile of infected cells is
different from the one obtained by the two-equation model in Eq. (2.8), since it is now
affected by the fast viral diffusion. Nevertheless, the invasion speed is approximately
the same; as a consequence, after an initial transient time, the uninfected cell density
is almost indistinguishable from the one resulting from Eq. (2.8) (Fig. 4.1b-c). At later
times, Fig. 4.1c shows the formation of travelling waves remarkably similar to the ones
already described in Chapter 2, with the same speed and the same values of the internal
equilibria. The only slight difference regards the uninfected cell density at the front,
which can be explained by the higher infection infiltration when viral dynamics are
considered explicitly.

The same excellent agreement is also observed for pressure-driven movement, as
shown in Fig. 4.2. The behaviour is very similar to the one observed in the previous
case. Let us recall that, in Chapter 2, we observed that an initial central infection remains
localised in the case of pressure-driven movement without explicit viral dynamics; this is
in sharp contrast with the outcome shown in Fig. 4.2: indeed, in the present situation,
viral particles can reach the outer region of the tumour without any obstacle and the
constraints of cell movement do not stop the propagation of the infection. The similarity
of this situation to the case of undirected cell movement suggests that it makes more
sense to compare it to Eq. (2.8) than to Eq. (2.11). We remark that the comparison requires
the adaptation of the diffusion coefficient to keep the propagation speed constant (as
listed in Table 4.1). The only relevant differences between undirected movement and
standard diffusion appear to be the maximum value reached by uninfected cell density,
which is higher in the former situation, and the profile of the final invasion front, which,
in the latter case, is compactly supported and invades the surrounding tissues slightly
faster. For Dv = 0, we recover the dynamics described in Chapter 2. Overall, we can
conclude that spatial viral dynamics have a more substantial effect on the evolution of
the system than cellular spatial dynamics.
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FIGURE 4.3: Comparison in one spatial dimension between numerical simulations of the discrete model with
undirected cell movement (solid lines), the numerical solution of Eq. (2.8) (dashed lines) and the numerical
solution of Eq. (4.2) (dotted black lines) at three different times, with the parameters given in Table 4.1,
α = 580 viruses/cells and qv = 1.67 × 10−1 h−1. All the graphical elements have the same meaning as
Fig. 4.1.
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FIGURE 4.4: Comparison in one spatial dimension between numerical simulations of the discrete model
with pressure-driven cell movement (solid lines), the numerical solution of Eq. (2.8) (dashed lines) and
the numerical solution of Eq. (4.2) (dotted black lines) at three different times, with the parameters given
in Table 4.1, α = 580 viruses/cells and qv = 1.67 × 10−1 h−1. We remark that the diffusion coefficient in
Eq. (2.8) was modified to keep the propagation speed constant. All the graphical elements have the same
meaning as Fig. 4.1.
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Low viral burst size and low viral decay Let us now consider lower values of α and
qv, keeping their ratio approximately as in the previous case. Fig. 4.3 shows again an
excellent quantitative agreement between numerical solutions of the system of PDEs (4.2)
and the average over five numerical simulations of the corresponding agent-based model
in one spatial dimension. Even though the quasi-steadiness of the virus still holds, this
time, the system’s transient behaviour significantly differs from the solution of Eq. (2.8).
Fig. 4.3a shows that the lower viral decay rate allows for the viral particles to move
further; hence, the viral infection reaches the boundary of the tumour faster than in the
previous case; as a consequence, uninfected cells start to decrease their numbers earlier
(Fig. 4.3b). This difference does not affect the system’s asymptotic behaviour, as it is clear
from Fig. 4.3c.

Fig. 4.4 shows that the same excellent agreement is also observed for pressure-driven
cell movement. Once again, the dynamics are very similar to the case of undirected cell
movement, which confirms our previous observation that the infective dynamics are
affected mainly by viral spatial dynamics.

Emergence of oscillations As we anticipated in Chapter 1, it is well known that solu-
tions of Eq. 4.2 may exhibit persistent oscillations for some parameter values; this is in
line with the fact that the nonspatial model

du
dt

= pu
(

1 − u + i
K

)
− β̃

K
uv

di
dt

=
β̃

K
uv − qi

dv
dt

= αqi − qvv

(4.5)

presents a Hopf bifurcation. Fig. 4.5 shows the bifurcation in the parameter α, obtained
using the software auto, which allows to study the stability of equilibria and limit cycles
through numerical continuation. Fig. 4.6 shows the time series for three different values
of α. We remark that a similar behaviour is also observed, for example, as β̃ increases or
as qv decreases. The one-dimensional setting is not ideal for studying oscillations, as the
lower amount of cells involved may cause extinctions in the agent-based model due to
stochasticity, which are not biologically relevant. We therefore now consider the previous
models in two spatial dimensions, remarking that in this case extinctions may actually
be associated with the biological relevance of random events (as in the cases described in
Chapter 3).

For undirected cell movement, Fig. 4.7 shows an overall excellent quantitative
agreement between numerical solutions of the system of PDEs (4.2) and the average
over five numerical simulations of the corresponding agent-based model in two spatial
dimensions. After the initial infection reaches the tumour boundary, the number of cancer
cells decreases significantly; as a consequence, stochasticity becomes relevant, and in
some regions, cells go extinct. Fig. 4.7a shows the inhomogeneous pattern of uninfected
cells caused by this. As time passes, the spatial inhomogeneities quickly disappear,
and both models show similar persistent oscillations in the tumour centre around the
equilibrium values (coherently with what the bifurcation diagram shows). A slight delay
of the oscillations is the main difference between the two modelling approaches: this is
easy to see from the total number of cells, depicted in Fig. 4.9. The invasion speed of
the tumour in the surrounding area is still 2

√
Dp and the uninfected cell density at the

front is approximately given by Eq. (2.22), despite some fluctuations. It is interesting to
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limit cycle oscillations. The solid lines show the equilibrium value of U divided by K; as in previous
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FIGURE 4.6: Numerical simulation of Eq. (3.11) with the parameters as in Table 4.1 and different values of
the viral burst size α. The solid blue lines represent uninfected cells, the solid red lines infected cells and
the dotted purple lines represent viral density multiplied by qv/(αq); the two latter quantities superimpose
almost exactly. The oscillations become wider as α increases, in accordance with the bifurcation diagram of
Fig. 4.5.
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FIGURE 4.7: Numerical simulations with the parameters given in Table at three different times, with the
parameters given in Table 4.1, α = 3500 viruses/cells and qv = 1.67 × 10−1 h−1. Panel (a) shows uninfected
cell density from a single simulation to show the impact of stochasticity; the dashed cyan circle represents
the expected positions of the tumour invasion front, travelling at speed 2

√
Du p. Panels (b) and (c) represent

cell densities obtained on the horizontal section of the domain [−L, L]× {0} obtained by averaging five
simulations: the density of the uninfected tumour cells is the blue solid line and the density of the infected
tumour cells is the red solid line (not shown in panel (b) to avoid the superimposition with uninfected cell
density); the viral density is not shown to improve readability. The solutions of Eq. (4.2) are represented
with dotted black lines. The vertical blue dashed lines represent the expected positions of the uninfected
invasion front, travelling at speed 2

√
Du p. The horizontal solid black lines show the equilibrium of the

ODE given by Eq. (2.15) (with β = β̃αq/qv) and the horizontal dashed yellow line represents the expected
uninfected density at the front given by Eq. (2.22) (only relevant in panel (c)). The maximum of the axes and
the colorbars were scaled to enhance readability and are much lower than the maximum over time of the
quantity plotted.

remark that highly dynamic patterns may emerge when viral injections at multiple sites
are considered (Baabdulla and Hillen, 2024).

The situation is different in the case of pressure-driven movement. As in the previous
case, the number of cancer cells decreases significantly after the initial infection reaches
the tumour boundary and, in some regions, cells go extinct, originating inhomogeneous
patterns. However, the subsequent regrowth does not allow a fast spatial spread due to
the slow movement that cells experience when the pressure is so low. Fig. 4.8b indeed
shows that uninfected cells take a long time in the agent-based model to move from
the hollow ring into the central region; on the other hand, in the case of the PDE, the
repopulation is much faster: there is never a complete extinction in the centre and the
repopulation is caused by regrowth rather than movement. This difference is particularly
evident from the second peak in Fig. 4.9. The difference between the two models tends to
disappear as time passes, but Fig. 4.8c still shows some dissimilarities. Both models show
an invasion speed much lower than

√
Du p/2, due to the very low cell density involved

(approximately one-tenth of the carrying capacity); this is a significant difference from
the case of undirected cell movement and, as a result, the overall cell numbers involved
are lower in the second case (see Fig. 4.9).

Fig. 4.9 also shows the comparison with the solution of Eq. (2.8) to remark once
again that oscillations cannot be obtained in the two-equations model even for high
infection rates. In the case of effective infections, only pressure-driven movement results
in a slower invasion speed of the tumour; in this respect, it appears to be closer to the
biological situation.
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FIGURE 4.8: Numerical simulations with the parameters given in Table at three different times, with the
parameters given in Table 4.1, α = 3500 viruses/cells and qv = 1.67 × 10−1 h−1. All the graphical elements
have the same meaning as per Fig. 4.8, with the usual modifications needed to switch between undirected
and pressure-driven movement.
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FIGURE 4.9: Comparison between the sum of tumour cells in different scenarios. Solid lines represent the
average of five agent-based simulations in the case of undirected cell movement (yellow) and pressure-
driven cell movement (red). All the other lines represent the sum of cells obtained from the continuous
models: the dotted black line refers to the solution of Eq. (4.2), the dashed-dotted black line to the solution of
Eq. (4.3) and the dashed blue line to the solution of Eq. (2.8); the last line has a different colour to highlight
the fact that it is related to a two-equations model, which does not exhibit persistent oscillations.
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4.2 Infection with an epigenetically structured uninfected popu-
lation

We now add to the uninfected compartment an epigenetic heterogeneity that affects
proliferation and infection. In this way, we can analyse how the emergence of resistance
to the viral infection affects the outcome of the virotherapy. Several mechanisms may be
involved in the process, such as interferon-mediated resistance, epigenetic modifications,
hypoxia-mediated inhibition and virus-entry barriers (Bhatt et al., 2021). The model
we develop in this chapter considers a generic kind of resistance without focusing on
any specific situation; on the other hand, Chapter 5 is devoted to the application of this
modelling approach to the resistance acquired by hypoxic cancer cells.

We assume a trade-off between the proliferation rate and the resistance to the infection,
which is not specific of oncolytic virotherapy: for example, in Lorenzi et al., 2021b, this
phenomenon is investigated in the framework of a host–parasite system. In the context
of our interest, we may imagine that a higher speed of the metabolic activity is associated
with both higher reproductive rate and faster viral infection, as both processes rely on the
cell machinery to translate proteins; this situation is particularly relevant when hypoxia
is considered, as we explain in the next chapter.

For the sake of simplicity, we neglect spatial obstacles and restrict our attention to the
case of undirected cell movement without explicit viral dynamics: this setting does not
present any substantial difference in the infection dynamics with respect to the models
with explicit viral dynamics and any kind of cell movement, as explained in the previous
section. We also restrict our attention to the case in which uninfected and infected cells
follow the same rules for the movement.

4.2.1 Description of the agent-based models

Once again, our starting point is the modelling framework presented in Section 2.1, to
which we now add an epigenetic structure on uninfected cells. We therefore consider
an additional variable y ∈ Y := [0, 1] that affects uninfected cells’ dynamics and assume
that higher values of y are associated with slow proliferation and increased resistance to
viral infection; we further assume that, once a cell becomes infected, the heterogeneity is
lost. In addition to the temporal discretisation tn = τn with n ∈ N0, 0 < τ ≪ 1 and the
spatial discretisation xj = δj, with j ∈ Z, 0 < δ ≪ 1, we now need to consider also an
epigeneitc discretization yk = χk with k integer number between 0 and [1/χ], 0 < χ ≪ 1.
As usual, we assume τ to be small enough to guarantee that all the probabilities defined
hereafter are smaller than 1. We denote the number of uninfected and infected cells
that occupy position xj at time tn (with epigenetic trait yk in the case of uninfected cells)
respectively by Un

j,k and Jn
j ; the corresponding densities are

un
j,k :=

Un
j,k

δχ
, In

j :=
Jn
j

δ

The slight change of notation with respect to the previous chapters highlights the dif-
ference between the uninfected population, which is epigenetically structured, and the
infected population, which is not.

Dynamics of uninfected cells Proliferation, undirected movement and infection of
uninfected cancer cells follow rules analogous to the ones described in Chapter 2, with
the relevant difference that we now consider an epigenetic trait that affects proliferation
and infection.
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We only consider undirected random movement and assume that an uninfected cell
moves to an adjacent lattice point with probability θx/2, where θx ∈ [0, 1], and remains at
its initial position with probability 1 − θx. Epigenetic mutations take place exactly in the
same way, with the probability of switching to an adjacent epigenetic characterisation
depending on a different parameter θy ∈ [0, 1].

The proliferation and death of an uninfected cell with epigenetic trait yk that occupies
position xj at time tn now depends on the function

G(y, ρ) := p
(

r(y)− ρ

K

)
(4.6)

where the total cell density at time tn and position xj is

ρn
j :=

[1/χ]

∑
k=0

un
j,k + In

j

and K > 0 is the carrying capacity. The maximal duplication rate p > 0 and r : Y → [0, 1]
is a decreasing function that models the dependence on the epigenetic trait. In this
sense, we consider y as the normalised level of expression of a set of genes responsible
for the trade-off between proliferation and resistance to hypoxia: y = 0 corresponds to
the highest intrinsic proliferation rate and the highest infection rate; conversely, y = 1
corresponds to the lowest intrinsic proliferation rate and the lowest infection rate.

Similarly, we assume that an uninfected cell with epigenetic trait yk that occupies
position xj at time tn becomes infected upon contact with infected cells with probabil-
ity τβ(yk)In

j /K, where β : Y → R is a decreasing function that gives the epigenetic-
dependent infection rate, in line with the trade-off described above.

Dynamics of infected cells Infected cells are modelled by a single compartment, as they
are not affected by the epigenetic structure. We refer to Section 2.1 for the description of
the movement and death of such cells. Here, we consider undirected random movement
and the probabilities are the same as those of uninfected cells.

4.2.2 Derivation of the corresponding continuum model

We now derive the continuum counterparts of the agent-based models described in the
previous section, using techniques analogous to those employed in Section 2.2 and in the
references mentioned there.

Uninfected cells Uninfected cells can first move and change their epigenetic trait, then
reproduce or die based on the pressure value and finally become infected. The principle
of mass balance gives the equation

un+1
j,k =

[
(1 − θy)

θx

2
un

j−1,k
θy

2
θx

2
(un

j−1,k+1 + un
j−1,k−1)

+ (1 − θy)
θx

2
un

j+1,k +
θy

2
θx

2
(un

j+1,k+1 + un
j+1,k−1)+

+ (1 − θy)(1 − θx)un
j,k +

θy

2
(1 − θx)(un

j,k+1 + un
j,k−1)

]
×
[
1 + τG(yk, ρn

j )
]
×
[
1 − τ

β(yk)

K
In
j

]
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which can be written as

un+1
j,k =

[
un

j−1,k(1 − θy)
θx

2
+ un

j−1,k+1
θy

2
θx

2
+ un

j−1,k−1
θy

2
θx

2

+ un
j+1,k(1 − θy)

θx

2
+ un

j+1,k+1
θy

2
θx

2
+ un

j+1,k−1
θy

2
θx

2

+ un
j,k(1 − θy)(1 − θx) + un

j,k+1
θy

2
(1 − θx) + un

j,k−1
θy

2
(1 − θx)

]
×
[
1 + τG(yk, ρn

j )
]
×
[
1 − τ

β(yk)

K
In
j

]
(4.7)

Let us now assume that there are two functions u ∈ C2([0,+∞)× R × Y) such that
un

j,k = u(tn, xj, yk) = u (from now on we omit the arguments of functions computed at
(tn, xj, yk)); thus, we can use Taylor expansions for u as follows

u(t + τ, x, y) = u + τ∂tu +O(τ2)

u(t, x, y ± χ) = u ± χ∂yu +
χ2

2
∂2

yyu +O(χ3)

u(t, x ± δ, y) = u ± δ∂xu +
δ2

2
∂2

xxu +O(δ3)

u(t, x + δ, y ± χ) = u + δ∂xu ± χ∂yu +
δ2

2
∂2

xxu +
χ2

2
∂2

yyu ± δχ∂2
xyu +O(δ3) +O(χ3)

u(t, x − δ, y ± χ) = u − δ∂xu ± χ∂yu +
δ2

2
∂2

xxu +
χ2

2
∂2

yyu ∓ δχ∂2
xyu +O(δ3) +O(χ3)

After some simplifications, Eq. (4.7) becomes

∂tu +O(τ2) =
θxδ2

2τ
∂2

xxu +
θyχ2

2τ
∂2

yyu + G(y, ρ)u − β(y)
K

Iu +O(τ) +O(δ2) +O(δχ)

Letting τ, δ, χ → 0 in such a way that δ2

2τ → D̃x and χ2

2τ → D̃y, we obtain the equation

∂tu = D̃y∂2
yyu + D̃x∂2

xxu + G(y, ρ)u − β(y)
K

I

Infected cells Infected cells can first move, then die based on the pressure value. Also,
uninfected cells may be infected: as explained previously, the dynamics are unaffected
by the epigenetic trait after the infection; hence, we do not need to keep track of it. The
principle of mass balance gives the equation

In+1
j = (1 − τq)

[ θx

2
In
j−1 +

θx

2
In
j+1 + (1 − θx)In

j

]
+ τ In

j ∑
k

β(yk)

K
χun

j,k

We remark that the density of infected cells is obtained by dividing the cell number only
by δ, while the density of uninfected cells requires the additional division by χ: this leads
to the multiplication of un

j,k by χ. The previous equation then simplifies to

In+1
j − In

j

τ
= θx

δ2

2τ

In
j−1 + In

j+1 − 2In
j

δ2 − qIn
j − q

θx

2
δ2
( In

j−1 + In
j+1 − 2In

j

δ2

)
+ In

j ∑
k

β(yk)

K
χun

j,k
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Let us observe that, for χ → 0,

∑
k

β(yk)χun
j,k →

∫
Y

β(y)u(t, x, y)dy

Let us also assume that there is a function I ∈ C2([0,+∞) × R) such that In
j =

I(tn, xj) = I, so that

In+1
j − In

j = τ∂t I +O(τ2)

In
j−1 + In

j−1 − 2In
j = δ2∂2

xx I +O(δ3)

Therefore, letting τ, δ, χ → 0 in such a way that δ2

2τ → D̃x and χ2

2τ → D̃y, we obtain the
equation

∂t I(t, x) = Dx∂2
xx I(t, x) + I(t, x)

∫
Y

β(y)
K

u(t, x, y)dy − qI(t, x)

Summary of the continuum model We have formally obtained the following system
of PIDEs:

∂tu(t, x, y) = Dy∂2
yyu(t, x, y) + Dx∂2

xxu(t, x, y) + R(y, ρ, I)u(t, x, y)

∂t I(t, x) = Dx∂2
xx I(t, x) + I(t, x)

∫
Y

β(y)
K u(t, x, y)dy − qI(t, x)

ρ(t, x) :=
∫

Y u(t, x, y)dy + I(t, x)

(4.8)

where Dx = D̃xθx, Dy = D̃yθy and

R(y, ρ, I) := p
(

r(y)− ρ(t, x)
K

)
− β(y)

K
I(t, x)

It is also convenient to define the uninfected total cell density

û(t, x) :=
∫

Y
u(t, x, y)dy (4.9)

This system is the same one studied in Lorenzi et al., 2021b, with the addition of
spatial dynamics. We may expect a travelling wave to originate from the equation: in
the centre, the cell densities reach the steady state predicted in the absence of spatial
dynamics (although the spatial diffusion may have some effects on that), while, at the
front, there is a prevalence of cells with epigenetic variable close to 0.

Following Lorenzi et al., 2021b, we define r(y) and β(y) as

r(y) := 1 − ηy2, β(y) := β0 + ζ(1 − y)2

With this choice, we have

R(y, ρ, I) = g(I)− h(I)(y − φ(I))2 − p
ρ

K

where

h(I) := pη +
ζ

K
I φ(I) :=

ζ I
h(I)K

g(I) := p − β0+ζ

K
I + h(I)φ(I)2
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We can, therefore, interpret φ(I) as the fittest epigenetic trait when the density of infected
cells corresponds to I.

