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Abstract: With the integration of large-scale wind power into the power grid, the impact on system
stability, especially the issue of low-frequency oscillations caused by small disturbances, is becoming
increasingly prominent. Therefore, this paper proposes a damping quantitative analysis method
for regional interconnected power systems incorporating large-scale wind power. Using the cross-
entropy particle swarm optimization (CE-PSO) algorithm, the control parameters of wind turbines are
optimized to suppress low-frequency oscillations in interconnected systems. The method begins with
the state equation of the interconnected power system in two regions; it deduces the characteristic
polynomial of the interconnected system, including wind farms, and takes into account the influence
of wind power integration on the electrical connectivity of the system. Subsequently, the influence of
wind turbine control parameters on the system is quantified, and a quantitative analysis model of the
impact of wind power integration on system damping characteristics is constructed. Based on this,
an optimization model for wind turbine control parameters is established, and the CE-PSO algorithm
is utilized to achieve suppression of low-frequency oscillations in interconnected power grids with
wind power integration. Finally, the accuracy and effectiveness of the proposed method are verified
through a typical electromagnetic transient simulation model of the two-region interconnected
power system.

Keywords: interconnected power grid; damping characteristics; wind power permeability; parameter
optimization; low-frequency oscillation suppression

1. Introduction

With the integration of large-scale wind power into the power grid, the internal
structure of the power grid is becoming more and more complex. The new energy grid-
connected equipment with power electronics as the interface significantly changes the
operation characteristics of the power system dominated by the synchronous machine
and reduces the transient stability of the power system, especially the small disturbance
stability problem represented by low-frequency oscillation [1,2]. The large-scale grid
connection of wind power makes the power oscillation characteristics of the system more
complex, and the system damping changes significantly compared with the traditional
power grid [3–5]. Therefore, it is necessary to deeply analyze the effect of wind power
grid-connected characteristics on system damping characteristics, reveal the influence
mechanism of wind power grid-connected scale and wind turbine control characteristics
on system oscillation stability, and then select the corresponding low-frequency oscillation
suppression method.

At present, many scholars have carried out related research on the small signal sta-
bility of the wind power grid based on the damping characteristics of the system. The
influence of wind power grid connection on the low-frequency oscillation of the system is
studied by using the transient simulation model outlined in References [4,6–9]. The doubly
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fed induction generator (DFIG) is converted into an equivalent traditional synchronous
motor in Reference [6], and the small disturbance stability of the system with wind power
permeability is analyzed under the condition of high and low wind speed. Reference [7]
models wind turbines and analyzes the stability of the system based on the damping ratio
from the perspectives of wind farm grid connection points, grid capacity, and transmission
power of interconnection lines. In Reference [8], research on small disturbance stability
of wind turbines connected to the grid is classified into two categories: one is to directly
replace synchronous units and the other is to add a wind turbine dynamic model in system
simulation, and the mechanisms of these two kinds of research results are compared and
analyzed. Reference [9] used a 16-machine equivalent simulation system for feature analy-
sis, which analyzed the impact of the depth of the penetration of wind generation on the
low-frequency infrastructure modes of the interconnected power system. The mathemati-
cal model of dynamic interaction between a synchronous generator and wind turbine is
established in Reference [4]. The influence of wind turbine supplementary active power
control (SAPC) on low-frequency oscillation is analyzed, and the analysis conclusion is
verified by nonlinear simulation of simplified two-region system and IEEE 39-bus system.
Most of these research establishes small signal stability analysis models with wind power
and then builds specific electromagnetic transient simulation models to analyze the impact
of wind power grid connection on the system but cannot directly quantitatively analyze the
influence mechanism of wind turbine grid connection on system damping characteristics.

Therefore, the whole mathematical model of the wind turbine incorporated into the
power system is constructed in References [5,10–14] to analyze the oscillation characteristics.
The dynamic energy model of a DFIG with PLL is derived in References [5,10]. From a
dissipative energy perspective, the influence of the interaction between the DFIG and
power grid on the low-frequency oscillation of the system is revealed. Reference [11]
analyzes the influence of the virtual inertia of the DFIG participating in the frequency
regulation of the system on the power grid dissipative energy perspective. The results
show that the interaction between the virtual inertia of the wind turbine and the grid side
may induce system oscillation and divergence. Reference [12] established a closed-loop
dynamic model of a power system with DFIG grid connection and found that when the
open-loop oscillation modes of the DFIG subsystem and the remaining subsystems have
similar frequencies, it may cause mutual repulsion of the closed-loop system oscillation
modes, leading to a significant reduction in system damping. The degree of its impact is
positively correlated with wind power permeability. Reference [13] quantified the dynamic
interaction introduced by wind turbines using damping torque analysis, finding that the
dynamic interaction between new energy and power system is usually very weak and that
the influence of this dynamic interaction on low-frequency oscillation damping is much
smaller than that of power flow factors. Reference [14] performed single-machine infinite
equivalence on interconnected systems and analyzed the impact of wind power inertia
control on system damping by obtaining the characteristic root variation in the inertia
time constant of the wind power integration into the system. Although the above studies
have modeled the whole grid-connected system including wind power, most of them
consider incorporating wind power into the infinite grid for analysis and do not consider
the influence of wind turbines on the low-frequency oscillation of the inter-regional power
grid within the system.

