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Abstract
We introduce and study a notion of Castelnuovo–Mumford regularity suitable for rational normal

croll surfaces. In this setting we prove analogs of some classical properties. We prove splitting criteria
or coherent sheaves and a characterization of Ulrich bundles. Finally we study logarithmic bundles
ssociated to arrangements of lines and rational curves.
2024 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).

his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Castelnuovo–Mumford regularity; Rational normal scroll; Splitting criteria; Logarithmic bundles

1. Introduction

In chapter 14 of [18] Mumford introduced the concept of regularity for a coherent sheaf
n a projective space Pn . It was soon clear that it was a key notion and a fundamental tool in
any areas of algebraic geometry and commutative algebra.
From the perspective of algebraic geometry, regularity measures the complexity of a sheaf:

he regularity of a coherent sheaf is an integer that estimates the smallest twist for which the
heaf is generated by its global sections. In Castelnuovo’s much earlier version, if X is a closed
ubvariety of projective space and H is a general hyperplane, one uses linear systems (seen
ow as a precursor of sheaf cohomology) to get information about X from information about
he intersection of X with H plus other geometrical or numerical assumptions on X .
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From the computational and commutative algebra point of view, the regularity is one of
he most important invariants of a finitely generated graded module over a polynomial ring.
oughly, it measures the amount of computational resources that working with that module

equires. More precisely the regularity of a module bounds the largest degree of the minimal
enerators and the degree of syzygies.

Over the years, extensions of this notion have been proposed to handle other ambient
arieties beyond projective space, including Grassmannians [1], quadrics [3], multiprojective
paces [4,9,15], n-dimensional smooth projective varieties with an n-block collection [9], and
belian varieties [19]. For a different approach to multigraded regularity from a commutative
lgebra point of view, see [5,6].

The aim of this paper is to introduce a very simple and natural concept of regularity on a
ational normal scroll surface.

The interesting fact is that on Q2 ∼= P1
× P1 our definition of regularity coincides with

his definition of regularity on P1
× P1 given in [3,4,9,15] and we are able to prove that

very regular coherent sheaf is globally generated, as done by Mumford in the classical case
n . Maclagan and Smith [17] gave a variant of multigraded Castelnuovo–Mumford regularity,
otivated by toric geometry. Our notion requires only three cohomolgical vanishing conditions

nd is strongly linked to the canonical sheaf.
The second aim of this paper is to apply our notion of regularity in order to investigate under

hat circumstances a vector bundle can be decomposed into a direct sum of line bundles. In
articular, in the second section splitting criteria of vector bundle on a rational normal scroll
urface are given, generalizing some analogous result already known for P1

×P1 [3,4]. In [13]
he authors give some splitting criteria for vector bundles of rank 2 in terms of Chern classes
nd vanishing of certain cohomology groups using Beilinson type spectral sequence. They
lso remark that their results are the best possible without analysing the differentials in the
pectral sequence. Our splitting criteria work for vector bundles of arbitrary rank thanks to the
se of regularity and without the use of spectral sequences and with only a small number of
ohomological vanishing conditions. In [7,17] are given splitting criteria in a far more general
ontext but with an infinite number of cohomological vanishing conditions (in the first case it
s required a table of cohomology and in the second are considered the twists with all the ACM
undles). Furthermore in [12] Theorem B is given a complete classification of Ulrich bundles
n rational normal scroll surfaces. Here we give an alternative and simpler proof without relying
n derived category techniques.

Finally, the last section focuses on the logarithmic bundle of divisors on a rational normal
croll. It fits in the classical topic of the study of normal crossing divisors on a smooth complex
ariety X . When D is a normal crossing divisor, Deligne [20] constructed a mixed Hodge
tructure on U = X \ D using the logarithmic de Rham complex Ω•

X (−log D). Following this
dea, in [21] Saito defined the sheaf TX (D) of derivations tangent to D and (dually) the sheaf
f logarithmic one-forms with pole along D, the logarithmic bundle Ω1

X (log D).
The module of tangent derivations is a sheaf of OX -modules, such that if f ∈ OX,p is a

ocal defining equation for D at p, then

(TX (− log D))p = {θ ∈ TX |θ ( f ) ∈ ⟨ f ⟩}.

When D is a normal-crossing divisor, TX (− log D) is always locally free.
The module of derivations tangent to D is a reflexive sheaf. So, since a reflexive sheaf on

a surface is always locally free, so it is interesting to understand when it (or its dual) splits as

free module, in which case the divisor is said to be a free. In general, free divisors are difficult
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to find. We find some classes of free divisors (precisely free arrangements of lines and rational
curves) on a two dimensional rational normal scroll.

We thank M. Aprodu, A.P. Rao, G. Casnati and J. Pons-Llopis for helpful discussions and
undamental observations.

. Regularity on S(a0, a1)

Throughout this article, our base field is algebraically closed with characteristic 0. Let
X = S(a0, a1) be a smooth rational normal scroll, the image of P(E) via the morphism defined
y OP(E)(1), where E ∼= OP1 (a0)⊕OP1 (a1) is a vector bundle of rank 2 on P1 with 0 < a0 ≤ a1.
etting π : P(E) → P1 be the projection, we may denote by H and f , the hyperplane section
orresponding to OP(E)(1) and the fibre corresponding to π∗OP1 (1), respectively. Following [14,
otation 2.8.1] S(a0, a1) is a Hirzeburch (ruled) surface with C0 = H − a1 f , C2

0 = a0 − a1

nd C0 · f = 1, so H 2
= a0 + a1. Then we have Pic(X ) ∼= Z⟨H, f ⟩ ∼= Z⟨C0, f ⟩ and

X ∼= OX (−2H + (c − 2) f ), where c := a0 + a1 > 1 is the degree of X .
For the computational purpose, we use the following lemma.

emma 2.1 ([10]). For any i = 0, 1, 2, we have

(i) H i (X,OX (aH + b f )) ∼= H i (P1, SymaE ⊗ OP1 (b)) if a ≥ 0;
(ii) H i (X,OX (−H + b f )) = 0 for any b;

(iii) H i (X,OX (aH + b f )) ∼= H 2−i (P1, Sym−a−2E ⊗ OP1 (c − b − 2)) if a ≤ −2.