4.2.3 Preliminary formal asymptotic analysis

We now conduct a formal asymptotic analysis to compute the theoretical equilibrium
values. Building upon the methods employed in Lorenzi and Painter, 2022; Lorenzi et al.,
2021a; Villa et al., 2021a, we introduce a small parameter ε and assume that

Dx = Dy = ε2

Furthermore, we use the time scaling t 7→ t
ε (which allows us to study the long-time

behaviour of the system) and define

uε(t, x, y) := u
( t

ε
, x, y

)
, Iε(t, x) := I

( t
ε
, x
)

The previous system thus becomes
ε∂tuε(t, x, y) = ε2∂2

yyuε(t, x, y) + ε2∂2
xxuε(t, x, y) + R(y, ρε(t, x), Iε(t, x)) uε(t, x, y)

ε∂t Iε(t, x) = ε2∂2
xx Iε(t, x) + Iε(t, x)

∫
Y β(y)uε(t, x, y)dy − qIε(t, x)

ρε(t, x) :=
∫

Y uε(t, x, y)dy + Iε(t, x)
(4.10)

Let us observe that, letting ε → 0 and assuming that all the functions converge, we
immediately get from the second equation

I(t, x) = 0 or
∫

Y

β(y)
K

u(t, x, y)dy = q (4.11)

We then make for uninfected cells the real phase WKB ansatz (Barles et al., 1990;
Evans and Souganidis, 1989; Fleming and Souganidis, 1986), as it is common in the
Hamilton–Jacobi approach presented, for example, in Diekmann et al., 2005; Lorz et al.,
2011; Perthame, 2006; Perthame and Barles, 2008

uε(t, x, y) = e
nε(t,x,y)

ε

This implies

∂tuε =
∂tnε

ε
uε, ∂xuε =

∂xnε

ε
uε ∂2

xxuε =
( (∂xnε)2

ε2 +
∂2

xxnε

ε

)
uε

and an analogous expression for ∂2
yyuε. The first equation of Eq. (4.10) yields

ε
∂tnε

ε
uε = ε2

( (∂ynε)2

ε2 +
∂2

yynε

ε

)
uε + ε2

( (∂xnε)2

ε2 +
∂2

xxnε

ε

)
uε + R(y, ρε, Iε)uε

and this simplifies to

∂tnε = (∂ynε)
2 + ε∂2

yynε + (∂xnε)
2 + ε∂2

xxnε + R(y, ρε, Iε)

Letting ε → 0 and assuming convergence, we obtain

∂tn = (∂yn)2 + (∂xn)2 + R(y, ρ, I) (4.12)
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All the functions without the subscript ε are the leading order terms of the asymptotic
expansion.

Let us assume that, for every ε > 0, the initial condition nε(0, x, y) is a uniformly
concave function of y; for example, we could think that, at t = 0, tumour cells that
occupy the same position are mainly in the same phenotypic state and so the local cell
phenotypic distribution y 7→ uε(0, x, y) is a sharp Gaussian-like function (meaning that
nε(0, x, y) = −(y − φε(x))2, for some appropriate function φε). Since y 7→ R(y, ρ, I) is a
concave function of y, we also expect n to be a strictly concave function of y (Mirrahimi
and Perthame, 2015; Perthame and Barles, 2008). We then define

ȳ(t, x) := arg max
y∈Y

n(t, x, y)

Let us fix x ∈ supp(ρ). The fact that ρε(t, x) < +∞ for all ε implies that

n(t, x, ȳ(t, x)) = max
y∈Y

n(t, x, y) = 0

The concavity of y 7→ n(t, x, y) for every t and x implies that

uε(t, x, y) ∗
⇀ û(t, x) δȳ(t,x)

in the meaning of weak-∗ convergence of measures, i.e.∫
Y

ψ(y)uε(t, x, y) ε→0−−→ ψ(ȳ)û(t, x) ∀ψ ∈ C0(Y)

This is in line with the concentration results that are typically obtained for similar equa-
tions (Lorenzi et al., 2018; Mirrahimi and Perthame, 2015; Perthame, 2006). Furthermore,
the definition of ȳ(t, x) trivially implies

∂yn(t, x, ȳ(t, x)) = 0

We also observe that

0 =
∂

∂t
n(t, x, ȳ(t, x)) = ∂tn(t, x, y)|y=ȳ(t,x) +(((((((((

∂yn(t, x, y)|y=ȳ(t,x) ∂tȳ(t, x)

implying that ∂tn(t, x, ȳ(t, x)) = 0; similarly, ∂xn(t, x, ȳ(t, x)) = 0. We evaluate Eq. (4.12)
in y = ȳ(t, x) to get

R(ȳ, ρ, I) = ∂tn − (∂yn)2 − (∂xn)2 = 0 (4.13)

We can also differentiate Eq. (4.12) with respect to y to get

∂2
tyn = 2∂yn ∂2

yyn + 2∂yn ∂2
xyn + ∂yR(y, ρ, I)

which computed at y = ȳ(t, x) yields

∂2
tyn(t, x, ȳ(t, x)) = ∂yR(ȳ(t, x), ρ(t, x), I(t, x))

If we look for a homogeneous steady state, then the previous equation implies

∂yR(ȳ, ρ, I) = 0 (4.14)

Let us also note that ∫
Y

β(y)uε(t, x, y)dy → β(ȳ)û(t, x)
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due to the previous observation that uε
∗
⇀ û δȳ. As a consequence, Eqs. (4.11), (4.13)

and (4.14) constitute a system of three equations in the three variables û, I, ȳ, which in
principle can be solved. Let us first focus on the infection-free case of Eq. (4.11), i.e. I = 0.
The other two variables solve the systemR(ȳ, û, 0) = p

(
1 − ηȳ2 − û

K

)
= 0

∂yR(ȳ, û, 0) = 2pȳ = 0

whose only solution is clearly ȳ = 0, û = K. For I ̸= 0, we need to solve the system
û =

q
β(ȳ)

R(ȳ, û + I, I) = g(I)− h(I)(ȳ − φ(I))2 − p
û + I

K
= 0

∂yR(ȳ, û + I, I) = 2h(I)(ȳ − φ(I)) = 0

(4.15)

The last equation implies ȳ = φ(I), hence we need to solve the following equation in I:

R
(

φ(I),
qK

β(φ(I))
+ I, I

)
= g(I)− p

q
β(φ(I)) + I

K
= 0

This last equation is too complicated to be studied analytically; hence, in the following
we restrict our attention to numerical solutions.

This approach may also be useful in characterising travelling waves.

4.2.4 Comparison between agent-based and continuum models

We now compare numerical simulations for the agent-based model and the corresponding
system of PDEs. All the simulations are performed with the techniques described in
Section 2.4.1. We use the following initial conditions:

u0(x, y) =

{
0.9 K for |x| ≤ Ru, y ∈ Y
0 for |x| > Ru, y ∈ Y

i0(x) =

{
0.1 K for |x| ≤ Ri

0 for |x| > Ri
(4.16)

The parameters are set to the same values adopted in Chapter 2, with the only
exception of η, β0, ζ and Dy that specifically refer to the epigenetic structure. The
epigenetic diffusion coefficient of tumour cells Dy is not easily accessible in the empirical
literature and it has been taken from previous mathematical models about epigenetically
structured populations: we set it to 5.00× 10−6 h−1, as in Celora et al., 2021. Furthermore,
we set β0 = 1.02 × 10−3 h−1. The other two additional parameters, η and ζ, are set to
arbitrary values that give rise to interesting dynamics: the goal of this section is in fact the
description of general behaviours associated with heterogeneous infections that may vary
in specific biological settings (for instance, the one analysed in Chapter 5, which refers to
hypoxia). We report the full parameters list in Table 4.2 for the reader’s convenience.

In order to facilitate the comparison, we define the average epigenetic trait

µ(t, x) :=

∫
Y yu(t, x, y)dy

û(t, x)

with û as defined in Eq. (4.9). The infinite speed of propagation associated with spatial
diffusion implies that û(t, x) > 0 for all t > 0 and x ∈ R; hence, the previous quantity
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Parameter Description Value [Units] Reference

p maximal duplication rate of uninfected cells 1.87 × 10−2 [h−1] Ke et al., 2000

q death rate of infected cells 4.17 × 10−2 [h−1] Ganly et al., 2000

Dx diffusion coefficients (undirected movement) 1.88 × 10−4 [mm2/h] estimate based on
Kim et al., 2006

K1D tissue carrying capacity in one dimension 103 [cells/mm] model estimate

Dy cell epigenetic diffusion coefficient 5.00 × 10−6 [h−1] Celora et al., 2021

η intrinsic selection gradient 5.00 × 10−1 [non dim.] model estimate

β0 infection rate 1.02 × 10−3 [h−1] model estimate

ζ selection gradient related to infection 2.00 × 10−1 [non dim.] model estimate

Ru initial radius of uninfected cells 2.6 [mm] Kim et al., 2006

Ri initial radius of infected cells 1 [mm] model estimate

TABLE 4.2: Parameter set for the models of infections with epigenetically structured uninfected cells. The
parameters η and ζ are non dimensional (abbreviated as “non dim.”).

is properly defined. Analogous definitions can be employed for the agent-based model
whenever the uninfected cell density is not zero.

Fig. 4.10 shows an excellent quantitative agreement between numerical solutions of
the system of PDEs (4.8) and the average over five numerical simulations of the agent-
based model in one spatial dimension. At the beginning of the simulations, uninfected
cells with low epigenetic traits are quickly infected in the centre of the tumour; conse-
quently, the average epigenetic trait increases. In the meantime, uninfected cells start
to invade the surrounding area at speed 2

√
Du p (vertical blue lines in Fig. 4.10): this

invasion is mainly led by cells that proliferate at rate close to the maximal one. It is
interesting to observe that the excellent agreement of the average epigenetic trait is lost
in the outer region of the tumour: stochasticity appears more relevant due to the very
low number of individuals involved; nevertheless, this does not significantly affect the
overall dynamics.

As time passes, dynamics start to diverge significantly from the ones described in
Chapter 2 due to the emergence of resistance to the infection in the centre of the tumour.
The selected epigenetic trait strongly differs in different locations. In the centre, the
theoretical equilibria are a good approximation for the values reached in the numerical
simulations: this is clear from Fig. 4.11, which shows the evolution in time of the
different uninfected subpopulations of the agent-based model at the centre of the domain;
stochastic effects are evident, but the selected subpopulations are the ones we would
expect from our theoretical analysis. On the other hand, spatial effects should not be
neglected in the invasion front. Overall, the tumour becomes insensitive to the infection
while maintaining its invasion properties unchanged. This suggests that the emergence
of resistance may constitute a significant obstacle to oncolytic virotherapy.

4.3 Conclusions

In this chapter, we presented two extensions of the individual-based models studied in
Chapter 2. In both cases, we formally derived the deterministic continuum counterpart
and compared the numerical results, finding an excellent agreement.

When viral dynamics are included in the models, the rules governing viral spatial
movement appear to affect the infection more significantly than the rules governing cell
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FIGURE 4.10: Comparison in one spatial dimension between numerical simulations of the discrete model
epigenetically structured uninfected cells (solid lines) and the numerical solution of Eq. (4.8) (dotted black
lines) at three different times, with the parameters given in Table 4.2. For the agent-based model, the
densities of uninfected and infected cells are represented respectively in blue and red in the upper panel
(for uninfected cells, we consider the sum of the subpopulations); the average epigenetic trait is shown in
green in the lower panel (in all the points in which it is well-defined). The horizontal black lines show the
theoretical equilibria approximation of asymptotic equilibria, obtained by solving Eq. (4.15) The vertical
dashed blue lines represent the expected position of the uninfected invasion front, travelling at speed
2
√

Du p. The results of the agent-based model are averaged over five simulations and the maximum of the
cell density axes corresponds to the maximum over time of this average (which is larger than the carrying
capacity).
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FIGURE 4.11: Evolution in time of the uninfected subpopulations of the agent-base model at the centre of
the domain, i.e., the lattice point corresponding to x = 0. The results of the agent-based model are averaged
over five simulations and the maximum of the cell density axes corresponds to the maximum over time of
this average. We remark that the theoretical analysis yields the epigenetic value ȳ ≈ 0.47.
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movement. On the other hand, cell movement still retains its influence on the tumour
invasion: only pressure-driven movement describes a slower invasion for low tumour
cell numbers. This should be kept into account when the clinical consequences of the
therapy are analysed. Overall, undirected movement (with or without viral diffusion)
and pressure-driven movement without viral diffusion exhibit similar behaviour in
regards to the spread of the infection throughout a tumour. The presence of the viral
population may also lead to the appearance of persistent oscillations, which, however,
do not affect the overall outcome in the same relevant way as we observed in Chapter 3.

When the heterogeneity of uninfected cells is considered, the emergence of a subpop-
ulation resistant to viral infection may significantly hinder the success of the therapy.
Although this resistance comes at the cost of a lower proliferation rate, the tumour growth
does not slow down significantly due to the presence of high proliferative cells close to
the invasion front that try to escape from the infection. In practice, the design of oncolytic
virotherapy should consider that the efficacy may be significantly reduced if the tumour
evolves toward an epigenetic characterisation in which cells are less susceptible to the
infection, even if such evolution is correlated with a lower reproduction rate. These con-
siderations are particularly relevant for hypoxic tumours, which may require a different
treatment (see Chapter 5). Our preliminary theoretical analysis correctly predicts the
equilibrium values in the centre of the tumour for both discrete and continuous models.
Nevertheless, the spatial epigenetic heterogeneity is not trivial and a complete formal
asymptotic analysis along the lines presented in this chapter may shed light or, at least,
predict outcomes in some parameter regimes.

The results presented in this chapter may be improved and extended in several
ways, both from the mathematical and the modelling perspectives. To our knowledge, a
rigorous characterisation of the travelling waves that we observed is still lacking in most
of the situations under investigation. In the case of explicit viral dynamics, the invasion
speed of the virus in an uninfected tumour appears to depend on several parameters
related to the virus and it could be interesting to elucidate further these relations. A
deeper understanding og the phenomena could also help to reach a full characterisation
of the limit of the parameters in Eq. (4.3) in which we recover Eq. (2.11): this clearly
happens for Dv = 0, as previously mentioned; our simulations show that a high viral
decay might be associated to a slower invasion of the infection in the tumour, so that
phenomena similar to the ones analysed in Chapter 2 might be recovered. In the case of
the epigenetically structured model, a rigorous analysis has only been performed in the
spatially homogeneous situation (Lorenzi et al., 2021b). The formal asymptotic approach
we adopted in this chapter could be extended to analyse spatial heterogeneity.

From the modelling point of view, the inclusion of viral dynamics is a natural step
towards the study of how the tumour microenvironment affects viral diffusion, improv-
ing the insights obtained in Chapter 2: a few models have already taken it into account
(Pooladvand and Kim, 2022) and additional experimental evidence may help to find
a suitable mathematical description of the interactions between viral particles and the
physical obstacles of the tumour microenvironment. Regarding the structured model, a
natural extension is its application to some specific kinds of heterogeneity that cause a
proliferation-resistance trade-off. The next chapter is devoted to one of such extensions,
to analyse the influence of hypoxia on oncolytic virotherapy.
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5Influence of hypoxia on oncolytic
virotherapy

As explained in Chapter 1, hypoxia reduces the effectiveness of several cancer therapies
(Zhuang et al., 2023). In the context of oncolytic virotherapy, the impact of hypoxia on
therapeutic efficacy is twofold (Sheng Guo, 2011). Firstly, hypoxic regions within tumours
harbour cells less susceptible to viral infection and replication due to reduced metabolic
activity and altered cellular signalling pathways. Secondly, the physiological adaptations
of tumour cells to hypoxia, such as enhanced glycolytic metabolism and resistance to
apoptosis, can confer resistance to viral-induced cell death. It is important to remark that
the previous considerations are not universal: indeed, some particular oncolytic viruses
can specifically target receptors that are upregulated in case of the lack of oxygen (Sadri
et al., 2023; Sheng Guo, 2011). Understanding how hypoxia influences the interaction
between oncolytic viruses and tumour cells is crucial for optimising treatment strategies
and overcoming therapeutic resistance. Mathematical modelling is pivotal in unravelling
these complexities and optimising therapeutic outcomes.

In the previous chapter, we presented a continuous epigenetically structured model
that considers a trade-off involving the proliferation rate and the resistance to the infection
of the uninfected compartment. Continuous structuring variables are also commonly
employed to model heterogeneous levels of adaptation to hypoxia (see Section 1.5), easily
allowing to model a trade-off between the proliferation rate and the resistance to hypoxic
conditions. We now combine both trade-offs and assume that less proliferative cells
have slower metabolic activity, resulting in a higher resistance to hypoxia and a lower
infection rate in the presence of oncolytic virus. This approach allows us to include the
influence of oxygen concentration on the dynamics of resistance to virotherapy described
in the previous chapter.

More in detail, our model incorporates both spatial and phenotypic heterogeneity
of tumour cells, along with the dynamics of oxygen concentration and viral infection;
the model is formulated using a combination of PDEs and PIDEs, explicitly accounting
for the spatial gradients of oxygen within the tumour. To our knowledge, the resulting
model constitutes a novelty with respect to the existing literature. Such a modelling
approach allows us to perform a formal asymptotic analysis of simplified settings to
compute the homogeneous equilibrium values.

Due to the model’s complexity, we here restrict our attention to the deterministic
continuum setting. It is important to keep in mind that a formal derivation from the
underlying individual based model is also possible and follows the same strategy adopted
in previous chapters without any significant additional challenge.

In this chapter, we aim to

• characterise the impact of hypoxia on viral infection and investigate how oxygen
gradients within tumours affect the spatial distribution and replication of the
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tumour and the oncolytic viruses, with a focus on regions of severe hypoxia versus
normoxic areas;

• explore evolutionary dynamics and analyse how hypoxia-induced adaptations in
tumour cells influence their susceptibility to viral infection, the epigenetic composi-
tion of the tumour, and the emergence of resistant phenotypes over time;

• consider the trade-off between proliferation rate and resistance to hypoxia in view
of optimising therapeutic strategies to enhance the efficacy of oncolytic virotherapy
in hypoxic tumour environments.

This chapter is organised as follows. In Section 5.1, we introduce the model. In Sec-
tion 5.2, we present a formal asymptotic analysis and obtain the equations that define the
spatially homogeneous equilibrium values. In Section 5.3, we present numerical results
in the two situations of stationary and variable oxygen concentration, comparing them
to the theoretical results; we also mention the situation of a virus that specifically targets
hypoxic cells, looking towards the combination of several therapies. Finally, in Section 5.4,
we summarise the main results and present next steps and future perspectives.

The model described in this chapter and the results shown have been submitted for
publication (Morselli et al., 2024a).

5.1 Model description

As in Chapter 4, we consider the epigenetic heterogeneity of uninfected cancer cells; we
now assume that it affects resistance to hypoxia in addition to proliferation and infection.
The dynamics of infected cells, instead, are not affected by epigenetic characteristics,
hence we model them as a homogeneous population.

Let us denote by t ∈ [0,+∞) the time variable, by x ∈ Ω the space variable, with
Ω ⊂ R2 and by y ∈ Y the epigenetic variable, with Y := [0, 1]. We consider uninfected
and infected cancer cells, whose densities are described respectively by the functions
u : [0,+∞) × Ω × Y → [0,+∞) and I : [0,+∞) × Ω → [0,+∞). We also define the
uninfected total cell density as

U(t, x) :=
∫

Y
u(t, x, y)dy (5.1)

and the total cancer cell density as

ρ(t, x) := I(t, x) + U(t, x, y) (5.2)

Finally, we consider viral density, described by the function v : [0,+∞)× Ω → [0,+∞),
and oxygen concentration, described by the function O : [0,+∞)× Ω → [0,+∞). We
now describe in detail the rules governing all the dynamics.

Uninfected cancer cells Uninfected cells may move via pressure-driven movement,
change their epigenetic trait, reproduce, become infected and die due to environmental
selection; this last process is the main addition to the model considered in Chapter 4. We
assume a trade-off between proliferation and resistance to both hypoxia and viral infec-
tion. In this sense, we consider y as the level of expression of a set of genes responsible
for this trade-off and, as previously, normalise it so that y = 0 and y = 1 are, respectively,
the lowest and highest possible expressions: y = 0 corresponds to highest intrinsic
proliferation rate, lowest resistance to hypoxia and highest infection rate; conversely
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y = 1 corresponds to lowest intrinsic proliferation rate, highest resistance to hypoxia and
lowest infection rate. As previously explained, the biological motivation for this choice
is the fact that viral replication relies on the host cell translational machinery, which, in
turn, is affected by hypoxia: indeed, protein synthesis is often shut down in response to
stresses such as hypoxia and this slows down also cell proliferation (Sheng Guo, 2011).
The evolution of uninfected cells is described by the equation

∂tu(t, x, y) =R(y, ρ(t, x), O(t, x), v(t, x)) u(t, x, y)

+ Dy ∂2
yyu(t, x, y)︸ ︷︷ ︸

random mutation

+ Dx∇x · (u(t, x, y)∇ρ(t, x))︸ ︷︷ ︸
pressure-driven movement

with
R(y, ρ, O, v) =

(
P(y, ρ)︸ ︷︷ ︸

proliferation

− S(y, O︸ ︷︷ ︸
selection

)
)
− β(y) v︸ ︷︷ ︸

infection

Random epigenetic mutations are described by a diffusive term in y with coefficient Dy.
Cancer cells also move with coefficient Dx in space against the gradient of the total cancer
cell density ρ(t, x). Furthermore, uninfected cancer cells proliferate at a rate determined
by the intrinsic proliferation rate p(y) and the local cancer cell density ρ(t, x), according
to the logistic growth term

P(y, ρ) = p(y)
(

1 − ρ

K

)
(5.3)

Uninfected cells may also die because of the environmental selection driven by oxygen
concentration. The fittest trait, according to oxygen availability, is determined by the
function

φ(O) :=


1 if O ≤ Om

OM − O
OM − Om

if Om < O < OM

0 if O ≥ OM

(5.4)

Thus, the selective term is expressed through a quadratic function of the distance of trait
y from the fittest one:

S(y, O) = η(y − φ(O))2 (5.5)

where η is the selection gradient. Finally, uninfected cancer cells are infected by the virus
according to the density of virions and the infection rate β(y). Note that y is directly
involved in the selection term; it also affects proliferation and infection through the
coefficients p(y) and β(y). To catch the above-described trade-off, we set

p(y) = pM − (pM − pm)y, β(y) = βm + (βM − βm)y (5.6)

Observe that both functions are increasing in y.
We remark that the terms for proliferation and selection are the same ones adopted

in Chiari et al., 2023b. In absence of infections, the cell density always grows up to the
same carrying capacity K irrespective of the oxygen level: this constitutes a significant
difference with respect to some previous modelling approaches of hypoxic tumours (such
as the ones employed in Ardaševa et al., 2020c; Ardaševa et al., 2020a; Fiandaca et al.,
2021; Villa et al., 2021a) and allows us to consider virotherapy as the only cause of cancer
reduction in hypoxic conditions.
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Infected cancer cell Infected cells may move and die; uninfected cells may also become
infected. The dynamics are described by the equation

∂t I(t, x) = Dx∇ · (I(t, x)∇ρ(t, x))︸ ︷︷ ︸
pressure-driven movement

+ v(t, x)
∫

Y
β(y)u(t, x, y)dy︸ ︷︷ ︸
infection

− qI I(t, x)︸ ︷︷ ︸
death

The movement follows the same law as that of uninfected cells, as there is no reason to
assume that the infection has some effect on that. All the susceptible cells that undergo
infection are collected in the same population. Finally, infected cells die at rate qI .