The above studies all indicate that with the integration of large-scale wind power, the
power system will exhibit weak damping and low inertia characteristics, and the risk of
low-frequency oscillation will increase. Therefore, some studies have further proposed
corresponding optimization strategies for wind turbine control parameters based on the
analysis of the impact mechanism of wind power integration on low-frequency oscillations,
in order to improve the system damping characteristics resulting from wind turbine in-
tegration. For example, Reference [15] proposes a virtual synchronous generator (VSG)
parameter optimization method based on a data-driven depth deterministic gradient strat-
egy. With node voltage, branch current and other simulation data as input, VSG control
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parameters are adjusted online to achieve the target of low-frequency oscillation suppres-
sion in a model-free manner. By simplifying and reconstructing the full-order linearization
model of a type 4 wind turbine, Reference [16] established a current source damping torque
model suitable for analyzing the stability of a DC voltage loop and phase-locked loop, and
realized the low-frequency oscillation suppression of a type 4 wind turbine by optimizing
the phase and amplitude parameters of the damping transfer loop. References [17,18]
analyzed the influence of a power oscillation damper (POD) on low-frequency oscillation of
a power system containing a DFIG, and realized the low-frequency oscillation suppression
of power system by constructing an optimization model of POD parameters. At present,
this kind of research is mainly carried out for a specific or a single additional controller and
cannot take into account the suppression effect of multiple control parameter adjustment in
the wind turbine on the low-frequency oscillation between power grid regions.

In light of this, the present paper constructs a quantitative analysis model for system
damping, specifically targeting interconnected power systems with large-scale wind power
integration. Based on this model, we have achieved the suppression of low-frequency
oscillations in interconnected systems through the optimization of wind turbine control
parameters. The primary contributions of the proposed method encompass:

(1) Derivation of the state-space equations for the interconnected system incorporat-
ing wind power, mapping wind turbine control parameters into the characteristic
polynomial, and thereby enabling the quantitative analysis of wind turbine control
characteristics within the system damping analysis model;

(2) Utilization of the quantitative damping analysis model to intuitively reveal the mech-
anism by which wind power penetration influences low-frequency oscillations in
interconnected power grids;

(3) Introduction of the CE-PSO (Cultural Evolutionary Particle Swarm Optimization)
algorithm to optimize wind turbine control parameters, achieving optimal control of
low-frequency oscillations.

The remainder of this paper is organized as follows. Section 2 derives the state-space
equations for the interconnected system with wind power integration. Section 3 establishes
the analysis model for damping characteristics in regionally interconnected power grids.
Section 4 presents the damping control strategy based on the CE-PSO optimization algo-
rithm. Section 5 provides simulation analysis of a case study. Finally, Section 6 concludes
the paper.

2. State Equation of the Regionally Interconnected Power Grid with Wind Farms

Figure 1 shows the simplified model of the two-region interconnection system. As-
suming that the transmission direction from Region 1 to Region 2 is positive, the equivalent
units of the two power grids adopt the second-order generator model; the generator’s
transient reactance Xd, the transient electromotive force E1 and the mechanical power Pm
are constant; and the load adopts the constant impedance model.
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In the absence of wind power generation access, the state equation of the intercon-
nected system can be obtained through the generator swing equation [19] as follows:

•
∆δ1 = ∆ω1
•

∆δ2 = ∆ω2
•

∆ω1 = 1
M1

(∆P1M − ∆P1e − D1∆ω1)
•

∆ω2 = 1
M2

(∆P2M − ∆P2e − D2∆ω2)

(1)

where ∆δ1 and ∆δ2 represent the power angle increment of generators G1 and G2; ∆ω1 and
∆ω2 are speed increments; ∆P1M and ∆P2M are mechanical power increments; ∆P1e and
∆P2e are electromagnetic power increments; M1 and M2 are inertial time constants; D1 and
D2 are damping torque coefficients.

According to the power flow calculation, the electromagnetic power expression of
G1 and G2 output in Figure 1 without wind power can be obtained, and the synchronous
torque coefficient of the generator is Kij = ∂Pie/∂δj. Assuming the mechanical power is
constant, i.e., ∆P1M = ∆P2M = 0, Equation (1) can be converted to:

•
∆δ1
•

∆δ2
•

∆ω1
•

∆ω2

 =


0 0 1 0
0 0 0 1

−K11
M1

−K12
M1

− D1
M1

0
−K21

M2
−K22

M2
0 − D2

M2

 ·


∆δ1
∆δ2
∆ω1
∆ω2

 = AS


∆δ1
∆δ2
∆ω1
∆ω2

 (2)

The eigenvalue of the characteristic polynomial |As − λI| = 0 in the system state
matrix can effectively reflect the low-frequency oscillation characteristics of the system, so
the matrix change in Equation (2) can be obtained:

λ4 + ( D1
M1

+ D2
M2

) · λ3 + ( D1D2
M1 M2

+ K11
M1

+ K22
M2

) · λ2

+ 1
M1 M2

(D1K22 + D2K11) · λ = 0
(3)

The system shown in Figure 1 can then be simplified to the equivalent circuit shown
in Figure 2.
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Based on the above equation, considering only the active power P1 injected into the
node, we can derive:

P1 =

∣∣∣∣→E1

∣∣∣∣ · ∣∣∣∣→V3

∣∣∣∣
X13

cos(δ1 − δ3) =
E1V3

X13
cos(δ1 − δ3) (4)

where P1 represents the active power injected by node 1. The voltage phasor at node 1 is
→
E1 = E1∠δ1, and the voltage phasor at node 3 is

→
V3 = V3∠δ3.
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Considering the incremental equation of the active power injected into the node for
the above equation, we can obtain the following:

∆P1 =
E1V3

X13
cos(δ10 − δ30)(∆δ1 − ∆δ3) (5)

where P1 represents the active power injected by node 1. The voltage phasor at node 1 is
→
E1 = E1∠δ1, and the voltage phasor at node 3 is

→
V3 = V3∠δ3.

