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Abstract
Purpose – This study bridges the gap in quality control strategies for high-volume production by balancing the
cost and effectiveness of inspection strategies. Using the cost of quality (CoQ) to manage cost and external
failures (EF) to gauge effectiveness, this research introduces an innovative inspection strategy chart that serves
as a decision-making tool for optimizing inspection processes.
Design/methodology/approach – This paper presents a scenario-based framework designed to support
strategic decision-making in inspection processes by integrating empirical data analysis with inspection
strategy charts. This approach allows for a dynamic assessment and visualization of the relationship
between CoQ and EF, facilitating more informed decision-making in quality management. Notably, it
contrasts the traditional models with a novel approach that more accurately captures the uncertainty and
correlation among key quality indicators, showcasing its potential for more refined decision-making in
quality management.
Findings –Application of the framework illustrates its effectiveness in offering a nuanced understanding of the
cost implications and effectiveness of various quality control strategies. This facilitates enhanced strategic
decision-making, optimizing inspection processes and reducing external failures in high-volume production
settings.
Research limitations/implications – The study focuses on a single industry case study, limiting the
generalizability of findings across different high-volume production contexts. Future research could explore the
framework’s applicability in other sectors and refine the model based on additional empirical data.
Originality/value –The research introduces a versatile framework that navigates the unique challenges of high-
volume manufacturing environments. Diverging from models optimized for low-volume settings, this approach
provides a valuable tool for adapting inspection strategies to complex production demands, marking a
significant contribution to quality management and control literature.
Keywords Quality control, Inspection strategy, High-volume production, Cost of quality, External failures,
Decision-making
Paper type Research paper
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1. Introduction
In the evolving landscape of high-volume production, the need for innovative quality control
strategies is increasingly evident. Existing models often struggle to meet the diverse demands
of high-volume contexts like automotive electronics and consumer goods, highlighting a gap
in the literature. Smart manufacturing under the Industry 4.0 paradigm has intensified the
complexity of products and processes, making the integration of advanced quality control
systems essential (Colledani et al., 2014; Zhou et al., 2011). Quality inspection activities,
traditionally viewed as non-value-adding, are crucial in supporting value-adding processes,
requiring careful planning and execution (Kukulies et al., 2014;Verna et al., 2022;Verna et al.,
2022). The planning phase, known as Inspection Strategy (IS) definition, involves assigning
inspection locations and equipping these stations with necessary instructions and resources
(Defeo, 2016). This complex process, involving many operational alternatives, constraints,
and cost factors, underscores the intricate nature of developing effective inspection solutions
(Mandroli et al., 2006). A robust IS must address the demands of various stakeholders,
balancing trade-offs among its objectives and discerning among multiple viable inspection
alternatives (Verna et al., 2022), highlighting the dual challenge of minimizing costs while
maximizing quality conformance as critical in this process (Khozein et al., 2013).

During the manufacturing stage, the dynamic nature of quality situations necessitates
regular revision of the established IS to ensure product quality, reduce failure costs from
ineffective inspections, and minimize appraisal costs by adjusting inspection processes
(Kukulies et al., 2014, 2016). Investments in better inspection equipment or improvements in
the production process to reduce failure rates are typical responses to these challenges (Verna
et al., 2021a), reflecting the ongoing tension between quality assurance and cost management
within the production process (Khozein et al., 2013).

Alternative scenarios for inspection strategies, compared to the current models, can be
effectively evaluated using Inspection Strategy Maps (ISM), as proposed by Verna et al.
(2021b). These maps offer a comprehensive framework to analyze inspection strategies from
both cost and effectiveness perspectives. Incorporating mathematical modeling to estimate
quality costs and inspection effectiveness, they also serve as practical tools for assessing the
adequacy of alternative inspection strategies by plotting their joint cumulative probability
distribution in a chart. Sousa and Nunes (2021a), and Zaklouta and Roth (2012) further
emphasize the role of ISMs in decision-making, advocating for an economic balance in
inspection efforts. However, the ISM model primarily suited for low-volume productions
necessitates adaptation to high-volume settings. The exploration of differentmethods to define
confidence regions within these maps is crucial, particularly in understanding which approach
best fits each scenario. This alignswith recent calls formore research onCost ofQuality (CoQ)
assessment, an area that remains under-researched yet holds significant potential for
development (Omachonu et al., 2004; Psarommatis et al., 2020; Psomas et al., 2021; Reis
et al., 2023; Saihi et al., 2023).

In response to this need, the current study introduces a novel framework for scenario-based
strategicmapping. By integrating advanced analyticalmethodswith practical evaluation tools,
this framework adapts to a range of high-volume production settings. Although the
methodology is exemplified through a case study in the automotive industry, its principles and
tools are designed for broad applicability across various sectors. The proposed approach
provides a comprehensive solution for strategic quality control, focusing on the balance
between cost of quality and inspection effectiveness, which is related to external failures, and
innovating in defining and representing confidence regions within inspection strategy charts.

This versatile approach is poised to make significant contributions to the field of quality
and reliability management, offering a model that is applicable to various high-volume
manufacturing contexts and paving the way for future research in quality control strategies
across multiple industries.

The remainder of the paper is organized as follows. Section 3 presents the proposed
methodology, expanding upon the theoretical foundation laid out in Section 2. In Section 4, the
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proposed methodology is applied to a case study in the automotive industry. Section 5
discusses the findings, and Section 6 concludes the paper with a summary of the main
implications and limitations of the study, offering directions for further research.

2. Literature review
Since the introduction of the CoQ concept by Juran (1951) and Feigenbaum (1956), various
approaches have been proposed to estimate quality costs, typically divided into four main
categories: Prevention, Appraisal, Internal Failure, and External Failure (PAF). These
categories help quantify the quality of a production system through the costs incurred in
attaining that same quality. Many inspection strategy models (ISMs) are based on this PAF
classification. For instance, Farooq et al. (2017) and Zaklouta and Roth (2012) explored ISMs
in the context of automotive assemblies using this framework. However, alternative
approaches such as Crosby’s “quality as conformance to requirements” (Crosby, 1979), the
process cost approach by Porter and Rayner (1992), and activity-based costing (ABC) by
Cooper and Kaplan (1988) have also been significant.

Inspection strategy is a critical component impacting quality costs, especially in the context
of Industry 4.0. Traditional ISMs often face challenges in practical application, struggling to
incorporate real-world data and adapt to dynamic manufacturing environments. The recent
study by Sousa and Nunes (2021a) developed a CoQ-based ISM to assist in decision-making
for inspection revision and improvement, addressing gaps in practical application through the
use of historical production data.

The integration of ISMs with Industry 4.0 technologies offers new opportunities for real-
time data acquisition and dynamic adjustment of inspection strategies. Reis et al. (2024)
highlighted the need for continuous improvement practices in IS, advocating for the regular
evaluation and adaptation of inspection strategies to ensure product quality and cost efficiency.
This approach contrasts with traditional models that often oversimplify the complexity of
industrial environments.

While the literature provides various models and approaches for CoQ and ISMs, there
remains a significant gap in the practical adoption of these models in industry. The complexity
of mathematical models and the challenge of acquiring reliable quality cost estimates in real-
world conditions often inhibit their use (Sousa and Nunes, 2021b; Zaklouta and Roth, 2012).
Additionally, the process cost approach, proposed by Porter and Rayner (1992), and the
activity-based costing (ABC) model by Cooper and Kaplan (1988) have provided alternative
methods for determining CoQ. Juran’s early concepts of “quality costing” and “economics of
quality” laid the groundwork (Juran, 1951), further developed by Feigenbaum’s categorization
of PAF costs, suggesting that investments in prevention and appraisal reduce failure costs
(Feigenbaum, 1956).