We again assume that infected cells do not proliferate, as the virus disrupts the cellular
machinery, and are not affected by environmental conditions due to their short life. As a
consequence, they lack all the processes affected by the epigenetic trait, which motivates
their absence of epigenetic structure.

Oncolytic virus The virus is injected into the tumour, then diffuses in space with
coefficient Dv and decays with rate qv. The lysis of an infected cell releases α viral
particles. The dynamics are described by the equation

∂tv(t, x) = Dv∆v(t, x)︸ ︷︷ ︸
diffusion

+ αqI I(t, x)︸ ︷︷ ︸
release

− qvv(t, x)︸ ︷︷ ︸
natural decay

+ vinj(x)δTinj(t)︸ ︷︷ ︸
viral injection

(5.7)

The injection is modelled through a Dirac delta, which corresponds to a jump in the viral
concentration at time Tinj; the spatial profile of the injection is given by the function vinj.
Apart from the injection term, this equation is the same as the ones employed in Eqs. (4.2)
and (4.3).

Oxygen The oxygen is delivered by tissue vascularisation with a space-dependent
intensity Q(x), diffuses in space with diffusion coefficient DO and is then consumed both
by healthy tissue and cancer cells. The resulting equation is

∂tO(t, x) = DO∆O(t, x)︸ ︷︷ ︸
diffusion

− qOO(t, x)︸ ︷︷ ︸
natural decay

− λρ(t, x)O(t, x)︸ ︷︷ ︸
cancer cell consumption

+ Q(x)︸ ︷︷ ︸
source

(5.8)

We assume that healthy cells initially fill the tissue up to carrying capacity and their
oxygen consumption is indirectly modelled through the decay at rate qO. As the tumour
grows, healthy cells are replaced by cancer cells, which consume more oxygen: the
additional consumption is captured by the term λρ(t, x)O(t, x). Observe that both
infected and uninfected cells are responsible for oxygen consumption in the same way.

Summary of the model Collecting all the equations together, the evolution of the
system reads:

∂tu(t, x, y) = Dy∂2
yyu(t, x, y) + Dx∇x · (u(t, x, y)∇ρ(t, x)) + P(y, ρ(t, x)) u(t, x, y)−

− S(y, O(t, x)) u(t, x, y)− β(y) u(t, x, y) v(t, x)
∂t I(t, x) = Dx∇ · (I(t, x)∇ρ(t, x)) + v(t, x)

∫
Y β(y)u(t, x, y)dy − qI I(t, x)

∂tv(t, x) = Dv∆v(t, x) + αqI I(t, x)− qvv(t, x) + vinj(x)δTinj(t)

∂tO(t, x) = DO∆O(t, x)− qOO(t, x)− λρ(t, x)O(t, x) + Q(x)
ρ(t, x) :=

∫
Y u(t, x, y)dy + I(t, x)

(5.9)

112 5. Influence of hypoxia on oncolytic virotherapy



with the previously defined ρ(t, x) in Eq. (5.2), P(y, ρ(t, x)) in Eq. (5.3), S(y, O(t, x)) in
Eq. (5.5) based on φ(O(t, x)) in Eq. 5.4, and p(y) and β(y) set as in Eq. (5.6). We keep
the oxygen source Q(x) in general form and change it according to the biological setting
we aim to reproduce.

We define the Cauchy problem by imposing the initial conditions
u(0, x, y) = u0(x, y)
I(0, x) = 0
v(0, x) = 0
O(0, x) = O0(x)

(5.10)

where u0(x, y) and O0(x) will be defined in the context of the various scenarios in
Section 5.3; we always assume that the tumour initially grows without viral infection
and the therapy is administered after some time. Moreover, we impose no flux boundary
conditions on ∂Y, i.e.

∂yu(t, x, 0) = ∂yu(t, x, 1) = 0

corresponding to the fact that the epigenetic trait cannot assume values below 0 or above
1. Finally, we also impose no flux boundary condition for all u(t, x, y), I(t, x), v(t, x) and
O(t, x) at ∂Ω, meaning that these quantities cannot leave the spatial domain.

5.2 Formal asymptotic analysis

We now conduct a formal asymptotic analysis analogous to the one performed in Sec-
tion 4.2 to compute the theoretical equilibrium values. As in Section 4.2, we introduce a
small parameter ε and assume that

Dx = ε, Dy = Dv = DO = ε2

Furthermore, we use the time scaling t 7→ t
ε (which allows to study the long-time

behaviour of the system) and define

uε(t, x, y) := u
( t

ε
, x, y

)
, Iε(t, x) := I

( t
ε
, x
)

,

vε(t, x) := v
( t

ε
, x
)

Oε(t, x) := O
( t

ε
, x
)

The system of Eq. (5.9) then becomes

ε∂tuε(t, x, y) = ε2∂2
yyuε(t, x, y) + ε∇x · (uε(t, x, y)∇ρε(t, x))

+ R(y, ρε(t, x), Oε(t, x), vε(t, x)) uε(t, x, y)
ε∂t Iε(t, x) = ε∇ · (Iε(t, x)∇ρε(t, x)) + vε(t, x)

∫
Y β(y)u(t, x, y)dy − qI I(t, x)

ε∂tvε(t, x) = ε2∆vε(t, x) + αqI Iε(t, x)− qvvε(t, x)
ε∂tOε(t, x) = ε2∆Oε(t, x)− qOOε(t, x)− λρε(t, x)Oε(t, x) + Q(x)
ρε(t, x) :=

∫
Y uε(t, x, y)dy + Iε(t, x)

(5.11)

Let us observe that, letting ε → 0 and assuming that all the functions converge, we
immediately get from the third equation that

v(t, x) =
αqI

qv
I(t, x) (5.12)
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and from the second equation that

I(t, x) = 0 or
∫

Y
β(y)u(t, x, y)dy =

qI I(t, x)
v(t, x)

=
qv

α
(5.13)

Furthermore, the fourth equation yields

O(t, x) =
Q(x)

qO + λρ(t, x)
(5.14)

and, for simplicity, we assume that the oxygen source is spatially homogeneous so
that Q(t, x) ≡ Q. It is important to remark that the system may not converge to an
equilibrium: indeed, some parameter values will shortly show that central oscillations
persist even for very long times, similar to the ones described in Section 4.1 (see also
electronic supplementary material S9 of Morselli et al., 2024a),.

We then make for uninfected cells the real phase WKB ansatz

uε(t, x, y) = e
nε(t,x,y)

ε

This implies

∂tuε =
∂tnε

ε
uε, ∇xuε =

∇xnε

ε
uε ∂2

yyuε =
( (∂ynε)2

ε2 +
∂2

yynε

ε

)
uε

The first equation of Eq. (5.11) yields

ε
∂tnε

ε
uε = ε2

( (∂ynε)2

ε2 +
∂2

yynε

ε

)
uε + ε

(∇xnε

ε
· ∇ρε + ∆ρε

)
uε + R(y, ρε, Oε, vε)uε

and this simplifies to

∂tnε = (∂ynε)
2 + ε∂2

yynε +∇xnε · ∇ρε + ε∆ρε + R(y, ρε, Oε, vε)

Letting ε → 0 and assuming convergence, we obtain

∂tn = (∂yn)2 +∇xn · ∇ρ + R(y, ρ, O, v) (5.15)

All the functions without the subscript ε are the leading order terms of the asymptotic
expansion.

Under the concavity hypotheses explained in Section 4.2, we expect n to be a strictly
concave function of y; we define

ȳ(t, x) := arg max
y∈Y

n(t, x, y)

Let us fix x ∈ supp(ρ). The fact that ρε(t, x) < +∞ for all ε implies that

n(t, x, ȳ(t, x)) = max
y∈Y

n(t, x, y) = 0

As in Section 4.2, the concavity of y 7→ n(t, x, y) for every t and x implies that

uε(t, x, y) ∗
⇀ U(t, x) δȳ(t,x)
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Furthermore, the definition of ȳ(t, x) trivially implies

∂yn(t, x, ȳ(t, x)) = 0

We also observe that

0 =
∂

∂t
n(t, x, ȳ(t, x)) = ∂tn(t, x, y)|y=ȳ(t,x) +(((((((((

∂yn(t, x, y)|y=ȳ(t,x) ∂tȳ(t, x)

implying that ∂tn(t, x, ȳ(t, x)) = 0; similarly, ∇xn(t, x, ȳ(t, x)) = 0. We evaluate Eq. (5.15)
in y = ȳ(t, x) to get

[pM + (pm − pM)y]
(

1 − ρ

K

)
− η(y − φ(O))2 − [βM + (βm − βM)y]v =

= R(ȳ, ρ, O, v) = ∂tn − (∂yn)2 −∇xn · ∇ρ = 0
(5.16)

We can also differentiate Eq. (5.15) with respect to y to get

∂2
tyn = 2∂yn ∂2

yyn + ∂y∇xn · ∇ρ +∇xn · ∂y∇ρ + ∂yR(y, ρ, O, v)

which computed at y = ȳ(t, x) yields

∂2
tyn(t, x, ȳ(t, x)) = ∂y∇xn(t, x, ȳ(t, x)) · ∇ρ(t, x) + ∂yR(ȳ(t, x), ρ(t, x), O(t, x), v(t, x))

If we look for a homogeneous steady state, then the previous equation implies

∂yR(ȳ, ρ, O, v) = (pm − pM)
(

1 − ρ

K

)
− 2η(y − φ(O))− (βm − βM)v = 0 (5.17)

As in Section 4.2, we also have∫
Y

β(y)uε(t, x, y)dy → β(ȳ)Ū

With this observation, Eqs. (5.12), (5.13), (5.14), (5.16) and (5.17) constitute a system of
five equations in the five variables Ū, Ī, v̄, Ō, ȳ, which in principle can be solved.

Let us first focus on the infection-free case of Eq. (5.13), i.e. Ī = 0. This clearly implies
v̄ = 0 and the other three variables solve the system

R(ȳ, Ū, Ō, 0) = p(ȳ)
(

1 − Ū
K

)
− η(ȳ − φ(Ō))2 = 0

∂yR(ȳ, Ū, Ō, 0) = (pm − pM)
(

1 − Ū
K

)
− 2η(ȳ − φ(Ō)) = 0

Ō =
Q

qO + λŪ

(5.18)

From the first two equations, we obtain

1 − Ū
K

=
η(y − φ(Ō))2

p(ȳ)
=

2η(y − φ(Ō))

(pm − pM)
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which admits two solutions: the first one is Ū = K, ȳ = φ(Ō); the second one is

ȳ =
2pM

pM − pm
− φ(Ō) >

2pM

pM − pm
− 1 =

pM + pm

pM − pm
> 1

Ū = K +
4ηp(φ(Ō))

(pm − pM)2 > K

but it clearly has no biological meaning. We then obtain the oxygen concentration from
the third equation of Eq. (5.18). The first equilibrium is given by

Ū = K, Ō =
Q

qO + λK
, ȳ = φ(Ō)

The second equilibrium could be obtained by computing the solutions of a second-degree
equation in Ō; given the complexity of the expressions and the lack of biological meaning,
we omit further details.

Let us now assume Ī ̸= 0, which according to Eq. (5.13) implies

Ū =
qv

αβ(ȳ)

This leads to the system

Ū =
qv

α[βM + (βm − βM)ȳ]

v̄ =
αqI

qv
Ī

Ō =
Q

qO + λ(Ū + Ī)

R(ȳ, Ū + Ī, Ō, v̄) = [pM + (pm − pM)ȳ]
(

1 − Ū + Ī
K

)
− η(ȳ − φ(Ō))2

− [βM + (βm − βM)ȳ]v̄ = 0

∂yR(ȳ, Ū + Ī, Ō, v̄) = (pm − pM)
(

1 − Ū + Ī
K

)
− 2η(ȳ − φ(Ō))− (βm − βM)v̄ = 0

(5.19)
The above system is too complicated to be studied analytically; hence, we mainly consider
numerical solutions. Although six solutions exist, only one is biologically meaningful
in the parameter range that we consider. A more useful expression can be obtained by
solving the equation ∂yR = 0 in ȳ:

ȳ = φ(Ō) +
1

2η

[
−(pM − pm)

(
1 − ρ

K

)
+ (βM − βm)v̄

]
(5.20)

This formula has a straightforward interpretation: φ(Ō) is the epigenetic trait selected by
the oxygen concentration; the fittest trait tends to decrease when the total cell population ρ
is low due to the different proliferation rates of cell lines in a situation of low competition;
at the same time, it grows in the presence of viral infection that targets proliferative cells
and it reduces if the infection targets hypoxic cells. We remark that this formula may
yield a value of ȳ outside the interval [0, 1], which has no meaning in our formulation of
the model: when this happens, we should expect the fittest trait to be 0 if ȳ < 0 and 1 if
ȳ > 1.
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FIGURE 5.1: Numerical solution of Eq. 5.21 showing the equilibria in different oxygen conditions. The
parameters in panel (a) take the values listed in Table 5.1. In panel (b), the values of βM and βm are switched
to reproduce the situation of oncolytic viruses that specifically target hypoxic cells. In both cases, φ(Ō)
ranges between 0 and 1.

A simpler situation is obtained by assuming that tumour dynamics do not signifi-
cantly affect oxygen density so that Ō is given a priori; in this case, the system becomes

Ū =
qv

α[βM + (βm − βM)ȳ]

v̄ =
αqI

qv
Ī

R(ȳ, Ū + Ī, Ō, v̄) = [pM + (pm − pM)ȳ]
(

1 − Ū + Ī
K

)
− η(ȳ − φ(Ō))2

− [βM + (βm − βM)ȳ]v̄ = 0

∂yR(ȳ, Ū + Ī, Ō, v̄) = (pm − pM)
(

1 − Ū + Ī
K

)
− 2η(ȳ − φ(Ō))− (βm − βM)v̄ = 0

(5.21)
It is then possible to obtain a third-degree equation for ȳ, which in principle can be solved;
however, the explicit solutions are still too complicated to give any useful information.
Fig. 5.1 shows the numerical solution of Eq. (5.21) that is biologically meaningful. In the
reference situation (βm < βM), the equilibrium values of Ū and ȳ increase as the oxygen
values decrease; when the values of βM and βm are switched, we observe the inverse
behaviour. The effect of oxygen variations on Ī is more complex, as its value is almost
constant for a wide range of oxygen values and then significantly decreases only when
the oxygen concentration is very low (or very high).

So far, we have focused our discussion on the spatially homogeneous situation. To
our knowledge, spatial dynamics in this context have not been studied analytically,
not even in simpler settings (such as the one of Section 4.2). Nevertheless, given the
forthcoming numerical simulations, it is helpful to recall some elementary facts from the
previous chapters. If we neglect the epigenetic structure, the one-dimensional dynamics
of uninfected cells in the absence of viral infection follow the equation

∂tu(t, x) = Dx∂x(u(t, x)∂xu(t, x)) + p
(

1 − u(t, x)
K

)
u(t, x)

It is well-known that there exist travelling waves solutions of this equation with speed
at least

√
DxKp/2 and an initial condition with compact support evolves into a wave

that travels with the minimal speed (Aronson, 1980; Newman, 1980). The addition of
infection due to cell-to-cell contact originates travelling waves of the two populations
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Parameter Description Value [Units] Reference

pM maximal duplication rate 2.88 × 10−2 [h−1] Ke et al., 2000

pm minimal duplication rate 1.44 × 10−2 [h−1] Martínez-González
et al., 2012

K tissue carrying capacity 106 [cells/mm3] Lodish et al., 2008

Dx cell spatial diffusion coefficient 1.30 × 10−9 [(mm×cells×h)−1] estimate based on
Kim et al., 2006

η selection rate by oxygen 2.08 × 10−2 [h−1] model estimate

Dy cell epigenetic diffusion coefficient 5.00 × 10−6 [h−1]] Celora et al., 2021

βM maximal infection rate 7.00 × 10−10 [mm3/(viruses×h)] Friedman et al., 2006

βm minimal infection rate 1.75 × 10−10 [mm3/(viruses×h)] model estimate

qI death rate of infected cells 4.17 × 10−2 [h−1] Ganly et al., 2000

qv virus clearance rate 1.67 × 10−1 [h−1] Mok et al., 2009

α viral burst size 1000 [viruses/cells] model estimate

Dv virus diffusion coefficient 3.6 × 10−2 [mm2/h] Kim et al., 2006

Omax maximal oxygen concentration 2.16 × 10−3 [mm3
O2

/mm3
plasma] McKeown, 2014;

Pittman, 2011
OM oxygen normoxic threshold 1.71 × 10−3 [mm3

O2
/mm3

plasma] McKeown, 2014;
Pittman, 2011

Om oxygen hypoxic threshold 2.28 × 10−4 [mm3
O2

/mm3
plasma] McKeown, 2014;

Pittman, 2011
qO oxygen physiological decay rate 5.60 × 10−1 [h−1] estimate based on

Wagner et al., 2011
λ oxygen consumption rate 6.55 × 10−4 [mm3/(cell×h)] estimate based on

Grimes et al., 2014
DO oxygen diffusion coefficient 3.60 [mm2/h] Mueller-Klieser and

Sutherland, 1984

TABLE 5.1: Parameter set for the model of infection in hypoxic conditions.

(uninfected and infected), with the uninfected proliferative cells trying to escape from
the infected cells (see Chapter 2); the addition of a viral population does not significantly
change this picture (see Section 4.1). It is important to remark that an efficient infection
results in a wavefront much lower than the carrying capacity, whose invasion speed is
lower than

√
DxKp/2.

5.3 Numerical results

In this section, we describe the results of numerical simulations and compare them with
the theoretical analysis performed in Section 5.2. After the description of the numerical
details, for the sake of simplicity, we first consider a stationary oxygen distribution
independent of time, corresponding to a situation in which the tumour does not influence
the oxygen distribution: while this is clearly an oversimplification, it allows us to focus
our attention on the tumour’s evolutionary and infectious dynamics. We then analyse the
full model, which includes oxygen dynamics, taking into account different configurations
of oxygen sources. Finally, we briefly mention the case of a virus that specifically infects
hypoxic cells, looking towards combining oncolytic virotherapy with other treatments.
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5.3.1 Details of numerical simulations

Parameter values Table 5.1 lists the parameters we adopt as a reference in the numerical
simulations. The majority of the parameters has been estimated from the empirical
literature, while a few others are specific to our formulation of the model and have been
set to reasonable values in order to reproduce plausible dynamics. Our two-dimensional
simulations represent the section of a tumour that is approximately homogeneous along
the third spatial dimension (which can, therefore, be neglected), and parameters are
estimated in a three-dimensional setting.

The maximal duplication rate of uninfected cells pM, corresponding to the normoxic
situation, has been taken equal to log(2)/24 h−1 ≈ 2.88 × 10−2 h−1; the duplication
time of 24 hours is among the fastest values reported in Ke et al., 2000 for glioblastoma.
On the other hand, we assume that severely hypoxic cells duplicate in 48 hours, as
done in Martínez-González et al., 2012: this leads to a minimal proliferation rate pm =
1.44 × 10−2 h−1. The carrying capacity K has been estimated assuming that a cell has
diameter 10 µm= 10−2 mm (Lodish et al., 2008, §1.1): this implies that the carrying
capacity is 106 cells/mm3.

The spatial diffusion coefficient of tumour cells Dx has been estimated from the
experimental data of the U343 control group of Kim et al., 2006, as already done in
the previous chapters. In their experiments, the tumour volume passes in 40 days
from 70 mm3 to 1000 mm3, which corresponds to a change in the tumour radius from
approximately 2.6 mm to approximately 6.2 mm. Hypoxia may play some role in the
process, but this is not taken into account in their data: for the sake of simplicity, we
assume a moderately hypoxic situation so that the proliferation rate takes the value
p(0.5) (i.e., the average between pM and pm). Hence, the dynamics of uninfected cells in
the absence of viral infection follow the equation

∂tu(t, x) = Dx∇x · (u(t, x)∇u(t, x)) + p(0.5)
(

1 − u(t, x)
K

)
u(t, x)

We recall that an initial condition with compact support evolves into a wave that travels
with the minimal speed

√
DxKp(0.5)/2. This yields the estimate

Dx =
2c2

Kp
=
(6.2 − 2.6 mm

40 × 24 h

)2
× 2

106 × cells/mm3 × 2.16 × 10−2 h−1

≈ 1.30 × 10−3 mm2/h
106 × cells/mm3 ≈ 1.30 × 10−9 (mm × cells × h)−1

We assume that this coefficient is the same also for infected cells, as a priori we have
no reason to believe that the infection affects cellular movement.