Considering the large-scale wind power grid connection, ignoring the line power loss
and the line’s own resistance, the electromagnetic power increment equation in Regions 1
and 2 is as follows:

∆P1e = E1V30
X13

cos(δ10 − δ30)(∆δ1 − ∆δ3) = k1(∆δ1 − ∆δ3)

∆P2e = E2V30
X23

cos(δ30 − δ20)(∆δ3 − ∆δ2) = k2(∆δ3 − ∆δ2)

(6)

where V3 is the voltage increment of the wind power junction point; δ3 is the phase
increment of the wind power junction point; X13 and X23 are the reactance of generators
G1 and G2 to the junction point of wind power, respectively. The variable subscript 0
represents the initial value.

At this time, without considering the load changes and network consumption, the
following can be obtained:

∆P1e + ∆Pw = ∆P2e (7)

where ∆Pw is the active power output of the wind farm.
In the interconnected power system, if the frequency of the wind farm junction point

slightly changes to ∆ωB and the dynamic frequency coefficient of the wind farm is g1, then
the active power output of the wind farm is ∆Pw = g1∆ωB. In the interconnected power
grid, the frequency variation in the junction point of the wind farm can be represented
by the frequency variation in the generator close to it. When the wind farm is located in
Region 1, ∆ωB = g2∆ω1; when the wind farm is located in Region 2, ∆ωB = g3∆ω1.

According to the small-value oscillation micro-interference theory, when the rotor has
small-value oscillation, the frequency of the node is determined by the frequency of the
nearby generator, i.e., g2 ≈ 1 and g3 ≈ 1. By combining Equations (6) and (7), the non-state
variables in the middle are eliminated. Subsequently, when the wind farm is located in
either the power feeding region or the power accepting region, the state equation of the
interconnected system can be obtained by incorporating Equation (1).

•
∆δ1
•

∆δ2
•

∆ω1
•

∆ω2

 =


0 0 1 0
0 0 0 1

− k1k2
M1(k1+k2)

− k1k2
M1(k1+k2)

− D1
M1

+ k1g1
M1(k1+k2)

0

− k1k2
M2(k1+k2)

− k1k2
M2(k1+k2)

k1g1
M2(k1+k2)

− D2
M2

 ·


∆δ1
∆δ2
∆ω1
∆ω2

 (8)


•

∆δ1
•

∆δ2
•

∆ω1
•

∆ω2

 =


0 0 1 0
0 0 0 1

− k1k2
M1(k1+k2)

− k1k2
M1(k1+k2)

− D1
M1

k2g1
M1(k1+k2)

− k1k2
M2(k1+k2)

− k1k2
M2(k1+k2)

0 − D2
M2

+ k2g1
M2(k1+k2)

 ·


∆δ1
∆δ2
∆ω1
∆ω2

 (9)

Taking the wind farm in the power feeding region as an example, the characteristic
equation of Equation (8) is as follows:

λ4 + ( D1
M1

+ D2
M2

− k1g1
M1(k1+k2)

) · λ3 + ( D1D2
M1 M2

+ k1k2
M1(k1+k2)

− k1k2
M2(k1+k2)

− D2k1g1
M1 M2(k1+k2)

) · λ2 + k1k2
M1 M2(k1+k2)

(D2 − D1) · λ = 0
(10)
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As can be seen from Equation (10), when the junction point of the wind farm changes,
X13 and X23 will change, resulting in changes in k1 and k2, thus changing the system
damping. When the output power of the wind farm changes, ∆Pw will also change, which
will cause a change in system damping. According to the same analysis, when the wind
farm is in the accepting region, the output power of the wind farm and the junction point
will also change the damping characteristics of the interconnected power grid.

To sum up, for interconnected power systems with large-scale wind power grid
connection, the damping characteristics of the system are closely related to multiple aspects
such as wind farm junction points, wind farm dynamic frequency characteristic coefficients,
and wind farm output power (i.e., wind power permeability).

3. Analysis of Damping Characteristics of Regional Interconnected Power Grid
3.1. Influence of Wind Power Permeability

From the electromagnetic power increment equation in Regions 1 and 2, the expres-
sions of k1 and k2 are as follows:

k1 = E1V30
X13

cos(δ10 − δ30) =
E1V30
X13

cos δ130

k2 = − E2V30
X23

cos(δ30 − δ20) = − E2V30
X23

cos δ320

(11)

Assuming that the transmission power of the connecting line is P34, the wind farm has
a constant power factor, and there is no reactive power exchange with the grid; then, based
on power balance, it can be concluded that:

P1 + Pw = P2 (12)

The permeability of wind power is defined as η%:

η% =
Pw

Pw + P1 + P2
(13)

Since wind power is accessed in Region 1, regardless of its influence on the reactance
between nodes 2 and 4, the output characteristics of wind power can be considered equiva-
lent to variable reactance. Consequently, when only the active power output of the wind
farm is taken into account, we can obtain:

X35 = −
V2

3
Pw

= − 1
2η%P34

(14)

After the wind power is equivalent to variable reactance, the total reactance between
nodes 1 and 3 can be obtained:

X13Σ =
X13X35

X13 + X35
(15)

Based on the equivalent circuit model shown in the figure above, for AC lines 1 to 3, by
neglecting the line resistance and only considering the line reactance X13, the longitudinal
and transverse components of the node voltage drop can be calculated as follows:{

∆V = R13 I cos φ + X13 I sin φ
δV = X13 I cos φ − R13 I sin φ

(16)

Taking the voltage phasor V3 as the reference axis and neglecting the circuit resistance
R, we obtain: {

∆V = P1R13+Q1X13
V3

= Q1X13
V3

δV = P1X13−Q1R13
V3

= P1X13
V3

(17)
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According to the definition of node voltage drop, we have:

