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CARTAN GEOMETRY, SUPERGRAVITY
AND GROUP MANIFOLD APPROACH

Jordan François a, b, c and Lucrezia Ravera d, e, f

Abstract. We make a case for the unique relevance of Cartan geometry
for gauge theories of gravity and supergravity. We introduce our discussion
by recapitulating historical threads, providing motivations. In a first part we
review the geometry of classical gauge theory, as a background for understan-
ding gauge theories of gravity in terms of Cartan geometry. The second part
introduces the basics of the group manifold approach to supergravity, hinting
at the deep rooted connections to Cartan supergeometry. The contribution
is intended, not as an extensive review, but as a conceptual overview, and
hopefully a bridge between communities in physics and mathematics.
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1. Introduction

It is by now well known that the differential geometry of connections on fiber
bundles is the mathematical underpinning of classical gauge field theory, which
is itself the framework nesting the best current theories of fundamental physics
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accounting for the structure and interactions of the elementary constituents of the
universe.

Gauge field theories of the Yang-Mills type grew out of General Relativity (GR),
largely via the key contributions of H. Weyl between 1918-19 [167, 168] and 1929
[169], in the Abelian U(1) case. In 1954, Yang and Mills gave the first non-Abelian
model, with SU(2), hence the name synonymous with non-gravitational gauge
theories: Yang-Mills (YM) theories [175]. A fact quite unfair, as it is the Japanese
physicist Ryoyu Utiyama who, almost simultaneously and independently of Yang
and Mills, laid out the general framework of gauge field theory (including the case
of gravity) for any Lie group [162]. See [126] for an enlightening concise history of
the subject.

The development of the theory of connections and of fiber bundles also owes
much to the impulse given by GR [33]. It reached full maturity in the 50s [71, 72,
104, 115, 154], and textbook material in the 60s [106, 108, 109]. By the late 70s, it
had become clear that it is the rigorous foundation of classical gauge field theory
[70, 151, 152, 173, 174]. This was slowly assimilated by the physics community,
bore fruitful results in the 80s in the realm of non-perturbative field theory [51]
(e.g. regarding gauge anomalies [21, 24, 25, 43, 44, 75, 156]), and was certainly
common knowledge by the early 90s. We remind the elementary facts of the matter
in Section 2.1.

The origin of classical gauge theories of gravity could be traced back to Ein-
stein’s 1925 tetrad formulation introducing local Lorentz, SO(1, 3), symmetry
transformations [144, 161]. It partly inspired Weyl’s 1929 paper [169], dealing with
SL(2,C) spinors, which also cemented in history the gauge principle for U(1) and
electromagnetism. The subject started in earnest, in a modern form, with the
1955 paper of R. Utiyama [162]. It continues with the famous papers by Kibble
1961 [101] and Sciama 1964 paper [148], reintroducing torsion alongside Riemann
curvature in a Lorentz-gauge reformulation of GR. Other variants of GR followed
through the 70s, like Poincaré gravity, affine gravity, Weyl-Cartan gravity, de Sitter
and conformal gravity – see e.g. [22] for an introductory overview.

Gauge theories of gravity do not fit so well in the mold of Ehresmann connections
on principal bundles. Their right mathematical home is to be found with Cartan’s
notion of connection, established between 1923–1925 [32, 33, 34], as reformulated
in the bundle language by Ehresmann [72],1 and then by Kobayashi in [103,
104] (around the same time Utiyama was founding the topic of gauge gravity).
Subsequently, Cartan geometry, though a well-developed subject [105, 106, 107,
124, 125, 159], was relatively eclipsed by the far reaching development of the general
theory of principal connections on bundles and did not reach the same level of
widespread awareness. Some nonetheless noticed early their relevance to Penrose’s
then new twistor theory [85, 127, 128], as well as to non-relativistic classical physics
[26, 27].

1Cartan was the teacher of Ehresmann. It is as he was giving a modernised definition of his
master’s notion of connection that he proposed his own far reaching generalisation. See [115] for
a brief history.
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In the late 80s and 90s, the schools developing tractor calculi for the classical
projective and conformal, and many other, geometries (see e.g. [13, 66, 89]), and the
theory of invariant operations for parabolic geometries (e.g. [29, 30, 31]), were well
aware of their deep relations to Cartan connections [2]. Cartan geometry was first
brought to a wider audience by Sharpe’s ’97 textbook [149], and a more advanced
and complete presentation – stressing in particular the organic relation to tractor
calculi for parabolic geometries – is the 2009 volume [28] by Čap & Slovák.