Estimation of cost variables in ISMs may not be straightforward in real cases, but prior
knowledge of the production process and historical data can aid this process (Verna et al.,
2022). To utilize quality cost data effectively, it must be gathered and reported to relevant
stakeholders in a timely manner. An effective assessment method should be flexible, sensitive,
fair, and fast (Sousa and Nunes, 2019a). Meeting these requirements makes quality cost data a
powerful tool for ISMs and quality management. A robust IS must consider the needs of
various stakeholders, making reasonable trade-offs between objectives (Mandroli et al.,
2006). These stakeholders, spanning different companies and departments, must coordinate to
achieve the right balance between conflicting quality-cost goals (Colledani et al., 2014).
However, IS often relies on the experience of the quality planner or on traditions, standards,
and procedures that do not optimize the balance of quality assurance versus cost and time (Filz
et al., 2021; O’Connor, 2001).

Academic research on the “real-world” implementation of ISMs considering quality costs
is limited. It is challenging to account for all user requirements and contextual variables in real
manufacturing processes (Hamrol et al., 2020). Often, models underestimate or ignore some

International
Journal of Quality

& Reliability
Management



real-world aspects, resulting in unrealistic or unfeasible solutions that do not capture domain-
specific characteristics (Rezaei-Malek et al., 2019). Consequently, errors and uncertainties in
estimated process variables can affect result accuracy, emphasizing the need to consider the
sensitivity of assessments to the inherent uncertainty and vagueness in real environments
(Sousa and Nunes, 2019b).

There are several ISMs based on CoQ modeling across different sectors. For example,
Sousa and Nunes (2019b) applied their ISM to automotive assemblies, while Farooq et al.
(2017) evaluated inspection strategies in consumer goods manufacturing. However, these
models often face implementation challenges due to their mathematical complexity and the
difficulty of incorporating real-world data (Reis et al., 2024). Verna et al. (2021b) proposed
Inspection Strategy Maps (ISM) to analyze inspection strategies from both cost and
effectiveness perspectives, but these models are primarily suited for low-volume productions
and require adaptation for high-volume settings. Additionally, Dimitrantzou et al. (2020) and
Psomas et al. (2021) emphasized the need for robust CoQ assessment methods that can handle
the uncertainty and variability inherent in modern manufacturing processes.

By integrating advanced analyticalmethodswith practical evaluation tools, this study seeks
to develop a dynamic framework applicable across various high-volume production settings.
The innovative Inspection Strategy Chart introduced in this research addresses the limitations
of traditional ISMs, offering a comprehensive solution for strategic quality control that
balances cost and effectiveness. The proposed framework not only applies to high-volume
manufacturing contexts but also provides a decision-making tool that dynamically assesses
and visualizes the relationship between CoQ and EF, marking a significant advancement in
quality and reliability management.

Recent calls for more specific and dynamic frameworks in CoQ assessment, such as those
by Verna et al. (2021b) and Psomas et al. (2021), highlight the need for methods that can adapt
to the changing conditions of modern manufacturing environments. This study aims to fill
these gaps by providing a robust and adape model that can be applied in real-world settings,
thereby contributing significantly to the field of quality and reliability management.

3. Methodology
This section introduces the methodology for creating Inspection Strategy Charts that map two
critical indicators: the External Failure Indicator (see Section 3.1) and the Cost of Quality
Indicator (see Section 3.2). Section 3.3 details the application of @RISK for Monte Carlo
simulation, highlighting its role in managing uncertainties and correlations between the
indicators. Section 3.4 elaborates on the development of Inspection Strategy Charts, utilizing
rectangular and elliptical models to represent uncertainty and correlations between the two
indicators.

3.1 External failures indicator
In high-volume manufacturing environments, the ubiquity of variability and the inevitability
of defects are accentuated, making the management of external failures a critical aspect of
quality control (Psarommatis et al., 2022). It is virtually impossible to have incoming material,
in-process material, and final products defect-free every time (Psarommatis et al., 2022). The
proposed framework in this article introduces the External Failures (EF) indicator as the first
key metric, specifically tailored to address the complexities of high-volume production
settings.

Unlike lower volume environments where defects can be more meticulously controlled,
high-volume settings often deal with a larger scale of production where perfect inspection is
practically unattainable. In these scenarios, even with advanced inspection methods, some
level of defectiveness persists due to the limitations of measurement systems (Psarommatis
et al., 2022; Shirodkar andRane, 2021). An ideal measurement system, devoid of any errors, is
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a theoretical concept rather than a practical reality (Shirodkar and Rane, 2021). Consequently,
the EF indicator becomes essential in quantifying the impact of these imperfections in high-
volume manufacturing.

Judging produced features close to the specification limits, a reliable decision on whether
the feature lies within or outside the specification cannot be made depending on the
measurement uncertainty during an inspection (Mueller et al., 2020). Therefore, during the
inspection operation, two types of error may be generated by the inspection procedure: Type I
error, and Type II error. An acceptable part being rejected is a Type I error, and a defective part
being accepted is a Type II error (Shirodkar andRane, 2021). TheType II error is also known as
the consumer risk and is usually more serious (Shetwan et al., 2011), as it can lead to
significant losses associated with the loss of customer trust and loss of prestige.

Considering the Type II error, the inspection effectiveness of an inspection strategy may be
represented using the External Failures (EF) indicator, defined as the probability of defective
outputs that are erroneously not detected post-inspection. Thus, it indicates the number of
defective outputs that may be detected by customers, defined as follows (Franceschini et al.,
2018; Galetto et al., 2020; Genta et al., 2018):

EF ¼ Pd$β (1)

where:

(1) Pd is the probability of occurrence of defective outputs under optimal operating
conditions;

(2) β is the probability of erroneously not detecting a defective output (Type II error). This
error is particularly consequential in high-volume production as it can lead to
significant losses due to decreased customer trust and prestige (Shetwan et al., 2011).

It is critical to acknowledge that the EF indicator does not capture the entirety of defects that
might reach customers, particularly in high-volume production settings. Beyond undetected
defects in production processes, the emergence or identification of defects post-production can
result from several factors. These include poor product design, inaccurate identification of
characteristics in the planning phase (where inspections are designed to detect only those
defects that have been defined as controlled characteristics), and issues in subsequent product
operations such as improper handling during logistical delivery, material contamination,
product packaging, and storage. Furthermore, certain failures may be latent or present
functional problems undetectable through regular internal inspections, emerging only during
more comprehensive product audits (Sanchez-Marquez et al., 2020).

For instance, as highlighted by Cerqueira (2021), in the assembly of electronic boards,
many defects that exist during production may not be apparent for various reasons. Firstly,
testing during production might be less rigorous than that available to customers, hence failing
to reveal certain defects. Secondly, the intermittent nature of some defects means they might
only become apparent during customer usage under specific operational conditions. The
perception of external defects also varies based on customer expectations and the severity of
the defect. While some defects are critical due to their serious consequences, others might be
deemed less significant and overlooked if they do not drastically impair the product’s
functionality or safety (Tuominen, 2012).

In high-volume manufacturing environments, therefore, the EF indicator offers a nuanced
perspective on inspection effectiveness. It recognizes that some defects may manifest only
under specific conditions or be perceived differently by customers, depending on the defect’s
nature and severity. This understanding is vital for quality control in high-volume production,
where the scale and complexity of operations add layers of challenges in maintaining
consistent product quality (Tuominen, 2012).
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3.2 Cost of quality indicator
In high-volume production, quantifying the Cost of Quality (CoQ) involves categorizing costs
into Prevention, Appraisal, and Failure (PAF), crucial for managing operational scale impacts
(Psomas et al., 2021).