Recall the dual of the relative Euler exact sequence of X :

0 → OX (−H + c f ) → OX (a0 f ) ⊕ OX (a1 f ) → OX (H ) → 0. (1)

he pullback of the Euler sequence in P1 is

0 → OX (− f ) → O2
X → OX ( f ) → 0, (2)

nd we obtain

0 → OX (−H+(c−2) f ) → O2
X (−H+(c−1) f ) → OX (a0 f )⊕OX (a1 f ) → OX (H ) → 0,

(3)

We give a definition of regularity on X :

efinition 2.2. A coherent sheaf F on X is said to be (p, p′)-regular if, denoting E =

F(pH + p′ f ),

h2(E(−H + (c − 2) f )) = h1(E(−H + (c − 1) f )) = h1(E(− f )) = 0.

e will say that F is regular if it is (0, 0)-regular. We will say that F is p-regular if it is
p, 0)-regular. We define the regularity of F , Reg(F), as the least integer p such that F is

p-regular. We set Reg(F) = −∞ if there is no such integer.

emark 2.3. When a0 = a1 = 1, we get c = 2 and C0 is a line; X is the quadric P1
× P1

nd this notion of regularity coincides with the notions of Castelnuovo–Mumford regularity
iven in [3,4,15] since h2(E(−H + (c − 2) f )) = h2(E(−1, −1)), h1(E(−H + (c − 1) f )) =
1 1 1
h (E(−1, 0)), h (E(− f )) = h (E(0, −1)).

3
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Lemma 2.4. If F is a regular coherent sheaf on X, then h1(F| f ((a − 1)H + b f )) = 0 for any
≥ 0 and for any integer b.

roof. Let us consider this exact cohomology sequence:

· · · → H1(F(−H + (c − 1) f )) → H1(F| f (−H + (c − 1) f )) → H2(F(−H + (c − 2) f )) → . . .

ince the first and the third groups vanish by hypothesis, then also the middle group vanishes.
H 1(O| f (−H + (c − 1) f )) ∼= H 1(P1,OP1 (−1)) so H 1(F| f ((a − 1)H + b f )) = 0 for any a ≥ 0
and for any integer b. □

Lemma 2.5. If F is a regular coherent sheaf on X, then h2(F((a −1)H + (c −2+b) f )) = 0
or any a, b ≥ 0 and h1(F(t f )) = 0 for any t ≥ −1.

roof. From (2) we get h2(F(−H + (c − 2 + t) f )) = 0 for any t ≥ 0. From (1) tensored by
F((c−2) f ) we get h2(F((c−2+ t) f )) = 0 and again by (2) we obtain h2(F((c−2+ t) f )) = 0
or t ≥ 0. In the same way h2(F((a − 1)H + (c − 2 + b) f )) = 0 for any a ≥ 0 and for any
≥ 0. From

0 → F(− f ) → F → F| f → 0,

e deduce that h1(F(t f )) = 0 for any t ≥ −1. □

emma 2.6. If F is a regular coherent sheaf on X,

(i) H 1(F|H ((c − 1 + b) f )) = 0 for any b ≥ 0.
(ii) H 1(F|H ((a + 1)H + (b − 1) f )) = 0 for any a, b ≥ 0.

roof. Let us consider this exact cohomology sequence:

· · · → H 1(F((c − 1) f )) → H 1(F|H ((c − 1) f )) → H 2(F(−H + (c − 1) f )) → . . .

ince H 1(F((c − 1) f )) = H 2(F(−H + (c − 1) f )) = 0 we get h1(F|H ((c − 1) f )) =

h1(P1, FH (c − 1)) = 0 and also h1(P1, F|H (c − 1 + t)) = h1(F|H ((c − 1 + t) f )) = 0 for
≥ 0. So (i) is proved. H 1(O|H ((a + 1)H + (b − 1) f )) ∼= H 1(P1,OP1 ((a + 1)c + b − 1)) and
hen a, b ≥ 0 we get (a + 1)c + b − 1 ≥ c − 1 so H 1(F|H ((a + 1)H + (b − 1) f )) = 0 for any
, b ≥ 0. So also (i i) is proved. □

roposition 2.7. Let F be a regular coherent sheaf on X then

1. F(pH + p′ f ) is regular for p, p′
≥ 0.

2. H 0(F( f )) is spanned by

H 0(F) ⊗ H 0(O( f ));

and H 0(F(H )) it is spanned by

H 0(F(a0 f )) ⊕ H 0(F(a1 f )).

roof. (1) Let F be a regular coherent sheaf, we want to show that also F(H ) is regular.
h2(F((c − 2) f )) = 0 by Lemma 2.5. In order to show that h1(F((c − 1) f )) = 0 let us consider
he exact cohomology sequence:

1 1 1

· · · → H (F(−H + (c − 1) f )) → H (F((c − 1) f )) → H (F|H ((c − 1) f )) → . . .

4
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We notice that the first group vanishes by hypothesis and the third group vanishes by (i) of
emma 2.6. Then also the middle group vanishes. It remains to show that h1(F(H − f )) = 0.
y the exact cohomology sequence:

· · · → H 1(F(− f )) → H 1(F(H − f )) → H 1(F|H (H − f )) → . . .

ince the first group vanishes by hypothesis and the third group vanishes by (i i) of Lemma 2.6
we obtain that also the middle group vanishes. Let F be a regular coherent sheaf, we want
show that also F( f ) is regular. h2(F(−H + (c − 1) f )) = h1(F) = 0 by Lemma 2.5. In order
o show that h1(F(−H + c f )) = 0 let us consider the exact cohomology sequence:

· · · → H 1(F(−H + (c − 1) f )) → H 1(F(−H + c f )) → H 1(F| f (−H + c f )) → . . .

e notice that the first group vanishes by hypothesis and the third group vanishes by
emma 2.4. Then also the middle group vanishes. (2) Let us consider (2) tensored by F :

