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results. In particular, we improve a lower bound on the codi-
mension of the aforementioned singular locus established by 
von zur Gathen in 1987.
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1. Introduction

Despite their structural similarity, the 
determinant and the permanent are 
worlds apart.

Avi Wigderson [26]

The most important polynomial associated to a square matrix is its determinant. 
In hindsight, its ubiquitous presence in mathematics might be related to its very large 
isotropic group, whose description dates back to Frobenius. Arguably, the second most 
important polynomial is the permanent. Let M = (xi,j) be a k × k matrix with entries 
in a field F . Let Sk be the symmetric group of permutations of the set {1, . . . , k}. The 
permanent of M is the polynomial

perm(M) =
∑
σ∈Sk

x1,σ(1) · · ·xk,σ(k).

The permanent has a much smaller isotropic group than the determinant, namely the 
product of the normalizers of two algebraic tori. Permanents and determinants are fa-
mously related by a generating function, the content of the MacMahon’s master theorem
[18, vol. I, §3, Chapter II, 63-66]. The striking tension between these two polynomials is 
at the heart of geometric complexity theory. Indeed, while the determinant may be com-
puted in polynomial time using Gaussian elimination, the permanent is not known to be 
exactly computable in polynomial time. The mere existence of such an algorithm would 
imply P=NP. The grand idea of geometric complexity theory is to approach fundamental 
problems in complexity theory using tools and techniques from algebraic geometry and 
representation theory. For instance, the VP versus VNP problem, that may be consid-
ered the polynomial cousin of the well-known P versus NP problem, concerns finding 
a sequence (pk)k∈N of polynomials whose algebraic circuit size grows faster than any 
polynomial in k; see [15, §1.2] and [26, §12.4] for details. Valiant conjectured that the 
k×k permanents permk form such a sequence [24]. A possibly weaker but more concrete 
version of Valiant’s conjecture deals with the complexity measure of the permanent, as 
opposed to the determinant. In detail, the determinantal complexity of a polynomial p is 
the smallest number dc(p) such that p is an affine linear projection of a determinant of 
that size. Valiant conjectured that dc(permk) grows faster than any polynomial in k [24]. 
The best result known so far is due to Mignon and Ressayre [20]: dc(permk) ≥ O(k2); 
this first super-linear lower bound is still far from the full conjecture. On the algebraic 
geometry side, a study to compare the structure of Fano schemes of determinantal and 
permanental hypersurfaces was conducted by Chan and Ilten [6].

It is worth noticing that permanents naturally arise in combinatorics and especially in 
graph theory [21]. Given a bipartite graph G, one naturally associates to G its adjacency 
square 0/1-matrix MG; then the permanent of MG is the number of perfect matchings of 
G. One difficult problem about 0/1-matrices was posed by Minc in 1967, who asked for an 
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upper bound on the value of the permanent. This was solved in 1973 by Brégman [4] and 
later by Radhakrishnan using entropy from quantum information theory [22]. Permanents 
were also the subject of the Van der Waerden’s conjecture for doubly stochastic matrices, 
that asked for a lower bound on the value of the permanent for such matrices. This was 
solved by Egorychev and Falikman in 1981 [8,9], and later also by Gurvits in 2007 [12], 
with a shorter argument involving stability of real polynomials. All these results have 
brilliant proofs and are nicely featured in the beautiful book by Aigner and Ziegler [1]. 
Other interesting appearances of permanents in the sciences include applications to order 
statistics (the Bapat-Beg Theorem) [2,13] and quantum mechanics, see [5] and references 
therein.

Determinant and permanent share a common historically important generalization in 
representation theory. Given a k×k matrix M and a partition λ = (λ1, . . . , λs) of k, the 
immanant of M is

Immλ(M) =
∑
σ∈Sk

χλ(σ)x1,σ(1) · · ·xk,σ(k),

where χλ is the character of the irreducible representation of Sk corresponding to λ. 
The determinant and permanent are special immanants corresponding respectively to 
the alternating (λ = (1, . . . , 1)) and trivial (λ = (k)) representations. Immanants were 
introduced by Littlewood and Richardson [17]. The problems we will tackle for perma-
nents are interesting for every immanant, as not much is known about their geometry. 
It would be interesting to study their structural properties as λ varies.

Going back to permanents, it is apparent from the above discussion that they have a 
tendency to be extremely difficult objects to study. The perspective from which we look at 
them once again confirms this. Given a generic k×k matrix M over a field F , with k ≥ 3, 
the permanental hypersurface is P = {perm(M) = 0} ⊂ F k×k. A folklore question asks 
for a description of the singular locus of this hypersurface [15,25]. Similarly, one may ask 
this for any immanantal hypersurface and its singular locus. However this problem seems 
very elusive and much more involved than the corresponding one for the determinant 
already for the permanent. We expect that many of the techniques introduced in this 
paper for permanents carry over to study immanants, but the conclusions will depend 
on λ.

Definition 1.1 (Permanental rank [27]). Let M be a matrix. Its permanental rank is the 
largest integer k such that there is a k× k submatrix of M whose permanent is nonzero. 
The permanental rank of M is denoted prk(M).

Terminology. In this paper, by a variety over a field F , we mean a separated scheme 
of finite type that is reduced but not necessarily irreducible over F . Our varieties are 
affine cones over projective varieties that are typically reducible; we neglect the scheme 
structure of their components, as we shall be concerned with their codimension.
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Given the affine cone Pk,n = {prk(M) ≤ k−1} ⊂ F k×n, we sometimes look at P (Pk,n) ⊂
Pkn−1, its corresponding projective variety. Since we are interested in the codimension 
of these varieties, we shall jump back and forth between affine and projective spaces, 
according to the convenience of the approach at hand.

Main results.
We first study the codimension of the variety of maximal permanents of a generic matrix, 
in some ranges.

Theorem (Theorem   3.18). Let F be a field of characteristic zero, and M a generic k×n

matrix of linear forms, with n ≥ k + 1. Then, for 2 ≤ k ≤ 5, the codimension of the 
variety Pk,n = {prk(M) ≤ k− 1} ⊂ F k×n is n. In particular, when 2 ≤ k ≤ 4, Pk,k+1 is 
a complete intersection.

We speculate (Conjecture 3.4) that the previous result holds in much more generality. 
In fact, the core of the proof of Theorem 3.18 for those special values of k is based on 
the following.

Theorem (Theorem   3.19). Let k ≥ 1. If Ph,h+1 ⊂ Fh×(h+1) has codimension h + 1 for 
any h ≤ k, then Pk,n has codimension n, for any n ≥ k + 1. In particular, the validity 
of Conjecture 3.4 for every k ∈ N implies that Pk,n has codimension n, for every k ∈ N

and n ≥ k + 1.

Note that the sequence of ideals I(Pk,n) for n ∈ N≥k+1 is an example of symmetric 
wide-matrix variety of Draisma-Eggermont-Farooq [7]. They show that the number of 
components up to the action of the symmetric group Sn is a quasi-polynomial in n [7, 
Theorem 1.1.1].

We introduce a T = C∗-action on matrices which unravels a subtle geometric structure 
of Pk,k+1. We establish a correspondence between certain vector bundles coming from 
the tangent bundle and irreducible components of Pk,k+1; see §4.1 and §4.2.

Theorem (Theorem   4.5). Let X be any irreducible component of Y = Pk,k+1. Then X
coincides with T 1

XT ,Y , the closure of the total space of the weight one subbundle (under 
the torus action) of the tangent bundle over some open set in XT .

In a second part of the paper we improve a lower bound due to von zur Gathen, 
established in 1987, again with the help of a C∗-action. This allows us to have a descrip-
tion for the irreducible components of the singular locus Sing(P ) of the permanental 
hypersurface as subvarieties of total spaces of the aforementioned vector bundles; see 
§4.5.

Our result in this direction reads as follows.
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Theorem (Theorem   4.23). Let k ≥ 6, and let P = {perm(M) = 0} ⊂ Ck×k be the 
permanental hypersurface. The codimension of the singular locus Sing(P ) = {prk(M) ≤
k − 2} satisfies the inequality 6 ≤ codim Sing(P ) ≤ 2k.