Accurately measuring CoQ offers benefits like cost reduction and improved market
competitiveness. However, estimating CoQ variables is challenging due to the scale and
variability of production processes, necessitating adaptable and accurate methods (Sousa and
Nunes, 2019a;Verna et al., 2022).While computationalmodels forCoQestimation are diverse
and sector-specific (Davrajh and Bright, 2013; Farooq et al., 2017; Jafari-Marandi et al., 2019;
Sousa and Nunes, 2019a; Tansurat and Chattinnawat, 2019), they highlight the absence of a
one-size-fits-all solution in high-volume production contexts. This article suggests exploring a
new computational model for assessing CoQ in such settings, drawing on the PAF approach to
address its unique cost categories:

(1) Prevention costs (Cprevention). These are investments made to avert the occurrence of
defects in products. This category encapsulates expenses related to the design and
implementation of quality control systems, training programs for employees, and
procurement of high-quality materials. The assessment of prevention costs entails a
detailed analysis of all proactive measures taken to ensure product quality, including
the amortization of quality management systems and the cost of quality audits.
Additionally, it includes the costs related to process engineering improvements and
supplier quality assurance.

(2) Appraisal costs (Cinspection). These costs are attributed to the activities undertaken to
evaluate products and ensure they meet quality standards. Notably, appraisal costs
cover both inspection and reinspection processes. Despite being conducted using
the same equipment, and therefore initially considered to have identical cost
estimates, these activities are differentiated by the context in which they are applied.
To accurately estimate these costs, an analysis of both fixed and variable expenses is
essential. Fixed costs might include the depreciation of inspection equipment and
software, while variable costs could encompass labor costs associated with
operating the equipment. Collaboration with the accounting department is vital to
accurately assess these costs, integrating considerations of both hardware
maintenance and operational labor. This category also includes costs related to
routine testing, calibration of inspection equipment, and the creation of quality
reports.

(3) Failure-related costs (Crepair, Canalysis, Creinspection, and Cn). This category aggregates
costs associated with rectifying defects, including repair (Crepair), failure analysis
(Canalysis), reinspection (Creinspection), and the expenses linked to forwarding defective
units to subsequent production stages (Cn). Each of these components demands a
tailored approach for cost estimation:

• Repair Costs (Crepair) involve both the labor costs of repairs and the expenses related
to scrapping and replacing defective parts. Historical data on defect types and
associated costs are invaluable for deriving a weighted average cost per unit,
necessitating close coordination with the production and manufacturing
departments. This includes the costs for rework and the disposal of non-
repairable items.

• Analysis Costs (Canalysis), which have not previously been explicitly accounted for,
are estimated in conjunction with the accounting department. This estimation
parallels that for other operations requiring manual labor, emphasizing the need for
a collaborative approach to capture the comprehensive expenses involved. It
includes costs for defect investigation and root cause analysis.
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• Reinspection Costs (Creinspection), though part of failure costs, require a distinct estimation
approach due to their occurrence post-repair. Like inspection costs, they involve an
assessment of fixed and variable components, albeit in a different operational context.

• Costs of Passing Defective Units (Cn) are estimated predominantly through expert
judgment within both the corporate and academic realms. This subjective
estimation underscores the challenges of quantifying the indirect costs associated
with quality failures. It covers the costs for handling customer complaints, warranty
claims, and potential loss of reputation.

Therefore, the total CoQ for a 100% inspection scenario (namely CoQ100% insp) can be
formulated as:

CoQ100% insp ¼

Cprevention$Npþ

Cinspection$Npþ

Canalysis$Np$ Pd þ α� α$Pd � Pd$βð Þþ

Crepair$Np$Pd$ 1� βð Þþ

Creinspection$Np$ Pd þ α� α$Pd � Pd$βð Þþ

Cn$Np$Pd$β

V½ � (2)

where:

(1) Np is the number of units passing through the inspection station;

(2) Pd is the probability of defective outputs in the inspection station;

(3) α is the type I error (false defectives);

(4) β is the type II error (false compliant);

(5) Cinspection is the unitary inspection cost (V/unit);

(6) Canalysis is the unitary analysis cost (V/unit);

(7) Crepair is the unitary repair cost (V/unit);

(8) Creinspection is the unitary reinspection cost (V/unit);

(9) Cn is the unitary cost of passing a defective unit to the next process (V/unit).

(10) Cprevention$Np is the total prevention cost;

(11) Cinspection$Np is the total cost of 100% inspection;

(12) Canalysis$Np$ Pd þ α − α$Pd − Pd$βð Þ is the total cost of analysis;

(13) Crepair$Np$Pd$ 1 − βð Þ is the total cost of repair;

(14) Creinspection$Np$ Pd þ α − α$Pd − Pd$βð Þ is the total cost of reinspection;

(15) Cn$Np$Pd$β is the total cost of passing defective units to the next station.

The unitary CoQ for 100% inspection (Unitary CoQ100% insp) refers to the cost incurred per unit
of product, i.e. represents the financial impact of the above listed quality-related issues on
individual units produced, and is expressed by:
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Unitary CoQ100% insp ¼
Total CoQ100% insp

Np

�
V

unit

�

(3)

In high-volume production environments, the vast amount of real-time and historical data
enhances the decision-making for selecting an economically optimal Inspection Strategy (IS).
This data enables precise estimation of cost components critical for CoQ calculations, such as
inspection (Cinspection), reinspection (Creinspection), repair (Crepair), analysis (Canalysis), and costs
associated with passing defective units to the next stage (Cn). Large data sets from high-
volume systems, which can be regularly updated to mirror current operations, ensure the
relevance and accuracy of these cost estimates.

Similarly, the estimation of key parameters like the number of units passing through the
inspection station (Np), the probability of defective outputs (Pd), and the probabilities of Type I
(α) and Type II (β) errors benefits from the depth and breadth of data typical in high-volume
settings. Real-time monitoring and historical analysis enable a more accurate and dynamic
understanding of these parameters, allowing for adjustments in inspection strategy that are
closely aligned with actual production conditions.

3.3 Monte Carlo Simulation using @RISK
The Monte Carlo simulation in this study is conducted using @RISK, a widely adopted
software tool renowned for its robust capabilities in probabilistic modeling and risk analysis.
@RISK is particularly suited for the analyses in this paper due to its ability to handle complex
scenarios involving uncertain variables and correlations between them. @RISK integrates
seamlessly with spreadsheet applications such as Microsoft Excel, providing a user-friendly
interface that facilitates the creation and manipulation of probabilistic models (Prakash and
Ambekar, 2024). This integration allows the incorporation of probabilistic distributions for the
External Failure and Cost of Quality Indicators directly into the proposed framework. Besides
the application in Quality Management (Sousa and Nunes, 2021b), other studies that utilized
@RISK include Project Management (Kuru and Artan, 2024), Supply Chain Managament
(Tayyab et al., 2024).

3.4 Developing an inspection strategy chart
The indicators ofEF andCoQ can be concurrently represented on an inspection strategy chart,
delineating a specific inspection strategy. Unlike traditional approaches that might represent
inspection strategies as mere points of intersection between EF and CoQ values on a two-
dimensional chart, this method recognizes each strategy as encompassing a region, reflecting
the inherent uncertainties of these indicators. To accurately define this region, two innovative
approaches are employed, each enhancing the strategic decision-making process by more
precisely capturing the uncertainties related to EF and CoQ.