0 → F(− f ) → F2
→ F( f ) → 0.

ince H 1(F(− f )) = 0, we obtain

H 0(F) ⊗ H 0(OX ( f )) → H 0(F( f )) → 0.

ow let us consider (3) tensored by F :

0 → F(−H + (c − 2) f ) → F2(−H + (c − 1) f ) → F(a0 f ) ⊕ F(a1 f ) → F(H ) → 0.

ince H 2(F(−H + (c − 2) f )) = H 1(F(−H + (c − 1) f )) = 0, we obtain

H 0(F(a0 f )) ⊕ H 0(F(a1 f )) → H 0(F(H )) → 0. □

emark 2.8. If F is a regular coherent sheaf on X then it is globally generated.
In fact by the above proposition we have the following surjections:

H 0(F)q
→ H 0(F(a0 f )) ⊕ H 0(F(a1 f )) → H 0(F(H )),

or a suitable positive integer q. So also the map

H 0(F)q
→ H 0(F(H ))

s a surjection.
Moreover we can consider a sufficiently large twist l such that F(l H ) is globally generated.

or a suitable positive integer q ′ the commutativity of the diagram

H 0(F)q ′

⊗ OX → H 0(F(l H )) ⊗ OX

↓ ↓

H 0(F)q
⊗ O(l H ) → F(l H )

nd the surjectivity of the top horizontal map and the two vertical maps yield the surjectivity
f H 0(F) ⊗ O(l H ) → F(l H ), which implies that F is generated by its sections.

emark 2.9. OX (aH − b f ) is regular if and only if a ≥ 0 and b ≤ aa0.

emark 2.10. In particular OX ,OX ( f ),OX (H − f ) are regular but not −1-regular so
Reg(O ) = Reg(O ( f )) = Reg(O (H − f )) = 0.
X X X

5
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3. Splitting criteria and ulrich bundles

It is possible to use this notion of regularity in order to prove splitting criteria for vector
undles:

heorem 3.1. Let E be a rank r vector bundle on X.
Then following conditions are equivalent:

1. for any integer t ,

h1(E(t H + (c − 1) f )) = h1(E(t H − f )) = 0,

2. There are r integer t1, . . . , tr such that E ∼=
⨁r

i=1 OX (ti H ).

roof. (1) ⇒ (2). Let assume that t is an integer such that E(t H ) is regular but E((t − 1)H )
ot. By the definition of regularity and (1) we can say that E((t−1)H ) is not regular if and only
f H 2(E((t − 2)H + (c − 2) f )) ̸= 0. By Serre duality we have that H 0(E∨(−t H )) ̸= 0. Now
ince E(t H ) is globally generated by Remark 2.8 and H 0(E∨(−t H )) ̸= 0 we can conclude
hat OX is a direct summand of E(t H ). By iterating these arguments we get (2). (2) ⇒ (1).

h1(OX (t H + (c − 1) f )) = h1(OX (t H − f )) = 0, for any integer t , so if E ∼=
⨁r

i=1 O(ti H )
hen it satisfies all the conditions in (1). □

emark 3.2. If c = 2 the above theorem is the Horrocks criterion on P1
× P1(see [3,4]).

orollary 3.3. Let E be a vector bundle on X with Reg(E) = 0 and H 2(E(−2H + (c −

) f )) ̸= 0 or H 1(E(−2H + (c − 1) f )) = H 1(E(−H − f )) = 0, then OX is direct summand
f E.

roof. Since E(−H ) is not regular, if H 1(E(−2H + (c − 1) f )) = H 1(E(−H − f )) = 0,
e have H 2(E(−2H + (c − 2) f )) ̸= 0 and OX is a direct summand of E by the proof of the

bove Theorem. □

heorem 3.4. Let E be a vector bundle on X. Then following conditions are equivalent:

1. for any integer t ,

H 1(E(t H )) = H 1(E(t H + (c − 2) f )) = H 1(E(t H + (a0 − 1) f ))

= H 1(E(t H + (a1 − 1) f )) = 0

2. E is a direct sum of line bundles OX , O( f ) and O(H − f ) with a finite number of
suitable twists ti H.

roof. (1) ⇒ (2). Let assume that t is an integer such that E(t H ) is regular but E((t − 1)H )
ot. Up to a twist we may assume t = 0. By the definition of regularity and (1) we can say
hat E(−H ) is not regular if and only if one of the following conditions is satisfied:

(i) h2(E(−2H + (c − 2) f )) ̸= 0,
(ii) h1(E(−2H + (c − 1) f )) ̸= 0.

1
(iii) h (E(−H − f )) ̸= 0.

6
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Let us consider one by one the conditions: (i) Let h2(E(−2H + (c − 2) f )) ̸= 0, we can
onclude that OX is a direct summand as in the above theorem. (i i) Let h1(E(−2H + (c −

) f )) ̸= 0. Let us consider the exact sequence:

0 → E(−2H + (c − 1) f ) → E(−H + (a0 − 1) f )

⊕E(−H + (a1 − 1) f ) → E(− f ) → 0

ince

H 1(E(−H + (a0 − 1) f )) = H 1(E(−H + (a1 − 1) f )) = 0,

e have a surjective map

H 0(E(− f )) → H 1(E(−2H + (c − 1) f )).

herefore H 0(E ⊗ OX (− f )) ̸= 0 and there exists a non zero map

g : OX ( f ) → E .

On the other hand

H 1(E(−2H + (c − 1) f )) ∼= H 1(E∨(− f ))

so let us consider the exact sequence

0 → E∨(− f ) →
(
E∨

)2
→ E∨( f ) → 0.

Since

H 1(E∨) = H 1(E(−2H + (c − 2) f )) = 0,

e have a surjective map

H 0(E∨( f )) → H 1(E(−2H + (c − 1) f )).

herefore H 0(E∨
⊗ OX ( f )) ̸= 0 and there exists a non zero map

h : E → OX ( f ).