Organization of the paper.
In §2, we discuss the case of permanents of 2× n matrices, where we also underline the 
differences between our case and the case of minors. In §3, we initiate the study of the 
variety of maximal permanents of k × (k + 1) matrices. Its analysis will be developed 
further in §4, where we employ C∗-actions that are useful to organize irreducible com-
ponents of the aforementioned variety. In these two sections we prove the main results 
showcased in this introduction. Finally, in §5, we include the scripts used to deal with 
the description of irreducible components in §4.3 and §4.4.
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supported by the DFG grant 467575307. E.V. was partially supported by the INdAM-
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improving the readability, and for providing the majority of the newer code in §5, which 
simplifies that in an earlier version of this paper. We acknowledge the invaluable help of 
the algebra software Macaulay2 [11].

2. Permanents of 2 × n matrices of linear forms

In this section F will be a field of characteristic zero, unless explicitly stated other-
wise. The ideal generated by 2× 2 permanents of a generic matrix is by now very much 
understood. A Gröbner basis and a complete description of its minimal primes were ob-
tained in [16]. More recently, in [10], the authors determined the minimal free resolution 
of the 2 × 2 permanents of a 2 × n matrix. The results and observations in this section 
are most naturally stated in projective space.

Theorem 2.1. Let M be a generic 2 × n matrix of linear forms with n ≥ 3. The vari-
ety P (P2,n) = P ({prk(M) ≤ 1}) ⊂ P 2n−1 has codimension n. Its singular locus has 
dimension 1 and consists of n2 lines.
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Proof. We first assume that the entries of M are the coordinates of P 2n−1 denoted by 
xij , where 1 ≤ i ≤ 2 and 1 ≤ j ≤ n. By [16, Theorem 4.1], the matrices in P (P2,n) are 
such that either (n− 2) of their columns vanish and the smooth quadric (on the left two 
columns) vanishes, or one of their rows vanishes. Thus, the variety has codimension n. 
The irreducible components of P (P2,n) are two Pn−1’s and 

(
n
2 
)

quadrics in P 3. They are 
all smooth.

We introduce n2 lines as follows: for each xij , consider the n lines whose local coor-
dinates are xij and x�k where either � = i and k ∈ [n] \ {j} or � �= i and k = j.

We show that these n2 lines are in the singular locus S = Sing(P (P2,n)). To see this, 
up to permuting rows or columns, we have two types of lines: r1 with local coordinates 
x11, x12, and r2 with local coordinates x11, x21.

Let J = [n] \ {1, 2}. The line r1 is contained in one of the two Pn−1’s and the smooth 
quadric in a P 3 defined by the ideal (x1,j∈J , x2,j∈J , x11x22 + x12x21). Therefore r1 is in 
S. The line r2 is contained in (n − 1) of the smooth quadrics above whose equation is 
x11x2j + x21x1j = 0 for j = 2, . . . , n. Hence r2 is in S. There are n2 − n lines of the 
same type as r1, and n of the same type as r2. In conclusion, S contains the n2 lines just 
described.

Now we look at all the set-theoretic intersections of the irreducible components. The 
two copies of Pn−1 are disjoint. Each Pn−1 intersects all the 

(
n
2 
)

smooth quadrics in 
(n2 − n)/2 lines (all these lines are of the same type as r1). Two quadrics intersect at 
most along one of the lines of the same type as r2. Thus S is contained in the n2 lines 
described above.

Any matrix M ′ (regarded as a vector) in the orbit under the linear action of GL(2n,C)
of the vector M ∈ C2n is a matrix with 2n linearly independent linear forms. The 
induced action on projective space preserves the invariants of the irreducible components 
of P (P2,n) and S. �
Remark 2.2. Let M be a 2 × n Hankel matrix, i.e. a matrix of the form

M =
(
x0 x1 · · · xn−1
x1 · · · xn−1 xn

)
. (1)

While P ({rk(M) ≤ 1}) ⊂ Pn is a rational normal curve of degree n, the permanental 
version (in characteristic different than 2) is different and surprisingly small, as shown 
in the next result.

In the next proposition, we are interested in the scheme structure.

Proposition 2.3. Let F be a field, char(F ) �= 2, and let M be a 2 × n Hankel matrix of 
the form (1). The scheme P (P2,n) = P ({prk(M) ≤ 1}) ⊂ Pn is zero-dimensional and 
of degree 8, supported at two points. In particular, the degree of this zero-dimensional 
scheme does not depend on n. If char(F ) = 2, then P (P2,n) = P ({rk(M) ≤ 1}) is a 
rational normal curve of degree n.
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Proof. From the description given in [16], it is easy to see that the scheme is supported 
on the two points p0 = [1 : 0 : · · · : 0] and pn = [0 : · · · : 0 : 1]. We work on the affine 
chart {xn �= 0}. In this chart, call the resulting ideal Jn. Then, for 2 ≤ i ≤ n, we have 
xn−i + xn−i+1xn−1 ∈ Jn.

Let

g1 = −x2
n−2 − xn−3xn−1 − xn−2xn−1 + x2

n−1 − xn−3 −
1
2xn−2,

g2 = −x2
n−2 − xn−3xn−1 + x2

n−1 + xn−2 −
1
2xn−1,

g3 = xn−2xn−1 + x2
n−1 + xn−3 + xn−2 + 1

2 .

Then x4
n−1 = g1(x2

n−1 + xn−2) + g2(xn−1xn−2 + xn−3) + g3(x2
n−2 + xn−1xn−3) ∈ Jn. 

Hence, for 4 ≤ i ≤ n, the variable xn−i is zero in the quotient K[x1, . . . , xn]/Jn. Thus 
1, xn−3, xn−2, xn−1 generate the quotient and form a basis. It follows that the scheme 
has degree 4 at pn. By symmetry, it has degree 4 at p0, as well. �
3. Permanents of k × (k + 1) matrices of linear forms

Proposition 3.1. Let F be an arbitrary field, k ≥ 2, and M a generic k × n matrix of 
linear forms, with n ≥ k. Then the codimension of Pk,n := {prk(M) ≤ k − 1} ⊂ F k×n

satisfies the inequality n− k + 1 ≤ codim(Pk,n) ≤ n.

Proof. The upper bound codim(Pk,n) ≤ n holds for any n ≥ k ≥ 2, because we have 
linear spaces of codimension n inside Pk,n.

For the lower bound, we proceed by induction on k ≥ 2. The case k = 2 is settled 
in Theorem 2.1. Let k ≥ 3, and assume that the statement is true for k − 1. Let C
be an irreducible component of Pk,n. We have two cases: either C is a cone over an 
irreducible component of Pk−1,n(M ′) where M ′ (up to permuting rows and columns) 
is a (k − 1) × n matrix of linear forms, or it is not. In the first case, by induction C
has codimension at least n − (k − 1) + 1 = n − k + 2 > n − k + 1 in F k×n. In the 
second case, let A be the generic point of C and set J = {1, . . . , k− 1}. We may assume 
perm(MJ,J)(A) �= 0, i.e. the (k− 1)× (k− 1) permanent of the upper-left corner of M is 
nonzero at A. Thus, for all k ≤ j ≤ n, xk,j|C is a rational function on C in the rational 
functions xi,� where 1 ≤ i ≤ k − 1 and � ∈ [n] or i = k and 1 ≤ � ≤ k − 1. So we 
have an inclusion of function fields F (C) ⊂ F (xi,�), where xi,� are the (k − 1)(n + 1)
coordinates above. Hence dimFk×n C = transdegF (F (C)) − 1 ≤ (k − 1)(n + 1) − 1 and 
then codim(C) ≥ (kn− 1) − (k − 1)(n + 1) − 1 = n− k + 1. �
Corollary 3.2. Let F be an arbitrary field, k ≥ 2, and M a generic k×k square matrix over 
F . Let P = {perm(M) = 0} be the permanental hypersurface, and denote by Sing(P )
its singular locus. Then codim Sing(P ) ≥ 4. In particular, perm(M) is an irreducible 
polynomial over F .



8 A. Boralevi et al. / Advances in Mathematics 461 (2025) 110079 

Proof. The singular locus of the permanental hypersurface is

Sing(P ) = Pk−1,k = {prk(M) ≤ k − 2}.