During that same period, the deep relevance of Cartan connections to gravita-
tional physics was only noticed in isolated instances – see e.g. [8, 10, 82, 83, 111,
113, 170, 171, 172, 178]. It is our intention to make the case, in section 2.2, that
Cartan geometry is indeed the natural mathematical foundation of classical gauge
theories of gravity, so that it should be more widely recognized as such.

In quantum field theory (QFT), fermions fields are to be treated as anticom-
muting variables. Berezin pioneered in the late 60s and 70s the explicit use of
Grassmann algebras [16], and super-Lie groups with Kac [18], to give a firmer mathe-
matical ground to the quantization procedure for theories with fermionic fields, and
to try and make sense of the connection between their spin and anticommutation pro-
perties [19]. Furthermore, the Faddeev-Popov [73] and Becchi-Rouet-Stora-Tyutin
(BRST) [14, 15, 160] quantization procedure involves non-physical anticommuting
variables called ghost fields.

Jumping to more tentative theoretic constructions, the 70s saw the birth of
the idea of supersymmetric field theories [88, 142, 163, 165]. This class of theories
have several desirable properties (notably regarding their quantization, with tame
divergences), allowing in particular to circumvent the so-called Coleman-Mandula
theorem [47] stating that the (non-Grassmannian) Lie group of symmetries of a
quantum field theory can only be a direct product of spacetime (Poincaré) and
internal (Yang-Mills) symmetries.

It follows that theories with local (“gauged” in the physics terminology) super-
symmetry naturally are gauge theories of gravity, called supergravity (SUGRA)
theories. In the late 70s and early 80s, supergravity models [45, 74, 97, 98, 116, 155]
became a hot topic, and their geometric interpretation in terms of “superspaces”
was quick to emerge [166]. In particular the “(super) group-manifold approach” to
supergravity was pioneered by Ne’eman and Regge [121, 122] and developed by
the school of Castellani, D’Auria, and Fré [39]. Supersymmetry and supergravity
caught additional intellectual wind after their close connection to super-String and
M-theory was established between the mid 80s and the mid 90s.

Meanwhile, mathematicians thus took early interest in the late 70s in developing
“supergeometry", i.e. a Z2-graded generalisation of standard differential geometry.
As a case of “mildly” non-commutative geometry, a natural language to do so
was via the tools of algebraic geometry, sheaf theory, and locally ringed spaces.
This approach is associated to the names of pioneers like Berezin [17], Leites [114],
Kostant [112]). An (essentially) equivalent approach was developed, pioneered by
deWitt and Rogers [63, 133, 134, 176], which parallels the standard treatment
of differential geometry, defining supermanifold as being locally isomorphic to
a model supervector space Rp|q. It is closer to the practice in “superspace” of
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physicists. Few pursued an even more abstract categorical approach [119, 150, 164],
that would prove able to encompass both previous approaches [140, 145] and is
arguably more apt to handle infinite dimensional superspaces [141] (the locally
ringed space approach is usually deemed maladapted for the task [62]) – which are
important when studying automorphism and symmetry groups of (super) geometric
structures.2

In the same way that Cartan geometry is the foundation of classical gauge
theories of gravity, one expects that Cartan supergeometry is the right mathematical
framework for supergravity theories.3 Despite the idea being fairly natural – one
of us entertaining it for several years – in the physics literature, awareness of
the relevance of Cartan’s framework to supergravity has been rare and sporadic
[69, 177]. As a matter of fact, Cartan supergeometry was never developed in earnest
by mathematicians.4 The first deliberate forays towards the basis of the subject is
[67] (with application intended to Loop Quantum Gravity [136, 138], rather than
supergravity).

While the pioneers of the (super)group manifold approach to (super)gravity
shown clear awareness of Cartan’s view [121, 122], it is less clear for subsequent
contributors. Still, the starting point of the approach is what mathematicans
would recognise as Klein supergeometry, i.e. flat Cartan supergeometry. Then,
by relaxing the Maurer-Cartan structure equation (switching on curvatures), one
goes from supergroup manifolds to the so-called “soft supergroup manifolds”: the
latter corresponds to a Cartan super-bundle. This will be described in Section 3.
The supergroup manifold approach can be understood as a version of Cartan
supergeometry in the deWitt-Rogers approach to supergeometry.