Let us consider the following commutative diagram:

H 1(E(−2H + (c − 1) f )) ⊗ H 1(E∨(− f ))
σ
−→ H 2(E(−2H + (c − 2) f )) ∼= C

↓ ↓

H 0(E(− f )) ⊗ H 1(E∨(− f ))
µ
−→ H 1(OX (− f ) ⊗ OX (− f )) ∼= C

↓ ↓

H 0(E(− f )) ⊗ H 0(E∨( f ))
τ
−→ H 0(OX (− f ) ⊗ OX ( f )) ∼= C

↑ ∼= ↑ ∼=

Hom(E,OX ( f )) ⊗ Hom(OX ( f ), E)
γ
−→ Hom(OX ( f ),OX ( f )).

he map σ comes from Serre duality and it is not zero, the right vertical maps are isomorphisms
nd the left vertical maps are surjective so also the map τ is not zero. This means that the map

h ◦ g : O( f ) → O( f )
s non-zero and hence it is an isomorphism.

7
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This isomorphism shows that O( f ) is a direct summand of E . (i i i) Let h1(E(−H − f )) ̸= 0.
et us consider the exact sequence:

0 → E(−H − f ) → E(−H )2
→ E(−H + f ) → 0.

Since h1(E(−H )) = 0 we get h0(E(−H + f )) ̸= 0. By Serre duality h1(E(−H − f )) =

h1(E∨(−H + (c − 1) f )). By the exact sequence

0 → E∨(−H + (c − 1) f ) → E∨((a0 − 1) f ) ⊕ E∨((a1 − 1) f ) → E∨(H − f ) → 0.

ince h1(E∨((a0 − 1) f )) = h1(E(−2H + (a1 − 1) f )) = 0 and h1(E∨((a1 − 1) f )) =

h1(E(−2H + (a0 − 1) f )) = 0 we get also h0(E∨(H − f )) ̸= 0. By arguing as above we
an conclude that OX (H − f ) is a direct summand of E . (2) ⇒ (1). As in Theorem 3.1. □

These results are useful to investigate ACM and Ulrich bundle on S(a0, a1). To this aim,
e recall that a bundle E on a surface with hyperplane section H is called ACM if its

ntermediate cohomology vanishes, i.e. H 1(E(t H )) = 0 for any t ∈ Z and it is called Ulrich
f H i (E(−H )) = 0 = H i (E(−2H )), for any i ≥ 0. In particular every Ulrich bundle is ACM.

emark 3.5. If c = 2 we get a0 = a1 = 1 so H 1(E(t H+(c−2) f )) = H 1(E(t H+(a0−1) f )) =

H 1(E(t H + (a1 −1) f )) coincide with H 1(E(t H )) and we have exactly the classification of the
CM bundles on P1

× P1 (see [16]). The proof in this case coincides with [3] Theorem 1.4.

emark 3.6. If c = 3 we get a0 = 1, a1 = 2 so H 1(E(t H + (c − 2) f )) = H 1(E(t H + (a1 −

) f )) = H 1(E(t H + f )) and H 1(E(t H +(a0 −1) f )) = H 1(E(t H )). It is well known (see [11])
hat the only indecomposable ACM bundles on X = S(1, 2) are OX ,OX ( f ),OX (2 f ),OX (H −

f ) and the rank two vector bundle obtained as the extension among OX (H − f ) and OX (2 f ).
ince the condition H 1(E(t H + f )) = 0 for any integer t is not satisfied by OX (2 f ) we obtain
gain Theorem 3.4.

emark 3.7. If c = 4 we get a0 = 2, a1 = 2 or a0 = 1, a1 = 3 so in the first case H 1(E(t H +

c − 2) f )) = H 1(E(t H + 2 f )) and H 1(E(t H + (a0 − 1) f )) = H 1(E(t H + (a1 − 1) f )) =

H 1(E(t H + f )) and in the second case H 1(E(t H + (c − 2) f )) = H 1(E(t H + (a1 − 1) f )) =

H 1(E(t H + 2 f )) and H 1(E(t H + (a0 − 1) f )) = H 1(E(t H )). It is well known (see [12]) the
lassification of indecomposable ACM bundles on X = S(2, 2) or X = S(1, 3) and it is easy
o obtain again Theorem 3.4.

orollary 3.8. Let E be an indecomposable vector bundle on X with Reg(E) = 0 and
H 2(E(−2H + (c − 2) f )) = 0.

1. If h1(E(−2H + (c − 1) f )) ̸= 0 and H 1(E(−H )) = H 1(E(−2H + (a0 − 1) f )) =

H 1(E(−2H + (a1 − 1) f )) = 0 then E ∼= OX (H − f ).
2. h1(E(−H − f )) ̸= 0 and H 1(E(−2H + (c − 2) f )) = H 1(E(−H + (a0 − 1) f )) =

H 1(E(−H + (a1 − 1) f )) = 0 then E ∼= OX ( f ).

roof. Since E(−H ) is not regular and H 2(E(−2H + (c − 2) f )) = 0, if H 1(E(−2H + (c −

) f )) = 0 then H 1(E(−H − f )) ̸= 0 and viceversa. So, thanks the other vanishings, by the
roof of the above Theorem, we obtain (i) and (i i). □

For c > 4 the family of ACM bundles are too complicated (see [12]) but we can use our

otion of regularity to study Ulrich bundles. We need the following Lemmas:

8
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Lemma 3.9. If E is a globally generated ACM bundle on X, then

H 1(E((a − 1)H + b f )) = H 1(E(aH + (b − 1) f )) = 0

or any a, b ≥ 0.

roof. Since E is globally generated we have a surjective map

OX → E → 0.

ince h2(OX (−H − f )) = 0 we obtain h2(E(−H − f )) = 0. Let us consider this exact
ohomology sequence:

· · · → H 1(E(−H )) → H 1(E| f (−H )) → H 2(E(−H − f )) → . . .

ince the first and the third groups vanish by hypothesis, then also the middle group vanishes.
s in Lemma 2.5 H 1(E| f ((a − 1)H + b f )) = 0 for any a ≥ 0 and for any integer b. This

mplies H 1(E((a −1)H +b f )) = 0 for any a, b ≥ 0. By sequence (1) tensored by E(−H − f )
e get

0 → E(−2H + (c − 1) f ) → E(−H + (a0 − 1) f )

⊕E(−H + (a1 − 1) f ) → E(− f ) → 0.