A similar strategy as in the proof of Proposition 3.1 shows that codim(Pk−1,k) ≥ 4. If 
perm(M) were reducible over F , then the codimension of Sing(P ) would be at most 2. 
Thus perm(M) is irreducible over F . �
Lemma 3.3. Let M be a generic k × n matrix and let h ≤ min{k, n}. Then the h × h

permanents of M are linearly independent.

Proof. Every such permanent is of the form perm(M ′) for some h×h submatrix M ′ of M . 
Hence it is uniquely determined by the monomial given by the product of the elements 
in the main diagonal of M ′. This monomial does not appear in any other perm(M ′′) for 
M ′′ �= M ′. �

Proposition 3.1 applies to ideals of maximal minors as well. In fact, it is very weak 
when n = k + 1. In contrast, we propose the following

Conjecture 3.4. Let M be a generic k × (k + 1) matrix with k ≥ 2. Then Pk,k+1 is a 
complete intersection. In particular, codim(Pk,k+1) = k + 1.

This conjecture holds true for k = 2. One can show the following result.

Proposition 3.5. Let M be a generic k × (k + 1) matrix with k ≥ 1. Then the k × k

permanents of M are algebraically independent.

Proof. The statement for k = 1 is obvious. Fix k ≥ 2, let M = (xij) and N be the 
(k + 1) × (k + 1) matrix obtained from M by adding a row of (k + 1) extra variables 
y1, . . . , yk+1. Let PN = perm(N) be the permanent polynomial of N in the (k + 1)2
variables xij , y�. Then the k × k permanents of M are the (k + 1) partial derivatives 
∂PN/∂y�

of PN . The main result in [20] is proven showing that the Hessian matrix of 
PN has nonzero determinant. This is equivalent (see [23, §7]) to saying that the first 
partial derivatives of PN are algebraically independent. Hence any subset of first partial 
derivatives of PN consists of algebraically independent elements. �
Remark 3.6. By Proposition 3.5, there is no analogue in the permanental case of Plücker 
coordinates of minors of a k × (k + 1) matrix. However, permanents are generally not 
algebraically independent. For instance, one can check that the 10 permanents of a 2×5
generic matrix are algebraically dependent.

Next, we prove that the linear spaces given by the vanishing of a row are indeed 
irreducible components of Pk,k+1. Due to unmixedness, to prove Conjecture 3.4 it would 
be enough to show that Pk,k+1 is arithmetically Cohen-Macaulay.
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Remark 3.7. In the case of ideals of minors of fixed size k of any generic matrix, one 
way to show that they are Cohen-Macaulay ideals is to show that the corresponding 
quotient ring is of the form SG ⊂ S, where S is a polynomial ring and SG is the subring 
of invariants under the action of the group G = GL(k, F ). This approach cannot work 
in the case of permanents, because we know that Pk,k+1 must be reducible by the next 
proposition.

Proposition 3.8. The variety Pk,k+1 ⊂ F k×(k+1) has at least k linear spaces among its 
irreducible components in codimension k + 1.

Proof. Let M be a k × (k + 1) of the form

M =

⎛⎜⎜⎝
x1,1 x1,2 . . . x1,k+1
x2,1 x2,2 . . . x2,k+1

...
...

...
...

xk,1 xk,2 . . . xk,k+1

⎞⎟⎟⎠ .

Consider the projective variety P (Pk,k+1) ⊂ Pk(k+1)−1. We show that the k linear spaces 
in P (Pk,k+1) defined by the vanishing of one row of M are irreducible components of 
P (Pk,k+1).

Up to the action of the symmetric group permuting rows, it is enough to show that 
the linear space Lk whose defining ideal is (xk,1, . . . , xk,k+1) is an irreducible component 
of Pk,k+1.

We fix a point p ∈ P (Pk,k+1) whose coordinates are xi,j(p) = 1 for all 1 ≤ i ≤ k − 1
and 1 ≤ j ≤ k+1, and zero otherwise. We work inside the affine chart U = {x1,1 �= 0} ∼ = 
F k(k+1)−1 of Pk(k+1)−1. Inside U , we change coordinates so that p is the origin of U . In 
this coordinates x̃i,j , the variety Pk,k+1 ∩ U is defined by ideal Ĩ generated the k × k

permanents of the following k × (k + 1) matrix

M̃ =

⎛⎜⎜⎝
1 x̃1,2 + 1 . . . x̃1,k+1 + 1

x̃2,1 + 1 x̃2,2 + 1 . . . x̃2,k+1 + 1
...

...
...

...
x̃k,1 x̃k,2 . . . x̃k,k+1

⎞⎟⎟⎠ .

Let Ĩ lin be the ideal generated by the linear part of all g ∈ Ĩ. The affine tangent space 
Tp(P (Pk,k+1)) to p at P (Pk,k+1) is given by Spec(F [x̃i,j , (i, j) �= (1, 1)]/Ĩ lin). Let gj for 
j = 1, . . . , k + 1 be the permanents of M̃ . The linear part of gj is

x̃k,1 + x̃k,2 + · · · + ̂̃xk,i + · · · + x̃k,k+1,

where ̂̃xk,i means that we are omitting that summand. Since we are in characteristic 
zero, these linear forms are linearly independent.
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Hence, the tangent space Tp(P (Pk,k+1)) is of dimension at most the dimension of Lk. 
As Lk ⊂ P (Pk,k+1) the tangent space has to be of the same dimension as Lk. Thus, p
is a smooth point of P (Pk,k+1) belonging to a unique component of dimension equal to 
the dimension of Lk. It follows that Lk is an irreducible component of P (Pk,k+1). �
Remark 3.9. Other types of irreducible components arise from the vanishing of the 
generic linear forms in a column. One can check that they all have codimension k+ 1 as 
well.

Proposition 3.10. For k = 3 or 4, let M be a generic k× (k + 1) matrix of linear forms. 
Then the codimension of Pk,k+1 = {prk(M) ≤ k− 1} ⊂ F k×(k+1) is k + 1. Equivalently, 
Conjecture 3.4 holds for 2 ≤ k ≤ 4 and Pk,k+1 is a complete intersection.

Proof. Let k = 3. Define L to be the linear space transforming the matrix M = (xij)
into the following circulant Hankel matrix

H3 =
(
x11 x12 x13 x14
x12 x13 x14 x15
x13 x14 x15 x11

)
.

Let V3 = P3,4 ∩ L. The ideal IV3 of V3 is the ideal of 3 × 3 permanents of H3. Using
Macaulay2, we check that ht(IV3) = 4. Thus dim(Z) = 1 for all irreducible components 
Z ⊂ V3. Therefore, for any irreducible component X ⊂ P3,4, we have

1 = dim(Z) ≥ dim(X) + dim(L) − 12 = dim(X) − 7.

Thus dim(X) ≤ 8 and hence codim(P3,4) ≥ 4.
Let k = 4. Define L to be the linear space transforming the matrix M = (xij) into 

the following circulant Hankel matrix

H4 =

⎛⎜⎝x11 x12 x13 x14 x15
x12 x13 x14 x15 x11
x13 x14 x15 x11 x12
x14 x15 x11 x12 x13

⎞⎟⎠ .

Let V4 = P4,5 ∩ L. The ideal IV4 of V4 is the ideal of 4 × 4 permanents of H4. Using
Macaulay2, we check that ht(IV4) = 5. Thus dim(V4) = 0. On the other hand, for any 
irreducible component X ⊂ P4,5, we have

0 = dim(V4) ≥ dim(X) + dim(L) − 20 = dim(X) − 15.

Thus dim(X) ≤ 15 and hence codim(P4,5) ≥ 5. �
Although we could have employed Macaulay2 to compute directly the codimension of 

P3,4 and P4,5, we believe that restricting to a suitable linear space (or, more generally, 
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to a variety) might be a strategy to give the desired lower bound on the codimension. 
In fact, the approach pursued in Proposition 3.10 comes from the observation that the 
dimension of the ideal of permanents of a circulant Hankel matrix tends to be small. 
This could certify the codimension of the original permanental ideal. The behavior is 
clear for 2 × 2 permanents, as shown in the following lemma.