In Section 4 we conclude by opening on a further extension of Cartan geometry,
to higher (super) geometry, that must be the right mathematical foundation for
both supergravity and string theories with higher form (super) potentials and
higher form (super) symmetries.

2. Classical gauge theories

2.1. Yang-Mills theories: Kinematics and dynamics. In this section, we
review the geometric underpinning of classical Yang-Mills field theory, as it will

2One may draw an analogy from physics, with the development of quantum mechanics (QM):
Its first incarnation as “matrix mechanics” devised in 1924-25 by Heisenberg, Born and Jordan
used mathematics unfamiliar to physicists (matrices). The second version devised by Schrädinger
in 1925-26 using standard differential equation was welcomed as more familiar and intuitive. Dirac
is credited for first convincingly argue that both approaches were equivalent, but it took Von
Neumann to give the broad encompassing (and now textbook) formulation in terms of operators
on (possibly infinite dimensional) Hilbert spaces. Later developments in terms of C∗-algebras are
considered more advanced formulation of QM, and the basis of refined mathematical formulation
of quantum field theory (QFT); one may wonder what would be the analogue in the development
of (higher) supergeometry.

3At least for the class of theories for which the gravitational (super) gauge potential is a 1-form:
some models include, as in string theory, higher form fields and symmetries which necessitate the
framework of higher geometry. We come back to this in the conclusion.

4Except in a programmatic way within the considerable [147], on higher supergeometry.
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provide the background for the discussion the interplay between gauge theories of
gravity and Cartan geometry. For another introductory text (aimed at students)
see [83] and for more in depth treatments we refer e.g. to [21, 90, 120].

2.1.1. Kinematics = Geometry. The geometry of bundles provide the kinematics
of a gauge field theory. We briefly summarise this fact via the following dictionary
between physics and mathematics.

Physics Mathematics

Global/rigid gauge symmetry Structure group H of a principal bundle P H−→M

Spacetime M smooth base manifold

Matter fields φ
(particles in QFT)

Sections Γ(E) of associated bundles E = P ×ρ V
for H-representations (ρ, V ), ρ : H → GL(V )
⇔ V -valued tensorial 0-forms ϕ ∈ Ω0

tens(P, ρ) –
(local rep.)

Yang-Mills gauge potential A (loc. rep.) Ehresmann connection 1-form ω on P

Minimal coupling btwn φ and A (loc. rep.) Exterior covariant derivative
Dϕ = dϕ+ ρ∗(ω)ϕ

Yang-Mills field strength F (local rep. of) Curvature 2-form Ω ∈ Ω2
tens(P, h) of ω

Bianchi identities DF = 0
(in the Abelian case, dF = 0 gives
the sourceless Maxwell equations)

(local rep. of) Bianchi identity DΩ = 0

Gauge transformations/group
( A 7→ A′ = γ−1Aγ + γ−1dγ

F 7→ F ′ = γ−1Fγ
φ 7→ φ′ = ρ(γ)−1φ )

Passive GT : local gluings induced by change of local
trivialisation via the transition functions of P

Active GT : group of vertical automorphisms of P ,
Autv(P ) ⇔ gauge group of P , H = {γ : P → H |

R∗hγ = h−1γh}
⇔ Γ(E) with E = P ×Conj H

Tab. 1: Bundle geometry and the kinematics of gauge field theories

There is much to say about the conceptual and ontological meaning of the
presence of gauge symmetries in our most fundamental theories of physics (see e.g.
[20, 80, 137]). Here, we simply stress that passive gauge transformations are direct
analogues of coordinates transformations on M (via its transitions functions), while
active gauge transformations are direct analogues of Diff(M): In GR, coordinate
changes are sometimes called “passive diffeomorphisms”, to distinguish from the
genuine, “active”, ones. The way in which coordinate changes and Diff(M) encode
the fundamental physical insight of GR, the “relational” character of physics (see
[79, 135, 158]) – via the hole and point-coincidence arguments [87, 153] – is thus
mirrored by the way local gluings and Autv(P ) encode it in gauge field theory. But
this obtains only once the dynamics of gauge field theories is understood.
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2.1.2. Dynamics: Lagrangian and action functionals. The dynamics of a classical
field theory is given by field equations, derived from a Lagrangian functional L via
the variational principle applied to the corresponding action S =

∫
L.