The first approach, Approach 1, employs a rectangular representation to outline the current
inspection strategy as detailed by Verna et al. (2021b). Through this method, a rectangle is
constructed on the chart to signify the IS, with its dimensions determined by the independent
95%Confidence Intervals (CI) of each indicator. Yet, while this rectangular approach serves as
a benchmark, as established by Verna et al. (2021b), it presents notable limitations, potentially
curtailing its applicability across diverse scenarios.

One of the primary limitations is its foundational assumption that bothCoQ and EF follow
normal distribution patterns. This assumption is a critical constraint because it does not
accommodate the complex and often non-normal multivariate data typically encountered in
practice. Data related to quality control and the incidence of external failures can exhibit a
variety of distribution shapes, including skewed, leptokurtic, or multimodal distributions,
which are not well-represented by a normal distribution framework.
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Moreover, the approach assumes independence between theCoQ andEF indicators, which
may not accurately reflect the realities of production and quality assurance processes.CoQ and
EF are likely interrelated, as improvements or degradations in quality control processes can
directly impact the frequency and severity of external failures. Ignoring the potential
correlation between these indicators can lead to an oversimplified representation of the
inspection strategy, potentially resulting in strategic decisions that do not fully account for the
complex interplay between quality costs and the risk of external failures.

Thus, while Approach 1 provides an initial framework for depicting inspection strategies,
its reliance on normal distribution assumptions and the independence of CoQ and EF
indicators may not adequately capture the intricate and variable nature of real-world data.
These limitations highlight the necessity for more sophisticated and flexible modeling
techniques, such as those offered by copula-based approaches proposed in Approach 2, to
more accurately represent and navigate the complexities of inspection strategy planning and
execution.

Approach 2, on the other hand, introduces a more sophisticated representation through an
elliptical copula, addressing the shortcomings of the first approach. This method crafts a
confidence region depicted by an ellipse, offering a more flexible and accurate depiction of the
joint variability and correlation betweenCoQ and EF. The ellipse is defined by its semi-major
and semi-minor axes and inclination angle, parameters that collectively provide a precise
identification of the distribution’s positioning with a 95% CI. This approach is particularly
advantageous in modeling a variety of non-normal data distributions, overcoming the
limitations inherent in the first approach.

The exploration of copula-based methods, as opposed to the rectangular regions
predominantly used in prior studies, marks a pivotal shift towards more adaptable and
nuanced models. Copulas, as mathematical constructs, articulate the joint cumulative
probability distribution ofmultiple variables (Tootoonchi et al., 2022), enabling amore refined
analysis of the interconnectedness and mutual influence of CoQ and EF indicators. This is
particularly relevant in high-volume production settings, where the complexity of operations
and quality control necessitates dynamic and versatile analytical approaches.

The inspection strategy chart, central to this methodology, visualizes the relationship
between CoQ and EF through a dense scatterplot derived from actual production data. The
inclusion of an elliptical confidence region, calibrated to contain the 95% CI of the data, marks
a significant advancement over traditional rectangular models. Through this elliptical
approach, the intricate relationships between CoQ and EF are more accurately captured,
paving the way for more informed and effective decision-making in quality control strategies.

Figure 1 presents an example of the above-mentioned inspection strategy chart. This chart
delineates the relationship between the CoQ and the EF indicator for a generic inspection
strategy. The chart displays a dense scatterplot where each point represents a unique
combination of CoQ and EF values derived from actual production data acquired during
regular production. The color gradient within the scatterplot indicates the density of data
points, with warmer colors representing higher concentrations of data. This density
visualization is pivotal in high-volume production contexts, where the sheer amount of data
requires an effectivemethod to discern patterns and trends. Central to this chart is the depiction
of confidence regions, both rectangular confidence regions (see the established Approach 1
(Verna et al., 2021b)) and elliptical confidence region (see the newly proposed Approach 2),
which are constructed based on the variability of the CoQ and EF indicators. As the figure
clearly shows, the ellipse offers superior coverage, encapsulating a greater proportion of the
data points and thus providing a more sensitive and encompassing visualization of the
inspection performance.

This innovative representation allows decision-makers to visually assess which strategies
fall within acceptable quality and cost parameters, symbolized by their placement within the
confidence regions. The proposed inspection strategy chart facilitates strategic decision-
making by enabling the selection of an inspection strategy that effectively balances CoQ
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against the risk of external failures, tailored to the demands and risk profiles of high-volume
production settings.

The ideal strategy, in this context, is one that seeks to minimize both CoQ and EF.
By plotting alternative strategies on the chart, decision-makers can evaluate their relative cost
of quality and effectiveness in preventing external failures. The choice of which strategy to
implement depends on various factors, including the nature of the product, market demands,
and the decision-maker’s risk tolerance (Colledani et al., 2014; Schmitt et al., 2014). In
scenarios where the impact of failures is particularly severe, reducing EF takes precedence.
Conversely, in situations where the stakes are lower, a higher CoQ might be acceptable,
reflecting a strategic compromise between quality costs and operational risks.

To clarify the methodological process used, Figure 2 shows a detailed flowchart of the
methodological approach applied for the analysis of inspection strategies. This flowchart
outlines the steps from production process modeling to the quantification and comparison of
inspection strategies, and the determination of confidence regions.

3.5 Validation of the proposed framework
To ensure the robustness and reliability of the proposed framework for estimating the Cost of
Quality (CoQ) and External Failures (EF) indicators, the following validation steps should be
undertaken:

Figure 1. Inspection strategy chart: scatterplot of cost of quality (CoQ) vs. external failure (EF) with indication
of confidence regions for a generic inspection strategy

Figure 2. Methodological flowchart for inspection strategy analysis
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(1) Literature Review and Comparison: Conduct a thorough literature review to
benchmark the framework against established practices and industry standards. This
review facilitates the refinement of confidence regions within the Inspection Strategy
Maps (ISM) and the enhancement of previous methodologies.

(2) Expert Consultation: Engage with domain experts within the company, including
testing engineers, production line managers, and quality assurance professionals, as
well as scholarly experts. Their feedback is instrumental in validating the assumptions
and parameters used in the framework, confirming its relevance and applicability to the
specific industrial context.

(3) Data Validation: Rigorously validate the input data, including historical records of
inspection costs, repair expenses, analysis costs, defect proportions, and other
production-related parameters. This process involves cross-referencing data from
multiple sources, verifying data consistency, and conducting sensitivity analyses using
@RISK to assess the robustness of the results.

(4) Model Verification: Verify the mathematical and computational aspects of the model
by testing it against known scenarios and comparing the simulated outcomes with
expected results. Any discrepancies or anomalies should be thoroughly investigated
and addressed to enhance the model’s validity.

The validation of the framework involves a comprehensive and iterative process, integrating
inputs from multiple sources, rigorous data validation, mathematical verification, sensitivity
analyses, and external peer review. These efforts ensure the reliability and accuracy of the
framework for estimating CoQ and EF indicators and assessing uncertainties in the context of
the study.

4. Case study
The case study’s host company is a branch of a large international German company that
operates in several business domains, including consumer goods, energy and building
technology, industrial technology, and mobility. The case study’s focus is on the mobility
sector, specifically automobile multimedia and automotive electronics, and the company
produces a broad range of electronic products, such as Driver Information and Infotainment
Systems, Instrumentation Systems, 2-Wheeler and Power Sports, and Chassis Systems.

In this context, an explanatory single-case study was performed (Saunders et al., 2016)
focusing on a specific inspection station,which is part of the production line of an Infotainment
System (Reis et al., 2023).

This section is organized into six sub-sections according to the schematization presented in
Figure 2.