Since E is globally generated h2(OX (−2H+(c−1) f )) = 0 we obtain h2(E(−2H+(c−1) f )) =

. Now in the sequence in cohomology

H 1(E(−H + (a0 − 1) f )) ⊕ H 1(E(−H + (a1 − 1) f ))

→ H 1(E(− f )) → H 2(E(−2H + (c − 1) f )) = 0

he first (notice that a0 − 1, a1 − 1 ≥ 0) group vanishes (notice that a0 − 1, a1 − 1 ≥ 0), then
lso the middle group vanishes. We obtain H 1(E(aH + (b − 1) f )) = 0 for any a, b ≥ 0. □

emma 3.10. If E is an Ulrich bundle on X, then

(i) H 2(E((a − 2)H + b f )) = 0 for any a, b ≥ 0.
(ii) H 1(E((a − 1)H + b f )) = H 1(E(aH + (b − 1) f )) = 0 for any a, b ≥ 0.

(iii) E is regular.

roof. Since E is Ulrich we have

hi (E(−H )) = hi (E(−2H )) = 0

or any i . So we obtain (i) as in Lemma 2.4. Since an Ulrich bundle is ACM and globally
enerated, by the above Lemma (i i) is proved. By (i) and (i i) we obtain the vanishing of
efinition 2.2 and hence (i i i). □

Thanks to our notion of regularity and the above we can give a simpler proof of [12]
heorem B without a Beilinson type spectral sequence:

heorem 3.11 ([12] Theorem B). An indecomposable E on X is Ulrich if and only if E fits
nto:

0 → O (H − f )a
→ E → O ((c − 1) f )b

→ 0, for some a, b ≥ 0. (4)
X X

9
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Proof. By (i i i) of Lemma 3.10, E is regular and since h0(E(−H )) = 0, E(−H ) must be not
egular. By (i) and (i i) of Lemma 3.10, h2(E(−2H + (c − 2) f )) = 0 and we may conclude
hat one of the following conditions is satisfied:

(α) h1(E(−H − f )) ̸= 0.
(β) h1(E(−2H + (c − 1) f )) ̸= 0.

α) Let h1(E(−H − f )) = a ̸= 0. Let us consider the exact sequence:

0 → E(−H − f ) → E(−H ) → E(−H + f ) → 0.

Since h1(E(−H )) = h0(E(−H )) = 0 we get h0(E(−H + f )) = a.
So there exists a map

h : O(H − f )a
→ E .

Let b = h1(E(−2H + f )). We distinguish two cases: b = 0 and b ̸= 0.
Let assume first b = 0. By Serre duality h1(E(−H − f )) = h1(E∨(−H + (c − 1) f )) = a.

rom

· · · → H 1(E(−2H + f )) → H 1(E| f (−2H + f )) → H 2(E(−H )) → . . .

ince the first (b = 0) and the third groups vanish by hypothesis, then also the middle group
anishes. As in Lemma 2.5 H 1(E| f ((a − 2)H + b f )) = 0 for any a ≥ 0 and for any integer b.
his implies H 1(E((a − 1)H + b f )) = 0 for any a, b ≥ 0. In particular h1(E∨((a0 − 1) f )) =

h1(E(−2H + (a1 −1) f )) = 0 and h1(E∨((a1 −1) f )) = h1(E(−2H + (a0 −1) f )) = 0 so, from
he exact sequence

0 → E∨(−H + (c − 1) f ) → E∨((a0 − 1) f ) ⊕ E∨((a1 − 1) f ) → E∨(H − f ) → 0,

e get also h0(E∨(H − f )) ̸= 0. Hence as in Theorem 3.4 we obtain E ∼= OX (H − f ).
Let assume now b > 0. By [8] we may assume that the kernel K and the cokernel G of h

re also Ulrich. So we obtain two exact sequences with also U Ulrich:

0 → U → E → G → 0,

nd

0 → K → OX (H − f )a
→ U → 0. (5)

otice that by Lemma 3.10 and sequence (1) tensored by U (−2H − f ) we get h2(U (−H −

f )) = 0. So if we twist the sequence (5) by −H− f , since h0(U (−H− f )) = h2(U (−H− f )) =

and h1((OX (−2 f )a)) = a, we have h1(K (−H − f )) ̸= 0. Now let us consider the sequence
n cohomology:

H 0(U (−2H + f )) → H 1(K (−2H + f )) → H 1(OX (−H )a)

ince H 0(U (−2H + f )) = H 1(OX (−H )a) = 0, we get H 1(K (−2H + f )) = 0 and by the
rgument above for b = 0 we may conclude that OX (H − f ) is a direct summand of K . By
terating this argument we get the sequence (5) simply becomes

0 → OX (H − f )a′

→ OX (H − f )a
→ OX (H − f )a−a′

→ 0

or a suitable positive integer a′. Hence we may assume that h is injective. Let us denote by
G the cokernel of h:

a
0 → OX (H − f ) → E → G → 0.