E1 =

√
(V3 + ∆V)2 + (δV)2 (18)

Then, based on the above equation, we can derive:

E1 =

√
(V3 +

Q1X13

V3
)

2
+ (

P1X13

V3
)

2
(19)

Thus, the Equation (20) can be obtained through the node voltage drop equation:

E1 =

√(
V3 +

Q1X13
V3

)2
+
(

P1X13
V3

)2

=

√(
V3 +

P34 tan φX13
V3

)2
+
(
(1−2η%)P34X13

V3

)2

E2 =

√(
V3 − Q2X24

V3

)2
+
(

P2X24
V3

)2

=

√(
V3 − P34 tan φX24

V3

)2
+
(

P34X24
V3

)2

(20)

The voltage vector phase difference is:
δ130 = arctan

(1−2η%)P34X13
V3

V3+
P34 tan φX13

V3

δ320 = arctan
P34X24

V3

V3−
P34 tan φX24

V3

(21)


k1 = E1V30

X13
cos(δ10 − δ30) =

E1V3
X13

cos δ130

k2 = − E2V30
X23

cos(δ30 − δ20) = − E2V3
X23

cos δ320

(22)

where δ is a function of wind power permeability, from which the relationship between
wind power permeability and k1 and k2 can be obtained.

3.2. Dynamic Frequency Characteristic Coefficient of the Wind Turbine

The stator windings of DFIGs are directly connected to the power grid, while the
rotor windings are connected to the grid through a converter. The frequency, voltage,
amplitude, and phase of the rotor winding power supply are automatically adjusted by the
converter according to operational requirements. This allows the generator set to achieve
constant-frequency power generation at different rotational speeds. Figure 3 illustrates the
grid integration structure of the DFIG.
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The mathematical model of a DFIG in the abc coordinate system is converted to the d-q
coordinate system by the Park transformation. Assuming voltage and current symmetry
in the three-phase winding, the flux equation of the doubly fed induction motor in the
synchronous rotating d-q coordinate system is as follows:{

ψsd = Lsisd − Lmird
ψsq = Lsisq − Lmirq

(23)

{
ψrd = −Lmisd + Lrird
ψrq = −Lmisq + Lrirq

(24)

In the equation, ψsd, ψsq, ψrd and ψrd are the components of the stator flux d and q axis
and the rotor flux d and q axis, respectively. isd, isq, ird and irq are the current components
of stator d and q axes and rotor d and q axes, respectively. Ls, Lr and Lm are stator leakage
inductance, rotor leakage inductance and mutual excitation inductance, respectively, in the
d-q coordinate system.

In the synchronous rotating d-q coordinate system, the stator and rotor voltage equa-
tions of the DFIG are as follows:{

usd = −Rsisd − pψsd − ω1ψsq
usq = −Rsisq − pψsq + ω1ψsq

(25)

{
urd = Rrird + pψrd − (ω1 − ωr)ψrq
urq = Rrirq + pψrq + (ω1 − ωr)ψrd

(26)

In the equation: Rs and Rr, respectively, are the stator and rotor winding resistance;
ω1 and ωr represent synchronous rotation angular speed and rotor rotation angular speed;
and p is a differential operator.

When the direction of the stator flux vector is the same as the direction of the rotating
coordinate system d axis, the stator resistance, Rs = 0, can be obtained:{

usd = 0
usq = |Us| = Us

(27)

{
ψsd = ψs = −Us

ω1
ψsq = 0

(28)

where Us represents the stator voltage.
Equations (23) and (28) can then be combined to substituted into (24). Letting

σ = Lr − L2
m/Ls represent the rotor flux equation expressed by rotor current and sta-

tor voltage, it can then be substituted into (26) for further simplification.{
urd = Rrird + pσird − (ω1 − ωr)(σirq)

urq = Rrirq + pσirq + (ω1 − ωr)(− Lm
ω1Ls

Us + σird)
(29)

The converter on the rotor side of the DFIG employs constant active power and
constant AC voltage control. This includes dual-loop control, where the d-axis utilizes
constant active power control with an outer power loop and an inner current loop, while
the q-axis employs constant AC voltage control.

Figure 4 shows the control block diagram of the DFIG rotor side converter, where Ps_ref
and Ps are the reference and actual values of the stator active power, ird_ref and irq_ref are the
reference values of the stator current d-axis and q-axis, kp2 and kd2 are the PD parameters
of the power outer loop control of the rotor-side converter, and kp3 and kd3 are the PD
parameters of the current inner loop control of the rotor-side converter.
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From Figure 4, it can be concluded that: urd = (ird_ref − ird)
(

kp3 − kd3
s

)
− (ω1 − ωr)irqσ

urq =
(

irq_ref − irq

)(
kp3 − kd3

s

)
+ (ω1 − ωr)

(
irqσ + Lm

ω1Ls
Us

) (30)
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By combining Equations (29) and (30), the transfer function of the current of d-axis
and q-axis on the rotor side changing with the current reference value can be obtained
as follows:

G1(s) =
ird

ird-ref
=

irq

irq-ref
=

skp3 + kd3

s2σ + s
(

Rr + kp3
)
+ kd3

(31)

Based on the relationship between the increment of stator active power and the
increment of rotor current in the DFIG, it can be concluded that:

∆Ps = ∆isdusd + ∆isqusq =
UsLm

Ls
∆irq (32)

where isd and isq represent the current components of the stator on the d-axis and q-axis,
respectively; and usd and usq represent the voltage components of the stator on the d-axis
and q-axis, respectively.