4.1 Product description and production process modeling
The product object of the present study consists of an Infotainment System and has been
associated with the largest number of complaints and internal failures. It consists of a multi-
functional interactive hardware and software device that provides information (e.g. fuel level,
door security, parking assistance), communication (e.g. phone calls using voice control
technology, Bluetooth), and entertainment (e.g. audio/video, radio, rear-seat entertainment)
services (Yin, 2018). To familiarize the reader with the product, the parts that comprise the
final assembly of a complete device are shown in Figure 3.

The majority of the parts and subassemblies that make up the entire device are produced
internally. In essence, different production chains exist, such as the ones for assembling
Printed Circuit Boards (PCBs), bonding glass and displays, and assembling and adhering this
set to the carrier frame. The primary purpose of printed circuit boards (PCBs), which are
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electrically insulating boards composed of intricate printed circuits, is to electronically
connect and support a vast number of components by means of signal, electric current, and
other qualities. The first part, an unassembled PCB, is sent by conveyor belts to a printer at the
start of the PCB manufacturing process. There, lead-free solder paste is applied using stencil
printing. Afterward, discrete parts like resistors, capacitors and microchips are mounted
forming an Assembled PCB (PCBA), which is finally soldered by a reflow oven.

To create a finished product, further assembly components like covers and screws are put
together on the Final Assembly Line (Reis et al., 2023). Following component insertion and
soldering procedures, the product measurements are acquired at different phases of
manufacture. Nineteen workstations make up the Final Assembly line, one of which is the
Function Tester (FCT), an automated inspection station that functionally evaluates the PCBA
once it has been joined to the other product elements that make up the complete device.

The parts that the FCT deems defective are sent to the offline technical Analysis Station
(AS), where an analysis technician determines whether the rejected part is, in fact, defective; if
not, the part is labeled as “s-case” and returned to the FCT, i.e. the workstation where it was
previously deemed to be unsuccessful for further inspection; if confirmed to be defective, the
device is disassembled, component by component, until the defective part is eliminated.

In certain situations, such as when replacing a foil that was put together incorrectly, the
technician can complete this repair with the tools she/he possesses. In other situations, the part
is sent to the electrical laboratory if more investigation or complex rework is required. The part
returns to the process, as in the S-cases, after being repaired.

The described handling process of a defective part from the FCT is summarily represented
in Figure 4, which also encompasses the elements pertinent to model the CoQ regarding (1) the
product inspection and the respective inspection errors, (2) the analysis of the failed products,
(3) operations for repairing/replacing the identified defective parts, (4) the reinspection of the
s-cases and repaired products, and (5) the cost of passing a defective product to the next
process (Reis et al., 2023). The FCT is represented between two workstations (WS), named
WS1 and WS2.

4.2 Quantification of the inspection strategy indicators
This section outlines the estimation process for each cost element (Cinspection, Creinspection, Crepair,
Canalysis, and Cn) and parameter (Np, Pd, α, and β), crucial for calculating the External Failure
(EF) and Cost of Quality (CoQ) indicators as delineated in Eqs. (1) and (3) within Sections 3.1
and 3.2, respectively. The methodology for deriving these estimates is detailed, highlighting
refinements and advancements made relative to the approach utilized in a preceding study by
Reis et al. (2023), which analyzed the same testing station. The assumptions about the
distributions of variables describing the dynamic framework were made based on a careful

Figure 3. Complete device isometric exploded view
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consideration of available data (Verna, 2024), expert insights, and industry standards. These
assumptions were essential for conducting the Monte Carlo simulations in the software
@RISK and generating probability distributions for the key parameters involved in the
analysis and to capture the range of potential values for each cost parameter, taking into
account both deterministic factors and inherent variability.

In the PAF CoQ framework, inspection costs fall under the Appraisal category, typically
assessed by calculating the return on investment (ROI) for the required equipment (Yin, 2018).
A Company Testing Engineer highlights the goal of designing efficient test chains for cycle
time, line balancing, and cost. Since inspection and reinspection use the same equipment, their
costs (Cinspection and Creinspection) are considered identical, based on the sum of fixed (e.g.
machinery, software licenses) and variable (e.g. labor) costs. Some costs, either because
considered negligible or difficult to estimate, are not considered in the model, e.g. energy and
maintenance costs. The estimated unitary Cinspection and Creinspection costs resulted in 0.43 V/unit.
The uncertainty for both parameters was obtained by considering a uniform distribution
ranging from 0.40 to 0.50 V/unit.

Within the PAF CoQ framework, repair costs are categorized under Failure costs,
representing Internal Failures. This classification is due to repair being an activity addressing
defects identified prior to product delivery to customers. The cost of repair (Crepair)
encompasses the labor costs for repairs and the expenses for scrapping and replacing defective
parts. This estimate is based on historical data on various defect types and their costs, recorded
in the database by production line managers. After consulting with the Manufacturing
Department, a weighted average repair cost of 2 V/unit was calculated. The uncertainty of this
cost is modeled with a uniform distribution, ranging from 1.5 to 4 V/unit.

The analysis cost (Canalysis) had not previously been evaluated by the Company and was
estimated in collaboration with the Accounting Department. Drawing on analyses similar to
those for operations requiring human operators, the cost was determined to be 0.50 V/unit.

Figure 4. Conceptual model of the current defect handling at FCT along with the model costs and parameters
(see Section 3)
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The uncertainty associated with this parameter was calculated using a uniform distribution,
ranging from 0.35 to 0.75 V/unit.

The cost of passing a defective unit to the next station (Cn) was estimated at 20 V/unit,
based solely on expert opinion from within the Company and academia. Due to the significant
uncertainty associated with this parameter, a uniform distribution ranging from 15 to 30 V/unit
was used to capture this variability.

This study chooses uniform distributions for estimating uncertainty in cost parameters,
prioritizing simplicity and clarity in its modeling approach. While alternatives exist, such as
normal distributions for prevention and appraisal costs suggested by Su et al. (2009) and
triangular distributions by Reis et al. (2023), this choice seeks to maintain model
straightforwardness without dismissing the relevance of other methods. It’s important to
acknowledge that the appropriateness of any cost assessment method is context-dependent,
closely tied to the specific industrial environment (Reis et al., 2023), underscoring the tailored
nature of this approach.

The parameters are based on a database containing the results of tests carried out, i.e.
secondary data already available at the company. The secondary data refers to the 310
producing days of the year 2020 in which 1,328,907 single units of the analyzed product (i.e.
an Infotainment System)were testedwithin the FCT.Given these data, the Np value considered
in the simulation was 4,314, and the Pd value was 5.1%, which are the realistic typical daily
production quantity and proportion of defectives, respectively, according to the analysis
performed at @RISK. The uncertainty associated with Np and Pd was obtained experimentally
according to the real distribution of the data, as seen in Table 1. In the previous work proposed
by Reis et al. (2023), on the other hand, the average production daily value was considered for
Np in their model, and Pd was estimated as the geometric mean between the failed and
produced products, both without defining an associated uncertainty.

The proportion of false defectives (α) (type-I error) was empirically estimated based on the
count of s-cases within the failed devices, i.e. the cases which the analyst spotted improper
rejections by the inspection/test system. The average of s-cases for the year 2020 in this station
and this production line was 1.8%. The uncertainty associated with α was also obtained
experimentally according to the real distribution of the data, as seen in Table 1.

The Company usually defines product specifications tighter than initial customer
specifications so that errors are forced on one side of the specification. The testing stations
measure several quality characteristics, and whenever one of them happens to be outside the
tight-imposed tolerance limits, the product will “fail” at the station. This can increase false
defectives given by the measurement system, while reducing false compliant (β). The β values
were adopted from similar quality inspections in the electromechanical sector (Galetto et al.,
2020), with its standard deviation assumed to be 5% of β mean value. Contrarily, Reis et al.
(2023) equated type-I and type-II errors, opting for a uniform distribution to determine the
uncertainty of both indicators, diverging from the approach of utilizing distribution data.