Lemma 3.11. Let k ≥ 2 and let S = F [xj ] be the polynomial ring in the k + 1 variables 
xj with 1 ≤ j ≤ k + 1. Let M = (xj) be a k × (k + 1) circulant Hankel matrix. Let 
Q1 = {prk(M) ≤ 1} be the variety whose ideal is generated by the 2 × 2 permanents of 
M . Then codim(Q1) = k + 1.

Proof. For k = 2, the statement can be checked similarly as in the proof of Proposi-
tion 2.3. Let k ≥ 3. It is enough to check that some power of each xj is in the ideal 
I(Q1) ⊂ S. First note that, by definition, all the generators of I(Q1) are of the form

x�′xm′ + x�xm, where �′ + m′ ≡ � + m mod k + 1.

Vice versa, any equality of the form �′ +m′ ≡ �+m mod k+1 gives rise to a generator 
of I(Q1). To see these statements, note that giving a generator of I(Q1) is equivalent to 
giving an arbitrary choice of two rows and two columns. Fix a row r, pick two elements 
on r, say x� and x�′ where �′ ≡ � + h mod k + 1; we have just selected two columns. 
Now, choose a second row r′, pick the elements xm′ , where m′ ≡ � + s mod k + 1, and 
xm where m ≡ �+ s+h mod k+1; these last two choices are forced as we have already 
selected the two columns. Notice that the indices of the variables satisfy the desired 
equation in modular arithmetic.

For each 1 ≤ j ≤ k + 1, we have distinct generators of the form

x2
j + x�xm, (2)

x2
j + x�′xm′ , and (3)

x�xm + x�′xm′ , (4)

where �,m �= j are possibly the same index; similarly �′,m′ �= j are possibly the same 
index. Thus 1/2 · (2) + 1/2 · (3) − 1/2 · (4) = x2

j ∈ I(Q1) for every 1 ≤ j ≤ k + 1. �
Remark 3.12. In comparison, the codimension of the ideal of 2 × 2 permanents of a 
generic k × (k + 1) matrix is k2 − 1 [16, Theorem 4.1].

3.1. The nondegenerate permanental ideal

Kirkup shows that codim(P3,4) = 4 [14, §7]. For each k, he looks at the colon ideal 
Jk = I(Pk,k+1) : (

∏
i,j xi,j)∞ ⊃ I(Pk,k+1) [14, Corollary 10]. This ideal unravels a lot of 

the structure of I(Pk,k+1), therefore it deserves a definition on its own.
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Definition 3.13. The ideal Jk = I(Pk,k+1) : (
∏

i,j xi,j)∞ ⊃ I(Pk,k+1) is called the nonde-
generate permanental ideal. The corresponding variety Vk = V (Jk) is the nondegenerate 
permanental variety.

Proposition 3.14 (Kirkup). The nondegenerate permanental variety V3 is irreducible of 
codimension 4 and degree 66.

The next lemma, which is implicit in [14, §6], shows that the nondegenerate perma-
nental variety is non-empty and distinct from the linear spaces of Proposition 3.8 or from 
the irreducible components arising from the vanishing of a single column (Remark 3.9).

Lemma 3.15 (Kirkup). Let k ≥ 3. The Kirkup matrix

Kk,k+1 :=

⎛⎜⎜⎜⎜⎜⎝
1 1 1 1 1 2 − 3k
...

...
...

...
...

...
...

...
... 1 1 2 − 3k

1 1 . . . 1 (2 − 2k) (k − 2)(k − 1)
1 1 . . . 1 k (2k − 1)(k − 2)

⎞⎟⎟⎟⎟⎟⎠ ∈ Zk×(k+1)

is an element of the nondegenerate permanental variety: Kk,k+1 ∈ Vk.

It is indeed immediate to show that the Kirkup matrix has all k×k permanents vanishing.

Definition 3.16 (Kirkup components). A Kirkup component is an irreducible component 
of Vk containing the Kirkup matrix Kk,k+1.

When k = 3, V3 is also the unique Kirkup component. Kirkup found equations for Vk

which we recall here. Let M = (xi,j) be a k × (k + 1) generic matrix and let permj(M)
be the permanent of the matrix obtained from M by removing the jth column. Define

M�,i,j = ∂

∂x�,i
permj(M).

Then M�,i,j is the (k−1)×(k−1) permanent of the matrix obtained from M by omitting 
row � and columns i and j (when i = j the value is zero). We define two types of matrices:

Aj =

⎛⎝M1,1,j . . . M1,k+1,j
...

...
...

Mk,1,j . . . Mk,k+1,j

⎞⎠
and

B� =

⎛⎝ M�,1,1 . . . M�,1,k+1
...

...
...

M�,k+1,1 . . . M�,k+1,k+1

⎞⎠ .
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The matrix Aj is k × (k + 1) and its jth column is zero; call Cj the k × k submatrix 
obtained from Aj by omitting its jth column of zeros. The matrix B� is symmetric of 
format (k + 1) × (k + 1).

The next result is [14, Proposition 9]; we include a proof for completeness.

Proposition 3.17 (Kirkup). The determinants fj = det(Cj) and g� = det(B�) are in the 
nondegenerate permanental ideal Jk.

Proof. Thanks to the action of the symmetric group, it is enough to show the statement 
for f1 and for g1. For j �= 1, by the Laplace expansion we have permj =

∑k
i=1 xi,1Mi,1,j . 

Let ej be the determinant of the (k− 1)× (k− 1) submatrix of C1 obtained by omitting 
the first column and the jth row. Then

I(Pk,k+1) �
k∑

j=1 
(−1)jej · permj(M) =

k∑
i=1 

k∑
j=1 

(−1)jMi,1,j · ej .

For i = 1, the interior sum in the right-most side is det(C1) = f1. For i �= 1, the 
interior sum is the Laplace expansion of the determinant of the matrix obtained from 
C1 replacing the first column with its ith column; so this sum is zero. Hence x1,1 · f1 ∈
I(Pk,k+1). Thus, by definition, f1 ∈ Jk. The proof for the g�’s is similar, using the relation 
permj(M) =

∑k
i=1 x1,iM1,i,j . �

3.2. Permanents of k × n matrices of linear forms

Theorem 3.18. Let F be a field of characteristic zero and M a generic k × n matrix of 
linear forms, with n ≥ k+1. The codimension of the variety Pk,n = {prk(M) ≤ k−1} ⊂
F k×n is n for 2 ≤ k ≤ 5.

Proof. We perform induction on the number of columns n and on the number of rows 
k. The base cases 2× 3, 3× 4, 4× 5, 5× 6 are proven in Theorem 2.1, Propositions 3.10
and 4.13.

Let n ≥ k + 2 and suppose that the statement is proven for n − 1 and any number 
of rows ≤ k − 1. Let C be an irreducible and reduced component of Pk,n. We have two 
cases: either C is a cone over an irreducible component of Pk−1,n(M ′) where M ′ is the 
(k − 1) × n submatrix of M consisting of the first (k − 1) rows, or it is not. In the first 
case, C has codimension ≥ n, because the only irreducible components of Pk−1,n(M ′)
have codimension ≥ n by inductive hypothesis.

In the second case, up to permuting columns, we may assume that in C the Zariski 
principal open set UC = C∩{f �= 0}, where f = perm(M[1,...,k−1],[1,...,k−1]), is nonempty. 
Let B = M[1,...,k],[1≤j≤n−1] be the k× (n−1) matrix consisting of the first n−1 columns 
of M . We denote the linear forms in B by xij . Let z be the linear form in the (k, n)-th 
entry of M . For 1 ≤ i ≤ k − 1 and j = n, let yij be the linear form in the (i, j)-th entry 
of M .
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Define R = F [xij , yij , z]. Let I ⊂ R be the ideal generated by the k×k permanents in 
B, and let J ⊂ R be the ideal generated by the k×k permanent perm(M[1,...,k],[1,...,k−1,n]). 
The latter may be expressed as

perm(M[1,...,k],[1,...,k−1,n]) = f · z + g(xij , yij),

where g(xij , yij) is some polynomial in the variables xij , yij only. Note that I + J ⊂
I(Pk,n) ⊂ I(C), where the latter is the prime ideal of C. Let Y be the affine variety 
defined by the ideal I + J . Therefore ∅ �= UC = C ∩ {f �= 0} ⊂ Y ∩ {f �= 0} = UY . 
The inclusion implies dim(UC) ≤ dim(UY ). The coordinate ring of the principal Zariski 
open set UY is the localization of the coordinate ring of Y at the element f ∈ F [xij ], i.e. 
F [UY ] = R[f−1]/(I ′ + J ′), where I ′ and J ′ are the ideals I and J defined above after 
localizing at f .