The death rate of uninfected tumour cells due to oxygen-driven selection η and
the epigenetic diffusion coefficient of tumour cells Dy are not easily accessible in the
empirical literature; hence they have been adapted from previous mathematical papers
about epigenetically structured populations: their values have been set respectively to
1/48 h−1 ≈ 4.16 × 10−2 h−1, which is of the same magnitude of the value used in Chiari
et al., 2023b, and 5.00 × 10−6 h−1, as in Celora et al., 2021.

The maximal infection rate of the oncolytic virus βM has been set to 7.00 × 10−10

mm3/(viruses×h), as in Friedman et al., 2006; their model does not explicitly take into
account hypoxia, so we assume that they consider normoxic conditions. Since we are
unaware of any experimental estimate of infection rate under hypoxic conditions, we
set βm to one-fourth of the value of βm. The death rate of infected cells qI has been taken
equal to 1/24 h−1 = 4.17 × 10−2 h−1, following Ganly et al., 2000. The clearance rate
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of the virus has been set to 1/6, as in Mok et al., 2009. The viral load released by the
death of infected cells depends highly on the type of virus and ranges from the value
157 viruses/cells estimated in Workenhe et al., 2014 to the value 3500 viruses/cells
of Chen et al., 2001; we chose an intermediate value of α = 1000 viruses/cells. It is
important to remark that all these values are highly dependent on the exact type of
oncolytic virus employed; our choices allow us to model significant differences in the
effectiveness of oncolytic virotherapy as the oxygen level varies. We remark that the
outcome of the therapy is mostly determined by the aggregate value βαqI/qv, hence
similar dynamics may also be obtained by different parameter combinations that maintain
the ratio unchanged (as explained in Chapter 4). The spatial diffusion coefficient of viral
particles Dv has been set to 3.6 × 10−2 mm2/h, as in Friedman et al., 2006.

We consider the oxygen thresholds defined in McKeown, 2014: the oxygen partial
pressure (pO2) in arterial blood is 70 mmHg and we consider this as the maximal
oxygen concentration (Omax); the physiological pO2 ranges approximately between
57 mmHg and 30.4 mmHg, so we consider the higher value as the normoxic threshold
OM, keeping in mind that we may observe lower oxygen values also in healthy tissue;
the pathological hypoxic pO2 value is 7.6 mmHg, which we consider as Om. All these
pressure values are converted in volume ratios by multiplying them by the solubility
constant 3 · 10−5 mm3

O2
/(mm3

plasma×mmHg) (Pittman, 2011).
We assume that the oxygen decay is due to the consumption of the healthy cells in the

region. According to Wagner et al., 2011, cells have an average rate of oxygen utilisation of
9.00 × 10−15 mol/(cell×h), corresponding approximately to 2.02 × 10−7 mmO2/(cells×h),
but this value may vary several orders of magnitude among different cell types. We
therefore assume that a single healthy cell consumes six times this amount of oxygen
when the available oxygen level is at Omax and the consumption scales linearly with the
oxygen concentration, meaning that the consumption in the case of unitary cell density
is given by O(t, x) multiplied by

1.21 × 10−6 mm3
O2

cell × h
1

Omax
= 5.60 × 10−4 mm3/(cell × h)

Considering K as the healthy cell density in the absence of a tumour, we obtain a decay
rate qO = 5.60 × 102 h−1. We adopt a similar way of reasoning for the consumption by
cancer cells, starting from the fact that the consumption of a single cell is estimated to be
2.62 × 10−6 mmO2/(cells×h) (Grimes et al., 2014) and assuming again that this is only
possible when the oxygen level is Omax. We then assume that cancer cells take the place
of healthy cells, meaning that they cause an additional consumption of

λ =
2.62 × 10−6mmO2 /(cells × h)

Omax
− qO

K
= 6.55 × 10−4 mm3/(cell × h)

The oxygen diffusion coefficient DO has been set to 3.60 mm2/h, as in Mueller-Klieser
and Sutherland, 1984.

Numerical simulations are run until the final time T = 2500 h since their behaviour up
to that moment is also representative of later dynamics; the only exception is the electronic
supplementary video S9 of Morselli et al., 2024a, in which the final time is T = 3500 h to
highlight the persistence of the oscillations. For the spatial domain Ω = [−L, L]2, we set
L = 10 mm so that in most cases, wavefronts do not hit the boundary before T and the
domain is representative of typical extensions of solid tumours.
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Numerical method Numerical simulations use a finite volume method developed by
adapting the procedures presented in Carrillo et al., 2015; Bessemoulin-Chatard and
Filbet, 2012 to our problem. We discretise the space Ω with a uniform mesh consisting of
the cells

Cj,k := [x1,j− 1
2
, x1,j+ 1

2
]× [x2,k− 1

2
, x2,k+ 1

2
]

for j = 0, . . . , Nx1 , k = 0, . . . , Nx2 . Similarly, we discretise the space Ω × Y with the cells

Cj,k,m := [x1,j− 1
2
, x1,j+ 1

2
]× [x2,k− 1

2
, x2,k+ 1

2
]× [ym− 1

2
, ym+ 1

2
]

for j = 0, . . . , Nx1 , k = 0, . . . , Nx2 , and m = 0, . . . , Ny. The sizes of the cells are thus respec-
tively ∆x1 × ∆x2 and ∆x1 × ∆x2 × ∆y, where

∆xi =
2L

Nxi + 1
(i = 1, 2) ∆y =

1
Ny + 1

We set Nxi = 200 and Ny = 20.
The equations for infected cells, viruses and oxygen are not epigenetically structured

and are of the form
∂t f (t, x) = M(t, x) +R(t, x)

where M(t, x) regulates the movement and R(t, x) the reactions. We adopt a splitting
method, considering separately the movement and reaction terms. The quantity of our
interest is

f j,k(t) =
1

∆x1∆x2

∫
Cj,k

f (t, x)dx

We begin with the conservative part M(t, x), which is given by

M(t, x) = D∆x f = D∇ · (∇x f )

in the case of virus and oxygen and by

M(t, x) = D∇ · (Φ(t, x) f ), Φ(t, x) = ∇xρ(t, x)

in the case of infected cells. In both situations, M involves the divergence of some
quantity, hence the semi-discrete scheme takes the form

d f
dt

= −D
Mj+ 1

2 ,k(t)− Mj− 1
2 ,k(t)

∆x1
− D

Mj,k+ 1
2
(t)− Mj,k− 1

2
(t)

∆x2
(5.22)

where M is given by

Mj+ 1
2 ,k = −∂x1 f j+ 1

2 ,k Mj,k+ 1
2
= −∂x2 f j,k+ 1

2

in the case of spatial diffusion and by

Mj+ 1
2 ,k = (Φ1

j+ 1
2 ,k)

+ f j,k + (Φ1
j+ 1

2 ,k)
− f j+1,k Mj,k+ 1

2
= (Φ2

j,k+ 1
2
)+ f j,k + (Φ2

j,k+ 1
2
)− f j,k+1

in the case of pressure-driven movement. In this second case, Φ1 := ∂x1 Φ and Φ2 :=
∂x2 Φ are the components of Φ along the x1 and x2 axis respectively; furthermore, (·)+
and (·)− indicate respectively the positive and negative part of their arguments, i.e.,
(·)+ = max{0, ·} and (·)− = min{0, ·}. Since our scheme is of order zero, the reconstruc-
tion of the function is piecewise constant and thus assumes the same values at all the
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interfaces. In all the cases, the derivatives in the middle points are evaluated as

(∂x1 f )j+ 1
2 ,k =

f j+1,k − f j,k

∆x1
, (∂x2 f )j,k+ 1

2
=

f j,k+1 − f j,k

∆x2

while the derivatives in the nodes are evaluated as

(∂x1 f )j,k =
f j+1,k − f j−1,k

2∆x1
, (∂x2 f )j,k =

f j,k+1 − f j,k−1

2∆x2

We use a uniform time discretisation of size ∆t = 5 × 10−1 h and denote with apex l
the discretised time step, i.e., tl = l∆t. At all the iterations, we check that ∆t satisfies the
positivity-preserving CFL for infected cells, namely

∆t ≤ ∆Tl := min

{
∆x1

4Φ1
M

,
∆x2

4Φ2
M

}

where Φ1
M = max

j,k

(
|Φ1 l

j+ 1
2 ,k
|
)

and Φ2
M = max

j,k

(
|Φ2 l

j,k+ 1
2
|
)

. In the case of standard diffu-

sion, the CFL is time-independent and is given by

∆t ≤ min
{
(∆x1)

2

4D
,
(∆x2)2

4D

}
The fast oxygen dynamics require a refined temporal discretisation. Hence, we set
∆tO = 6.95 × 10−5 (which is one-tenth of the maximum size required by the CFL
condition for oxygen) and perform several sub-iterations just for the oxygen while
maintaining all the other quantities constant.

For the reaction term R(t, x), we adopt a simple forward Euler method for the time
derivative. We set the discretised initial condition f 0

j,k provided for each j = 0, . . . , Nx1

and for k = 0, . . . , Nx2 , being f l
j,k the numerical approximation of f j,k(tl). The complete

splitted numerical scheme reads
f l+ 1

2
j,k = f l

j,k − D
∆t

∆x1

(
Ml

j+ 1
2 ,k

− Ml
j− 1

2 ,k

)
− D

∆t
∆x2

(
Ml

j,k+ 1
2
− Ml

j,k− 1
2

)
f l+1
j,k = f l+ 1

2
j,k + ∆t Rl+ 1

2
j,k

for l = 1, . . . , Nl . We also set no flux boundary conditions.
The equation for uninfected cells is epigenetically structured and takes the form

∂ f
∂t

(t, x, y) = M(t, x, y) +R(t, x, y)

where
M(t, x, y) = Dx∇x · (Φ(t, x) f ) + Dy∆y f

Therefore, we are now interested in the quantity

f j,k(t) =
1

∆x1∆x2∆y

∫
Cj,k,m

f (t, x, y)dx dy
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The semi-discrete scheme of the equation takes a form analogous to Eq. (5.22), which
requires the following definitions:

Mj+ 1
2 ,k,m = (Φ1

j+ 1
2 ,k,m)

+ f j,k,m + (Φ1
j+ 1

2 ,k,m)
− f j+1,k,m

Mj,k+ 1
2 ,m = (Φ2

j,k+ 1
2 ,m)

+ f j,k,m + (Φ2
j,k+ 1

2 ,m)
− f j,k+1,m

Nj,k,m+ 1
2
= −∂y f j,k,m+ 1

2

The corresponding splitted numerical scheme is
f l+ 1

3
j,k,m = f l

j,k,m − ∆t
∆x1

(
Ml

j+ 1
2 ,k,m

− Ml
j− 1

2 ,k,m

)
− ∆t

∆x2

(
Ml

j,k+ 1
2 ,m

− Ml
j,k− 1

2 ,m

)
f l+ 2

3
j,k,m = f l+ 1

3
j,k,m − ∆t

∆y

(
Nl+ 1

3
j,k,m+ 1

2
− Nl+ 1

3
j,k,m− 1

2

)
f l+1
j,k,m = f l+ 2

3
j,k,m + ∆t Rl+ 2

3
j,k,m

Initial conditions and viral injection In all the simulations, we start with an uninfected
tumour of the form

u0(x, y) =

Au e−
|x−x0 |2

θx − (y−y0)
2

θy if Au e−
|x−x0 |2

θx − (y−y0)
2

θy > 1

0 otherwise
(5.23)

The truncation is performed in order to have an initial condition with compact support;
the form of the equations is such that the solution will still be compactly supported
at all times (Aronson, 1980; Newman, 1980). In all the simulations we set x0 = (0, 0),
y0 = φ(O(0, x0)), θx = 0.5, θy = 0.5. The parameter Au is set to

Au =
7.19 × 104 cell/mm3∫

Y
e−

(y−y0)
2

θy dy

This choice allows a maximal initial total cell density equal to K
10 , irrespective of the value

of y0. We then assume that viral injection is performed after some time so that the tumour
can adapt to the environment. In most of the cases, we perform a central viral injection
as soon as the tumour reaches a given size: in mathematical terms, we set

Tinj := inf
{

t ∈ [0,+∞)
∣∣ d(t) ≥ dinj

}
(5.24)

where dinj is the tumour size at which we choose to inject the virus and

d(t) := diam
{

x ∈ Ω
∣∣∣∣ ρ(x, t) ≥ K

10

}
We recall that the diameter of a general set E is defined as

diam E := sup { |x1 − x2| | x1, x2 ∈ E }

In the particular situation of a circle, this definition coincides with the standard diameter;
in general, the diameter is the longest length found inside the set. This choice is based
on the assumption that small tumours cannot be clinically detected, hence the therapy
may only start when cancer cells reach a density of at least one-tenth of the carrying
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capacity in a large region. We set dinj = 5.2 mm, as in Kim et al., 2006 and the central
viral injection takes the form

vinj(x) = Av e−
|x−x0 |2

θv (5.25)

with Av = 7× 109, θv = 0.5. This allows for a total number of viral particles in agreement
with the experiments performed in Kim et al., 2006.

5.3.2 Stationary oxygen

The most elementary situation is obtained by considering that the oxygen concentration is
constant in space and time. We focus on three oxygen values, namely OM (normoxia), Om

(severe hypoxia) and their average Om+OM
2 (physiological hypoxia), whose corresponding

selected traits are respectively 1, 0 and 0.5; other values produce intermediate situations.
We then consider inhomogeneous oxygen distributions, which resemble more biologically
meaningful situations.

To make the comparison between the epigenetic composition and spatial characteri-
sation more straightforward, we introduce the average epigenetic trait, defined as

µ(t, x) :=

∫
Y yu(t, x, y)dy

U(t, x)
for all (t, x) such that U(t, x) ̸= 0

Observe that this condition is not satisfied in the whole domain due to the compact
support of u.

Homogeneous oxygen distribution and no viral infection As a starting point, it is
helpful to observe how a tumour evolves in these environmental conditions without
treatment, as shown in Fig. 5.2 (for the sake of clarity, the figure represents the central
section of the domain, i.e. the set [−L, L] × {0}). Overall, we observe the behaviour
predicted by the theoretical asymptotic analysis in all the cases. The three initial condi-
tions are given by Eq. (5.23) with y0 = φ(O). However, the density ρ at the beginning is
much lower than K; hence, unless we are in a normoxic situation, the fittest epigenetic
trait is lower than φ(O), as predicted by Eq. (5.20); on the other hand, in the normoxic
situation, φ(O) = 0 is already the lowest attainable value. As time passes, the cell density
grows close to carrying capacity and the cancer starts to invade the surrounding area at
a speed approximately proportional to the square root of the proliferation rate. In the
hypoxic scenarios, the fittest epigenetic trait grows with ρ until reaching the value φ(O);
however, that trait is never completely selected due to epigenetic diffusion. An important
consequence of the presence of different epigenetic characteristics is that ρ is always
slightly below K, as the oxygen selection never completely stops: this effect is especially
evident in the hypoxic situation, in which the slow proliferation contrasts the selective
pressure less effectively. It is important to observe that in all cases, the average epigenetic
traits are lower at the invasion front due to the lower total densities and increase as we
get close to the tumour centre. High oxygen levels are associated with more proliferative
tumours, which reach carrying capacity earlier and invade the surrounding tissues faster.

Homogeneous oxygen distribution and virotherapy From the previous discussion, it
could appear that hypoxic tumours do not constitute a significant threat; however, this
situation overturns in the presence of treatment, as the adaptation to hypoxia makes the
tumour less susceptible to therapies. Indeed, Fig. 5.3, along with the video accompanying
it (see electronic supplementary material S2 of Morselli et al., 2024a), shows the effect of
oncolytic virotherapy on the tumours described above. The different growth rates imply
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FIGURE 5.2: Results of the numerical simulation without viral infection for stationary oxygenation, for
three spatially homogeneous oxygen condition: O = OM (solid lines), O = OM+Om

2 (dashed lines), and
O = Om (dot-dashed lines). We plot the solutions at time t∗ = 1500 h. Only the horizontal section is shown
to facilitate the comparison. The blue lines in the left plot represent the profile of uninfected cancer cells
U(t∗, x). In the right plot, the green lines show the average epigenetic trait µ(t∗, x) and the light-blue lines
show the fittest trait selected by the environment φ(O(t∗, x)).

that the viral injection is performed at different times in the three situations: this happens
respectively around t = 426 h for normoxia, 471 h for physiological hypoxia and 609 h
for severe hypoxia. To facilitate the comparison between the different scenarios, Fig. 5.3
shows the section of the simulation approximately 1800 h after the viral injection. In all
three cases, the central region of the tumour is quickly infected and viral particles reach
the tumour front in a relatively short time due to their fast diffusion. In the severely
hypoxic case, this initial successful infection might appear surprising. Still, it can be
easily explained by the fact that at Tinj the tumour has not reached the carrying capacity
yet and the epigenetic characteristics are still not fully adapted to the environment (the
lack of complete adaptation is also true in the other cases, but less evident).

The following dynamics appear quite different in the three cases. In the normoxic case
(Fig. 5.3a), cell densities at the centre of the tumour converge with damped oscillations to
the equilibrium predicted by the theoretical analysis. The average of the epigenetic traits
in the central area sensibly increases right after the viral injection, then oscillates towards
the equilibrium. It is interesting to observe that epigenetic traits at the invasion front
are lower since, in this area, both ρ and I are lower; this is in line with the observation
of Section 4.2 that the tumour invasion is guided by the most proliferative cells. The
situation is qualitatively similar in the physiologically hypoxic case (Fig. 5.3b), but the
equilibrium value for ρ is higher. The spatial difference of the average epigenetic trait
is much more evident than in the previous case: the convergence to the equilibrium
value is slower than before and takes place mainly from the lower side. While these two
situations can be described as partial successes of the therapy, the severely hypoxic case
(Fig. 5.3c) is clearly a complete failure: the tumour density decreases only for a short
time, after which it starts to regrow up to around 90% of carrying capacity, with a tiny
fraction of infected cells (not shown here, see electronic supplementary material S2 of
Morselli et al., 2024a); we remark that such a low number of cells may correspond a
situation of extinction due to stochastic events. After approximately 400 h, the infection
relapses, which causes a small decrease in the total cell density followed by a subsequent
regrowth towards the theoretical equilibrium. The convergence is extremely slow and
it is clear from Fig. 5.3c that 1800 h after the viral injection the dynamics are still far
from the equilibrium. This can be explained by the fact that the smaller growth rate
slows down all the evolutionary dynamics, hence it takes longer for the fittest trait to
be selected. Furthermore, the model is restricted to values y ≤ 1, hence the theoretical
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FIGURE 5.3: Results of the numerical simulations for stationary oxygen at time t∗, corresponding to
approximately 1800 h after viral injection, for three spatially homogeneous oxygen conditions: O = OM
(solid lines, panel (a)), O = OM+Om

2 (dashed lines, panel (b)), and O = Om (dot-dashed lines, panel (c)). Only
the horizontal section is shown to facilitate the comparison. The first column shows U(t∗, x) in blue, I(t∗, x)
in red, and ρ(t∗, x) in purple. The second column provides the average epigenetic trait µ(t∗, x) in green
and φ(O(t∗, x)) in light blue. The black lines show the theoretical approximation of asymptotic equilibria,
obtained by solving Eq. (5.21); in panel (c), ȳ(t∗, x) is not shown, as it is higher than 1.
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FIGURE 5.4: Results of the numerical simulations for stationary oxygen with antigaussian and step-like
profiles at time t∗ corresponding to approximately 1800 h after viral injection. Only the horizontal section is
shown to facilitate the comparison with the equilibria. All the graphical elements have the same meaning as
in Fig. 5.3.

value ȳ > 1 is unattainable; the convergence to 1 necessarily takes place from below and
this makes the uninfected population more susceptible to the infection. We remark that
longer numerical simulations confirm the convergence towards 1 with the associated cell
densities (not shown). However, the equilibrium is reached only after a very long time;
therefore, from the application point of view, we should note that the treatment outcome
is slightly better than expected (although still unsuccessful).

Inhomogeneous oxygen distribution We now increase the model complexity by con-
sidering spatial homogeneities of the oxygen. We consider the following oxygen spatial
profiles:

1. O(x) = Om + (OM − Om)e
|x|2
20 (antigaussian);

2. O(x) = Om +
[1

2
+

1
π

arctan
( x1

2

)]
(OM − Om) (step-like profile).

The first profile is chosen to qualitatively resemble the oxygen distribution obtained after
the tumour’s consumption and we expect to observe dynamics that are somehow similar
to the ones described below when we drop the stationarity assumption. The second one
represents a tumour that grows at the boundary between two regions with significantly
different vascularisation.

The numerical results of these two cases are shown in Fig. 5.4, along with the videos
accompanying it (see electronic supplementary materials S3 and S4 of Morselli et al.,
2024a),. We again represent the solutions approximately 1800 h after the viral injections,
which take place respectively at times t = 565 h and t = 470 h. The extremely slow

5.3. Numerical results 127



−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
U(t *, x)

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
I(t *, x)

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
μ(t *, x)

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
μ(t *, x)

0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0×106

0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0×106

0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0

0.000

0.171
0.342
0.513
0.684
0.855
1.026
1.197
1.368
1.539

1.710×10−3

FIGURE 5.5: Results of the numerical simulations for stationary oxygen with step-like profile at time t∗

corresponding to approximately 1800 h after viral injection. We now show the densities in the whole domain
to highlight the anisotropy. The circle in the plot of U(t∗, x) is centred in (0, 0) and the radius is the distance
from the origin of the furthest point x such that ρ(t∗, x) > 0. On the other hand, the dark line in the plot of
O(t∗, x) encloses the region in which ρ(t∗, x) > 0.

growth in the first situation is due to the severely hypoxic conditions that characterise
the initial phase: although this is probably unrealistic, later dynamics appear more
comparable to biologically meaningful scenarios. In both cases, we observe behaviours
coherent with the previous findings, with the invasion led by slightly more proliferative
cells and the slower convergence to the theoretical equilibrium in the hypoxic areas.
The significance of these situations is the emergence of new selective dynamics that
occur when the tumour reaches areas with different oxygen levels: in this respect, the
effectiveness of virotherapy differs significantly from point to point.