The graph, distribution type, mean value, and the 95% CI for the mean, of the parameters
used in the proposed approachwere derived by using the software@RISKbyLUMIVERO for
Monte Carlo Simulation, of the parameters used in the proposed approach and are presented in
Table 1. These values were used for the current 100% inspection strategy, denoted as IS-0.

4.3 Confidence regions for the current inspection strategy
A Monte Carlo Simulation-based approach was used to obtain the distributions of the two
indicators EF and CoQ (see Eq. (1) and (3) of Section 3.1 and 3.2) derived from the model
parameters and CoQ elements listed in Table 1.

The authors made the complete dataset publicly available via the Harvard Dataverse
platform (Verna, 2024). From the distributions, the estimate of the mean values and related
95% CI are obtained. As above mentioned, the adopted tool is @RISK, which is an Excel add-
in developed by LUMIVERO for performing a Monte Carlo Simulation. In total, 10,000
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simulations were performed until no changes were observed in the parameters such as mean,
median and percentiles. Figures 5 and 6 present the histograms obtained from the Monte Carlo
Simulation results.

The Unitary CoQ resulted in 0.60 V/unit for the I100%, which can be found between 0.513
and 0.983 V/unit within a 95% CI, as shown in Figure 5. This value was absent from the
Company’s data for the testing station since there are just overall estimates for the whole
manufacturing line, however, it is reasonable according to specialists of the Company. The
simulation for the External Failure Indicator resulted in 0.257.10�3, which can be found
between 0.099 ∙ 10�3 and 0.658 ∙ 10�3 within a 95% CI for the I100% (Figure 6).

The relationship between the CoQ and EF for the 100% inspection strategy (IS-0) is
presented graphically in Figure 7(a), as per the methodology presented in Section 3.4. As there
aremany data pointswith a high level of overlap, the density of the data points is represented in
the scatterplot using the displayed colors.

Rectangular confidence regions, according to the established Approach 1 discussed in
Section 3.2, are showcased in chart (b) of Figure 7. The dimensions of these rectangles are
established by the independent 95% Confidence Intervals (CI) for each indicator, providing a
straightforward, albeit limited, visualization of uncertainty. In contrast, chart (c) of Figure 7
introduces an elliptical copula approach (as per the newly proposed Approach 2 presented in
Section 3.2). This method employs the geometrical parameters of the ellipse—namely, the
semi-major axis, the semi-minor axis, and the inclination angle—to more accurately represent
the distribution’s positioning within a 95% CI. This elliptical model offers a nuanced
understanding of the data, highlighting the interdependencies and correlations between
indicators that the rectangular model may overlook.

Table 1. Model parameters and CoQ elements for the 100% inspection strategy (IS-0)

Graph Distribution Minimum Maximum Mean Std. 

Deviation

Gumbel 

Minimum 

Extreme 

Value

0 7273 4314 1279

Pearson type 

5

0.012 0.716 0.051 0.032

Log-logistic 0.001 0.239 0.018 0.011

Uniform 0.005 0.005 0.005 0.000

Uniform 0.40 0.50 0.43 0.030

Uniform 1.50 4.00 2 0.72

Uniform 0.35 0.75 0.5 0.12

Uniform 0.40 0.50 0.43 0.03

Uniform 15.00 30.00 22.50 4.33

Source(s): Table created by authors
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In Figure 8(a), the scatterplot is presented alongside the rectangle and the ellipse, all within
a single chart, offering a comprehensive visual comparison. Figure 8(b) provides a closer look
at both the rectangle and the ellipse, zooming in to accentuate the differences between these
two depicted regions. This magnified view facilitates a detailed examination of the contrasting
approaches to representing uncertainty and correlation within the data.

Given the parameters fit to data according to a model, the probability that the confidence
region will include (or “cover”) the true value is called the coverage, which is an important
factor to be assessed by decision-makers to choose an inspection strategy considered safe or
within which an adverse effect is unlikely to occur in terms of the desired CoQ and EF.
A sensible confidence region should contain the best fit point, be consistent and efficient,
contracting around more data is obtained. It is undesirable to come up with procedures that
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Figure 5. Unitary CoQ distribution with indication of the mean and its 95% CI, for the 100% inspection
strategy (IS-0)
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Figure 6. External failure (EF) distribution, with indication of the mean and its 95% CI, for the 100%
inspection strategy (IS-0)
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result in regions without these properties, as they may cause faulty confidence regions and
therefore provide an incorrect description of the inspection strategy mapping. Figure 8
shows that the coverage of the regions enclosed by the rectangle and the ellipse are
different, with the ellipse being the most sensitive, as it covers 95% of all points of the
scatterplot, while in the rectangle, the upper left corner and the lower right corner do not
contain scatterplot points.

4.4 Comparison with alternative inspection strategies
The aim of this section is to apply scenario-based planning in order to design alternative
options and provide foresight or ex-ante impact assessment in terms of CoQ and EF.
Accordingly, the two IS indicators of total CoQ and EF are evaluated for the current company
strategy (IS-0) and used as the benchmark to be compared against, and then two other
alternative scenarios (IS-1 and IS-2) are tested with scenario or “what-if” analyses, through
which it is possible to explore the performance of the simulated systems by tweaking the initial
conditions. Data pertaining to IS-1 and IS-2 are accessible via the Harvard Dataverse platform
(Verna, 2024). The three strategies compared are:

Figure 7. Inspection strategy chart for 100% inspection strategy (IS-0): (a) Scatterplot of cost of quality (CoQ)
vs. external failure (EF), (b) rectangular confidence region using the established Approach 1, and (b) elliptical
confidence region using the newly proposed Approach 2

Figure 8. Comparison of confidence regions for the 100% inspection strategy (IS-0) using Approach 1 and
Approach 2
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(1) IS-0: Current Company Strategy

The current inspection strategy (IS-0) employed by the company serves as the baseline
scenario. This strategy involves the existing inspection tools and procedures, with their
associated costs and error rates (α and β). The performance metrics (total CoQ and EF) derived
from this strategy provide a benchmark for assessing the impact of alternative strategies.

(2) IS-1: Investment in More Accurate Inspection Tools

One way to provide better quality is to use more accurate inspection tools for detecting
nonconformities. Precise machining equipment and accurate inspection tools can offer better
quality control but are often more expensive to acquire and operate (Reis et al., 2023).

In IS-1, we propose investing in higher-precision inspection equipment. The primary
changes in this scenario include:

(1) decreased error rates (α and β): With more accurate inspection tools, the probability of
Type I (false positives) and Type II (false negatives) errors decreases. This results in
fewer products being incorrectly classified as defective or compliant.

(2) increased inspection costs (Cinspection and Creinspection): The investment in better
equipment increases the unitary costs of inspection and reinspection due to higher
acquisition costs, maintenance expenses, and potentially longer inspection times.

The expected impact of this strategy is a reduction in the overall defect rate (Pd) and improved
product quality, but at a higher inspection cost. This trade-off needs to be carefully evaluated to
determine if the reduction in external failure costs (EF) justifies the increased CoQ.

(3) S-2: process improvement and enhanced machining capabilities

Another way to improve quality is to decrease the probability of defects (Pd) in the production
process. This can be achieved through process improvements or by using more precise
machining equipment with higher process capabilities (Cp and Cpk) when creating product
quality characteristics (Karimi-Mamaghan et al., 2020).

In IS-2, we propose implementing process improvements and enhancing machining
capabilities. The primary changes in this scenario include:

(1) decreased probability of defective outputs (Pd): By improving the production process
or using more precise equipment, the inherent defect rate of the production process
decreases.