Let S = F [xij , yij ]. Note that the rings R[f−1] and S[f−1] are domains and J ′ =
(z + h), for h ∈ S[f−1].

We show that F [UY ] is isomorphic to the ring S[f−1]/Ĩ, where Ĩ is the ideal in S[f−1]
generated by the k × k permanents of B. An element of F [UY ] is an equivalence class 
g = g+(z+h)g1+

∑�
i=1 piqi, where the pi’s are the generators of I and qi ∈ R[f−1]. Since 

the latter ring is a domain, we may perform Euclidean division of g and of each qi by the 
element z+h. So each equivalence class is of the form g = g+(z+h)g2+

∑�
i=1 piri, where 

degz(g) = 0 and degz(ri) = 0 for each i. This condition means that the g, ri ∈ S[f−1]
for each i. Define the map

ϕ : F [UY ] −→ S[f−1]/Ĩ

where ϕ(g) = g +
∑�

i=1 piri. This is a ring isomorphism.
Now, regard the ideal I above as an ideal in S. By induction, ht(I) = n−1. As height 

can only go up after localization with respect to an element not in the ideal, one has 
ht(Ĩ) ≥ n− 1.

Since S[f−1] is a finitely generated domain, one has the equality

dim(F [UY ]) = dim(S[f−1]/Ĩ) =

= dim(S[f−1]) − ht(Ĩ) ≤ (kn− 1) − (n− 1) = (k − 1)n.

Thus dim(C) = dim(UC) ≤ dim(UY ) ≤ (k − 1)n and hence codim(C) ≥ n. �
In this last result we explicitly employed the knowledge of the codimension of Pk,k+1 ⊂

F k×(k+1) for 2 ≤ k ≤ 5. Notice that the core of the proof of Theorem 3.18 is the following.

Theorem 3.19. Let k ≥ 1. If Ph,h+1 ⊂ Fh×(h+1) has codimension h+1 for any h ≤ k, then 
Pk,n has codimension n, for any n ≥ k + 1. In particular, the validity of Conjecture 3.4
for every k ∈ N implies that Pk,n has codimension n, for every k ∈ N and n ≥ k + 1.
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4. Torus actions

In this section, we work over the field of complex numbers. Let T = C∗ act on a vector 
space V with weights 0 and 1. This means that V = V0 ⊕ V1 and for every v ∈ Vi and 
t ∈ T , we have t · v = tiv. The action induces naturally an action on P (V ).

Let Y ⊂ V be a T -invariant variety. Then, since the torus is irreducible, any irreducible 
component X is invariant under the action of T . Let XT be the locus of fixed points 
under the T -action. It is not difficult to check that XT is smooth if X is so. Then there 
exists a morphism

ϕt→0 : X −→ XT ,

defined by ϕt→0(x) = limt→0 t ·x ∈ XT . This is the restriction of the projection V → V0
with kernel V1. Suppose X is an affine cone over X ′ ⊂ P (V ). Then ϕt→0 induces a map

ψt→0 : U −→ X ′ T ,

where U ⊂ X ′ is the set of all [x] ∈ X ′ such that limt→0 t · [x] �= 0.
For any x ∈ XT , the tangent space TY,x to Y ⊃ X splits into two summands of weight 

0 and 1, which we call T 0
Y,x and T 1

Y,x, respectively.

Definition 4.1. Let Y ⊂ V be a variety, where T = C∗ acts on V as above. Let Z be an 
irreducible subvariety of Y . There exists a nonempty, Zariski open subset U ⊂ Z, such 
that the restriction of the tangent sheaf of Y to U is a vector bundle TY |U . If T acts 
on U then we obtain TY |U = T 1

Y |U ⊕ T 0
Y |U . The total spaces of all three bundles map 

naturally to V and we identify T 1
Y |U with its image.

We define T 1
Z,Y as the Zariski closure in V of T 1

Y |U . This irreducible variety does not 
depend on the choice of U .

Proposition 4.2. Any irreducible component X of a variety Y ⊂ V as above is contained 
in T 1

XT ,Y .

Proof. Note that XT is irreducible, as it is the image ϕt→0(X). If X = XT , then the 
statement is true as the total space T 1

XT ,Y is canonically identified with XT , as each 
fiber is zero. If XT �= X, the general point x ∈ X will map to a point ϕt→0(x) ∈ XT

belonging to an open set U ⊂ XT over which TY is a vector bundle. We have to prove that 
x ∈ T 1

Y,ϕt→0(x). Indeed, the whole orbit T ·x consists of vectors in the fiber T 1
Y,ϕt→0(x), as 

the closure of this orbit is a line contained in Y , passing through ϕt→0(x) and on which 
T acts with weight one. This proves the desired inclusion. �

Proposition 4.2 is a simpler version of the Białynicki-Birula decomposition theorem 
[3, Chapter II, Theorem 4.2], but in a possibly singular context.

Definition 4.3 (Type). The type of X is the rank of the bundle T 1
Y |U in Proposition 4.2.
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4.1. Irreducible components of Pk,k+1 and torus actions

Let W be the linear component of Y = Pk,k+1 given by the vanishing of the first row. 
If p ∈ W , then the Jacobian J(Y )p of Y at p is a (k(k + 1)) × (k + 1)-matrix with two 
blocks:

J(Y )p =
(
B1(Ap)

0

)
,

where Ap is the (k − 1) × (k + 1) nonzero submatrix of p and B1(Ap) is the matrix 
introduced in §3.1 evaluated at the entries of Ap. The matrix B1(Ap) is a symmetric 
(k+1)× (k+1)-matrix whose main diagonal consists of zeros. The zero-block 0 has size 
((k − 1)(k + 1)) × (k + 1).

Let T = C∗ act on V = Ck×(k+1) scaling by t the first row of a matrix in V and 
preserving the other entries.

Corollary 4.4. For any irreducible component X of Y = Pk,k+1 ⊂ V , we have a map

ϕt→0 : X −→ XT ⊂ W = V T .

If X �= W , then any point p ∈ XT is in the singular locus of Y . Let Ap be the corre-
sponding (k − 1) × (k + 1) nonzero submatrix of p. For p ∈ ϕt→0(X), its tangent space 
to Y is

TY,p = V T ⊕ ker(B1(Ap)),

where T 0
Y,p = V T and T 1

Y,p = ker(B1(Ap)). In particular, dimC T 1
Y,p = dimC ker(B1(Ap)).

Proof. The point p has to be singular as it belongs to two components: X and W . The 
tangent space TY,p is the kernel of transpose of J(Y )p. The kernel of the matrix B1(Ap)
sits inside the span of the variables x1,h for 1 ≤ h ≤ k + 1, corresponding to the first 
row, which is a complement to the subspace V T in V . �

Let Xi = {p ∈ V T | crk(B1(Ap)) = i} ⊂ V T for 0 ≤ i ≤ k + 1, where crk denotes the 
corank of B1(Ap), regarded as a matrix in C(k+1)×(k+1). This is a constructible set.

Theorem 4.5. Let X be any irreducible component of Y = Pk,k+1. Then X coincides with 
T 1
XT ,Y . Note that there is a unique i such that the generic point of XT sits inside Xi, 

i.e. X is of type i.

Proof. By Proposition 4.2, X is a subvariety of T 1
XT ,Y . There is a unique such index i, 

by the irreducibility of XT and by semi-continuity of matrix rank.
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We have to show the opposite inclusion. By the irreducibility of T 1
XT ,Y and since X

is closed, it is enough to show that T 1
Y |XT∩Xi

⊂ X. Let (q, p) ∈ T 1
Y |XT for p ∈ XT ∩ Xi. 

Hence q ∈ ker(B1(Ap)). Now, regard q = (q1, . . . , qk+1) ∈ Ck+1. By definition, one has

B1(Ap) ·

⎛⎝ q1
...

qk+1

⎞⎠ =

⎛⎝0
...
0

⎞⎠ .