Another significant aspect is the nonsymmetrical configuration of the step-like profile,
which allows us to analyse the influence of the oxygenation on the invasion speed. Fig. 5.5
shows the simulation result in the whole domain. It is clear that the average epigenetic
trait at the front significantly differs in different directions. We recall that, in the case
of pressure-driven movement, the invasion speed is higher for high cell proliferation
rate and high cell density. In the case of our interest, fast proliferation is associated with
effective viral infection, which results in a lower cell density: as a consequence, a priori,
it is not trivial to understand which conditions are associated with a faster invasion. The
circle in Fig. 5.5 elucidates this aspect by showing that the fastest invasion still occurs in
the most oxygenated area.

5.3.3 Inclusion of oxygen dynamics

In the previous section, we started with a basic model with homogeneous and station-
ary oxygenation, considering different concentration levels; we subsequently included
complexity in the model by considering spatial heterogeneity. We now continue this
progressive enrichment of the model toward realistic biological scenarios and consider
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the whole dynamics of Eq. (5.9), in which oxygen varies both in space and time according
to Eq. (5.8). A spatially heterogeneous oxygen source allows us to consider vessels of
different sizes and, thus, with variable blood flow.

We consider a source of the form

Q(x) = qOŌ(x)

where Ō(x) is the oxygen profile that we would observe in the absence of the tumour.
We remark that the actual oxygen distribution is always below these values due to the
increased oxygen consumption of cancer cells. We consider the following oxygen profiles:

1. Ō(x) = OM (normoxia);

2. Ō(x) = 3 Om (hypoxia);

3. Ō(x) = 3 Om +
[1

2
+

1
π

arctan
( x1

2

)]
(Omax − 3 Om) (step-like source).

4. Ō(x) = 3 Om + (OM − 3 Om)
3

∑
k=1

e−
|x−xk |

2

15 with x1 := (−4, 4), x2 := (3,−6) and

x3 := (6,−3) (source with three peaks).

The homogeneous sources aim at reproducing uniformly vascularised tissues, which, in
the absence of a tumour, are either normoxic or physiologically hypoxic. The step-like
source models a tissue with two distinguishable areas due to different oxygen inflow rates.
Finally, the last source profile constitutes an example of a tissue in which heterogeneous
vascularisation leads to a varied oxygen profile.

We use as initial condition O0(x) the steady state of Eq. (5.8), i.e., the solution of the
equation

DO∆O(t, x)− qOO(t, x)− λρ(0, x)O(t, x) + Q(x) = 0

where ρ(0, x) =
∫

Ω u0(x, y)dy and u0 is given in Eq. (5.23). We remark that our parameter
choice allows to have the same values of ρ(0, x) for all y0; as a consequence, it still makes
sense to define y0 = φ(O0(0)).

The results are collected in Figs. 5.6 and 5.7, along with the videos accompanying
it (see electronic supplementary materials S5, S6, and S7 of Morselli et al., 2024a),. The
arrangement of plots in Fig. 5.6 is analogous to Fig. 5.3, with the inclusion of φ(O(0, x)) in
the right panels: this allows to quantify the variation in time of the oxygen concentration
due to tumour growth and the consequent evolution of the trait selected by environmental
conditions. Fig. 5.7 shows the simulation result in the whole domain and highlights how
the source heterogeneity affects the dynamics.

In all four cases, the initial tumour growth causes a drop in oxygen concentration,
reducing the environmentally optimal epigenetic trait; consequently, the tumour growth
progressively slows down. The variation of oxygen level is a new selective pressure,
which could not be considered in the stationary oxygen situation. The dynamics in the
centre of the tumour are characterized by a progressive adaptation, with the oxygen
that reduces as the cell density grows and the average epigenetic trait that increases
as the oxygen density decreases. We remark that in this initial phase, the actual fittest
trait is always lower than the one selected by the environment due to the distance
from carrying capacity; as time passes, this difference becomes less evident. In the
meantime, the invasion fronts are more oxygenated, which contributes to the selection
of proliferative traits in this area; this behaviour resembles the dynamics observed in
the case of antigaussian stationary oxygen distribution. Spatial heterogeneity affects the
invasion in the cases of step-like and multiple peak sources.
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FIGURE 5.6: Comparison of the results obtained from numerical simulation of the full model at time t∗,
corresponding to approximately 1800 h after viral injection. Three spatial oxygen conditions are considered:
normoxia (solid lines, panel (a)), hypoxia (dashed lines, panel (b)), and step profile (dot-dashed lines, panel
(c)). For explicit formulation, see the main text. All the graphical elements have the same meaning as in
Fig. 5.3. In addition, a thinner light blue line in the right panels provides the φ profile at the initial state. The
equilibria are now computed from Eq. (5.19).
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FIGURE 5.7: Results of the numerical simulation for the full model with oxygen source with three peaks
at time t∗ corresponding to approximately 1800 h after viral injection. We now show the densities in the
whole domain to highlight the anisotropy. The dark line in the plot of O(t∗, x) encloses the region in which
ρ(t∗, x) > 0.

As with stationary oxygen, the viral injection constitutes an additional selective
pressure. The virotherapy causes a significant decrease in the cancer population, which
allows the reoxygenation of the tissue. Nevertheless, the initial selective pressure of
the infection appears more relevant than the environmental pressure, and the average
epigenetic trait significantly increases. As time passes, the infection is more effective
in the well-oxygenated areas: this keeps the cancer population low and avoids an
excessive reduction in the oxygen concentration, which would result in a less effective
infection. Conversely, in the less oxygenated areas, the tumour grows up to close to
carrying capacity; hence, the oxygen concentration reduces further and the environmental
conditions contribute to the selection of cells resistant to the infection.

Fig. 5.6 shows that the solutions of the equation approach the theoretical estimates,
but the convergence is slower than in the case of stationary oxygen. This is particularly
evident in the hypoxic areas due to the slow evolutionary dynamics related to the low
growth rate, as already observed for stationary oxygen, and it is now accentuated by the
fact that it takes time for the oxygen distribution to reach equilibrium. Furthermore, our
tools do not allow to characterise the wavefront, whose dynamics are significantly far
from equilibrium. Nevertheless, the theoretical values still provide significant informa-
tion regarding the success of the therapy.

Overall, the main dynamics observed in Subsection 5.3.2 can be replicated without
fixing a priori the oxygen distribution (which is not representative of realistic biological
scenarios); oxygen dynamics significantly enriches the evolutionary dynamics. Initial
condition referable as normoxic (Fig. 5.6a) or physiologically hypoxic (Fig. 5.6b) in the
absence of the tumour become respectively physiologically and severely hypoxic due to
cancer: in this sense, these two settings can be considered as a “trait d’union” with the
previous simulations. Similar dynamics can also be observed in the presence of more
complex oxygen sources, such as the three-peaked source of Fig. 5.7: this suggests that
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FIGURE 5.8: Comparison of the results obtained from numerical simulation of the full model in the case of
hypoxia-targeting oncolytic viruses at time t∗, corresponding to approximately 1500 h after viral injection.
We now consider an earlier time than in the previous simulations, as the infection in this case promotes the
selection of more proliferative cells and, at later times, we would observe boundary effects in the normoxic
case. Two spatial oxygen conditions are considered: normoxia (solid lines, panel (a)) and hypoxia (dashed
lines, panel (b)); the oxygen sources are the same as in Figs. 5.6a-b. All the graphical elements have the same
meaning as in Fig. 5.3.

the knowledge of the oxygen distribution in a tumour may predict the outcome of the
virotherapy in clinical settings.

5.3.4 Hypoxia-specific oncolytic viruses

All the simulations presented so far rely on the assumption that viral infection is less
effective in hypoxic cells: this can be explained by their slower metabolic activity, which
also affects the translation of viral proteins (Sheng Guo, 2011). Nevertheless, one should
note that some particular oncolytic viruses can specifically target receptors that are
upregulated in case of the lack of oxygen (Sadri et al., 2023; Sheng Guo, 2011). This
property appears particularly promising in light of the ineffectiveness of most classic
cancer therapies in hypoxic conditions (Zhuang et al., 2023).

Therefore, we revert the previous trade-off and exchange the values of βM and βm,
so that the function β(y) is increasing; the rest of the model remains unchanged. The
asymptotic analysis of Section 5.2 does not rely on any characterisation of the values of β
and all the equations obtained are still valid: the only relevant difference is the fact that
Eq. (5.20) now predicts a decrease of the fittest value in the presence of viral infection. The
equilibrium values depicted in Fig. 5.1b indeed shows that the virotherapy’s effectiveness
increases as the oxygen concentration decreases, in line with the biological situation we
aim to model.

Fig. 5.8, along with the video accompanying it (see electronic supplementary ma-
terial S8 of Morselli et al., 2024a), shows the full model results for the oxygen sources
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corresponding to normoxia and hypoxia. In the case of normoxia (Fig. 5.8a), we observe
the failure of the therapy: despite the persistence of the infection, the uninfected cell
density is now approximately twice the value observed in Fig. 5.6a; furthermore, the
expansion of the tumour is much faster than in the case of virotherapy with standard
viruses that target non-hypoxic cells. Both these phenomena are caused by the fact that
viral infection selects cells with a value of the epigenetic trait lower than the one selected
by environmental conditions alone, which are both more proliferative and more resistant
to the infection. Interestingly, the results are not trivial: indeed, a priori, one could expect
that the hypoxic condition caused by the tumour growth would be associated with a large
number of hypoxic cells, which are effectively targeted by the virus. Our mathematical
model is thus helpful to shed light on these complex interactions.

The situation of physiological hypoxia appears much more promising (Fig. 5.8b).
Again, we observe a decrease in the average epigenetic trait caused by virotherapy, as
expected from the theoretical results; consequently, the tumour’s invasion speed is also
higher. Nevertheless, the cell lines selected are not too resistant to the infection and the
tumour cell density appears comparable to that observed in the case of normoxia treated
by a standard virus. The important consequence is that the effectiveness of oncolytic
virotherapy can be increased by selecting the most appropriate kind of virus based on
the oxygenation of the tumour.

The comparison between the two kinds of oncolytic viruses in the case of physiologi-
cal hypoxia is further elucidated in Fig. 5.9, in which we consider the total number of
cancer cells in the domain

M(t) :=
∫

Ω
ρ(t, x)dx

We also consider the evolution in time of the proportion of cells killed by environmental
selection and the proportion of tumour cells infected at a given instant, respectively

ΓS(t) :=
η

M(t)

∫
Y

∫
Ω
(y − φ(O(t, x)))2u(t, x, y)dx dy,

ΓI(t) :=
1

M(t)

∫
Y

∫
Ω

β(y)u(t, x, y)v(t, x)dx dy

In all cases, the main contribution to cell death is caused by viral infection, meaning that
the therapy is always at least partially effective. The solid lines refer to the situation in
which the oxygen concentration is not affected by the tumour and allow us to understand
the role of oxygen dynamics; for the sake of brevity, this simulation is only performed
in the case βm < βM. The comparison with the analogous simulation of the full model
(dashed lines) shows that more cells are killed by environmental selection in the case
of variable oxygen: indeed, hypoxia exerts a more significant action when the tumour
needs to adapt to an evolving environment. The viral infection is more efficient in the
latter case since it takes a long time for the tumour to fully adapt to the hypoxic state
and become resistant to the infection. When the hypoxia-specific virus is considered, the
infection appears significantly more effective. It is also remarkable that the environmental
selection is more relevant in the last situation: indeed, the value of ȳ given by Eq. (5.20)
is now much lower than φ(O) (see again Figs. 5.6b and 5.8b), as for βM < βm both terms
in the square bracket are negative; in other words, the infection favours cells that are less
resistant to hypoxia. We should therefore conclude that the therapeutic effectiveness is
also due to environmental selection.

Although the use of hypoxia-selective oncolytic viruses appears promising, our
findings also stress that tumour eradication is still far from achieved. Furthermore, the
cell lines selected are the most proliferative; hence, if the viral infection stopped for
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FIGURE 5.9: Comparison of the time evolution of the proportion of cells killed by environmental selection
ΓI , the proportion of tumour cells infected at a given instant ΓS and the total number of cancer cells M in
the cases of stationary oxygen and βm < βM (solid lines), dynamic oxygen and βm < βM (dashed lines),
dynamic oxygen and βm > βM (dot-dashed lines). In the case of stationary oxygen, the oxygen concentration
is the equilibrium value of the corresponding model with dynamic oxygen (as depicted in the right panel of
Fig. 5.6b), with the equilibria computed again from Eq. (5.19).

some external reason (such as immune response), the tumour would quickly regain its
aggressiveness. Nonetheless, it is essential to observe that the average epigenetic trait
is significantly reduced with respect to the one that environmental conditions would
select; consequently, the tumour is now sensitive to standard treatments that lose their
effectiveness in hypoxic conditions. This suggests that a hypoxic tumour could be
effectively treated using a combination of therapies targeting cells with different degrees
of adaptation to hypoxia (Sheng Guo, 2011).

5.4 Conclusions

In this chapter, we introduced a novel oncolytic virotherapy model that considers the
epigenetic evolution of cancer cells due to viral infection and hypoxia. By integrating
viral dynamics, tumour evolution, and spatial oxygen gradients, our model provides
new insights into how hypoxic conditions within tumours affect the efficacy of oncolytic
viral therapies. Numerical simulations are coherent with the theoretical results obtained
by a formal asymptotic analysis of simplified settings and show how environmental
conditions influence the capability of the virus to control tumour mass expansions and,
in particular, underscore the significant impact of oxygen availability on viral infection
rates, tumour cell susceptibility and the overall success of virotherapy. We considered
some simple configurations of oxygen sources to capture the fundamental dynamics.
Our results suggest that hypoxia may constitute a significant obstacle to the success of
oncolytic virotherapy. Furthermore, the infection contributes to selecting a subpopulation
of cells well adapted to hypoxia, which may be hard to kill even with other therapies.
Hypoxic tumours appear to be more effectively treated with oncolytic viruses specifically
targeting hypoxic cells, although tumour eradication still appears hard to achieve.

Our findings highlight several crucial aspects for optimising virotherapy: the pres-
ence of hypoxic regions can severely limit the spread and replication of standard oncolytic
viruses; in contrast, hypoxia-specific viruses are particularly effective in these areas. This
suggests that therapeutic strategies need to account for spatial oxygen level variations.
The evolutionary dynamics of tumour cells under hypoxic stress and virotherapy pres-
sure can lead to the emergence of resistant phenotypes, indicating the need for adaptive
treatment protocols that can mitigate resistance development. One critical takeaway is
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the importance of considering the spatial heterogeneity of oxygen levels when designing
and implementing oncolytic virotherapy protocols. The model predicts that hypoxia can
significantly alter the distribution and effectiveness of viral therapy, thereby affecting
overall treatment outcomes. Additionally, the role of tumour cells’ adaptation to hypoxic
conditions highlights the necessity for dynamic treatment strategies that can respond to
changes in the tumour microenvironment.

The key assumption of this work is that, in general, the slower metabolic activity of
hypoxic cells is associated with a less effective viral infection. This has been modelled by
considering an infection rate β that depends on the adaptation of cells to hypoxia. Our
choice is motivated by the existing literature (Lorenzi et al., 2021b) and the possibility
of obtaining some theoretical insights. Other approaches would also be possible: for
example, one may directly consider the dependence of viruses on the host translational
machinery to translate viral proteins; this would correspond to a viral burst size α that
depends on the oxygen concentration or on the level of metabolic activity of the cell
(which could correspond to the variable y).

There are several promising directions for future research and the results may be
extended in several ways, both from the mathematical and the modeling perspectives.
From the mathematical point of view, the formal asymptotic analysis of Section 5.2
may constitute a good starting point for characterising the travelling waves shown in
the numerical simulations, at least in simplified settings (as already mentioned in the
conclusion of Chapter 4). From a biological point of view, we aim to develop a model to
study the interaction of oncolytic virotherapy and radiotherapy, which aligns with the
clinical interest of combining the two therapies. Radiotherapy is well-known to decrease
its effectiveness in hypoxic conditions and several mathematical models similar to the
one in the present work have been developed to investigate this phenomenon (Celora
et al., 2021; Chiari et al., 2023a). Although the combination with oncolytic viruses that
decrease their efficacy due to hypoxia does not appear beneficial, using hypoxia-targeting
oncolytic viruses could be promising.

Overall, our work contributes to a deeper understanding of the complexities of
oncolytic virotherapy under hypoxic conditions and lays the groundwork for developing
more effective and personalised cancer treatments. In this context, mathematical models
could help design the optimal combination, considering contemporary, subsequent,
or alternating treatments and investigating doses, orders and timing according to the
environmental conditions.

As a final remark, we observe that the effects of hypoxia on the tumour’s development
involve several aspects and are not restricted to therapies. Indeed, the next chapter is
devoted to the effects on cells’ migratory abilities.
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6A novel heterogeneity-based hybrid
modelling approach for EMT in tumours

In this chapter, we describe a theoretical/computational approach that allows character-
ising cells both at the genotypic and at the phenotypic level. In other words, each value
of a variable is set to correspond to a given sequence of genes, which determines the
cell’s potential. A distinct mathematical representation, i.e., pointwise/discrete or density-
based/continuous, is instead employed to distinguish cells with respect to their (possibly
dichotomic) phenotype/effective behaviour, which is established by gene transcription
and, therefore, expression levels. In this respect, the subpopulation of cells with a given
phenotype is represented by a set of particles, whereas the remaining group of individu-
als, characterised by the alternative phenotype, is represented by a continuous density
function. The phenotype corresponds to the actual behaviour within the range of the
possibilities that the genotype allows: as a consequence, the cell’s behaviour is primarily
affected by the phenotype and the actual performance is regulated by its potential.

By defining a bubble function that represents a plausible spatial distribution of the
mass of a single individual, we then implement the passage between the two descriptive
instances. This strategy, firstly proposed in Colombi et al., 2017; Scianna and Colombi,
2017, allows to model the phenomenon of phenotypic plasticity, that is, the ability of cells
to switch back and forth among multiple phenotypes while maintaining unaltered their
genotype (Holzel et al., 2012). In particular, we here assume that phenotypic conversions
are triggered by environmental signals, dependent on cell genetic traits and affected by
randomness. Including the last aspect represents a significant novelty with respect to the
previously-cited works (Colombi et al., 2017; Scianna and Colombi, 2017).

The proposed modelling approach is able to capture and represent genetic and
phenotypic heterogeneity among a given system of cells, as well as selected mechanisms
underlying phenotypic plasticity. Therefore, its possible applications span a broad
spectrum of phenomena since the evolution of aggregates of cells, from small clusters
to large populations, is typically determined by cooperative dynamics and interactions
between the component individuals differing both at the DNA and the protein level. For
instance, in most collective cell movement, few specialised individuals, able to sense
environmental chemical signals, typically behave as a patterning guidance for the rest of
the system, which instead passively displaces only due to adhesion (see Ilina and Friedl,
2009; Khalil and Friedl, 2010 and the references therein). It is the case of angiogenic
processes, where a small number of endothelial cells forming the walls of pre-existing
vessels acquire a leader/tip phenotype, representing migratory cues for the neighbouring
individuals with a follower/stalk behaviour (Boareto et al., 2016). These mechanisms are
triggered by several diffusing growth factors (e.g., vascular endothelial growth factor –
VEGF, hepatocyte growth factors – HGF) and mediated by the well-known Delta-Notch
signalling pathways (Liu et al., 2013; Williams et al., 2006). Similarly, during skin repair
after injury, the cells located at the front of the epidermal monolayers that invade the
wounded region are characterised by actin-rich lamellipodia and pseudopodia, which
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allow active movement, and are able to synthesise a new basement membrane, whereas
individuals at the rear regions only passively displace dragged by cell–cell adhesive
interactions.

This chapter focuses on applying the modelling framework to tumour growth, with
special emphasis on the epithelial-to-mesenchimal transition (EMT). Genome instability is
among the hallmarks of cancer described in Section 1.1 and the altered gene expression
affects cellular behaviour. We consider three different sequences of genes corresponding
to three values of the trait variable; as explained above, this characterises a cell’s potential
abilities. On the other hand, phenotypic plasticity is often triggered by external signals
that may come from neighbouring cells or from the surrounding environment; these
signals evolve on a time scale much faster than genetic mutations and this justifies the
employment of our modelling approach. We, therefore, model genotype and phenotype
separately: genetic mutations are neglected and phenotypic switches correspond to
a change in behaviour. We adopt a continuous description for epithelial cells, which
are characterised by a high proliferative ability and undergo slow collective dynamics
mainly guided by intercellular communication. Mesenchymal cells are instead described
individually and this allows us to easily track their individual directional movement
in response to environmental cues; their poor miotic activity allows us to neglect their
reproduction. These assumptions give rise to a 3 × 2 matrix of cell behaviours (see also
Fig. 6.4a).