(2) potential changes in costs: While the primary focus is on reducing defects, there may
also be associated costs for process improvements, such as investments in new
machinery, training for employees, and adjustments in production procedures.

The expected impact of this strategy is a reduction in the number of defective units produced,
which subsequently lowers both internal and external failure costs. Unlike IS-1, this strategy
may not significantly increase inspection costs but requires investments in process
improvements and equipment upgrades.

These current and the two alternative scenarios explore the joint impact of various
uncertainties, changing some variables at a time (i.e. Pd, α, β, Cinspection and Creinspection), the
ones highlighted in bold in Table 2. The Mean values and 95% CI of inspection performance
indicators CoQ and EF for the three scenarios are also presented in Table 2.

4.5 Confidence regions for alternative inspection strategies
Following the considerations ofApproach 1 andApproach 2presented inSection 4.3, the strategy
maps for the scenarios IS-1 and IS-2 are presented in Figures 9 and 10. The focus is to emphasize
the fundamental requirements and limitations of applying copulas for these scenarios.
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Table 2. Inspection scenarios and their respective indicators

Inspection
strategy Description Pd α β

Cinspection and
Creinspection (V/unit)

Cprevention
(V/unit)

EF
ð10−3Þ

95% CI for
EF ð10−3Þ

CoQ
(V)

95% CI for
CoQ ðVÞ

IS-0 100% inspection (current
inspection scenario)

5.14% 1.80% 0.50% 0.43 0 0.257 (0.099;
0.658)

0.600 (0.513;
0.983)

IS-1 Investment in better inspection
equipment

5.14% 1.00% 0.10% 1.00 0 0.051 (0.020;
0.132)

1.194 (1.094;
1.606)

IS-2 Investment in the production
process resulting in Pd decline

2.5% 1.80% 0.50% 0.43 0.40 0.125 (0.115;
0.135)

0.921 (0.895;
1.032)

Source(s): Table created by authors
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The confidence regions for IS-1, presented in Figure 9, are graphically similar to the results
in IS-0: the coverages of the regions enclosed by the rectangle and the ellipse are different, with
the ellipse covering all points of the scatterplot, while in the rectangle, the upper left corner and
the lower right corner do not contain scatterplot points.

For IS-2, however, the rectangle and the ellipse are comparable in terms of fit to the data
points within the scatterplot. Both shapes exhibit sensitivity to the distribution of the data, with
the rectangle closely hugging the denser area of the scatterplot, while the ellipse encompasses a
more restricted range. Indeed, the horizontal extremities of the ellipse slightly extend beyond
the dense cloud of scatterplot points, yet this does not significantly detract from its
comparative alignment with the actual data distribution.

4.6 Inspection strategies positioning using the inspection strategy chart
Figure 11 illustrates the comparison between the scenarios IS-0, IS-1 and IS-2 on the same
inspection strategy chart, plotting the two approaches (Approaches 1 and 2) for the confidence
regions for each scenario.

Based on the analysis of the inspection strategy chart, performing the current 100%
inspection (IS-0) leads to a significant increase in the indicatorEFwhen compared to the other
two scenarios, leaving comparatively more defects in the device.

On the other hand, from an economic point of view, the two alternative proposed scenarios,
IS-1 and IS-2, lead to higher costs when compared to the current IS-0. Although part of IS-2 is

Figure 9. Comparison of confidence regions for IS-1 using Approach 1 and Approach 2

Figure 10. Comparison of confidence regions for IS-2 using Approach 1 and Approach 2
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located within the upper left corner of the rectangular confidence region of IS-0, it was seen
that the referred region of IS-0 actually does not contain scatterplot points, being the ellipse the
contain the best fit for the IS-0 data.

It can also be said that the inspection indicators Unitary CoQ and EF obtained for IS-2 are
affected by less uncertainty compared to those obtained for IS-0 and IS-1.

The choice of inspection strategy by the company depends on its strategic priorities. If the
goal is to minimize both CoQ and EF, IS-2 may be the most suitable despite its higher costs, as
it offers reduced uncertainty and a better fit within the confidence region. Alternatively, if
minimizing costs is the primary objective, the company may opt to continue with IS-0,
accepting a possible higher EF as a trade-off. The company’s decision may also be influenced
by the degree of uncertainty it is willing to tolerate, with IS-2 providing the least uncertainty
among the options.

5. Results and discussion
5.1 Inspection scenarios
While this study only compares the current IS-0 with IS-1 (investment in better inspection
equipment), and IS-2 (investment in the production process), explored dimensions of
inspection strategies may also include scenarios such as reinspection of accepts (Zaklouta and
Roth, 2012), a mid-ground strategy between 100% and no inspection, i.e. sampling inspection,
and even the no-inspection scenario.

Nevertheless, is important to be aware that the scenarios go beyond objective analyses and
include subjective interpretations. For example, although the hypothetical scenario of no-
inspection is interesting, it is important to state that some quality characteristics must be
mandatorily inspected during the production process, e.g. those related to safety, legislation,
and customer requirements. Therefore, it is assumed that these characteristics would be
inspected in another testing station in this supposed situation of not inspecting in FCT. Even for
characteristics that are inspected at the initiative of the company rather than by external
requirements, the complete absence of control is probably not the best solution, especially in
cases of processes that are not as robust.

Considering the context of the automotive electronics industry, inspection followed by
analysis and repair activities helps to explain why some type of quality problem occurs, which
is a useful source of information for product and process improvement. By working on these
tasks, i.e. analyzing defects and performing root cause investigations, quality engineers gain
valuable information. However, when the product and the process are robust, it is plausible to

Figure 11. Comparison of inspection strategies IS-0, IS-1 and IS-2 using the inspection strategy chart
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assume that some characteristics can only be controlled during the pre-production phase,
where product samples are manufactured, instead of being inspected at 100% during the mass
production phase. In addition, as shown in scenarios IS-1 and IS-2, the selection of the
inspection equipment has an impact on both the effectiveness and the cost of quality.

In summary, inspection strategies are meticulously tailored to address unique product
specifications, production environments, and customer requirements. Nevertheless, this study
highlights the significance of customization, scalability, and continuous improvement within
the employed inspection strategy. Moreover, it illustrates the strategy’s capability to scale
effectively in response to varying production volumes and evolving manufacturing
technologies. Integration of feedback loops and performance metrics ensures ongoing
refinement and optimization of the inspection approach using real-time data and industry best
practices.

Therefore, this research contributes substantively to ongoing research and development
endeavors aimed at advancing quality management practices. The detailed documentation of
methodology and comprehensive presentation of outcomes establish a robust foundation for
future studies to explore advanced statistical models in other inspection scenarios, leverage
emerging technologies, and innovate approaches in the domain of quality assurance.

5.2 Inspection strategy charts
Integrating scenario analysiswith a structuredmethodology for developing inspection strategy
charts could significantly benefit organizations. This integration yields a topology that
quantifies the causal relationships between critical variables, such as the CoQ and EF. Such
diagrams enable businesses to navigate various inspection strategies, offering a framework to
comprehend the comparative positioning of different strategies effectively.

It is crucial to verify the properties of the confidence region for each approach, as not all
regions may accurately represent the level of confidence achievable with certain
distributions of CoQ and EF. Choosing the right approach to depict the confidence
region is a pivotal step in employing a copula method for the analysis of multivariate data.
This choice ensures that both the structure of dependence and the strength of dependence
between variables are accurately captured. The dependence structure is indicated by the
selected copula family, whereas the strength of dependence is determined by the copula
parameters. Therefore, careful selection of the copula family and precise estimation of
copula parameters are imperative.