The j-th linear condition B1(Ap)j · qt = 0 is equivalent to the vanishing of the k × k

permanent of the submatrix of M obtained by removing the j-th column of M and 
evaluating at (q, p). Hence (q, p) ∈ Y and thus (tq, p) ∈ Y for every t ∈ T . Thus 
T 1
Y |XT∩Xi

is irreducible, contained in Y and intersecting X in a Zariski dense set. As X
is a component of Y it follows that X = T 1

XT ,Y . �
Corollary 4.6. Let X be any irreducible component of Y . Let p ∈ XT be general. Then

dimX = dimXT + dimC kerB1(Ap).

Equivalently, one has

codim X = codimV TXT + rk(B1(Ap)).

4.2. Correspondence between vector bundles and components of Y = Pk,k+1

Theorem 4.5 shows a geometric feature lurking behind the variety Y , that is a hier-
archy of irreducible components: each irreducible component corresponds to a vector 
bundle of rank crk(B1(Ap)). The irreducible component W = V T ⊂ Y is of type 
0: codimV Tϕt→0(W ) = 0 and B1(Ap) is full-rank for a general p ∈ V T . The irre-
ducible components that are cones over irreducible components of Pk−1,k+1 correspond 
to rk(B1(Ap)) = 0, and hence they are of type k + 1.

Proposition 4.7. There is no irreducible component X of Y such that the general point 
of XT belongs to Xk, i.e. there is no irreducible component of type k.

Proof. A necessary condition for the existence of such an irreducible component is that 
Xk �= ∅. This condition means that rk(B1(Ap)) = 1 for some p ∈ V T . However, B1(Ap)
is a symmetric matrix with zeros on the diagonal. Therefore, if it is nonzero, then it has 
a 2 × 2 submatrix N of the form

N =
(

0 a
a 0

)
,

with a �= 0. Thus rk(B1(Ap)) ≥ 2, whenever B1(Ap) is nonzero. �
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Proposition 4.8. The irreducible components described in Remark 3.9, i.e. those given by 
choosing a vanishing column and the vanishing complementary permanent, are of type 
k − 1.

Proof. Given such an irreducible component, it is immediate to see that B1(Ap) has 
nonzero only one row and one column and so rk(B1(Ap)) = 2. �

The locus X1 ⊂ V T is given by the vanishing locus of det(B1) from which one removes 
the locus of larger corank. Hence this is a codimension-one constructible set inside V T , 
which is possibly reducible.

Corollary 4.9. Let X be an irreducible component of Y such that the general point of XT

belongs to X1, i.e. X is of type one. Then codim X ≥ k + 1.

Proof. By Corollary 4.6, we have codim X = codimV TXT + k. Note that we have 
codimV TXT ≥ codimV TX1 ≥ 1, which shows the inequality. �
Proposition 4.10. Every irreducible component containing the Kirkup matrix Kk,k+1 is 
of type one and so it has codimension at least k + 1.

Proof. Let X be an irreducible component of Y containing Kk,k+1. Let pk be the corre-
sponding point of Kk,k+1. To prove the statement it is enough to show that XT ∩X1 �= ∅
by Corollary 4.9. To check the validity of the latter statement, it is sufficient to prove 
that rk(B1(Apk

)) = k. The upper-left k × k submatrix of B1(Apk
) is of the form

E =

⎛⎜⎜⎜⎜⎝
0 a · · · a b
a 0 · · · a b
...

...
. . .

...
...

a a · · · 0 b
b b · · · b 0

⎞⎟⎟⎟⎟⎠ ,

where a, b �= 0. The main diagonal of E consists of zeros. One has rk(E) = k. To see 
this, first note that the (k − 1) × (k − 1) submatrix A of E only consisting of a’s and 
zeros on the main diagonal has full-rank k − 1: indeed the vector 1 = (1, . . . , 1) ∈ Ck−1

is in the row span of A (add up all the rows and scale), and so every standard vector 
in Ck−1 is in its row span (subtract from 1 each scaled row). Now, one can easily check 
that the last row of E cannot be linearly dependent from the first k − 1 rows. Thus 
rk(B1(Apk

)) = k. �
Remark 4.11. To understand dimensions of irreducible components of Pk,k+1 one simply 
needs to understand dimensions of irreducible components of each Xi. Indeed, every 
irreducible component of Pk,k+1 comes from a rank i vector bundle over a component 
of Xi. However, it is not easy to conclude that components of Xi have codimension i in 
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Table 1
Irreducible components of P4,5.

Type Irreducible components 
0 V T

1 Kirkup component 
2 No components 
3 There exist such components 
4 No components 
5 Cones over P3,5

W . As we have seen some Xi are empty, thus it is not true that Xi+1 is contained in the 
closure of Xi.

4.3. Codimension of P4,5

We use the correspondence with vector bundles, to prove that the codimension of all 
irreducible components of P4,5 is 5. This gives an alternate proof of the case k = 4 in 
Proposition 3.10.

Proposition 4.12. All the irreducible components of P4,5 have codimension 5. In Table 1, 
we organize them according to their type.

Proof. We employ Macaulay2 to perform the required computations. In §5, we provide 
a script to check some of the cases reported in the table. For instance, the script checks 
that detB1(Ap) is smooth in codimension one after intersecting scheme-theoretically 
with a subspace. As singular points remain singular after such intersection, this implies 
that detB1(Ap) is smooth in codimension one. If it had several components, then each 
one would be of codimension one in W , and as all varieties we deal with are cones over 
projective varieties, the components would need to intersect in codimension one inside 
detB1(Ap) [19, Theorem 2.22]. In particular, the variety would have to be singular in 
codimension one. Thus, we conclude that detB1(Ap) is irreducible. This implies that 
there is a unique Kirkup component.

In a similar way, by intersecting X2 with a fixed linear subspace, the script verifies 
that there are no type 2 irreducible components in codimension ≤ 5. Since I(P4,5) is 
generated by five polynomials, Krull’s principal ideal theorem implies that there are no 
type 2 components. �
4.4. Components of P5,6

We use the correspondence with vector bundles to prove that the codimension of all 
the irreducible components of P5,6 is 6.

Proposition 4.13. All the irreducible components of P5,6 have codimension 6. In Table 2, 
we organize them according to their type. 
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Table 2
Irreducible components of P5,6.

Type Irreducible components 
0 V T

1 Kirkup component 
2 No components 
3 Potential components in codimension 6
4 There exist such components 
5 No components 
6 Cones over P4,6

Proof. We employ Macaulay2 to perform the required computations. In §5, we provide 
a script to check the case where rk(B1(Ap)) = 2, i.e. the irreducible components of type 
4. Let X be an irreducible component of this type so we have XT ⊂ X4, where X4 is 
defined by the 3 × 3 minors of the matrix B1(A), A being a generic matrix in V T . By 
Corollary 4.6, codim X = codimV TXT +rk(B1(A)) = codimV TXT +2. So codim X ≥ 6
is equivalent to verifying that codimV TXT ≥ 4. Since XT ⊂ X4, it is sufficient to check 
that codimV TX4 ≥ 4. Let P (X4) ⊂ P (V T ) be the corresponding projective variety. 
Then it is enough to find a L = P 3 ⊂ P (V T ) such that their intersection P (X4) ∩ L is 
empty [19, Theorem 2.22]. The choice of such a suitable L is reported on the script. The 
output of the script reads: [gb]12(400)13(420)14(840)number of (nonminimal) gb 
elements = 455, number of monomials = 49455, used 33.8193 seconds. With a 
similar code, we also check all the other cases. For instance, in type 3, we find a P 2

such that P (X3) ∩ P 2 ⊂ P (V T ) is empty. To check that in type 1 we have a unique 
Kirkup irreducible component, we confirm that the singular locus of the set defined by 
det(B1(A)) = 0, for A ∈ V T , has codimension higher than two in V T . �
4.5. Singular locus of the permanental hypersurface: von zur Gathen’s problem

Let k ≥ 3, M be a generic k × k square matrix, and let P = {perm(M) = 0} be the 
k×k permanental hypersurface. A folklore question asks for a description of the singular 
locus of this hypersurface in terms of numerical invariants of various kinds. This is a 
challenging and poorly understood question, in sharp contrast with the singular locus 
of the determinantal hypersurface that has natural interpretation in terms of rank of 
matrices.