The field space of a gauge field theory is Φ = A×Γ(E), with A the space of (loc.
rep. of) connections, so that a point is a collection of elementary fields φ = {A, φ}
or φ = {ω, ϕ}. The Lagrangian is then

(1)
L : Φ (or J1(Φ)) → Ωm(M) (or Ωm(P )) ,

φ 7→ L(φ) ,

where J1(Φ) is the first jet bundle of φ, and m = dimM . For most physical purpose,
it is built as a polynomial in the elementary field variables φ – and their Hodge
duals, the Hodge operator ∗ : Ωp(M) → Ωm−p(M) being a natural tool to form
top forms on M .

The action is thus

(2)
S : Φ (or J1(Φ)) → R ,

φ 7→ S(φ) =
∫
D

L(φ) ,

with D ⊂ M a domain of spacetime. Physically realised field configurations are
those that make the action stationary δS = 0. The variation of the Lagrangian
gives

(3) δL = E + dθ := E(δφ; φ) + dθ(δφ; φ) ,

where E = E(δφ; φ) is the field equation term. The boundary term θ = θ(δφ; φ) –
sometimes called the presymplectic potential of the theory – has vanishing contri-
bution if ∂D = ∅, or given adequate boundary conditions (b.c.) on φ:5 Either
conditions are required if we are to get the field equations of φ from the stationary
action principle: δS = 0 ⇒ E = 0, for all δφ.

The choice of Lagrangian is usually constrained by symmetry principles: L is
required to be invariant (up to boundary terms) under some continuous transfor-
mation groups. This ensures that the field equations derived from it are covariant
under these groups. The two principles at the heart of relativistic gauge field theory
are the General Covariant Principle (GPC), or General Relativity Principle, and
the Gauge Principle (GP).

The GCP requires that physical laws (equations) are invariant or covariant under
arbitrary changes of coordinates. It can be satisfied easily by working with tensors
and differential forms.

The GP requires that L(φ) has trivial gluings on M , i.e. it is invariant under
passive gauge transformations, or equivalently is basic on P (invariant and horizon-
tal) – L(φ) ∈ Ωmbas(P ) – meaning it is invariant under active gauge transformations
H ' Autv(P ). To satisfy the GP, one may build L(φ) using 1) the exterior (wedge)
product ∧ : Ωp(P ) × Ωq(P ) → Ωp+q(P ), (ω1, ω2) 7→ ω1 ∧ ω2, of tensorial forms

5Neumann b.c. are φ|∂D = 0, Dirichlet b.c. are δφ|∂D = 0.
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Ω•tens(P, ρ) – which will be kept tacit in the notation ω1ω2 – and 2) H-invariant
non-degenerate bilinear forms (or polynomials)
• on the Lie algebra h: the Killing form, or the trace, k( , ) = Tr: h× h→ R;
• on the representation (vector) space V : an inner product, 〈 , 〉 : V × V → R.

We remark that the non-degeneracy condition is essential if E(δφ; φ) = 0 ∀δφ is
to give the field equation as desired. Let us consider a few typical examples:
• The Yang-Mills Lagrangian, for H = SU(n), is
(4) LYM(A) = 1

2k(F, ∗F ) = 1
2 Tr(F ∧ ∗F ) = 1

2 Tr(F ∗F ) .
It specifies the dynamics of the Yang-Mills potential A. The kinematic term comes
from the derivative of A in F , while the bracket term [A,A] in F shows that A is
self-interacting:6 the non-linearity of YM theory is due to the non-Abelian nature
of the underlying group. The special Abelian case H = U(1) gives the Maxwell
Lagrangian LMax(A) = 1

2F ∗ F , a linear theory where there is no self-interaction.7
Observe that a mass term for A, which must be of the form mTr(A ∗ A), is not
gauge-invariant: gauge symmetries compels YM fields to be massless.
• The Klein-Gordon Lagrangian is
(5) LKG(φ) = 〈Dφ, ∗Dφ〉+ µ2〈φ, ∗φ〉 .
It describes the dynamics of a SU(n) scalar field φ, with mass µ, minimally coupled
with an external (i.e. without dynamics) Yang-Mills potential A.
• The Dirac Lagrangian is
(6) LDirac(ψ) = 〈ψ, /Dψ〉 − µ〈ψ, ∗ψ〉 .
It describes the dynamics of a SU(n)-charged Dirac spinor ψ ∈ Γ(S⊗E) – S a spin
bundle over M – with mass µ, minimally coupled with an external YM potential A.
Such spinors describe fundamental matter (fermionic) fields. The Dirac operator
/D = γ∧∗D involves γ = γµdx