This paper advocates for a straightforward graphical technique involving the creation of a
scatterplot that displays rank-transformed pairs, also referred to as an empirical copula. This
visual comparison facilitates a better evaluation of tail dependence, guiding the subsequent
selection of appropriate copula families. Through such methodologies, organizations can
achieve a deeper understanding of the interrelations betweenCoQ andEF, enhancing strategic
decision-making in the context of inspection strategies. In detail, the strategic decision on
which inspection strategy to adopt depends on the company’s priorities. If minimizing CoQ
and EF is crucial, the most balanced strategy may be preferred despite higher costs and lower
uncertainty. For those prioritizing cost minimization, a strategy with lower inspection costs
might be more suitable, accepting a higher EF as a trade-off.

5.3 Outcomes and implications
The results of the study are directly related to the gap defined in the literature review, which
highlighted the need for a robust and dynamic framework that integrates the Cost of Quality
(CoQ) and External Failures (EF) to optimize inspection strategies in high-volume
manufacturing environments. These outcomes demonstrate the effectiveness of the
proposed Inspection Strategy Chart in addressing the identified gaps. Specifically, the
results showcase how the dynamic adjustment of inspection strategies based on real-world
data can lead to significant improvements in both cost efficiency and quality control.
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By using the elliptical confidence region approach, companies can dynamically adjust their
inspection strategies to better align with actual production conditions. This results in more
accurate and timely inspections, reducing unnecessary costs associated with over-inspection
and minimizing the risk of external failures. The proposed framework significantly enhances
quality control by providing a comprehensive understanding of the relationship between CoQ
and EF. This allows for more targeted and effective inspections, ultimately leading to a
reduction in the incidence of external failures and an improvement in overall product quality.

The study utilized data from a functional testing station of an Infotainment System,
demonstrating that the proposed framework can be practically applied to real-world scenarios.
The outcomes confirmed that the elliptical approach provides a more faithful representation of
the data trajectory compared to traditional rectangular methods, supporting more reliable
decision-making processes. Furthermore, the framework’s ability to consider the needs of
various stakeholders and make reasonable trade-offs between objectives was validated
through this practical application. This aligns with the identified gap that traditional ISMs
often fail to incorporate stakeholder perspectives adequately, leading to suboptimal decision-
making.

Additionally, the framework was validated through a comprehensive and iterative process,
as outlined in Section 3.5. This included literature review and comparison, expert consultation,
rigorous data validation, and model verification. These steps ensured the robustness and
reliability of the framework, confirming its applicability and effectiveness in estimating CoQ
and EF indicators, and assessing associated uncertainties in high-volume production settings.

6. Conclusions
In the context of evolving high-volume production environments, the integration of effective
quality control strategies remains a pivotal challenge, marking a discernible gap in existing
literature. This study endeavors to bridge this divide by introducing scenario-based inspection
strategy charts, which elucidate the dynamic interplay between inspection effectiveness and
associated costs. By leveraging real-world data and innovative analytical approaches, this
research marks a significant stride towards addressing the underexplored domain of
comprehensive Cost of Quality (CoQ) assessments and External Failures (EF) analysis
within the sphere of production engineering.

Thiswork advances research in inspectionmodels incorporatingCoQ andEF by grounding
its analysis in real-world data—a notable departure from the historical reliance on hypothetical
scenarios or models not corroborated by historical data. By utilizing data from a functional
testing station of an Infotainment System, this study directly addresses the recent demand for
more thorough research onCoQ assessments, an area marked by significant under-exploration
and ripe for further scholarly exploration (Psarommatis et al., 2020; Psomas et al., 2021).

In detailing the construction of confidence regions for the inspection strategy charts, two
distinct approaches were used. Approach I employs a user-defined rectangular shape for the
region, with its size dictated by distributions and confidence interval (CI) values. Approach II
introduces a more innovative methodology, allowing both the shape and size of the confidence
region to be dynamically determined by the underlying data distribution, resulting in an
elliptical form. These methodological advancements not only enhance the toolset available for
quality control analysis but also introduce a nuanced perspective on assessing the reliability of
inspection strategies.

The case study integral to this research critically evaluates various inspection strategies in
light of CoQ and EF considerations. It underscores the importance of context in determining
whether the traditional rectangular approach or the novel elliptical approach is more suited to
specific production scenarios. The findings from the case study suggest a significant advantage
of the elliptical confidence region approach,which tends to offer amore faithful representation
of the actual data trajectory, thereby facilitating more reliable decision-making processes. This
empirical evidence underscores that the elliptical model, by capturing the complex
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interdependencies and correlations between various indicators, provides a more nuanced
understanding of the data, an aspect that might be overlooked by the simpler
rectangular model.

The practical implications of the proposed approach are underscored by its tailored
applicability to the industrial context of the case study. The study draws attention to the
prevalent challenges in acquiring accurate cost data within companies, often necessitating
reliance on expert estimations and consequently introducing a degree of uncertainty into the
analysis. From a managerial perspective, the research highlights the absence of a structured
framework for decision-making regarding inspection strategies within the case study
company. By proposing a model that integrates often-overlooked quality-related cost
components, such as the analysis and handling of defective units, the study calls for enhanced
cross-departmental collaboration and continuous CoQ assessment.

Future research should explore the use of formal goodness-of-fit tests to improve the
accuracy and applicability of the model, with a focus on removing copula families that do not
accurately represent empirical data. Additionally, incorporating qualitative methods such as
interviews, focus groups, and expert panels will help to gather diverse perspectives on the
factors influencing external failure and cost of quality elements. Expanding the scope to
include multiple case studies from different industries will validate the findings across various
contexts and enhance the generalizability of the results. By using multiple data sources and
methods, future research can achieve triangulation, thereby increasing the validity and
reliability of the research findings. This comprehensive approach will extend existingmethods
and open new avenues for investigating inspection strategy optimization in high-volume
production settings.

6.1 Implications for research, practice and society
The proposed framework for inspection strategy, which integrates CoQ and EF, has several
significant implications.

For research, this study bridges the gap between theoretical models and practical
applications in high-volume manufacturing environments. By incorporating real-world data
and dynamic adjustments based on empirical findings, the framework advances the body of
knowledge in quality management and provides a robust foundation for future studies.
Researchers can build on this methodology to explore its applicability in other industries and
refine the model to handle various manufacturing complexities.

In practical terms, the Inspection Strategy Chart offers a valuable tool for practitioners in
the manufacturing sector to optimize inspection processes. This can lead to significant cost
savings by reducing unnecessary inspections and focusing resources on critical areas. The
dynamic nature of the framework allows for continuous improvement and real-time decision-
making, enhancing overall production efficiency and product quality. Companies
implementing this framework can expect lower production costs and higher product
reliability, improving their competitive edge and customer satisfaction.

The economic and commercial impact of this framework is substantial. By reducing external
failures and optimizing inspection strategies, companies can achieve higher product reliability
and lower production costs. This not only improves their market position but also fosters
customer trust and loyalty. The framework’s adaptability ensures its broad applicability across
various production contexts, making it a versatile tool for different manufacturing settings.

Socially, improved quality control and reduced external failures ensure the reliability and
safety of manufactured products, which is crucial in industries such as automotive and
consumer electronics. Enhanced product quality contributes to higher consumer confidence
and overall quality of life, as reliable and safe products lead to fewer incidents and better user
experiences.

These implications underscore the practical benefits and broader impact of the proposed
framework, aligningwith the study’s findings and conclusions. By addressing the dynamic and
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complex nature of modern manufacturing environments, the framework provides a
comprehensive solution for strategic quality control that balances cost and effectiveness.
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