The codimension of this set is currently unknown for k ≥ 5. A first result towards 
determining its codimension, which was so far the strongest in this direction, is due to 
von zur Gathen:

Theorem 4.14 (von zur Gathen [25]). Let k ≥ 3. The singular locus Sing(P ) =
{prk(M) ≤ k − 2} has codimension between 5 and 2k.

Note that Y = Sing(P ) is defined by the (k− 1)× (k− 1) permanents of M . Let V be 
the vector space of k× k complex matrices and let X be an irreducible component of Y . 
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We fix the following T = C∗-action on V : given p ∈ V , let t · p be the matrix where the 
first two rows are those of p scaled by t, while the other entries are unchanged. Hence 
V T is the linear space given by the matrices of the form⎛⎜⎜⎜⎜⎝

0 · · · · · · 0
0 · · · · · · 0
∗ ∗ ∗ ∗
... · · · · · ·

...
∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎠ .

Recall that, as at the beginning of §4, we have a surjective map ϕt→0 : X → XT ⊂ V T .

Remark 4.15. Let p ∈ V T be the matrix 

( 0
0
Ap

)
, where Ap is a (k− 2)× k matrix. Then 

the k2 × k2 Jacobian J(Y )p of Y at p has the following form

J(Y )p =

⎛⎜⎝
S1 S2 S3

x1,h 0 Lp 0
x2,h Lp 0 0
xi,j 0 0 0

⎞⎟⎠. 

Here S1 is the set of permanents that do not use the first row, S2 is the set of permanents 
that do not use the second row, and S3 is the set of permanents that use the first and 
second rows. Moreover, the k×k matrix Lp = (�ij) is such that �ij is the (k−2)×(k−2)
permanent of Ap which does not use columns i and j. Note that Lp is symmetric with 
zeros on the main diagonal.

Corollary 4.16. With the same notation as in Remark 4.15, whenever p ∈ ϕt→0(X) = XT

with X �= V T , the tangent space to Y at p is:

TY,p = V T ⊕ ker(Lp)⊕2,

where T 0
Y,p = V T and T 1

Y,p = ker(Lp)⊕2. In particular, dimC T 1
Y,p = 2 dimC ker(Lp).

Proof. The tangent space TY,p is the kernel of the transpose of J(Y )p. The two copies 
of ker(Lp) live in the span of the first and second rows, respectively. �
Corollary 4.17. Let p ∈ X be any irreducible component of Y = Sing(P ). Then the 
following upper bound holds:

dimX ≤ dimXT + 2 dimC ker(Lp).

Equivalently, one has codimV X ≥ codimV TXT + 2rk(Lp).
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Proof. By Proposition 4.2, X is contained in the closure of the vector bundle T 1
Y |XT over 

XT . Its rank is 2 dimC ker(Lp) by Corollary 4.16. �
A direct consequence of Corollary 4.17 is as follows.

Corollary 4.18. Let p ∈ XT be general. If rk(Lp) ≥ 3, then codimV X ≥ 6.

Lemma 4.19. Let p ∈ XT be general. Then rk(Lp) �= 1.

Proof. This is analogous to Proposition 4.7. �
Proposition 4.20. Let k ≥ 4. Let p ∈ XT be general and suppose rk(Lp) = 2. Then:

codimV TXT ≥ 2.

Proof. By assumption all the 3 × 3 minors of Lp vanish. Any such principal submatrix 
L has the form

L =
(0 a b
a 0 c
b c 0

)
.

Hence det(L) = 2abc. We regard the point p as a (k − 2) × k matrix. For any choice of 
columns i1, i2, i3, there must be two indices in, im such that the (k−2)×(k−2) permanent 
not involving in and im is zero. Since k ≥ 4, up to permuting columns, we may assume 
that XT is inside the locus C defined by the vanishing of the (k−2)× (k−2) permanent 
perm12 not involving columns 1, 2 and of the (k − 2) × (k − 2) permanent perm34 not 
involving columns 3, 4. Since each of these permanents is irreducible by Corollary 3.2, 
and since perm12 and perm34 are linearly independent, C is a complete intersection of 
codimension two in V T . Hence codimV TXT ≥ codimV TC = 2. �
Theorem 4.21. Let k ≥ 6. Let p ∈ XT be general and suppose rk(Lp) = 0. Then one has

codimV Tϕt→0(X) ≥ 6.

Proof. The assumption implies that ϕt→0(X) is inside the locus C defined by the van-
ishing of all (k − 2) × (k − 2) permanents of any (k − 2) × k matrix in V T .

We have two cases:

(i) For a general p ∈ XT , all the (k − 3) × (k − 3) permanents vanish. Hence XT is 
inside a cone over an irreducible component of the locus C, given by the vanishing 
of all the (k − 3) × (k − 3) of a (k − 3) × k generic matrix. In this case one has 
codimV TXT ≥ 6, by Proposition 4.22 below for h = 3 and � = k − 3. We postpone 
its proof because it involves a more technical analysis.
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(ii) For a general p ∈ XT , there exists a (k−3)×(k−3) permanent that does not vanish 
at p.
We claim that in this case the inequality in Corollary 4.17 is strict, i.e. X is strictly
contained in the closure of the vector bundle T 1

Y |XT over XT . Otherwise, if equality 

holds, then for a general p ∈ XT any extension q to a k × k matrix satisfies q ∈ X. 
Put free variables zij on the first two rows of q. Any (k − 1) × (k − 1) permanent 
of q vanishes, because q ∈ Y . Consider a (k − 1) × (k − 1) permanent permk−1,k−1
of q involving the first two rows consisting of zij and containing a (k − 3) × (k − 3)
nonvanishing subpermanent; the latter exists because of the assumption on p. The 
condition permk−1,k−1(q) = 0 gives a linear relation among the 2 × 2 permanents 
of the 2 × k submatrix of q whose entries are the zij . However, permanents of fixed 
arbitrary size of a generic matrix are linearly independent, by Lemma 3.3. Therefore 
we reached a contradiction.
Thus codimV X ≥ codimV TXT + 1. To conclude it is enough to show that 
codimV TXT ≥ 5. This is proven in Proposition 4.22, where h = 2 and � = k − 2.

This concludes the proof. �
The previous proof relies on the following result, which in turn improves the easier 

lower bound of Proposition 3.1.

Proposition 4.22. Let M be a generic � × (� + h) complex matrix for h ≥ 1 and let 
V = C�×(�+h). Let P�,�+h be the variety defined by all the �× � permanents of M . Then 
codimV P�,�+h ≥ h + 3 for � ≥ 3.

Proof. The proof is by induction on �, with � = 3 as base case, which is implied by 
Theorem 3.18. Let Y = P�,�+h. We fix the T = C∗-action scaling by t the first row of 
M . Hence V T is a linear subspace of (�− 1)× (�+ h) matrices. Let X be an irreducible 
component of Y . As before, we have a surjective map ϕt→0 : X → XT ⊂ V T . The 
Jacobian J(Y ) calculated at a point p ∈ V T has the form

J(Y )p =
(
Np

0

)
,

where the entries of Np are (�− 1) × (�− 1) permanents of the (�− 1) × (� + h) matrix 
p. Here the columns of J(Y )p are indexed by subsets of � elements of the � + h column 
set of M . The rows of Np correspond to the �+ h variables on the first row of M . From 
the description of the Jacobian, as in Corollary 4.17 and using Proposition 4.2, we find 
that codimV X ≥ codimV TXT + rk(Np).

We claim that rk(Np) �= 1, . . . , h. Indeed, assume that there is a nonzero entry in 
Np. This corresponds to a nonvanishing (�− 1)× (�− 1) permanent perm�−1,�−1. Up to 
permuting columns, we may assume that perm�−1,�−1 involves the first � − 1 columns 
and set perm�−1,�−1(p) = a �= 0.
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Consider the submatrix N of Np with �+h−(�−1) = h+1 columns, each corresponding 
to a subset � columns of M . Thus

N =

⎛⎜⎜⎜⎜⎝

{1, . . . , �} {1, · · · , �− 1, � + 1} . . . {1, . . . , �− 1, � + h}
x1,� a 0 · · · 0
x1,�+1 0 a · · · 0
... 0 0

. . . 0
x1,�+h 0 0 · · · a

⎞⎟⎟⎟⎟⎠, 

where the variables x1,�+j are the last h+1 variables in the first row of M . The matrix N
is a diagonal (h+1)×(h+1) matrix with the evaluated permanent perm�−1,�−1(p) = a on 
the main diagonal. Hence det(N) �= 0 and so either rk(Np) = 0 or h+1 ≤ rk(Np) ≤ �+h.