10
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Notice that h1(G(−H − f )) = 0. If we twist the above exact sequence by OX (−2H + t f ),
ince hi (OX (−H + t f )) = 0 for any i, t we get b = h1(G(−2H + f )) and h1(G(−2H + t f )) =

h1(E(−2H + t f )) for any integer t .
From

0 → G(−H − 2 f ) → G(−H − f )2
→ G(−H ) → 0,

e obtain h1(G(−H − t f )) = 0 for any t ≥ 0.
Let us consider the exact sequence:

0 → G(−2H + f ) → G(−H + (−a0 + 1) f )

⊕ G(−H + (−a1 + 1) f ) → G(−(c − 1) f ) → 0

Since

H i (G(−H + (−a0 + 1) f )) = H i (G(−H + (−a1 + 1) f )) = 0,

or any i , we have H 0(G ⊗ OX (−(c − 1) f )) = b ̸= 0. On the other hand

H 1(G(−2H + f )) ∼= H 1(G∨((c − 3) f ))

o let us consider the exact sequence

0 → G∨((c − 3) f ) → 2G∨((c − 2) f ) → G∨((c − 1) f ) → 0.

ince

H 1(G∨((c − 2) f )) = H 1(G(−2H )) = 0,

we get H 0(G∨
⊗ OX ((c − 1) f )) = b ̸= 0. So by arguing as in Theorem 3.4 we obtain

G ∼= OX ((c − 1) f )b and E fits in (4).
(β) Notice that if E is Ulrich also E ′

= E∨(H + (c − 2) f ) is Ulrich. The condition

h1(E(−2H + (c − 1) f )) = b ̸= 0

y Serre duality corresponds to

h1(E∨(− f )) = h1(E∨(H + (c − 2) f ) ⊗ OX (−H − (c − 1) f ))

= h1(E ′(−H − (c − 1) f )) ̸= 0.

et us consider for any integer t the exact sequence

0 → E ′(−H − (t + 2) f ) → E ′(−H − (t + 1) f ) → E ′(−H − t f ) → 0.

f t ≥ 0 the map

H 1(E ′(−H − (t + 2) f )) → H 1(E ′(−H − (t + 1) f ))

s injective. Since h1(E ′(−H − (c − 1) f )) ̸= 0, we have h1(E ′(−H − (c − 2) f )) ̸= 0
nd by a recursive argument h1(E ′(−H − t f )) ̸= 0 for −(c − 1) ≤ t ≤ 1. In particular

h1(E ′(−H − f )) ̸= 0, so we may repeat the argument of the case (α) for the Ulrich bundle E ′

nd we obtain E ′ ∼= OX (H − f ) (hence E ∼= OX ((c − 1) f )) or E ′ fits in the extension

0 → OX (H − F)b
→ E ′

→ OX ((c − 1) f )a
→ 0
hat dualized and tensored by OX (H + (c − 2) f ) becomes (4). □

11
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Remark 3.12. If c = 2, dim(Ext1(OX ((c − 1) f ),OX (H − f ))) = 0 so (4) splits.
If c = 3, dim(Ext1(OX ((c − 1) f ),OX (H − f ))) = 1 so from (4) we only obtain a unique

ank two indecomposable Ulrich bundle.
If c = 4, dim(Ext1(OX ((c − 1) f ),OX (H − f ))) = 2 so from (4) we only obtain families

f dimension at most one of indecomposable Ulrich bundles (see [12]).
If c > 4, dim(Ext1(OX ((c − 1) f ),OX (H − f ))) > 2 so from (4) we may obtain arbitrary

arge families of indecomposable Ulrich bundles (see [12]).

. Logarithmic bundle on S(a0, a1)

In this section we will show how the notion of regularity introduced here can be useful also
n the study of logarithmic bundles of some families of divisors on rational normal scrolls.

efinition 4.1. A divisor D on a non-singular variety X is said to have normal crossings if

D,x is formally isomorphic to the quotient of OX,x by an ideal generated by t1, . . . , tk , where

1, . . . , tk is a subset of the set of local parameters in OX,x for all x ∈ D. D is also said to have
imple normal crossings if it is the union of smooth divisors Di , i = 1, . . . , m, which intersect
ransversely at each point.

efinition 4.2. An arrangement on X is defined to be a set D = {D1, . . . , Dm} of smooth
rreducible divisors of X such that Di ̸= D j for i ̸= j . To an arrangement D on X , we can
ssociate the logarithmic sheaf Ω1

X (log D), the sheaf of differential 1-forms with logarithmic
oles along D.

If D has simple normal crossings, its logarithmic sheaf is known to be locally free and so
t can be called to be the logarithmic bundle. It admits the residue exact sequence

0 → Ω1
X → Ω1

X (log D)
res
→

⨁
ϵi∗ODi → 0. (6)

rom now on, let X be S(a0, a1) and let e = a1 − a0 = −C2
0 . Let us consider the lines

L i ∈ |OX ( f )|. Recall (see [14] II 8.11.) that the cotangent bundle of X is given in

0 → OX (−2 f ) → Ω1
X → OX (−2H + c f ) → 0,

nd this extension splits only if e = 0:

roposition 4.3. Let D = {L1, . . . , La} be an arrangement of a lines on X with L i ∈ |OX ( f )|.
hen we have

Ω1
X (log D) ∼= OX ((a − 2) f ) ⊕ OX (−2H + c f ),
f a ≥ e + 1.

12
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Proof. Let D = {L1}. We apply the covariant functor Hom(OL1 , −) to vertical column of the
iagram

0
↓

OX (−2 f )
↓

0 → Ω1
X → Ω1

X (log D) → OL1 → 0
↓

OX (−2H + c f )
↓

0

.

s the dimension of Ext1(OL1 ,OX (−2H + c f )) is h1(OL1 ⊗ OX (−2 f )) = h1(OP1 ) = 0 and
he dimension of Ext0(OL1 ,OX (−2H + c f )) is h2(OL1 ⊗ OX (−2 f )) = h2(OP1 ) = 0, we get

Ext1(OL1 ,Ω
1
X ) ∼= Ext1(OL1 ,OX (−2 f ))

nd their dimension is h1(OL1 ⊗OX (−2H + c f )) = h1(OL1 (−2)) = h1(OP1 (−2)) = 1. So we
et the unique extension (note that OL1 ⊗ OX (− f ) ∼= OL1 ) 0 → OX (−2 f ) → OX (− f ) →

L1 → 0 to close the following diagram

0 0
↓ ↓

0 → OX (−2 f ) → OX (− f ) → OL1 → 0.

↓ ↓ ∥

0 → Ω1
X → Ω1

X (log D) → OL1 → 0
↓ ↓

O(−2H + c f ) = O(−2H + c f )
↓ ↓

0 0

Now, let a ≥ 2, D = L1, . . . , La , D′
= L1, . . . , La−1 and the assertion true for a − 1 to

rgue by induction. Similarly, we get the diagram

0 0
↓ ↓

0 → OX ((a − 3) f ) → OX ((a − 2) f ) → OL1 → 0.