µ = γae
a = γae

a
µdx

µ, with ea the (local) soldering
form – known in physics as the tetrad field or vierbein – and γa Dirac gamma
matrices.
• The prototypical Lagrangian for models displaying a phenomenon of “spontaneous
gauge symmetry breaking” is
(7) LSSB(A, φ) = 1

2 Tr(F ∗ F ) + 〈Dφ, ∗Dφ〉+ V (φ) ,
where the potential term V (φ) for the scalar φ – often called a Higgs field in
this context – is at most a quadratic polynomial V (φ) = α〈φ, ∗φ〉 + β〈φ, ∗φ〉2.
For adequate sign of the parameters α, β the vacuum expectation value (VEV)
φ0 of the scalar, i.e. solution of δV (φ)/δφ = 0, is non-zero. By expanding the
scalar as φ = φ0 + H in the above Lagrangian, mass terms for H and the YM
field A depending on φ0 emerge. Such a model, allowing to endow YM fields with
mass despite gauge symmetries, features prominently in the Lagrangian of the

6It carries a YM-charge, or “color” charge – by analogy with Quantum ChromoDynamics
(QCD), the gauge theory of the strong nuclear force – to which it is sensible.

7The electromagnetic field (thus photon in QFT) does not carry electric charge.
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Standard Model of particle physics, describing the ElectroWeak sector (with group
U(1)×SU(2)). It includes a Dirac Lagrangian LDirac(ψ) where φ0-dependent mass
terms for matter spinors emerge from the so-called Yukawa couplings between ψ
and φ: the scalar/Higgs field endows any field it interacts with, gauge and matter
fields, with mass (depending on the VEV φ0 and the strength of the specific gauge
and Yukawa coupling constants).

We remark that Lagrangians that do not involve the Hodge operator (or the
soldering form), thus do not rely on a metric structure on M , are called “topological
theories”. A well-known case is the 3-dimensional SU(n) Chern-Simons Lagrangian

(8) LCS(A) = Tr
(
AdA+ 2

3A
3) .

We observe that it is not gauge-invariant; yet, as we will see, the field equation
remains gauge-covariant: from δLCS one indeed find E = E(δA;A) = Tr(δAF ) = 0
for all δA, i.e. F = 0.

2.1.3. Noether charges and gauge symmetries. Noether theorems express that
variational symmetries of the Lagrangian and action functionals give physical
quantities, known as charges, conserved on-shell, i.e. when the field equations hold.
Since L is gauge-invariant, we expect charges to abound in gauge-field theory.

Denote χ ∈ LieH any element of the Lie algebra of the gauge group and δχ the
corresponding infinitesimal gauge transformation operator.8 As a special case of
the variational principle one gets

(9) δχL = E(δχφ; φ) + dθ(δχφ; φ) .

According to the GP, δχL = 0, so the quantity J(χ; φ) := θ(δχφ; φ) is d-closed
on-shell, which we denote dJ(χ; φ) =̂ 0. It is the Noether (m− 1)-form current. It
is thus on-shell a boundary term: J(χ; φ) =̂ dq(χ; φ). The corresponding Noether
charge is its integral over a codimension 1 submanifold Σ ⊂ D,

(10) QΣ(χ; φ) :=
∫

Σ
J(χ; φ) =

∫
Σ
θ(δχφ; φ) =̂

∫
∂Σ
q(χ; φ) .

By the last equality, the Noether charge is a boundary term. For this reason it is
often called a “quasi-local” charge, as it is a quantity associated to a region, not a
single point, of spacetime.

Let us consider the notable examples of YM theory. Variation of its Lagrangian
gives

(11)
δLYM = E(δA;A) + dθ(δA;A)

= Tr(δA D∗F ) + dTr(δA ∗F ) .

From this one reads the (vacuum) YM equation E = 0 ⇒ D ∗F = 0. The Abelian
case is the Maxwell equation d∗F = 0. Given the infinitesimal gauge transformation

8If we are on the bundle P , it is Lχv , the Lie derivative along the vertical vector field
χv ∈ Γ(V P ) generated by χ.
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of the YM potential, δχA = Dχ = dχ+ [A,χ], the Noether charge is

(12) QYM
Σ (χ;A) =

∫
Σ
θ(δχA;A) =

∫
Σ

Tr(Dχ ∗F ) =̂
∫
∂Σ

Tr(χ ∗F ) .