We shall be done if we prove that rk(Np) ≥ h + 3. To this aim, we have to deal with 
the cases:

(i) rk(Np) = 0;
(ii) rk(Np) = h + 1;
(iii) rk(Np) = h + 2.

Suppose (i) holds true. Then all the (�−1)× (�−1) permanents of the (�−1)× (�+h)
matrix p vanish. This implies that XT is inside an irreducible component of P�−1,�−1+h. 
So, by induction on � ≥ 3, we have codimV TXT ≥ h + 3.

Suppose (ii) holds true. Then it is enough to find two (h+2)×(h+2) minors, without 
common factors to prove that codimV TXT ≥ 2. Consider the following (h+ 2)× (h+ 2)
submatrix of Np:

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{1, . . . , �} {1, · · · , �− 1, � + 1} . . . {1, . . . , �− 1, � + h} {1, . . . , �− 2, �, � + 1}

x1,� a 0 · · · 0 b2

x1,�+1 0 a · · · 0 b1

...
...

...
. . .

...
...

x1,�+h 0 0 · · · a 0
x1,�−1 b1 b2 · · · b�+1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where a is the permanent on columns {1, . . . , �−1} of p, b1 is the permanent on columns 
{1, . . . , �−2, �} of p, and b2 is the permanent on columns {1, . . . , �−2, �+1} of p. Note that 
det(S) = −2ahb1b2. Since det(S) = 0 and a �= 0, we have either b1 = 0 or b2 = 0. Picking 
a different minor from the one above, we find another irreducible vanishing permanent. 
Since XT must be contained in the vanishing of two irreducible and linearly independent 
permanents, we find that codimV TXT ≥ 2.
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To conclude in case (iii), it is enough to find a point p ∈ V T and a (h + 3) × (h + 3)
minor of Np that is nonzero. Indeed, then codimV Tϕt→0(X) ≥ 1. Let q ∈ V T be a matrix 
of the form

q =

⎛⎜⎜⎜⎝
1 2 · · · �− 1 � � + 1 � + 2 · · ·
1 0 · · · 0 0 0 0 0
0 1 · · · 0 0 0 0 0
0 0

. . . 0 a b 0 0
0 0 0 1 d c 1 0

⎞⎟⎟⎟⎠. 

Then consider the following (h + 3) × (h + 3) minor of Nq, the submatrix of J(Y )q:

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{1, . . . , �} {1, · · · , � − 1, � + 1} . . . {1, . . . , � − 1, � + h} {1, . . . , � − 2, �, � + 1} {1, . . . , � − 2, �, � + 2}

x1,�−2 a d · · · 0 ac + bd a

x1,�−1 d c · · · 1 0 1

x1,� 1 0 · · · 0 c 0

x1,�+1 0 1 · · · 0 d 0

x1,�+2 0 0 1 0 0 d

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
x1,�+h 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The lower-left (h + 1) × (h + 1) corner is the identity matrix. The matrix Q is divided 
into two linearly independent blocks: an (h − 2) × (h − 2) identity matrix (inside the 
lower-left (h + 1) × (h + 1) identity corner) and the following 5 × 5 matrix

Q′ =

⎛⎜⎜⎜⎝
a d 0 ac + bd a
d c 1 0 1
1 0 0 c 0
0 1 0 d 0
0 0 1 0 d

⎞⎟⎟⎟⎠ .

Hence rk(Q) = h− 2 + rk(Q′). Now det(Q′) = d(d2 − db+ 2ac− d+ b), which is nonzero 
for generic choices of a, b, c, d. For such choices, rk(Q′) = 5 and the proof is complete. �

We are ready to improve von zur Gathen’s Theorem 4.14.

Theorem 4.23. Let k ≥ 6. The singular locus Sing(P ) = {prk(M) ≤ k− 2} has codimen-
sion between 6 and 2k.

Proof. By Corollary 4.17, it is enough to show that for any irreducible component X of 
Y = Sing(P ), we have

codimV TXT + 2rk(Np) ≥ 6.
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By Corollary 4.18 and Corollary 4.19, we have two cases to deal with: either rk(Np) = 2
or rk(Np) = 0. The first case is achieved by Proposition 4.20. The second case is implied 
by Theorem 4.21. �

Definition 4.24. For any subset R ⊂ [k] of rows, let JR be the ideal generated by all the 
|R| × |R| permanents of the |R| × k submatrix MR,[k], i.e. the submatrix of M whose 
rows are indexed by R. For any subset of columns C ⊂ [k], one similarly defines JC .

We omit the proof of the following straightforward result.

Lemma 4.25. For any partition of rows R1 � R2 = [k] or of columns C1 � C2 = [k], we 
have the inclusions of ideals

I(Sing(P )) ⊂ JR1 + JR2and I(Sing(P )) ⊂ JC1 + JC2 .

Corollary 4.26. Suppose Conjecture 3.4 holds. Then any irreducible component C of 
Sing(P ) whose prime ideal I(C) contains JR1 + JR2 for a partition R1 � R2 = [k] has 
codimension ≥ 2k.

Proof. By Theorem 3.19, the assumption implies that the codimension of JR1 + JR2 is 
2k. Since I(C) contains JR1 + JR2 , the statement follows. �

Conjecture 4.27. We have the following equality of radical ideals:

rad(I(Sing(P )) =
⋂

(S1,S2)∈Π

rad(JS1 + JS2), (5)

where Π is the set of partitions (S1, S2) of the k rows or the k columns.

Remark 4.28. If both Conjectures 4.27 and 3.4 were true for each k, the codimension of 
Sing(P ) would be 2k, i.e. the upper bound in von zur Gathen’s Theorem 4.14 would be 
sharp for each k. Equality (5) has been computationally checked for k = 3 in Macaulay2. 
We do not know whether it is true even for k = 4.

5. Code

The majority of the following code, which simplifies that in an earlier version of this 
paper, was provided by an anonymous reviewer, to whom we are grateful.
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K = QQ;
-- k x (k+1) matrices
k = 4 -- or k = 5
R = K[x_(1 ,1)..x_(k ,k+1)];
M = matrix for i in 1..k list for j in 1..k+1 list x_(i ,j);
P = permanents(k ,M);
B1 = diff(matrix{{x_(1 ,1)..x_(1 ,k+1)}} , transpose gens P);
v = flatten entries transpose M_{1..k}^{1..k -1};
-- random A (for k = 4)
A = random(K^(k -1) ,K^(#v));
-- special A (for k = 5)
A = matrix {{3 , 3 , 2 , 1 , -1 , 0 , -3 , 3 , 2 , -3 , 2 , 0 , -3 , 2 , 3 , -2 , 2 , 2 , -3 , -3} ,
{ -2 , -2 , -1 , 1 , -1 , 0 , -2 , -2 , -1 , -3 , 2 , -2 , -1 , 3 , -2 , -2 , 2 , -1 , -1 , -1} ,
{ -2 , -2 , 1 , 2 , 3 , 0 , 0 , -3 , 2 , 2 , -3 , -3 , -1 , 2 , -3 , 2 , -2 , 3 , -2 , 2} ,
{ -3 , 0 , -3 , -1 , 1 , 2 , -1 , 2 , -3 , 2 , 1 , 0 , -3 , -1 , -1 , -3 , -2 , 3 , -1 , -3}};
F = first entries (matrix{{x_(2 ,1)..x_(k ,1)}}*A);
L = apply(#v , i -> v#i = > F#i);
BB = sub(B1 , L);

-- k = 4 case
P = det(BB);
S = K[x_(2 ,1) ,x_(3 ,1) ,x_(4 ,1)];
PP = sub(P ,S);
Sing = ideal diff(vars S ,PP);
time codim Sing
use R
J = time minors(4 ,BB);
gbTrace=1
time codim J
-- k = 5 case
J = time minors(3 ,BB);
gbTrace=1
time codim J
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