This chapter is organised as follows. In Section 6.1, we introduce the main model
ingredients and present a sample numerical realisation that shows how the procedure for
the phenotypic switch works. In Section 6.2, we apply our approach to the representative
case of a heterogeneous tumour aggregate evolving in an oxygen-deprived domain.
In Section 6.3, we finally give some conclusive remarks and hints for further model
developments.

The model described in this chapter and the results shown have been published in
Chiari et al., 2022.

6.1 Proposed approach and representative simulation

We are interested in modelling the evolution of an aggregate of cells within a closed
two-dimensional domain D ⊂ R2, whose dynamics are studied for the period T =
[0, tF] ⊂ R+

0 , t being the time variable. The spatial domain D may reproduce, for instance,
a planar section of an in vivo tissue or the surface of a Petri dish, usually employed in
experimental studies.

The cells composing the system are here differentiated according to two determinants,
as sketched in Fig. 6.1a:

• their genotype, by the use of a discrete trait variable u;

• their phenotype, by the use of different mathematical representations.

Our approach is indeed based on the assumption that there is not a deterministic and/or
necessary relation between the genetic trait of a cell and its phenotype: the latter is, in
fact, determined at the protein level, i.e., by effective gene transcription and expression
levels, which are eventually affected by stochasticity and extracellular/environmental
stimuli and conditions (by the so-called surrounding ecology).

The structuring variable u is set to assume a given number of values, say K, i.e.,
u ∈ U = {uk}K

k=1. In this respect, the generic state uk̂ defines the cell clone characterised
by the k̂-th genetic makeup, i.e., by the k̂-th sequence of genes.
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We then consider two alternative cell phenotypes, say “A” and “B”, and associate
each of them to a distinct mathematical descriptive instance, as proposed in Colombi et
al., 2017; Scianna and Colombi, 2017. In particular, for a given cell variant with genotypic
trait uk̂ ∈ U, the individuals that show phenotype A have a discrete representation: they
are reproduced with dimensionless points with concentrated unitary mass and identified
by their actual position in space (see Fig. 6.1a). Such subgroup of agents can be indeed
collected in the following set:

XA
uk̂
(t) =

{
x1,uk̂

(t), . . . , xNA
uk̂
(t),uk̂

(t)
}

(6.1)

with xi,uk̂
(t) ∈ D, for i = 1, ..., NA

uk̂
(t), being NA

uk̂
(t) the number of cells with phenotype A

and genotype uk̂ at time t. The overall amount of individuals with phenotype A within
the entire aggregate can be, therefore, computed as

NA(t) =
K

∑
k=1

NA
uk
(t) (6.2)

The remaining part of the clone of cells with the k̂-th genetic trait is instead characterised
by phenotype B and collectively described by the number density function

aB(t, y, uk̂) : T × D × U 7→ R+
0

as shown in Fig. 6.1a. The local amount of individuals with phenotype B can be, therefore,
evaluated as

ρB(t, y) =
K

∑
k=1

aB(t, y, uk) (6.3)

In this respect, aB(t, y, ·) can be interpreted as the local distribution of cells with pheno-
type B on the genotype space U. The overall number of agents with phenotype B actually
present within the entire domain D can be then approximated by integrating ρB along
the space variable and rounding the obtained value to the lower integer:

NB(t) =
⌊∫

D
ρB(t, y)dy

⌋
(6.4)

The total number of cells composing the aggregate at any given time t is finally equal to
N(t) = NA(t) + NB(t).

Remark 6.1 For the sake of completeness, we now give some comments on the above-proposed
modelling framework:

• The association between the different cell genetic makeups and the corresponding values of
the variable u is arbitrary.

• The association between a cell phenotype and the corresponding mathematical representation
is instead suggested by biological considerations. For example, the discrete description
adopted for phenotype A is particularly suitable for active cells, while the collective descrip-
tion adopted for phenotype B is more appropriate for quiescent cells. In the next section,
the two phenotypes are associated respectively to mesenchymal and epithelial cells: in
this way, we can track the individual directional movement of mesenchymal cells and, at
the same time, keep the computational cost of the simulation low by adopting a continuous
description for the epithelial mass.
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FIGURE 6.1: (a) In our modelling environment, each cell is differentiated for genotype, i.e., by the use
of a discrete structuring variable u ∈ U, and for phenotype, i.e., by the use of a specific mathematical
representation. In particular, we only consider two alternative individual phenotypes, which are set to
correspond either to a pointwise or to a density-based descriptive instance. (b) For representative purposes,
bi-dimensional and three-dimensional plots of the bubble function centred in x = (0, 0), i.e., φ(0,0) (cf. Eq.
(6.6)). We recall that the radius r of the round support of φ is constantly taken equal to 15 µm. (c) We here
set that cell dynamics such as growth, migration, and phenotypic switches are affected both by individual
genetic traits and by variations in environmental (i.e., ecological) conditions. Stochasticity plays a role as
well. In particular, A-to-B phenotypic transition of the generic cell i with genotype uk̂ is implemented by the
removal of the material point located in xi,uk̂

and the simultaneous addition of the corresponding bubble
function φxi,uk̂

to the mass distribution aB(·, ·, uk̂). Conversely, a B-to-A phenotypic switch, stimulated in
the domain point xs and involving the cell variant with genotype uk̂, amounts to the local creation of a
new material point xNA

uk̂
(t)+1,uk̂

and in the simultaneous removal of the bubble function φxs to the mass

distribution aB(·, ·, uk̂).

• In principle, our approach could include more than two cell phenotypes. This would require
the use of hybrid mathematical representations, i.e., able to account for a proper amount
of microscopic granularity within a macroscopic/continuous description of the system of
interest, which would be possible, for instance, by employing tools of Measure Theory
(Colombi et al., 2014; Colombi et al., 2015).

• The proposed modelling environment is hybrid but not, so far, multiscale, in the sense that
different mathematical objects (i.e., material points and number densities) are used together
but represent biological elements at the same spatial scale, i.e., different types of cells.

Modelling cell phenotypic plasticity In a wide range of biological phenomena, cells
are able to change phenotype while maintaining their genetic makeup, i.e., to vary the
expression level of one or more of their genes. To reproduce this phenomenon in our
modelling framework, we need to set up a procedure to switch between the two cell
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descriptive instances. It is indeed necessary to define a proper correspondence between
the pointwise and the density-based representation of a single cell. In this respect, let us
proceed as in Colombi et al., 2017; Scianna and Colombi, 2017 and introduce a function
φx(y) : D × D 7→ R+

0 such that: ∫
D

φx(y)dy = 1 (6.5)

φx approximates the spatial distribution of a cell whose centre is located in x ∈ D. In
principle, there exist several possible options to explicit φx(y). However, in accordance
with the already-cited works (Colombi et al., 2017; Scianna and Colombi, 2017), we
hereafter use the following bubble function, which assumes a greater amount of cell mass
around x, as shown in Fig. 6.1b:

φx(y) =


4

πr8 (r
2 − |y − x|2)3 if |y − x| ≤ r

0, otherwise
(6.6)

In Eq. (6.6), | · | identifies the Euclidean norm while r is set to approximate a mean cell
radius: hereafter, it will have a value of 15 µm.

Let us now assume that, at a certain time t, the i-th cell with phenotype A and geno-
type uk̂ ∈ U undergoes a transition to phenotype B. From a biological perspective, this
may be the result of environmental stimuli (triggered by chemical signals or by intercel-
lular communication) or of the fact that the individual i is able to maintain phenotype A
only for a limited period of time (e.g., due to high metabolic costs). The proposed A-to-B
phenotypic switch can be then implemented in our modelling framework by removing
the material point located in xi,uk̂

(t) and by simultaneously adding the equivalent mass
function φxi,uk̂

(t) to the density of the cell variant characterised by the same trait uk̂, as
shown in Fig. 6.1c. In mathematical terms, we indeed get the following relations:

XA
uk̂
(t+) = XA

uk̂
(t) \ {xi,uk̂

(t)}
XA

uk
(t+) = XA

uk
(t), for all k ̸= k̂

aB(t+, y, uk̂) = aB(t, y, uk̂) + φxi,uk̂
(t)(y), for all y ∈ D

aB(t+, y, uk) = aB(t, y, uk), for all k ̸= k̂; and y ∈ D

(6.7)

Finally, the remaining particles with phenotype A and genotype uk̂ are renumbered
according to the rule

xj,uk̂
(t+) =

{
xj,uk̂

(t), if j < i
xj−1,uk̂

(t), if j > i
(6.8)

In Eqs. (6.7) and (6.8), as well as in the following, the notation t+ is used to specify that,
from a numerical point of view, phenotypic transitions are not simultaneously implemented
with the other processes, e.g., cell movement, duplication, death, which occur at the same
time instant (see also Colombi et al., 2017; Scianna and Colombi, 2017). The generalisation
of the above procedure to more cells that actually switch from phenotype A to phenotype
B, possibly with different genotypic traits, is straightforward.

Let us then conversely assume that, at time t, an environmental stimulus, which is in
principle able to trigger a transition from phenotype B to phenotype A in individuals
with the generic genotype uk̂ ∈ U, is active in a given domain location, say xs ∈ D. Such
a switch can occur only if there is a sufficient density of the cell variant of interest to
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have a localised agent placed in xs. In mathematical terms, this amounts to satisfying the
following local constraint:

aB(t, y, uk̂) ≥ φxs(y) for all y ∈ D (6.9)

In this case, the cell phenotypic transition from B to A (and the corresponding representa-
tion switch) results from the removal of φxs from the distribution aB(t, ·, uk̂), accompanied
by the addition of the corresponding new element to the set XA

uk̂
(see Fig. 6.1c):

XA
uk̂
(t+) = XA

uk̂
(t) ∪ {xNA

uk̂
(t)+1,uk̂

(t) ≡ xs}

XA
uk
(t+) = XA

uk
(t), for all k ̸= k̂

aB(t+, y, uk̂) = aB(t, y, uk̂)− φxs(t)(y), for all y ∈ D
aB(t+, y, uk) = aB(t, y, uk), for all k ̸= k̂ and y ∈ D

(6.10)

Furthermore, the following rules are set:

• in the case of B-to-A phenotypic transitions involving the same cell clone, e.g.,
with genotype uk̂, and simultaneously stimulated in two distinct domain points
xs1 and xs2 such that φxs1 and φxs2 overlap, two alternative options are accounted
for: (i) if aB(t, y, uk̂) ≥ φxs1(y) + φxs2(y) for any y ∈ D, then both behavioral
switches occur; (ii) if, otherwise, aB(t, y, uk̂) ≥ φxs1(y), φxs2(y) but aB(t, y, uk̂) <
φxs1(y) + φxs2(y) for at least one domain point, then only one transition takes place,
which is randomly established. The same rule is extended in the case of more than
two phenotypic transitions with analogous characteristics;

• B-to-A phenotypic transitions are not allowed in any domain point effectively
occupied by a pointwise agent (regardless of its genotype). Coherently, only one
B-to-A phenotypic switch is allowed (and arbitrarily established) at the same time
in the same domain point. These constraints are consistent with the observation
that, in a wide range of phenomena, a cell that activates inhibits the surrounding
individuals to undergo the same process. It is the case, for instance, of the tip cell
selection and lateral inhibition mechanism controlled by the Delta-Notch pathways
during physio-pathological angiogenesis;

• simultaneous B-to-A phenotypic switches occurring at far enough spatial regions
are instead always permitted.

It is instead useful to remark that the above ones are rules that always contain a level of
arbitrariness and can be, in principle, neglected and/or replaced by other assumptions.

Sample simulation Before including in the proposed modelling framework more realis-
tic biological mechanisms and dynamics, let us propose and comment on a representative
numerical realisation. It deals with a colony of cells which do not grow or move but
only undergo arbitrarily selected phenotypic transitions. In more detail, in the spatial
domain D = [−150 µm, 150 µm]2, we place an aggregate whose component individuals
can have three different genetic makeups, i.e., U = {u1, u2, u3}, while showing the usual
dichotomy in the phenotype, i.e., A and B. The initial system configuration is then given
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FIGURE 6.2: Initial condition of the representative simulation, as specified by Eq. (6.11). The subpopulation
with phenotype B has a radial symmetry: in particular, the cell variant with genotype u1 is mainly located at
the bulk of the cluster, the cell variant with u3 forms an external ring, whereas the cell variant with u2 is
distributed in the intermediate region. A group of individuals with phenotype A is then dispersed around
and within the distribution of cells with phenotype B. In particular, we hereafter use light blue circles to
indicate particles with phenotype A and genotype u1, blue triangles to indicate particles with phenotype A
and genotype u2, and dark blue squares to indicate particles with phenotype A and genotype u3. Such an
initial cell configuration is maintained in the case of the model application proposed in Section 6.2.

by the following distribution of cells:

XA
u1
(0) = { x1,u1 = (−45, 15) }

XA
u2
(0) = { x1,u2 = (75, 0); x2,u2 = (−45, 75) }

XA
u3
(0) = { x1,u3 = (60, 75); x2,u3 = (90,−105); x3,u3 = (−105,−45) }

aB(0, y, u1) = 3.1 mφ exp
(
−|y|2

325

)
aB(0, y, u2) = 2.4 mφ exp

(
−|y − 25|2

325

)
aB(0, y, u3) = 1.7 mφ exp

(
−|y − 50|2

325

)
(6.11)

for all y ∈ D, being mφ = 4/πr8 the maximum of the bubble function (cf. Eq. (6.6)),
see Fig. 6.2. The overall number of cells at the onset of the simulation, which remains
constant in time due to the absence of duplication/death mechanisms, amounts to:

N(0) = NA(0) + NB(0)

= [XA
u1
(0)] + [XA

u2
(0)] + [XA

u3
(0)] +

⌊∫
D

ρB(0, y)dy
⌋

= 6 +
⌊∫

D

(
aB(0, y, u1) + aB(0, y, u2) + aB(0, y, u3)

)
dy
⌋
= 6 + 188 = 194, (6.12)

where [Q] indicates the cardinality of a generic set Q.
At a given time t1, an external input able to stimulate a switch from phenotype B to

phenotype A for all cell clones, regardless of their genetic trait, activates in an arbitrary
set of domain points, radially disposed along the main axies: xs1 = (15, 0), xs2 = (50, 0),
xs3 = (85, 0), xs4 = (0, 15), xs5 = (0, 50), xs6 = (0, 85), xs7 = (−15, 0), xs8 = (−50, 0),
xs9 = (−85, 0), xs10 = (0,−15), xs11 = (0,−50), and xs12 = (0,−85), see top panels in
Fig. 6.3. In this respect:

• no transition takes place in xs3, xs6, xs9, and xs12 due to the lack of sufficient mass
density of any cell genetic variant;
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FIGURE 6.3: Sample simulation showing how phenotypic switches are implemented in the proposed
modelling environment. In the left panels, we represent the evolution of the entire aggregate of cells: in
particular, we plot both the overall density of the subpopulation with phenotype B, i.e., ρB (cf. Eq. (6.3)),
and the set of particles with phenotype A. Within this subgroup, the light blue circles identify cells with
genotype u1, the blue triangles cells with genotype u2, and the dark blue squares cells with genotype u3.
The right panels show the enlarged dynamics of a representative section of the domain.

• in xs2, xs5, xs8, xs11, only the subpopulation with genetic trait u3 is able to undergo
phenotypic switch, as aB(0, y, u3) ≥ φxsj(y) for all y ∈ D and sj ∈ s2, s5, s8, s11, a
condition that instead is not satisfied by the distributions of the other cell genotypes;

• in xs1, xs4, xs7, xs10, both the cell clone with genotype u1 and the cell clone with
genotype u2 have in principle enough mass to undergo a single-cell switch from
phenotype B to phenotype A (i.e., aB(0, y, u1), aB(0, y, u2) ≥ φxsj(y) for all y ∈ D
and sj ∈ s1, s4, s7, s10). However, as previously commented, only a single B-to-A
phenotypic switch is allowed to occur at a given time in a given domain location: in
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this respect, we arbitrarily establish that in each of the four points, only the genetic
variant u2 is subjected to phenotypic conversion.

The above-described dynamics are schematically visualised, in the case of a representative
domain section, in the top-right graph of Fig. 6.3. The updated system configuration
then reads as

XA
u1
(t+1 ) = XA

u1
(0)

XA
u2
(t+1 ) = XA

u2
(0) ∪ { x3,u2 ≡ xs1; x4,u2 ≡ xs4; x5,u2 ≡ xs7; x6,u2 ≡ xs10 }

XA
u3
(t+1 ) = XA

u3
(0) ∪ { x4,u3 ≡ xs2; x5,u3 ≡ xs5; x6,u3 ≡ xs8; x7,u3 ≡ xs11 }

aB(t+1 , y, u1) = aB(0, y, u1)

aB(t+1 , y, u2) = aB(0, y, u2)− φxs1(y)− φxs4(y)− φxs7(y)− φxs10(y)
aB(t+1 , y, u3) = aB(0, y, u3)− φxs2(y)− φxs5(y)− φxs8(y)− φxs11(y)

(6.13)

for all y ∈ D. We indeed have that N(t+1 ) = NA(t+1 ) + NB(t+1 ) = 14+ 180 = 194 = N(0).
Successively, at t2, an analogous local signal is present in the following set of points:

xs13 = (45, 0), xs14 = (0, 45), xs15 = (−45, 0), and xs16 = (0,−45), see the central panels
in Fig. 6.3. In all cases, no phenotypic switch actually occurs. In fact, no cell genetic
variant has a sufficient amount of mass over the support of φxsj (with j = 13, 14, 15, 16)
despite the overall mass of individuals with phenotype B, measured by ρB, would be in
principle high enough. In this sense, the system does not vary with respect to (6.13).

We finally set that at time t3, the cell x1,u2 , located in (75, 0) from the beginning of
the observation time, is triggered to turn back to phenotype B, as shown in the bottom
panels of Fig. 6.3. The pointwise particle is indeed replaced by the corresponding bubble
function, which is added to the mass of the proper cell genetic variant as

XA
u1
(t+3 ) = XA

u1
(t+2 ) = XA

u1
(t+1 ) = XA

u1
(0)

XA
u2
(t+3 ) = XA

u2
(t+2 ) \ { x1,u2 } = XA

u2
(t+1 ) \ { x1,u2 }

XA
u3
(t+3 ) = XA

u3
(t+2 ) = XA

u3
(t+1 )

aB(t+3 , y, u1) = aB(t+2 , y, u1) = aB(t+1 , y, u1) = aB(0, y, u1)

aB(t+3 , y, u2) = aB(t+2 , y, u2) + φx1,u2
(y) = aB(t+1 , y, u2) + φx1,u2

(y)
aB(t+3 , y, u3) = aB(t+2 , y, u3) = aB(t+1 , y, u3)

(6.14)

for all y ∈ D, so that N(t+3 ) = NA(t+3 ) + NB(t+3 ) = 13 + 181 = 194 = N(0). For the sake
of the reader’s convenience, we recall that the element belonging to the set XA

u2
have to

be renumbered according to Eq. (6.8).

Remark 6.2 As already commented in the introduction of the chapter and sketched in Fig. 6.1c,
a cell is stimulated to undergo phenotypic plasticity by environmental signals, but the effective
transition depends on its genetic makeup and on the intrinsic stochasticity of the mechanism.
These aspects have not been accounted for so far, as all the proposed cell phenotypic switches have
been set to actually take place (provided a sufficient cell mass in the case of B-to-A conversions).
Such a model shortcoming is tackled in the next section, where more realistic rules underlying
variations in cell phenotype will be given.
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FIGURE 6.4: (a) In the proposed model application, the trait value u is set to qualitatively evaluate the cell
motility/proliferation potential. In particular, the higher the value of u, the more a tumour individual is
assigned a sequence of genes that, if expressed, enhances its migratory ability while dropping its dupli-
cation capacity. The phenotype A, and therefore the corresponding pointwise representation, is given to
malignant cells with mesenchymal characteristics; the phenotype B, and the corresponding density-based
representation, is instead assigned to tumour agents with epithelial hallmarks. The thickness of the vertical
arrows gives a qualitative indication of the probability that a cell with a given genotype has to undergo
one of the two phenotypic transitions. In particular, as also shown in the bottom graph of panel (b), cells
with genotype u = u1 = 0 more likely acquire (or maintain) an epithelial behaviour. In contrast, cells with
genotype u = u3 = 1 more likely acquire (or maintain) mesenchymal hallmarks. (b) Top plot: influence of
the genetic trait of a cell on the probability of phenotypic conversions (see Eqs. (6.17) and (6.20)). Bottom
plot: genotypic-dependent duplication rate of malignant epithelial cells (p1, see Eq. (6.23)) and speed of
mesenchymal individuals (v, see Eq. (6.27)).

6.2 Model application: early dynamics of an in vitro tumour
aggregate

We then turn to apply the proposed model to tumour growth. In particular, we hereafter
show how our approach can be used to reproduce selected aspects of the early dynamics
of a malignant aggregate cultured in vitro.

6.2.1 Model description

In the context of our interest, the trait variable u is set to assume three values, i.e.,
U = {u1 = 0; u2 = 0.5; u3 = 1}, each indicating a distinct sequence of genes. In this
respect, the higher the value of u, the more the corresponding genotype is associated
with cells that, in principle, have high migratory potential and low proliferation capacity,
see Fig. 6.4a. The definition of the structuring variable u is indeed coherent with the
“Go or Grow” (GoG) assumption (Gallaher et al., 2019), which finds support from both
the experimental (Giese et al., 1996a; Giese et al., 1996b) and the theoretical literature
(Schaller et al., 2012). Phenotype A, and therefore an individual pointwise representation,
is then assigned to describe tumour cells with mesenchymal determinants (i.e., that show
effectively high invasiveness and poor mitotic activity). Phenotype B, as long as a
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collective density-based representation, is instead assigned to malignant individuals
with epithelial hallmarks (i.e., low migratory ability but high duplication rates). Such
modelling assumptions are sketched in the already-mentioned Fig. 6.4a.