According to Figure 4 as well as Equations (31) and (32), the transfer function of
the actual change value and the reference change value of the stator active power can be
obtained as follows:

Gp(s) =
∆Ps

∆Ps-ref
=

(
skp2 + kd2

)
G1(S)UsLm

sLs +
(
skp2 + kd2

)
G1(S)UsLm

(33)

Figure 5 shows the speed control diagram of the DFIG, which controls the reference
value of the stator active power of the wind turbine through the speed control of the
wind turbine.
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In Figure 5, kp1 and kd1 are PD parameters of speed control; ωrmin and ωrmax are the
minimum and maximum operating speed, respectively; and ωr-ref is the reference value of
the rotation angular speed of the rotor.

It can be obtained from Figure 6:

Ps−ref = ωr(ωr − ωr-ref)

(
kp1 +

kd1
s

)
(34)
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Equations (33) and (34) are linearized to obtain:{
∆ωr-ref = −1.5Ps0∆Ps + 1.59∆Ps

∆Ps-ref = (2ωr0∆ωr − ωr-ref0∆ωr − ωr0∆ωr−ref)
(

kp1 +
kd1

s

) (35)

Sorting (35), the following can be obtained:{
∆ωr-ref = (−1.5Ps0 + 1.59)∆Ps

∆Ps-ref = [(2ωr0 − ωr-ref0)∆ωr − ωr0∆ωr−ref]
(

kp1 +
kd1

s

) (36)

By combining Equations (33) and (36), the transfer function of the change value of
the stator active power of the wind turbine with the change value of the rotor speed can
be obtained:

G(s) =
∆Ps

∆ωr
=

(2ωr0 − ωr-ref0)
(
skp1 + kd1

)
Gp(s)

s + ωr0(−1.5Ps0 + 1.59)
(
skp1 + kd1

)
Gp(s)

(37)
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3.3. Low-Frequency Oscillation Characteristic Value of the System

Based on the modeling in Equation (10) and Section 3.2, the complete characteristic
equation of the system after incorporating the wind turbine into the two regional intercon-
nected power grids can be obtained as follows:

λ4 + ( D1
M1

+ D2
M2

− k1G(λ)
M1(k1+k2)

)λ3 + ( D1D2
M1 M2

+ k1k2
M1(k1+k2)

− k1k2
M2(k1+k2)

− D2k1G(λ)
M1 M2(k1+k2)

) · λ2

+ k1k2
M1 M2(k1+k2)

(D2 − D1) · λ = 0
(38)

Obviously, the solution of this Equation (eigenvalue λ) can represent the low-frequency
oscillation characteristics of the system. However, it can be seen that G(λ) is a very complex
polynomial, so it is very difficult to directly solve Equation (38), so the Lagrange function is
adopted here for solving.

Assuming that the dominant low-frequency oscillation mode is λ = σ ± jω, when the
mode presents weak damping characteristics, it is considered that the eigenvalue is close to
the virtual axis, i.e., σ ≈ 0. At this time, λ = jω can be substituted into G(λ) to obtain:

G(jω) ≈ ∆Ps
∆ωr

=
(2ωr0−ωr0−ref0)·(skp1+ki1)·Gp(jω)

jω+ωr0(−1.7338Ps0+1.916)·(skp1+ki1)·Gp(jω)

≈ Ms1 + Md1λ
(39)

where Ms1 is the real part of G(jω) and Md1λ is the imaginary part of G(jω).
To make the analysis simple, it is assumed that the unit parameters and operating state

of the wind farm are consistent, and the total output power of the wind farm is obtained by
adding the output power of all the wind turbines; considering the wind power penetration
is η%, let

Ms + Mdλ = η% · Ps(Ms1 + Md1λ) (40)

Bring Equation (40) into (38) to obtain(
1 − k1 Md

M1(k1+k2)

)
λ3 + ( D1

M1
+ D2

M2
− k1 Ms

M1(k1+k2)
− D2k1 Md

M1 M2(k1+k2)
) · λ2 + ( D1D2

M1 M2
+ k1k2

M1(k1+k2)

− k1k2
M2(k1+k2)

− D2k1 Ms
M1 M2(k1+k2)

) · λ1 + k1k2
M1 M2(k1+k2)

(D2 − D1) = 0
(41)

That is:
aλ3 + bλ2 + cλ + d = 0 (42)

where a = 1− k1 Md
M1(k1+k2)

; b = D1
M1

+ D2
M2

− k1 Ms
M1(k1+k2)

− D2k1 Md
M1 M2(k1+k2)

; c = D1D2
M1 M2

+ k1k2
M1(k1+k2)

−
k1k2

M2(k1+k2)
− D2k1 Ms

M1 M2(k1+k2)
; d = k1k2

M1 M2(k1+k2)
(D2 − D1).

Let λ = y − b
3a , substituting it into Equation (42) yields:

y3 + py + q = 0 (43)

where p = 3ac−b2

3a2 ; q = 27a2d−9abc+2b3

27a3 .

When Equation (43) satisfies condition ∆ =
( q

2
)2

+
( p

3
)2

> 0, the cubic equation
has two complex roots, and the expressions of the real part and imaginary part of the
characteristic roots can be obtained as follows:

σ = − 1
2

(
3

√
− q

2 +
√
( q

2 )
2
+ ( p

3 )
3
+

3

√
− q

2 −
√
( q

2 )
2
+ ( p

3 )
3
)
− b

3a

ω =
√

3
2

∣∣∣∣∣ 3

√
− q

2 +
√
( q

2 )
2
+ ( p

3 )
3 − 3

√
− q

2 −
√
( q

2 )
2
+ ( p

3 )
3
∣∣∣∣∣

(44)

Since p and q are functions related to Md and Ms, and Md and Ms are functions of ω,
the real and imaginary parts need to be solved first by ω pairs. According to the imaginary
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part, ω is estimated by using the mapping method. First, the second term of Equation (43)
is rewritten, which is

F(ω) =

√
3

2

∣∣∣∣∣∣ 3

√
− q

2
+

√
(

q
2
)

2
+ (

p
3
)

3
− 3

√
− q

2
−
√
(

q
2
)

2
+ (

p
3
)

3

∣∣∣∣∣∣− ω (45)

Based on the intersection point between the characteristic curve of F(ω) and the 0-
axis, the frequency of low-frequency oscillation can be calculated, and then the real part
can be estimated based on ω. Finally, the variation in the theoretical total damping can
be estimated.