↓ ↓ ∥

0 → Ω1
X (log((a − 1) f )) → Ω1

X (log(a f )) → OL1 → 0
↓ ↓

OX (−2H + c f ) = OX (−2H + c f )
↓ ↓

0 0

n fact, the dimension of Ext1(OL1 ,OX ((a − 3) f )) is h1(OL1 ⊗ OX (−2H + (c − e) f )) =

h1(OL1 (−2)) = h1(OP1 (−2)) = 1 and the dimension of Ext1(OL1 ),OX (−2H + c f ) is
h1(OL1 ⊗ OX (−2 f )) = 0. In order to have a splitting sequence in the second column,
t is enough that Ext1(OX (−2H + c f )),OX ((a − 2) f ) = 0. We have that the dimension
f Ext1(OX (−2H + c f ),OX ((a − 2) f )) is h1(OX (2H + (a − 2 − c) f )) which is zero if

h1(O (2a + a − 2 − c)) = 0. This implies 2a + a − c ≥ 1, hence a ≥ e + 1. □
P1 0 0

13
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Proposition 4.4. Let D = {L1, . . . , La, C1} be an arrangement of a ≥ e + 1 lines and one
rational curve on X with L i ∈ |OX ( f )| and C1 ∈ |OX (H − a1 f )|. Then we have

Ω1
X (log D) ∼= OX ((a − 2) f ) ⊕ OX (−H + a0 f ).

Proof. In the proof we will use that the dimension of Ext1(OC1 ,OX ((a − 2) f )) is h1(OC1 ⊗

X (−2H+(c−a) f )) = h1(OP1 (−2c+(c−a+2a1))) = h1(OP1 (−c+2a1−a)) = h1(OP1 (e−a)),
or any a. Let us first consider the case of D = {L1, . . . , Le+1, C1}. Let D′

= {L1, . . . , Le+1}.
hen we have the sequence

0 → Ω1
X (log D′) → Ω1

X (log D) → OC1 → 0.

hanks to Proposition 4.3

Ext1(OC1 ,OX (−2H + c f ))Ω1
X (log D′) ∼= OX ((e − 1) f ) ⊕ OX (−2H + c f ).

ow, as noted before, Ext1(OC1 ,OX ((a − 2) f )) vanishes if a ≤ e + 1 and the dimension of
Ext1(OC1 ,OX (−2H +c f )) is h1(OC1 ⊗OX (−2 f )) = h1(OP1 (−2)) = 1 and we get the unique
xtension

0 → OX (−2H + c f ) → OX (−H + (c − a1) f ) → OC1 → 0.

hus there exists a uniquely determined extension of OC1 by Ω1
X (log D′) and it must be

X ((e − 1) f ) ⊕ OX (−H + a0 f ).
Now assume that the assertion is true for a ≥ e + 1 to use induction. For D =

L1, . . . , La+1, C1}, if D′
= {L1, . . . , La, C1} we have the sequence

0 → Ω1
X (log D′) → Ω1

X (log D) → OLa+1 → 0.

hanks to the above argument

Ω1
X (log D′) ∼= OX ((a − 2) f ) ⊕ OX (−H + a0 f ),

s before, the dimension of Ext1(OLa+1 ,OX ((a−2) f )) is h1(OLa+1 ⊗OX (−2H +(c−a) f )) =

h1(OP1 (−2)) = 1 and the dimension of Ext1(OLa+1 ,OX (−H +ao f )) is h1(OLa+1 ⊗OX (−H +

a1 − 2) f )) = h1(OP1 (−1)) = 0 and we get the unique extension

0 → OX ((a − 2) f ) → OX ((a − 1) f ) → OLa+1 → 0.

hus there exists a uniquely determined extension of OLa+1 by Ω1
X (log D′) and it must be

X ((a − 1) f ) ⊕ OX (−H + a0 f ). □

If e > 0, h0(OX (H − a1 f )) = 1 and we cannot consider an arrangement with more than a
urve C j ∈ |OX (H−a1 f )|. When e = 0, h0(OX (H−a1 f )) = 2 and a curve C ∈ |OX (H−a1 f )|
s rational of degree a0. Moreover (H − a1 f )2

= 0 so we have a one dimensional family of
isjoint lines in |OX ( f )| and a one dimensional family of disjoint rational curve of degree a0.
or this reason we consider now in more detail the case e = 0.

heorem 4.5. Let e = 0. Let D = {L1, . . . , La, C1, . . . , Cb} be an arrangement of a ≥ 1
ines and b ≥ 1 rational curves on X with L i ∈ |OX ( f )| and C j ∈ |OX (H − a1 f )|. Then we
ave

1 ∼
ΩX (log D) = OX ((a − 2) f ) ⊕ OX ((b − 2)H + (c − ba1) f ).

14
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Proof. Let us first consider the case of D = {L1, C1, C2}. Let D′
= {L1, C1}. Then we have

he sequence

0 → Ω1
X (log D′) → Ω1

X (log D) → OC2 → 0.

Thanks to Proposition 4.4

Ω1
X (log D′) ∼= OX (− f ) ⊕ OX (−H + a0 f ).