Modelling epithelial-mesenchymal plasticity In agreement with the scheme shown in
Fig. 6.1c, we assume that phenotypic transitions are:

• Stimulated by variations in environmental conditions, in particular in the availabil-
ity of oxygen, whose local concentration is given by the field variable O(t, y) : T ×
D 7→ R+

0 . In this respect, hypoxia has been widely shown to boost phenotypic
instability, acting as a stimulus of selective pressure that pushes tumour cells to
shift towards more aggressive (mesenchymal) hallmarks (Kao et al., 2016). For
instance, tumour cells displaying high levels of hypoxia-inducible factors, such as
hypoxia-inducible factor 1 (HIF-1), have been demonstrated to overexpress genes
relative to the migratory machinery and underexpress genes related to mitotic pro-
cesses (see Barrak et al., 2020 and the references therein). In the case of a sufficient
amount of resources, malignant individuals have been instead shown to maintain
or recover a less invasive (epithelial) behaviour. In this respect, cells with low levels
of HIF-1 have been shown to transcript mainly genes implicated in duplication
activities (Barrak et al., 2020).

• Affected by the cell genetic makeup: for instance, a variant characterised by a
sequence of genes mainly relative to the migratory machinery more likely maintains
or acquires a mesenchymal behaviour (and vice versa) (Rocha et al., 2021).

• Subjected to randomness, which is a critical aspect in most biological phenomena.

In principle, transition probabilities have to be given as random variables defined on
spatio-temporal continuous domains. However, in view of numerical realisations of the
proposed model, we only account for their discretised counterpart. According to these
considerations, the probability of a cell xi,uk̂

(t) with phenotype A and genotype uk̂ ∈ U
to undergo phenotypic transition in an interval of time (t − ∆t, t] ⊂ T, being ∆t the size
of the time grid (see below), is equal to:

PA→B(O(t, xi,uk̂
(t)), uk̂) = qA→B(O(t, xi,uk̂

(t))) pA→B(uk̂) (6.15)

In Eq. (6.15), the first factor evaluates the environmental conditions experienced by the
i-th individual, i.e.,

qA→B(O(t, xi,uk̂
(t))) = H(O(t, xi,uk̂

(t))− OM) (6.16)

being

H(O(t, xi,uk̂
(t))− OM) =

{
1 if O(t, xi,uk̂

(t)) ≥ OM

0 if O(t, xi,uk̂
(t)) < OM

the Heaviside function and OM the amount of molecular substance needed by tumour
cells to remain in a normoxic condition., i.e., to avoid hypoxia. With Eq. (6.16), we
are assuming that mesenchymal cells experiencing oxygen deprivation do not undergo
phenotypic transitions. The second factor in Eq. (6.15) instead reads as:

pA→B(uk̂) = (pmax
A→B − pmin

A→B)(1 − uk̂)
2 + pmin

A→B (6.17)

It indeed sets a quadratic dependence between the genetic makeup of the cell and its
possibility to switch phenotype. In this respect, in the case of normoxic conditions,
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mesenchymal individuals with genotype u1 = 0 acquire epithelial hallmarks with a
probability equal to pmax

A→B whereas particles with genotype u3 = 1 with a probability
equal to pmin

A→B where, according to the above-explained biological arguments, pmin
A→B <

pmax
A→B, see Fig. 6.4b (top plot).

Conversely, considering the same time and space discretisation of the previous case,
a cell clone with genotype uk̂ and phenotype B, i.e., whose distribution is given by the
density aB(t, ·, uk̂), is set to acquire mesenchymal determinants at a certain point xs ∈ D
of the discretised space and in an interval of time (t − ∆t, t] ⊂ T with a probability equal
to

PB→A(O(t, xs), uk̂) = qB→A(O(t, xs)) pB→A(uk̂) (6.18)

where, recalling Eq. (6.16),

qB→A(O(t, xs)) = H(OM − O(t, xs)) (6.19)

The above formula implies that epithelial-to-mesenchymal transitions can only be trig-
gered by hypoxic conditions and the probability that they effectively occur depends also
in this case by the cell genotype:

pB→A(uk̂) = (pmax
B→A − pmin

B→A)u
2
k̂ + pmin

B→A (6.20)

where pmax
B→A characterises the cell clone with trait u3 = 1 and pmin

B→A the cell variant with
u1 = 0, being pmax

B→A > pmin
B→A, as plotted in the top graph of Fig. 6.4b. Obviously, the

B-to-A phenotypic transition actually takes place if the uk̂-th cell variant has enough
mass over the support of φxs .

Remark 6.3 For the sake of completeness, we now give some comments on the above-proposed
modelling framework:

• As we explain later, the sizes of the time and space discretisation steps affect the estimate of
the parameters pmax

A→B, pmax
A→B, pmax

B→A and pmin
B→A.

• Phenotypic transitions are actually employed according to the procedures explained in the
previous section.

• In the case of simultaneously possible epithelial-to-mesenchymal switches occurring in the
same domain point, it only takes place in the one involving the cell variant with the highest
value of u.

• In Eqs. (6.17) and (6.20), we have assumed a quadratic relationship between the value of
the structuring variable u and the transition probabilities. Different laws may, of course, be
chosen; however, they have to maintain the same qualitative trends as those proposed here.

• More sophisticated functions may be set to describe the influence of oxygen on phenotypic
variations. For instance, the probability of a cell acquiring mesenchymal determinants may
increase upon decrements in the chemical concentration below the threshold OM. One could
also consider two different oxygen thresholds OM1 < OM2 such that the phenotypic switch
from A to B occurs for oxygen concentrations above OM1 and the phenotypic switch from B
to A occurs for oxygen concentrations below OM2.

Cell dynamics Malignant cells with epithelial determinants are here assumed to prolif-
erate and undergo random movement. The evolution of the density of the uk̂-th variant
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with phenotype B can be indeed described by means of the following PIDE:

∂taB(t, y, uk̂) = DB∆aB(t, y, uk̂)︸ ︷︷ ︸
diffusive movement

+ p(uk̂, ρ(t, y)) aB(t, y, uk̂)︸ ︷︷ ︸
proliferation

(6.21)

where ρ(t, y) accounts for the local tumour mass (see below Eqs. (6.25) and (6.26)). The
diffusion term in Eq. (6.21), with constant coefficient DB > 0, models Brownian cell
displacements. The reaction term instead expresses local variations in the mass of the
uk̂-th epithelial cell variant. In particular, they are assumed to depend on (i) individual
genetic trait and (ii) physical limitations determined by the available space. In this
respect, p can be factorised as follows:

p(uk̂, ρ(t, y)) = p1(uk̂) p2(ρ(t, y)) (6.22)

The duplication law p1 accounts for the fact that higher proliferation rates characterise
cell variants with lower values of the trait variable u (which, as previously seen, are
associated with a sequence of genes mainly implicated in the mitotic machinery). In this
respect, to avoid overcomplications, we assign to p1 a linear trend, see Fig. 6.4b (bottom
plot):

p1(uk̂) = (γmax − γmin)(1 − uk̂) + γmin (6.23)

being γmax a maximal duplication rate, characteristic of cells with genotype u = u1 = 0,
and γmin the corresponding minimal value, that is instead assigned to individuals with
genotype u = u3 = 1. The factor p2 in Eq. (6.22) instead models the fact that the mitotic
cycle is typically disrupted in overcompressed cells, although abnormal proliferation is
a relevant characteristic of malignant masses. This phenomenon can be replicated by
setting the following logistic law:

p2(ρ(t, y)) = 1 − ρ(t, y)
c

(6.24)

where c > 0 is the carrying capacity, while

ρ(t, y) = ρA(t, y) + ρB(t, y) (6.25)

being ρB defined as in Eq. (6.3), and

ρA(t, y) =
3

∑
k=1

NA
uk

∑
i=1

φxi,uk
(t)(y) (6.26)

In Eq. (6.24), we consider that the available space is also reduced by the presence of
mesenchymal individuals, whose influence on the overall mass distribution can be
accounted for by the use of the corresponding set of bubble functions, as given in
Eq. (6.26). Eq. (6.21) is then equipped by Neumann homogeneous boundary conditions
on the spatial domain D, which are consistent with the fact that cells cannot physically
cross the border of an experimental Petri dish.

The dynamics of tumour cells with mesenchymal determinants only include a direc-
tional movement towards domain regions with higher oxygen concentrations. In this
respect, for the i-th individual with phenotype A and generic genotype uk̂, we set:

dxi,uk̂

dt
(t) =

∇O(t, xi,uk̂
(t))

|∇O(t, xi,uk̂
(t))| v(uk̂) (6.27)
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with v(uk̂) = (vmax − vmin)uk̂ + vmin, see the bottom graph in Fig. 6.4b. In Eq. (6.27), cell
speed and direction of movement are decoupled, given their distinct physical meaning.
The former depends on the pattern of available resources, and the latter, quantified
by the scalar functions v : U 7→ [vmin, vmax], is instead affected by individual genetic
makeup. In this respect, recalling that higher values of u imply higher motile potential,
vmax is the speed of cells with genotype u = u3 = 1, whereas vmin of cells with genotype
u = u1 = 0. It is finally useful to underline that Eq. (6.27) is based on the overdamped force-
velocity assumption: it establishes that, in extremely viscous regimes such as biological
environments, the velocity of moving agents and not their acceleration is proportional to
the sensed forces (see Scianna and Preziosi, 2012 and the references therein for a detailed
comment). When a mesenchymal cancer cell reaches a point of the border of D, the
component of its velocity locally normal to the boundary is arbitrarily set equal to zero.

Summing up, it is possible to conclude that, in this sample model application, genetic
trait and ecological/environmental conditions affect not only the phenotypic transitions
of the cancer cells but also their effective growth and migratory dynamics, as sketched in
Fig. 6.1c.

Chemical dynamics We assume that oxygen diffuses within the domain and is con-
sumed equally by all tumour individuals, regardless of their genotype and phenotype.
Its kinetics can be therefore described by the following reaction-diffusion equation:

∂tO(t, y) = DO∆O(t, y)︸ ︷︷ ︸
diffusion

− λO ρ(t, y)O(t, y)︸ ︷︷ ︸
consumption by

tumour cells

− qOO(t, y)︸ ︷︷ ︸
decay

(6.28)

where DO, λO, and qO are constant coefficients that quantify chemical diffusion, consump-
tion by malignant cells and natural decay, respectively, being ρ defined as in Eq. (6.25). Eq.
(6.28) is finally completed with Dirichlet conditions along the entire domain boundary
∂D, i.e., O(t, ∂D) = O, for all t ∈ T: we are indeed assuming a continuous and constant
chemical supply. It is useful to remark that the inclusion of chemical dynamics gives our
model a multiscale aspect, as it now deals with elements characteristic of both the cellular
and the subcellular levels.

6.2.2 Details of numerical simulations

Numerical method For the spatial domain D, we have employed a triangular mesh
with radial symmetry with respect to the centre point (0, 0). The characteristic diameter
of each grid element has been taken equal to ∆x = 5 µm. For the time domain T, we
have used a uniform discretisation with a step equal to ∆t = 1 h.

Eqs. (6.21) and (6.28), describing the dynamics of the continuous population and of
the oxygen, have been solved employing a time-explicit Euler method coupled with a
Galerkin finite-element technique. An explicit Euler method has also been employed for
the system of ODEs describing the movement of pointwise cells (cf. Eq. (6.27)). At any
discrete time-step, phenotypic switches are implemented (as explained in Section 6.1)
just after the numerical solution of the above-cited equation for cell dynamics.

Considering B-to-A switches, the following algorithmic rules are implemented for
each numerical node of the domain:

(i) The oxygen level is checked: if it is higher than OM, then no phenotypic transition
occurs and we pass to another domain point;

(ii) Otherwise, we check the mass of the cell subpopulation with u = u3 = 1: if it satis-
fies condition (6.9), then a random number from the uniform distribution between
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0 and 1 is drawn. If this number is lower than the value of the probability given in
Eq. (6.18) and evaluated in the case of our interest, then the phenotypic transition
occurs and we pass to another domain point (recall that a B-to-A phenotypic transi-
tion of a given subpopulation locally inhibits analogous processes involving other
subpopulations);

(iii) Otherwise, the same evaluations described at point (ii) are performed for the other
subpopulations in descending order with respect to u (to be coherent with the fact
that cells with higher genotypic traits u are more likely to switch phenotype).

We keep into account that, when a B-to-A transition takes place at one point, it affects
the possibility of transition at neighbouring points, as some of the continuous mass is
removed. Thus, in order to avoid biases in the spatial location of B-to-A phenotypic
switches, at every iteration, we randomise the order in which the points of the numerical
lattice are visited.

We then turn on considering possible A-to-B transitions, which take place in areas
with oxygen concentration above OM with probability given by Eq. (6.15) (using the
same drawing algorithm described above). We finally remark that the order in which
cells with phenotype A are checked for possible transitions does not affect numerical
outcomes, since A-to-B transitions are independent of each other.

All numerical computations have been performed in FeniCS (see Alnaes et al., 2015;
Logg et al., 2012 and the references therein).

Parameters estimate As previously commented, the probabilities of phenotypic transi-
tions introduced in Eqs. (6.15) and (6.18) are the discretised approximations of the corre-
sponding continuous-in-time (and in-space) laws. In more detail, the coefficient pmax

A→B
(pmin

A→B, respectively) defines the probability that the i-th cell with genotype u = u1 = 0
(u = u3 = 1, respectively) undergoes phenotypic transition at a given time step, i.e., in
the case of normoxic conditions. The estimation of these values is based on the average
time that a cell with mesenchymal characteristics takes to reacquire epithelial hallmarks;
in our model we assume that it ranges from Tmin

A→B = 50 h to Tmax
A→B = 200 h. Such quanti-

ties (poorly measured in the empirical literature, see Aiello et al., 2018 for one of the few
contributions in this respect) have been fixed in order to have a reasonable number of
phenotypic transitions in the period of observation. By recalling that our model is based
on the assumption that cells with lower values of the trait variable are more likely to
undergo A-to-B transitions, we can indeed set

pmax
A→B =

∆t
Tmin

A→B
and pmin

A→B =
∆t

Tmax
A→B

so that pmax
A→B = 2 × 10−2, pmin

A→B = 5 × 10−3. The coefficients pmax,min
B→A instead give the

probability that a single-cell-fraction of mass with phenotype B and centred in xs changes
phenotype at a given time step when falls in hypoxic conditions. A proper estimate can
be obtained by taking into account three aspects: (i) epithelial cells experiencing oxygen
deprivation are here assumed to acquire mesenchymal determinants in a time interval
that ranges from Tmin

B→A = 8.8 h to Tmax
B→A = 35.4 h; (ii) in our modelling framework higher

values of the genotypic variable imply more possibility to switch towards phenotype
A; and (iii) a finer spatial grid requires a smaller transition probability for each node xs,
otherwise a higher amount of possible nodes of the domain in principle could allow a
higher number of transitions. The above considerations lead to

pmax
B→A ∝ ∆t, (Tmin

B→A)
−1, ∆x2 and pmin

B→A ∝ ∆t, (Tmax
B→A)

−1, ∆x2
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Parameter Description Value [Units] Reference

r cell’s radius 15 [µm] Alberts et al., 2002

pmin
A→B minimal A-to-B transition probability 5 × 10−3 [non dim.] model estimate

pmax
A→B maximal A-to-B transition probability 2 × 10−2 [non dim.] model estimate

pmin
B→A minimal B-to-A transition probability 10−3 [non dim.] model estimate

pmax
B→A maximal B-to-A transition probability 4 × 10−3 [non dim.] model estimate

DB cells’ diffusion coefficient (phenotype B) 1.29 × 103 [µm2/h] Martínez-González
et al., 2012

γmin minimal duplication rate (phenotype B) ln(2)/48 [h−1] Martínez-González
et al., 2012

γmax maximal duplication rate (phenotype B) ln(2)/24 [h−1] Martínez-González
et al., 2012

c tissue carrying capacity (phenotype B) 1.69 [cell/µm2] model estimate

vmin minimal speed (phenotype A) 2.5 [µm/h] Gallaher et al., 2019

vmax maximal speed (phenotype A) 10 [µm/h] Gallaher et al., 2019

OM hypoxic threshold 2.56 × 10−15 [µmol/µm2] Martínez-González
et al., 2012

DO oxygen diffusion coefficient 3.60 × 106 [µm2/h] Martínez-González
et al., 2012

λO oxygen consumption rate 1.67 × 10−10 [µm2/(cell · h)] model estimate

qO oxygen physiological decay 3.60 × 10−4 [h−1] Cumsille et al., 2015

TABLE 6.1: Simulation parameter set. . The probabilities are non dimensional (abbreviated as “non dim.”).

After preliminary simulations, we have fixed pmax
B→A = 4 × 10−3, and pmin

B→A = 10−3; these
values allow us to observe a reasonable rate of B-to-A phenotypic conversions.

The diffusion coefficient of epithelial cell movement, i.e., DB, has been taken equal
to 1.29 × 103µm2/h, as in Martínez-González et al., 2012. The coefficients γmin and γmax

quantify the minimal and maximal mitotic rate of cells with phenotype B in the case of
fully available space. The chosen values γmin = ln(2)/48 h−1 and γmax = ln(2)/24 h−1

fall within the range quantified for glioblastoma cell lines in either hypoxic or normoxic
conditions, see again Martínez-González et al., 2012. The carrying capacity c has been set
equal to 1.69 cell/µm2, in order to maintain a quasi-monolayered cell configuration, in
agreement with the bidimensional nature of experimental cultures.

Cells with phenotype A are allowed to move freely within the domain. In this respect,
the maximal value of their speed vmax, which characterises mesenchymal individuals
with trait u3 = 1 has been fixed to 10 µm/h, whereas the minimal threshold vmin, which
characterises mesenchymal individuals with trait u1 = 0, is set to 2.5 µm/h. These
parameters have been taken from Gallaher et al., 2019 and assure that the modulus of the
overall cell velocity substantially falls within the range of the corresponding experimental
counterparts evaluated for different malignancies.

The chemical threshold that leads to hypoxia, i.e., OM, has been set to 2.56 × 10−15

µmol/µm2, as it is done in Martínez-González et al., 2012. The diffusion coefficient
of oxygen has been fixed to DO = 3.60 × 106 µm2/h, and taken again from Martínez-
González et al., 2012. The chemical consumption rate then amounts to λO = 1.67 ×
10−10 µm2/(cell · h): it has been empirically measured taking into account the proposed
computational setup, in order to have a realistic time evolution of the molecular pattern.
The oxygen decay coefficient has been fixed to qO = 3.60 × 10−4 h−1, according to
Cumsille et al., 2015. The constant production of oxygen at the domain border, i.e., O, has
been set equal to 2.8 × 10−15 µmol/µm2: for the reader’s convenience, we remark that
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FIGURE 6.5: Representative time instants of the evolution of the oxygen density. At the onset of the
numerical realisation, the oxygen is quasi-homogenously present within the entire domain with a level
that is higher than the hypoxic threshold OM (left panel). Subsequent oxygen consumption results in harsh
conditions for malignant epithelial cells (right panel): some of them are then able to acquire mesenchymal
hallmarks, as shown in Fig. 6.6. The red circle in the right panel encloses the area in which the oxygen
density is lower than OM.

this value is 1.1 × OM. The final observation time tF has been instead set equal to 35 h.
The employed parameter set is listed in Table 6.1.

6.2.3 Numerical results

The spatial domain D, as well as the initial configuration of the cell system, is exactly
the same adopted in the representative simulation given in Section 6.1, specified by
Eqs. (6.11) and (6.12), and represented in Fig 6.2. At the onset of the forthcoming
numerical realisation, we indeed have a tumour aggregate with few mesenchymal
cells (heterogenous for genotype) dispersed within and around a cluster of malignant
epithelial individuals. In particular, the node of tumour cells with phenotype B has
a radial distribution with respect to the centre of the domain, with the bulk mainly
constituted by the cell variant with u1 = 0 and the external region by the cell variant
with u3 = 1. The initial oxygen concentration is instead given by the stationary solution
of Eq. (6.28), evaluated in the absence of cancer cells (i.e., in the case only of chemical
diffusion and decay): given the low value of the decay rate qO (see above and Table 6.1),
it consists of a spatially quasi-homogeneous pattern with a chemical level approximately
equal to 2.8 × 10−15 µmol/µm2, as shown in the left panel of Fig. 6.5. The initial oxygen
level indeed exceeds the hypoxic threshold OM in the entire domain.

Oxygen consumption then starts to occur at the domain area occupied by the tumour
aggregate, with the extent of local decrements obviously determined by the density of
malignant individuals. The level of chemical at the inner part of the mass drops to the
critical value OM (see the area enclosed in the red circle in the right panel of Fig. 6.5) and
an increasing number of epithelial tumour cells (characterised by negligible motility)
experiences hypoxia. Some of them are then able to undergo phenotypic transition and
acquire mesenchymal determinants, see Fig. 6.6. This group is mainly composed of
individuals with a trait value u3 = 1, which is associated with the sequence of genes that
favours (from a probabilistic point of view) such a phenotypic switch.