For constant χ, i.e. for elements of the Lie algebra of the structure group of the
underlying bundle P , this gives a non-Abelian Gauss law [1, 84]. Indeed, in the
Abelian case, QYM

Σ (χ;A) = χ
∫
∂Σ(∗F ), the integral is the Gauss law: the electric

flux through a bounded region which gives the enclosed electric charge.

2.2. Classical gauge theory of gravity and Cartan geometry. In this section
we review elementary notions of standard Cartan geometry and show how they
apply naturally to the gauge theoretic description of gravitational physics. For in
depth treatments, one should consult the reference texts [28, 106, 149]. See also
[104] which is of historical interest.

2.2.1. Cartan geometry in a nutshell. A Cartan geometry (P,$) is an H-principal
bundle P endowed with a Cartan connection $ ∈ Ω1(P, g), with g ⊃ h, s.t.

i R∗h$|ph = Adh−1$|p,
ii $|p(Xv

p ) = X ∈ h, where Xv
p ∈ VpP ,

iii $|p : TpP → g is a linear isomorphism ∀p ∈ P .

Properties i–ii are the same as for an Ehresmann connection. The last property
iii is key and has several consequences special to Cartan geometry. The essential
idea, from a physical standpoint, is that it implies P encodes the geometry of M .
Since the Einsteinian insight is that gravity is the geometry of spacetime, Cartan
geometry (P,$) is perfectly adapted to describe the kinematics of gauge theories of
gravitation, the Cartan connection being a generalised gravitational gauge potential.
Let us see how.
Gauge symmetries. As gauge approaches to gravity were often modeled on
the habits of YM theory, whenever one saw a g-valued 1-form, understood as a
gauge potential, it was assumed that the associated theory should have a gauge
symmetry G – or gauge algebra g – corresponding to the Lie algebra g. This
led often to technical complications and conceptual issues to be dealt with. For
example, in the case g = h n R4 typical of affine gravity (h = gl(4)) or Poincaré
gravity (h = so(1, 3)), the thorny issue of “internal gauge translations” and their
redundancy with diffeomorphisms Diff(M) needed resolution. Mostly the strategy
has been to try to identify “gauge translations” with diff(M) (via the tetrad
field/soldering form) [23].

No such problem arises once one knows Cartan geometry. The underlying bundle
being an H-bundle P , the gauge group is H, i.e. the gauge transformations result
from the action of its vertical automorphisms group Autv(P ). All the relevant
symmetries of gravity, including Diff(M), are then naturally organised in the short
exact sequence (SES) of groups associated to the Cartan bundle,
(13) H ' Autv(P )→ Aut(P )→ Diff(M) .
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The corresponding SES of Lie algebras is

(14) LieH ' autv(P )→ aut(P )→ diff(M) ,

where LieH is the ‘gauge algebra’ and aut(P ) is isomorphic to Γinv(TP ), the
right-invariant vector fields of P . The sequence (14) describes the Atiyah Lie
algebroid of P , and encodes the infinitesimal symmetries or gravity [11].

Soldering. Given its defining properties, the Cartan connection $ induces a
soldering on M , i.e. the bundle isomorphism TM ' P × g/h.9 So Γ(TM) '
Ω0

eq(P, g/h). Conceptually, it shows how P encodes the geometry of M : its tangent
bundle being naturally an associated bundle of P .

Further consequences unfold, that are relevant for a field theoretic standpoint.
Consider the projection τ : g→ g/h. One defines the soldering form θ := τ ◦$ ∈
Ω1

tens(P, g/h). It is tensorial indeed; equivariant by property i and horizontal by ii.
Locally, on an open set U ⊂M , given a trivialising section σ : U → P|U , the local
representative of the Cartan connection is Ā := σ∗$ ∈ Ω1(U, g), while the local
soldering form is e := σ∗θ ∈ Ω1(U, g/h). Given a coordinate system {xµ} on U and
{a} abstract index for g/h, we may write e = ea = eaµ dx

µ. The components eaµ
of the local soldering are called tetrad field, or vielbein, in physics.