4. Optimization Control Strategy for Wind Power System Parameters Based on
CE-PSO Algorithm

According to the analysis in Section 3, it can be seen that several groups of wind
turbine control parameters have an impact on system damping. In order to improve the
stability of the interconnected power grid, this paper considers optimizing the multiple
control parameters of the wind turbine by building an optimization model, so as to improve
the system damping characteristics.

4.1. Optimized Damping Control Model

This paper proposes an optimization control objective function by setting the desired
damping ratio of the system and selecting the minimum difference between the damping ratio
of the oscillation mode and the desired damping ratio under typical operating conditions.

min J =
n
∑

i=1
∆ζi.max (46)

where ∆ζi.max = ζi − ζi.ref represents the maximum deviation value of the desired damping
ratio under the i-th operating mode; ζi.ref is the expected damping ratio; and ζi is the actual
damping ratio.

Theoretically, the solutions to Equation (10) (i.e., the eigenvalues λ) can reveal the
low-frequency oscillation behavior of the system. However, solving Equation (10) directly
is exceedingly difficult; thus, we resort to utilizing the Lagrangian function for the solution.

Assuming the dominant low-frequency oscillation mode to be λ = σ ± jω, when this
mode exhibits weak damping characteristics, the eigenvalue is considered to be proximate
to the imaginary axis, signifying σ ≈ 0. Under this condition, λ = jω, and substituting
these values into Equation (31) yields G(λ) [20].

G(jω) ≈ ∆Ps

∆ωr
=

(2ωr0 − ωr0-ref0) · (skp1 + kd1) · G2(jω)

jω + ωr0(−1.5Ps0 + 1.59) · (skp1 + kd1) · G2(jω)
≈ Ms1 + Md1λ (47)

In the equation, Ms1 represents the real part of G(jω), while Md1 represents the
imaginary part of G(jω).

To simplify the analysis, it is assumed that the parameters and operating conditions of
the wind turbine units within the wind farm are uniform. The total output power of the
wind farm is taken as the sum of the output powers of the individual units. Assuming a
wind power penetration rate of η%, let

g1(λ) = Ms + Mdλ = η% · PS(Ms1 + Md1λ) (48)
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By substituting Equations (47) and (48) into Equation (10) and rearranging the terms,
we obtain: (

1 − k1 Md
M1(k1+k2)

)
λ3 + ( D1

M1
+ D2

M2
− k1 Ms

M1(k1+k2)
− k1 Md

M1 M2(k1+k2)
) · λ2

+( D1D2
M1 M2

+ k1k2
M1(k1+k2)

− k1k2
M2(k1+k2)

− k1 Ms
M1 M2(k1+k2)

+
k2

1k2 Md

M1 M2(k1+k2)
2 ) · λ1

+ k1k2
M1 M2(k1+k2)

(D2 − D1 − k1 Ms
k1+k2

) = 0

(49)

The damping ratio is an indicator used to evaluate the dynamic performance of a
system. When the damping ratio is larger, the number of oscillations to reach a steady state
will decrease. In power systems, the damping ratio is typically required to be no less than
0.05 s−1, and in some specific systems, the minimum damping ratio requirement is not less
than 0.15 s−1. Here, ζi.re f = 0.1s−1 is taken as the expected damping ratio.

The constraint conditions for each control parameter of the wind turbine should meet
the following: 

kp1.min < kp1 < kp1.max
kd1.min < kd1 < kd1.max
kp2.min < kp2 < kp2.max
kd2.min < kd2 < kd2.max
kp3.min < kp3 < kp3.max
kd3.min < kd3 < kd3.max

(50)

where kd1.min, kd1.max, kd1.min and kd1.min are the minimum and maximum values of kd1 and
kp1, respectively; kd2.min, kd2.max, kp2.min and kp2.max are the minimum and maximum values
of kd2 and kp2, respectively; and kd3.min, kd3.max, kp3.min, and kp3.max are the minimum and
maximum values of kd3 and kp3. respectively.

4.2. CE-PSO Optimization Method

In order to improve the traditional particle swarm optimization (PSO) algorithm’s
tendency to fall into local optima in solving the damping control optimization model, this
paper combines the cross-entropy (CE) algorithm and PSO algorithm and uses the CE-PSO
algorithm to achieve control parameter optimization. This algorithm combines the discrete
probability estimation of the cross-entropy algorithm and the random update strategy of the
particle swarm optimization algorithm, which can greatly improve the global optimization
ability and optimization effect of complex models [21,22].

The essence of the CE algorithm is to transform an optimization problem into a
probability estimation problem. Assuming J is a real-valued function defined on a finite
state set X, the CE algorithm converts the optimization problem of finding the maximum
value of this function into a probability estimation problem.

kd1.min J(X∗) = γ∗ = max
X∈χ

J(X) (51)

l(γ) = pβ(J(X) ≥ γ) = Eβ I{J(X)≥γ} (52)

Equation (51) represents the original optimization problem, which is to find the
maximum value γ∗ of the function J within the statistical sample set X, as well as the
state X∗ that makes J achieve the value of γ∗. Equation (52) represents the transformed
estimation problem, where γ is a value close to γ∗, and under the parameter β, J(X)
achieves the maximum probability, which is the expected value corresponding to the
indicator function I{J(X)≥γ}.