The just-differentiated mesenchymal cells, as long as those already present at the
onset of the simulation, crawl towards oxygenated domain regions: in particular, each
of them moves with a speed dictated by its genetic trait, as shown by the length of
the arrows attached to the “particles” in Fig. 6.6. The remaining fraction of epithelial
individuals is instead not able to escape harsh environmental conditions: in the case of
long-term hypoxia (e.g., long-lasting oxygen deprivation), their fate would be irreversible
necrosis.
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FIGURE 6.6: Representative time instants of the evolution of our virtual tumour aggregate. The initial
condition of the cell system is exactly the same as in Section 6.1, see Fig. 6.2. The oxygen consumption by
cancer cells results in environmental conditions that allow for EMT in the centre of the tumour (as shown in
the right panel of Fig. 6.5). The cells that aquire mesenchymal hallmarks move towards domain regions with
more availability of resources (see top and middle panels, i.e., those relative to t = 1 and 7 h). Arrived close
to the border of our virtual Petri dish, few of them experience normoxia and recover epithelial determinants
(see the bottom panels, i.e., those relative to t = tF = 35 h). We remark that light blue circles identify
mesenchymal cells with genotype u1, blue triangles identify mesenchymal cells with genotype u2, and dark
blue squares identify mesenchymal cells with genotype u3. The same empty geometric labels instead identify
mesenchymal cell variants that have undergone the inverse, i.e., A-to-B, phenotypic transition. The arrow
attached to each mesenchymal individual identifies its velocity: its length is qualitatively proportional to
the individual genotype-dependent speed.
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As the simulation proceeds, the domain region with a low chemical level enlarges; as
a result, the above-described cell dynamics take place in more peripheral areas of the
tumour aggregate and involve an increasing amount of epithelial mass. In particular,
at the end of the observation time (i.e., at t = tF = 35 hours), the cell configuration
consists of a hypoxic cluster of epithelial tissue, mainly formed by individuals with a
trait variable equal to u1 = 0. It is surrounded by scattered mesenchymal cells, that have
reached the external regions of the domain, i.e., those with higher oxygen availability.
Interestingly, few of these agents have been able to undergo the inverse transition and
reacquire epithelial hallmarks (see the bottom panels of Fig. 6.6). During the entire
observation time, the fraction of malignant epithelial mass goes on proliferating (cf. the
variations in the values of the colorbar in Fig. 6.6).

Our numerical results qualitatively agree with a wide range of experimental evidence,
showing that malignant cells with different phenotypic properties occupy tumour regions
characterised by different oxygen levels. For instance, glioblastoma spheroids cultured
in vitro have their core mainly populated by cells with a proliferative activity higher than
those located at the invasive edges (Abramovitch et al., 1995; Castro et al., 2003; Khaitan
et al., 2006; Stein et al., 2007). Analogously, mesenchymal cancer stem cells have been
found to be abundant near the tumour-stroma boundary (i.e., at the external region of
the malignant mass) (Liu et al., 2013). Similar phenotypic spatial heterogeneity has been
observed in malignant spheroids of ovarian (Burleson et al., 2006; Shield et al., 2009) or
breast (Gatenby et al., 2007) carcinomas grown in spinner cultures.

Analogous growth of tumour masses, i.e., characterised by an inner region of poorly
motile individuals unable to escape nutrient deprivation and by an external possibly
scattered ring of aggressive cells, has also been predicted by a wide spectrum of theoreti-
cal models, see comprehensive books Cristini and Lowengrub, 2010; Preziosi, 2003 and
the excellent reviews Araujo and McElwain, 2004; Bellomo et al., 2008; Byrne et al., 2006;
Chaplain, 1996; Quaranta et al., 2005.

6.3 Conclusions and future perspectives

In this chapter, we have proposed a modelling framework where cells are distinguished
in terms of genotype by a discrete structuring variable and in terms of phenotype by the
assigned mathematical representation (i.e., pointwise or density-based). A procedure
to consistently switch between the two descriptive instances, which is based on the
definition and the use of a bubble function, has then allowed to account for phenotypic
plasticity.

We have then presented a representative simulation to show how phenotypic transi-
tions actually take place within our theoretical environment, which has been then applied
to a more realistic scenario, i.e., the early evolution of a heterogeneous tumour aggregate
hypothetically cultured in vitro. In particular, we have assumed that malignant cells
can have one of three distinct genotypes and one of two alternatives, i.e., mesenchymal
versus epithelial, behaviour. Phenotypic conversions have been set to depend on (i)
oxygenation levels, (ii) intrinsic genotype, and (iii) randomness. The latter is the main
novelty of this work with respect to Colombi et al., 2017; Scianna and Colombi, 2017
and allows to better characterise the time and position at which transitions take place:
while in previous works all the transitions take place as soon as some conditions are
satisfied and points are chosen arbitrarily, we here assume that both time and place of
the transitions are chosen stochastically, so that the arbitrariness of the model is reduced.
The resulting numerical realisation has captured the realistic emergence of a hypoxic core
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within the tumour cluster with the consequent cell tendency to acquire a more aggressive
and invasive (i.e., mesenchymal) phenotype.

Model improvements The proposed mathematical environment may be improved at
least in two directions.

From a strict modelling perspective, it would be relevant to account for genetic
alterations that may be induced by cell-cell communication and changes in environmental
conditions but are usually determined by random mutations. This last aspect can be
included in the proposed modelling environment by stochastic variations of the value of
the trait variable u assigned to one or more pointwise individuals and/or to one or more
portions of the cell mass with the density-based representation. Furthermore, one could
consider a continuous trait u that takes values in a given interval (e.g., [0, 1]). This would
amount to using a structuring variable to represent not only genetic heterogeneity (as in
our model) but also epigenetic heterogeneity: each value of u, in fact, would represent
the (normalised) expression of a gene or of a group of genes (or the level of one or more
proteins). In this case, epigenetic variations in the cell population could be accounted for
by including a diffusion term in the trait domain (see also Eq. (1.1))

From an application perspective, our model could be extended to reproduce the
evolution of a malignant mass in vivo, i.e., to shed light on the effect of intratumoral
heterogeneity and phenotypic plasticity on the invasiveness of the disease. In this
respect, one may include in the picture the presence of both the pre-existing and the
tumour-induced vasculature. As a natural extension of our model assumptions, we
would, in fact, have to take into account that cancer cells in hypoxic conditions not only
shift towards more aggressive phenotypes but also secrete proangiogenic factors that
induce the formation of new blood vessels departing from existing ones (Plate et al.,
1992). In addition, our model could be developed to incorporate a more comprehensive
description of the metabolism of the different cell variants. However, in order to provide
consistent results of such an in vivo scenario, model parametrisation should be better
calibrated, for instance, by focusing on a specific tumour type and using proper sets of
existing data.

Finally, the proposed modelling approach could be used to analyse the impact of
immunotherapy and virotherapy on EMT. Indeed, the activation of the immune system
is not restricted to the tumour area and immune cells could enhance the recognition of
cancer cells that invade other healthy tissues. In this respect, this inclusion is a significant
frontier.
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7Conclusions

In the past decades, oncolytic virotherapy has emerged as a promising targeted cancer
therapy. Despite some interesting achievements and clinical progress, such as the cel-
ebrated cases of Adenovirus H101 for neck and head cancers or T-Vec for melanomas,
the goal of routinely using viruses in a therapeutic setting is still elusive. There are still
questions to be addressed to optimise viral delivery in oncolytic virotherapy and the
balance between failure and success is very fragile. In this thesis, we developed several
mathematical models to elucidate those dynamics and suggest approaches that could
optimise the treatment, including the combination with other therapies. Each model
was analysed using the most suitable techniques, including analytical and numerical
methods.

We first developed agent-based and continuous models for the infection of tumour
cells due to oncolytic viruses in the absence of an immune response, taking into account
two alternative sets of rules governing cell movement (Chapter 2). Our results suggest
that the inability of free virions to propagate in the tumour microenvironment combined
with constraints of cellular movement may cause the failure of the therapy due to
stochastic effects; the continuous model cannot reproduce such a scenario, hence it does
not appear a good approximation for the underlying biological phenomena. On the other
hand, our simulations of the model with unrestricted cell movement show partial tumour
remission for parameter values within the biologically meaningful range. Notably, the
excellent agreement between the agent-based and continuous models in this second case
allows us to use our theoretical knowledge of the latter to better understand the outcome
of the therapy in different situations and establish strategies and trends to help clinicians.

Building on this partial success, we then analysed the impact of the immune system
on the second situation (Chapter 3) to determine whether eradication or long-term control
of the tumour is attainable, at least in the absence of relevant physical constraints. We
found that tumour eradication is indeed possible in a few situations. In general, any
undirected immune response tends to decrease the effectiveness of the virotherapy;
hence, immune boosting through immunotherapy may cause the complete failure of
virotherapy if the therapies’ time and location are not well calibrated. The appearance of
wide oscillations may lead to disagreements between the agent-based and the continuum
models.

We then focused on the effects of viral dynamics and cell heterogeneity on virotherapy
(Chapter 4). Including a viral population that diffuses in the whole domain without
significant obstacles results in a good treatment outcome in discrete and continuous
mathematical models, irrespective of cell movement rules. This approach could be
generalised to account for viral interactions with the tumour’s microenvironment. On
the other hand, when cancer heterogeneity is considered, virotherapy may significantly
lose its efficacy due to the emergence of a subpopulation resistant to viral infection.

Building upon this last observation, we also considered environmental conditions as
the source of epigenetic cancer heterogeneity and analysed the influence of hypoxia on
oncolytic virotherapy (Chapter 5). The treatment outcome appears to depend significantly
on the oxygen spatial configuration and the choice of the most suitable kind of virus may
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Chapter Most salient results

2 (diffusion) Good quantitative agreement between discrete and continuum models with enough
cells; good qualitative agreement even with less cells.
Stochasticity does not play a key role; hence, the PDEs can be used to understand the
outcome in different parameter regimes.
Infected cells should not be killed too fast.
The infection spreads in the whole tumour, but eradication appears unlikely.

2 (pressure) A localised infection does not propagate.
A widely spread infection keeps propagating in the continuum model, but fails to
propagate in the whole tumor in the discrete model (even with higher cell numbers);
hence, stochasticity should not be ignored.
Constraints in cell motility may cause treatment failure; high motility of both cell
populations improves the therapy.

3 In the continuum model, any immune response has the tendency to decrease the
effectiveness of the virotherapy.
In the agent-based model, oscillations may result in a complete failure of virotherapy
because of stochastic events; on the other hand, an enhancement of the immune
response after the infection is well-established could lead all the cancer cells close to
extinction due to stochasticity.
Multiple viral injections could keep the tumour under control.

4 (Sec. 4.1) Spatial viral dynamics have a more substantial effect on the evolution of the system
than cellular spatial dynamics.
Pressure-driven movement shows a decrease of the invasion speed in case of lower cell
densities, while undirected movement always shows the same invasion speed (and, in
this respect, is less realistic).

4 (Sec. 4.2) The emergence of a subpopulation resistant to viral infection may significantly hinder
the success of the therapy.
Formal asymptotic analysis predicts the equilibrium values in a spatially homogeneous
scenario, approximating the behaviour at the centre of the tumour well.

5 Formal asymptotic analysis predicts the equilibrium values in a spatially homogeneous
scenario, which provides significant information regarding the therapy outcome.
Hypoxia may constitute a significant obstacle to the success of virotherapy.
The effectiveness can be increased by selecting the most appropriate kind of virus
based on the oxygenation of the tumour.

6 A hybrid modelling framework that distinguishes cells in terms of genotype by a
discrete structuring variable and in terms of phenotype by the assigned mathematical
representation allows us to reproduce hypoxia-driven EMT.

TABLE 7.1: Summary of the most salient results obtained in the thesis.

improve the efficacy. Our results highlight the high potential of oncolytic viruses to treat
hypoxic tumours that are less sensitive to other therapies.

Finally, we focused on one of the most relevant effects of hypoxia on the tumour’s
dynamics in the absence of therapies, namely epithelial-to-mesenchymal transitions
(Chapter 6). This required the development of a plasticity-oriented modelling frame-
work, in which discrete structuring variables distinguish cells in terms of genotype
and mathematical representation differentiate them in terms of phenotype. Numerical
realisations reproduce the emergence of a hypoxic core within the tumour cluster that
triggers EMT, resulting in invasive dynamics.

Table 7.1 summarises the most salient results obtained in the thesis. Each chapter of
this thesis contains some conclusive remarks and research perspectives. We now discuss
more general remarks and potential future directions.
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7.1 Conclusive remarks

Cell movement and viral diffusion Several parts of the thesis are devoted to comparing
undirected and pressure-driven movements, as summarised in Table 1.1. Undirected cell
movement (corresponding to standard diffusion) is the most elementary approach, which
does not consider any external influence: as a result, the invasion speed of a tumour
mass in the surrounding environment is constant (irrespective of the height of the front)
and a viral infection localised in the centre of the cancer faces no obstacle in spreading
in the whole domain through cells’ displacement; furthermore, the resulting system
of reaction-diffusion equations has been extensively studied in the literature, allowing
us to rely on some theoretical insights. All these features were extensively analysed in
Chapter 2. The addition of viral diffusion in the model does not significantly affect the
dynamics, as shown in Chapter 4.

On the other hand, pressure-driven movement (corresponding to nonlinear diffusion)
relies on the assumption that a cell only moves because of the pressure exerted by the
surrounding cells: as a result, the movement is directed towards less crowded areas and
is more relevant for steep changes in the cell density. This approach is well-justified
by biological evidence and can model the decreased invasion speed that results from
lower cell densities. Furthermore, in the presence of pressure-driven movement, cells’
displacement alone cannot spread viral infection: central infections remain localised and
even wide infections may be stopped by stochastic events, as explained in Chapter 2. The
situation significantly changes when viral particles are allowed to freely move around the
tumour and cell-to-cell contact becomes less relevant for the infection: indeed, the results
of Chapter 4 show that this infection is qualitatively similar to the case of undirected
cell movement. We may conclude that pressure-driven movement allows us to describe
both the situations of constrained and unconstrained cellular and viral movements,
while such constraints cannot be modelled with undirected movement. The increased
realism of pressure-driven movement comes at the cost of a lower degree of theoretical
understanding of the models.

Overall, undirected movement (with or without viral diffusion) and pressure-driven
movement without viral diffusion exhibit similar behaviour regarding the spread of the
infection throughout a tumour. These considerations have guided us in choosing the
most suitable expression for cell movement throughout the thesis. In Chapter 3 and
Section 4.2, we aimed to analyse the impact of other kinds of obstacles to viral infection
(namely, the interaction with the immune system and the emergence of resistant cancer
cells) and undirected movement was a suitable modelling assumption to avoid additional
complications. On the other hand, in Chapter 5, we developed a model that considers
several biological aspects related to hypoxia with the goal of providing valuable insights
for medical protocols: this justifies the use of a more realistic model, even though spatial
constraints of the viral diffusion are not considered. Indeed, the choice of pressure-
driven movement avoids the mixing of different cancer subpopulations due to spatial
displacement and contributes to a better characterisation of the epigenetic traits selected
by the dynamics; furthermore, the dependence of the invasion speed on the front height
emphasises the different efficacy of virotherapy on the reduction of the tumour burden
in different oxygen configurations.

Practical implications of the findings and limitations In this thesis, we restrict our
attention to general mathematical models formulated in light of a few underlying prin-
ciples, which, therefore, only capture the main dynamics. This approach allowed us to
address specific biological questions and elucidate some important biological actions
that govern them.
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As explained in Chapter 1, the effectiveness of oncolytic virotherapy is significantly
affected by interactions with the tumour microenvironment. The use of mathematical
models allowed us to analyse several of these interactions separately and investigate ways
to overcome most of these obstacles. In particular, our results suggest that virotherapy
is intrinsically limited for tumours whose microenvironments constrain cell movement
and viral diffusion; these spatial dynamics are not easy to modify in clinical settings.
The excessive activation of the immune system constitutes another potential concern for
the treatment, but a correct calibration of the immune response appears able to lead the
cancer close to extinction. Virotherapy loses effectiveness significantly if tumour cells
evolve to acquire some kind of resistance to the infection. The resistance is particularly
relevant in the case of hypoxic tumours; nevertheless, using viral particles that specifically
target hypoxic cells may completely overcome this obstacle. In general, virotherapy alone
appears unable to eradicate a tumour and the combination with other therapies appears
more promising.

In all the cases we analysed, the strategies we suggest require a good knowledge of
the biological conditions of the tumour, which, however, in practice, might be challenging.
Furthermore, although our models are amenable to a comprehensive mathematical study,
we do not focus on a particular kind of tumour and the application of our results to
specific biological situations is not straightforward: indeed, in experimental settings,
several of the obstacles explained above are present at the same time and the result of
their combination could not be trivial. On the other hand, our approach can still provide
general conclusions and insights about the most relevant aspects of tumour development
and virotherapy, as well as insights into the parameters’ role in the dynamics and
indications on how to adapt our results in more specific settings.

7.2 Research perspectives

Mathematical future development In most cases, reaction-diffusion equations are well
understood from the mathematical point of view. On the other hand, cross-diffusion
systems have been studied much less: even in the simplest case of Eq. (2.11), the well-
posedness is not trivial and travelling waves are not fully characterised. As recalled
above, the behaviours that emerge from the pressure-driven movement are particularly
significant in view of the applications, motivating further mathematical analysis. Formal
asymptotic techniques may be instrumental in elucidating some of these dynamics.

Similar considerations hold true also in presence of explicit viral dynamics: the case
of cell undirected movement and unrestricted viral diffusion (see Eq. (4.2)) has already
partially been analysed in the literature (Baabdulla and Hillen, 2024; Pooladvand et
al., 2021), while the situation of cell pressure-driven movement and unrestricted viral
diffusion (see Eq. (4.3)) is mostly unexplored. It is reasonable to expect this second case
to give rise under appropriate conditions to behaviours similar to the ones associated
with Eq. (2.11) and discussed in Chapter 2; yet, in the parameter range of our interest, we
observe significant differences (see Chapter 4). A better understanding of these dynamics
could be interesting not only from the mathematical point of view: indeed, it could
elucidate some aspects of viral dynamics in the presence of spatial constraints.

Another important point involves the oscillations observed in spatial models. Our
bifurcation analyses are only numerical and refer to nonspatial cases. Given the impor-
tance that oscillations may have in the context of oncolytic virotherapy, an improved
theoretical understanding could be beneficial.
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Optimisation of anti-tumour treatments Most of the models developed in the thesis
could be helpful to determine the optimal treatment protocol in different situations, both
in terms of treatment schedules (as in Jenner et al., 2018b; Sherlock and Coster, 2023)
and viral injection locations (as in Jenner et al., 2020). This aspect appears particularly
crucial in the combination of different cancer therapies. In particular, the combination of
oncolytic virotherapy and immunotherapy is the most promising strategy, as discussed
in Chapter 3 and well documented in the literature (Engeland et al., 2022). Another
promising development involves the treatment of hypoxic tumours, as hypoxia-targeting
viruses are among the few cancer treatments that do not lose their efficacy in such condi-
tions. Our results in Chapter 5 suggest that virotherapy may select cancer subpopulations
that are particularly sensitive to standard treatment (such as radiotherapy); hence, their
combination could be particularly beneficial. The correct timing of the therapies is proba-
bly relevant and mathematical models could help to elucidate this aspect. Furthermore,
the definition of tailored optimal control models may constitute a promising tool in this
respect.

Model extensions All the models developed in this thesis neglect direct interactions
with the surrounding extracellular matrix and healthy tissues. As a consequence, spatial
constraints are only implicitly modelled. Nevertheless, a direct inclusion of these aspects
is a particularly intriguing perspective. The importance of viral interactions with the
extracellular matrix has already been extensively remarked. Another interesting aspect is
the compression and displacement of the surrounding healthy tissues resulting from the
tumour development, which may lead to severe clinical complications; these phenomena
can be easily included in mechanical models (Ballatore et al., 2024).

When hypoxia is considered, it is clearly relevant to take into account the preexisting
vasculature, as well as the tumour-induced vascularisation. These aspects acquire a
particular importance in the context of oncolytic virotherapy due to their capability
to target vascular endothelial cells and act similarly to antiangiogenic therapy. Blood
vessels also play an essential role in spreading cancer cells across the body, potentially
leading to metastasis formation. Tumour cell migration was only partially explored in
Chapter 6 and studying the effects of therapies would be beneficial. In particular, both
virotherapy and immunotherapy could potentially target cancer cells that invade other
healthy tissues.

Data availability and model validity Spatial dynamics of oncolytic virotherapy have
seldom been experimentally studied. This lack of data motivated our modelling ap-
proach, which builds upon a few underlying principles to answer general biological
questions. However, more empirical validation of the models would strengthen our
results’ robustness. Furthermore, there are several interesting aspects that we were not
able to address due to the lack of significant biological data: for example, it would be
very interesting to understand how the tumour microenvironment affects viral diffusion,
improving the insights obtained in Chapter 2; only a few models have already taken
it into account (Pooladvand and Kim, 2022) and additional experimental evidence is
needed to find a suitable mathematical description of the interactions between viral
particles and the physical obstacles of the tumour microenvironment.

In principle, experiments in vitro could reproduce the settings we considered in
several models in the thesis by analysing one aspect at a time. In this respect, our models
could, in principle, guide the development of future experiments. The situation in vivo is
more complicated: for example, spatial obstacles to viral diffusion could not be easily
overcome.
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Developing decision tools that can guide the definition of patient-specific cancer
treatments based on clinical data is among the main goals of mathematical oncology.
Although it is clearly impossible to model all the complex aspects of cancer evolution, this
thesis’s results may contribute to the process of developing such personalised treatment
by highlighting the aspects that affect the outcome more significantly.
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