If there is a non-degenerate bilinear form η : g/h× g/h→ R, then the Cartan
connection induces a metric via

(15)
g := η ◦ e : Γ(TM)× Γ(TM)→ C∞(M) ,

(X,Y ) 7→ g(X,Y ) = η (e(X), e(Y )) .

In coordinates this reads gµν = ηabe
a
µe
b
ν . Under another local section σ′ = Rgσ,

with g : U → H a transition function of P , e′ = σ′∗θ = R∗ge = Adg−1e. If η is
H-invariant, η ◦ Ad(H) = η, then g′ = η ◦ e′ = η ◦ e = g: the induced metric is
well-defined onM . It thus allows to define a Hodge operator ∗ : Ωp(M)→ Ωp−m(M),
an essential ingredient to built Lagrangians of (non-topological) gauge field theories
(even non-gravitational), as we have seen.

One may observe that, in the case (g/h, η) = (R4, η) = M the Minkowski space,
the existence of the local soldering e ∈ Ω1(U,R4), and the expression (15), are
mathematical implementation of one formulation of the equivalence principle: In
the infinitesimal neighborhood of a point spacetime is Minkowskian, i.e. it is always
possible to find a coordinate system in which the metric appears Minkowskian and
spacetime appears locally flat.

In standard metric-formulation of GR, the metric is often understood as the
gravitational potential (as the Newtonian potential in the weak field limit). We also
observe that the h-part ω of $ is Ehresmann by properties i–ii, i.e. an exact analogue
of Yang-Mills potential in YM gauge field theory. So, the Cartan connection $ (or
rather its local representative Ā) is a generalised gravitational gauge potential.

9Unless h is an ideal of g, g/h is a vector space, not a subalgebra. In any case, H acts on it via
the Ad representation, which may reduce to simple left multiplication in some cases. As for g, it
acts via the ad representation.
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Cartan curvature. The curvature 2-form of a Cartan connection is defined via
the Cartan structure formula: Ω̄ = d$ + 1

2 [$,$] ∈ Ω2(P, g). It thus satisfies the
Bianchi identity dΩ̄+[$, Ω̄] ≡ 0, a strictly algebraic identity. The torsion of a Cartan
connection is Θ = τ ◦ Ω̄ ∈ Ω2(P, g/h). This is typical of what Cartan called the
“espaces généralisés”. This is a notion of course absent for Ehresmann connections,
thus in YM theory. Locally, on U ⊂ M , we have the local representatives F̄ =
dĀ+ 1

2 [Ā, Ā] ∈ Ω2(U, g) and T ∈ Ω2(U, g/h).
In direct anology to gauge field theory, where the YM field strength is the

curvature of an Ehresmann connection (Table 1), the Cartan curvature (its local
representative) is the gravitational field strength.
Associated (tractor) bundles and covariant (tractor) derivative. As usual,
given representations (ρ, V ) of H, one have associated bundles E = P ×ρ V and
Γ(E) ' Ω0

eq(P, V ). If V is also a g-module, with ρ∗ : g→ gl(V ), on account of i–ii,
$ induces a covariant derivative D̄ = d + ρ̄∗($) : Ω•tens(P, ρ)→ Ω•+1

tens(P, ρ). The
Bianchi identity can thus be written D̄Ω̄ ≡ 0. It is easily seen that D̄◦D̄ = ρ(Ω̄). In
view of Table 1, one can see that D̄ will represent the minimal coupling to gravity.

For (ρ̄, V ) a representation of G (the group with Lie algebra g), which is a
representation of H by restriction, one defines tractor bundles: T := P ×ρ̄ V . The
covariant derivative acting on Γ(T ) ' Ωtens(P, ρ̄) is then called a tractor derivative,
or tractor connection. An important example is, for (Ad, g), the adjoint tractor
bundle AM := P ×Ad g. The Cartan curvature can be seen as a 2-form on M
valued in AM .

When H or G are SO groups, and ρ̃ : G→ G̃ are their spin lifts (representations),
one may define spin bundles S := P ×ρ̃ Ṽ and spinor fields Γ(S) ' Ωtens(P, ρ̃). For
example, when H = SO(1, 3), so H̃ = SL(2,C), Γ(S) are Dirac spinors describing
matter fields (fermions), as we have recalled earlier, and D̄ their coupling to gravity.
For G = SO(2, 4), so G̃ = SU(2, 2), Γ(S) are twistor fields (à la Penrose) and D̄
is the twistor connection.
Normal Cartan connection. The notion of normal Cartan connection, or normal
Cartan geometry, generalises the idea of Levi-Civita connection in (pseudo-)Riemann-
ian geometry. The idea, at least for physically interesting geometries (e.g. reductive
or parabolic, see below), is to find a Cartan connection expressed uniquely in terms
of the soldering part. One thus imposes (algebraic and/or differential) constraints
on $ so as to express its h-part ω in terms of its g/h-part θ. Those constraints
should be gauge-invariant, so they must be imposed on Ω̄. The unique normal
Cartan connection is thus $N = $N(θ).