Entropy 2024, 26, 689 14 of 21

To solve this problem, an unbiased estimation of l(γ) needs to be made, ultimately trans-
forming the original optimization problem into the following maximum optimization problem:

max
β

Eβ I{J(X)≥γ} ln f (X, β) = max
β

1
N

N

∑
i=1

I{J(X)≥γ} ln f (X, β) (53)

This paper employs the CE-PSO algorithm to solve the established optimization model.
Firstly, the CE algorithm is used to construct a discrete probability distribution function,
which randomly generates the initial particle swarm for the PSO algorithm. Then, through
the random walk and iterative optimization of the PSO algorithm, excellent samples are
generated to update the discrete probability distribution function. This process is repeated
continuously. The overall flowchart of the algorithm is shown in Figure 6.

The implementation steps of the CE-PSO algorithm are as follows:

(1) Convert the optimization variable matrix X =
(
xij
)

m×n into a discrete probability
distribution matrix M =

(
mij
)

m×n and obtain a probability distribution function

kd1.max f (X, M) =
m
∏
i=1

n
∏
j=1

mg(i,j)
ij (where g(i, j) =

{
1, i f X(j) = i
0, else

is part of the

context). This realizes the initialization of the discrete probability distribution matrix M.
(2) Based on M, randomly generate N samples of X1, X2, . . . , XN and use them as the

initial particles for the PSO algorithm.
(3) According to the particle position update equation of the PSO algorithm, perform

multiple rounds of iterative updates on the N particles.
(4) Calculate the evaluation function S for the updated N particles, sort the particles in

descending order based on their S values, and select the top H = θN particles as
excellent samples.

(5) Based on the update equation of the discrete probability distribution matrix M :

mij = (
H

∑
k=1

gk(i, j))/H (54)

Using the H excellent samples to update the discrete probability distribution matrix M;

(6) Repeat steps (1) to (5) until all elements in M become 0 or 1, or the set iteration count
is reached. At this point, the most excellent sample can be considered as the optimized
optimal control parameters for the wind turbine.

5. Case Simulation

In this paper, the PSCAD platform is used to build a two-region interconnected power
grid with wind farms connected to the grid shown in Figure 1, in which the parameters of
a single fan are shown in Table 1, the load adopts a constant impedance model, the rated
power of the equivalent generator SG1 and SG2 in the two regions are set to 900 MW, the
rated power rate of a single typhoon is 2 MW, and the wind speed is set 11 m/s. As the
number of wind turbines in the wind farm depends on the wind power access capacity,
the wind power permeability of the system is adjusted by adjusting the number of wind
turbines and the equivalent generator capacity of SG1.
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Table 1. Wind turbine parameters.

Parameter Value

Rated Power S/MVA 2
Rated Voltage Us/kV 0.69

Stator Reactance Ls/pu 4.57
Stator Reactance Lr/pu 4.59
Field Reactance Lr/pu 4.5

Stator Resistance Rs/pu 0.0053
Rotor Resistance Rr/pu 0.00608

Mechanical Damping Dm/pu 0.01

The speed control parameters and virtual inertia control parameters are analogous,
and their value ranges can be referenced from the value range of virtual inertia.

(1) Calculation of the value range for kp1
After the introduction of virtual inertia control, wind turbines exhibit similar inertia

response and frequency regulation characteristics as equivalent synchronous generators.
The unit regulating power KG of a traditional synchronous motor can be expressed as:

KG = ∆PG/∆ωs (55)

where ∆PG represents the change in generator power, ∆ωs represents the change in grid
frequency, and KG signifies the static characteristic of active power.

From Equation (55), we can derive the following:

∆PG = KG∆ωs (56)

Upon comparing this with the power-frequency characteristic equation of a syn-
chronous generator, it becomes evident that the value range of kp1 can be referenced from
the unit regulating power KG of a synchronous generator. The unit regulating power ranges
for steam turbines and hydroturbines are, respectively, 20~33.3 and 25~50. Consequently, a
suitable range for kp1 in this context is chosen as 20~50.

(2) Calculation of the value range for kd1
Based on the principle of energy conservation, we can utilize the conservation of rotor

kinetic energy between wind turbine generators and synchronous generator sets to convert
the rotor speed of the wind turbine generator to synchronous speed. Additionally, we must
consider the safety of the system frequency and the rotor operation of the wind turbine
generator to arrive at the following equation:

Kd1 = 2H
ω2

e
ω2

m

ω2
r − ω2

r0
ω2

s − ω2
s0

(57)

where H represents the inertia time constant of the wind turbine generator, and ωe is the
base value of the system’s synchronous frequency.

In summary, the value range for kd1 is 5~10.
The ranges for the rotor-side controller parameters can be inferred from references [23,24]:
The value range for kp2 is 5~20. The value range for kd2 is 1~10. The value range for

kp3 is 5~20. The value range for kd3 is 1~10.

20 < kp1 < 50
5 < kd1 < 10
5 < kp2 < 20
1 < kd2 < 10
5 < kp3 < 20
1 < kd3 < 10

(58)
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• Quantitative analysis between low-frequency oscillation characteristics and wind
power permeability of interconnected power grid;

According to the damping quantitative analysis method of the regional power grid
with wind farm interconnection proposed in this paper, the quantitative relationship
between low-frequency oscillation frequency and wind power permeability can be obtained
as shown in Figure 7.
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At the same time, the quantitative relationship between the system oscillation damping
ratio and the wind power permeability shown in Figure 8 can also be analyzed.
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As evident from Figures 7 and 8, the low-frequency oscillation between regional
power grids exhibits an increasing trend with the augmentation of wind power penetration.
Concurrently, the damping ratio declines as the level of penetration rises. Notably, when
the penetration exceeds 30%, the diminishing effect on the damping ratio becomes less
pronounced, and the system’s oscillation frequency essentially stabilizes.