Note that the dimension of Ext1(OC2 ,OX (− f )) is h1(OC2 ⊗ OX (−2H + (c − 1) f )) =

h1(OP1 (−2c + c − 1 + 2a1)) = h1(OP1 (−c − 1 + 2a1)) = 0 and the dimension of
Ext1(OC2 ,OX (−H + a0 f )) is h1(OC2 ⊗ OX (−H + (c − 2 − a0) f )) = h1(OP1 (−c + c −

+ a1 − a0)) = 1 and we get the unique extension

0 → OX (−H + a1 f ) → OX → OC2 → 0.

hus there exists a uniquely determined extension of OC2 by Ω1
X (log D′) and it must be

X (− f ) ⊕ OX .
Now assume that the assertion is true for (1, b) with b ≥ 2 to use induction. For the case

f (1, b + 1) D = {L1, C1, . . . , Cb+1}. Let D′
= {L1, C1, . . . , Cb}, then we have the sequence

0 → Ω1
X (log D′) → Ω1

X (log D) → OCb+1 → 0.

hanks to above argument and the inductive hypothesis,

Ω1
X (log D′) ∼= OX (− f ) ⊕ OX ((b − 2)H + (c − ba1) f ).

et us tensor the above sequence by OX ( f ) and we obtain

0 → OX ⊕ OX ((b − 2)H + (c − ba1 + 1) f ) → Ω1
X (log D) ⊗ OX ( f ) → OCb+1

⊗ OX ( f ) → 0.

e call E = Ω1
X (log D) ⊗ OX ( f ) and we want to show that E is regular. Notice that

X ⊕OX ((b−2)H+(c−ba1+1) f ) is regular. So h1(E(− f )) = h1(OCb+1⊗OX ) = h1(OP1 ) = 0.
oreover h1(E(−H + (c −1) f )) = h1(OCb+1 ⊗OX (−H + c f )) = h1(OP1 (−c + c +a1 + c)) =

h1(OP1 (a1 + c)) = 0 and h2(E(−H + (c − 2) f )) = h2(OCb+1 ⊗ OX (−H + (c − 1) f )) = 0.
hus we have that E is regular and, since h1(OCb+1 ⊗OX (−2H + (c − 1) f )) = h1(OP1 (−2c +

a1 + c − 1)) = 0, we get h2(E(−2H + (c − 2) f )) = h0(E) ≥ 1 so, by Corollary 3.3,
e can conclude that OX is a direct summand of E . Hence, if E is a vector bundle, E ∼=

X ⊕ OX ((b − 1)H + (c − (b + 1)a1 + 1) f ) and

Ω1
X (log D) ∼= OX (− f ) ⊕ OX ((b − 1)H + (c − (b + 1)a1) f ).

Finally let us deal with the case when a and b are at least 1 and b at least 2. The logarithmic
undle Ω1

X (log D) is an extension of (⊕OL i ) ⊕ (⊕OC j ) by OX (−2 f ) ⊕OX (−H + a0 f ). Note
hat we have

Ext1(⊕OL i ,OX (−H + a0 f )) = 0

y Proposition 4.4 and

Ext1(⊕OC j ,OX (−2 f )) = 0

y the above argument.
Thus Ω1

X (log D) corresponds to an element ϵ;

ϵ ∈ Ext1(⊕O ,O (−2 f )) ⊕ Ext1(⊕O ,O (−H + a f )).
L i X C j X 0

15
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From the argument in Proposition 4.4, we observe that the first factor of ϵ with

Ext1(⊕OL i ,OX (−H + a0 f )) = 0

enerates OX ((a − 2) f ) ⊕ OX (−H + a0 f ) and similarly, by the argument for the case (0, b)
he second factor generates OX (−2 f ) ⊕ OX ((b − 2)H + (c − ba1) f ). Thus ϵ corresponds to
he bundle OX ((a − 2) f ) ⊕ OX ((b − 2)H + (c − ba1) f ). □

emark 4.6. When c = 2 the above Theorem coincides with [2] Proposition 6.3.

We are able finally to classify regular ACM logarithmic bundles:

orollary 4.7. Let e = 0 and c > 2. Let D be an arrangement of smooth curves on X with
imple normal crossings. If Ω1

X (log D) is a regular ACM bundle, then D consists of a lines in
OX ( f )| with 2 ≤ a ≤ c + 1 and 2 rational curves in |OX (H − a1 f )|. In particular we have
hat Ω1

X (log D) has always regularity 0:

Ω1
X (log D) ∼= OX ((a − 2) f ) ⊕ OX .

roof. If D := {D1, . . . , Dm} consists of m smooth curves, then it admits the sequence

0 → OX (−2 f ) ⊕ OX (−2H + c f ) → Ω1
X (log D) → ⊕

m
i=1ODi → 0. (7)

f E = Ω1
X (log D) is regular, then we have h1(E(− f )) = 0. From the sequence (7) twisted

y OX (− f ) and the fact that h2(OX (−3 f )) = h2(OX (−2H + (c − 1) f )) = 0, we deduce that
h1(ODi ⊗ OX (− f )) = 0 for any i = 1, . . . m. Let Di ∈ |OX (si H + ti f )| with si ≥ 0 and
i ≥ −a1, we get h1(ODi ⊗ OX (− f )) = h1(OP1 (−si )) = 0, so si = 0 or si = 1.

Moreover by Lemma 3.9 H 1(E((a − 1)H + b f )) = H 1(E(aH + (b − 1) f )) = 0 for any
, b ≥ 0, in particular we have h1(E(−H + (a1 −1) f )) = 0. From the sequence (7) twisted by
X (−H +(a1−1) f ) and the fact that h2(OX (−H +(a1−3) f )) = 0 and h2(OX (−3H +(c+a1−

) f )) = h0(OX (H +(−1−a1) f )) = 0, we deduce that h1(ODi ⊗OX (−H +(a1 −1) f )) = 0 for
ny i = 1, . . . m. We get h1(ODi ⊗OX (−H +(a1 −1) f )) = h1(OP1 (−csi +(a1 −1)si − ti )) = 0.
f si = 0 we obtain ti = 1 so Di ∈ |OX ( f )|. If si = 1 we must have −c + a1 − 1 − ti ≥ −1,
ence ti ≤ −a0. Since a0 = a1 and ti ≥ −a1 we may conclude that ti = −a1. So we have only
wo cases: Di ∈ |OX ( f )| or Di ∈ |OX (H − a1 f )|. By Theorem 4.5

Ω1
X (log D) ∼= OX ((a − 2) f ) ⊕ OX ((b − 2)H + (c − ba1) f ).

e recall that OX (s H+t f ) is ACM if and only if −1 ≤ t ≤ c−1 so we must have 2 ≤ a ≤ c+1
nd (since c > 2) b = 2. □
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