• Quantitative analysis between low-frequency oscillation characteristics of intercon-
nected power grid and control parameters of wind turbine;
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By adjusting the number of wind turbines to set the wind power permeability of the
interconnected power grid to 30%, according to the damping quantitative analysis method
of the interconnected regional power grid with wind farms proposed in this paper, we
can quantitatively analyze the relationship between different control parameters of wind
turbines and inter-regional low-frequency oscillation characteristics.

Firstly, the relationship between the speed control PD parameters kp1, kd1 of the DFIG
and the system oscillation damping ratio is shown in Figure 9 below.
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Figure 9. Variation in damping with speed control parameters.

It can be seen from Figure 9 that when kp1 is less than 38, the damping increases
with the increase in kd1, and when kp1 is greater than 38, the damping decreases with the
increase in kd1.

Secondly, the relationship between the power outer loop control PD parameters kp2
and kd2 of the DFIG rotor side converter and the system oscillation damping ratio is shown
in Figure 10 below.
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It can be seen from Figure 10 that improper PD parameters of the power outer loop
control can easily lead to system damping cross-boundary instability, and the proportional
parameters should be larger and the integral parameters should be smaller.
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Furthermore, the relationship between the current inner loop control PD parameters
kp3 and kd3 of the DFIG rotor side converter and the system oscillation damping ratio is
shown in Figure 11 below.
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It can be seen from Figure 11 that the damping decreases with the increase in the
proportional parameters of the current inner loop control, and the damping increases with
the increase in the integral parameters.

Through the analysis of the above cases, the interconnected power grid will produce
different inter-regional oscillation modes under different wind power permeabilities. Dif-
ferent control parameters of wind turbines likewise exert varying influences on the system’s
oscillation characteristics. Therefore, according to the damping ratio requirements and the
specific wind power permeability, the reasonable control parameters of the wind turbine
can be obtained by optimizing the model to improve the oscillation characteristics and
realize the system damping control.

• Verification of damping control method;

Utilizing the CE-PSO algorithm, this paper optimizes the control parameters of the
established model and ultimately obtains three optimized sets of PD control parameters, as
shown in Table 2.

Table 2. Optimization results of control parameters.

Control Parameters Pre-Optimization Value Post-Optimization Value

kp1 13.53 36.42
kd1 10.32 5.69
kp2 2.33 7.24
kd2 4.76 3.32
kp3 5.78 17.61
kd3 13.45 3.29

To verify that the low-frequency oscillations between power grid regions can be effec-
tively suppressed after optimizing the aforementioned wind turbine control parameters, in
this study, a comparative analysis of the low-frequency oscillation characteristics under
before optimization conditions (BOP), after optimization using traditional PSO, and after
optimization using CE-PSO was conducted. The results, which show the comparative
oscillation characteristics, are presented in Figure 12 and Table 3 below, which summarize
the key findings.
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Table 3. Comparison of low-frequency oscillation characteristics under different methods.

Algorithms Oscillation
Frequency/Hz

Oscillation
Attenuation Factor

Oscillation
Amplitude Initial Phase/Rad Damping Ratio

ξ/s−1

BOP 0.4918 −0.02 1.0241 −2.5114 0.0065
PSO 0.4918 −0.0301 1.0331 −2.5713 0.0101

CE-PSO 0.4918 −0.0501 1.0495 −2.6472 0.0165

As clearly demonstrated in Figure 12 and Table 3, following the optimization of wind
turbine control parameters, the oscillation decay between regions of the power grid is
significantly accelerated compared to its pre-optimization state. Specifically, the system
oscillation damping ratio is enhanced by a factor of 2.54 after the application of the proposed
optimization method, indicating the effectiveness of the proposed wind turbine parameter
optimization control approach in suppressing low-frequency oscillations across system
regions. Furthermore, the optimization performance of the CE-PSO algorithm proposed in
this paper is significantly superior to the traditional PSO algorithm. While both methods
are able to ensure that the system damping ratio remains above 0.05 s−1 after optimizing
the wind turbine control parameters, the system damping ratio achieved by the CE-PSO
used in this study increased by 63.37% compared to the traditional PSO. This verifies the
distinct advantages of the proposed method in this paper.

6. Conclusions

In this paper, a quantitative analysis method for damping in interconnected power
grids with large-scale wind power integration is derived, and based on this, an inter-
regional low-frequency oscillation suppression method for interconnected power grids
is proposed, which is optimized based on wind turbine control parameters. Through
theoretical and simulation analyses, the following conclusions are drawn:

1. Based on the quantitative analysis model, it is evident that as the wind power perme-
ability increases, the impact on system damping gradually decreases. Moreover, there
are significant differences in the influence of different wind turbine control parameters
on system damping;

2. By constructing an optimization model to achieve coordinated optimization of all
wind turbine control parameters, the low-frequency oscillation in the interconnected
power grid can be effectively suppressed;
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3. Regarding the optimization model for wind turbine control parameters, utilizing the
CE-PSO algorithm can achieve even better optimization results, thus enhancing the
effectiveness of suppressing low-frequency oscillations in the power grid.

The current study has not taken into account the impact of differences in control
methods among different types of wind turbines on the low-frequency oscillations of
the power system. In subsequent research, further investigations into this aspect should
be conducted.
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