For example, in Cartan-Riemann or Cartan-de Sitter (that we will see shortly) it
is enough to impose the vanishing of the g/h-part of Ω, i.e. vanishing torsion Θ = 0.
In these cases, the h-part ω = ω(θ) of $N is the usual Levi-Civita connection.
In the class of parabolic geometries, defined in the next section, there is a nice
characterisation of normal Cartan connection in terms of the Kostant-Spencer
cohomology of the parabolic algebra g – see [28, 30, 124]. As an example, we will
give the normality conditions in the conformal Cartan geometry in the next section.
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Physically, in vacuum General Relativity or for non-spinorial matter sources
(scalar fields, like fluids, or dust as in cosmology), the gravitational d.o.f. are those
of the metric, or the soldering form. The normality conditions thus eliminate the
extra d.o.f. in the h-part of the Cartan connection, so that $N contains precisely
the gravitational d.o.f.: the normal Cartan connection is exactly the gravitational
potential. In a more fundamental description, matter sources are described by
spinor fields ψ ∈ Γ(S) ' Ω0

tens(P, ρ̃), and their coupling to gravity is given by
D̄ψ = dψ + ρ̃∗($) (which contains the Dirac operator). The spinor field sources
both the Einstein tensor and the torsion tensor: the Cartan connection, as the
gravitational potential, thus cannot be normal.

2.2.2. Special cases and application to physics.
Klein geometry. Consider a Lie group G and a closed subgroup H s.t. G/H is an
homogeneous space. A Klein geometry10 is (G,$G) where G, called the principal
group, is seen as a principal H-bundle G H−→ G/H, and $G ∈ Ω1

tens(G, g) is its
Maurer-Cartan form. As a special case of its definition, the latter satisfies

i R∗h$G = Adh−1$G,
ii $G(Xv) = X ∈ h, where Xv

g ∈ VgG,
iii $G|g : TgG→ g is a linear isomorphism ∀g ∈ G.

One says that (G,H) is the Klein pair on which a Klein geometry is based. For
example, standard Euclidean or Minkowskian geometries are special cases of Klein
geometries based respectively on the pair (SO(n) n Rn, SO(n)) and (SO(1, n−1)n
Rn, SO(1, n− 1)).

In addition, $G satisfies the Maurer-Cartan equation d$G + 1
2 [$G, $G] = 0.

The Maurer-Cartan form is thus a flat Cartan connection on the bundle G, and
Klein geometries (G,$G) are flat Cartan geometries. One often says that (G,H)
is the Klein pair modeling a Cartan geometry (P,$). And a general flat Cartan
geometry is (locally) isomorphic to a Klein geometry: (P,$)flat ' (G,$G), which
imply that the base manifold is homogeneous M ' G/H. Flatness in the sense of
Cartan therefore generalises flatness in the sense of (pseudo-)Riemannian geometry.
We reproduce here the nice diagram of Sharpe [149],

Euclide (Minkowski) Riemann (Lorentz)

Klein Cartan

(16)

which illustrates how, in a beautiful interplay of group theory and differential
geometry, Cartan geometry is the common generalisation of Klein and Riemann
geometries.
Reductive and parabolic Cartan geometries. The subclass of reductive Car-
tan geometries is especially noteworthy: they are those for which there is an

10After the mathematician Felix Klein, who suggested in his 1872 Erlangen program to classify
and study non-Euclidean homogeneous spaces via their transformation groups.
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Ad(H)-invariant decomposition g = h⊕ V . This means we have a clean split of the
Cartan connection as $ = ω + θ, where ω is a Ehresmann connection on P . The
curvature splits accordingly Ω̄ = Ω + Θ. Pseudo-Riemannian geometry,11 which are
based on iso(r, s) = so(r, s)⊕ Rm, belongs to this subclass.

Parabolic Cartan geometries are another remarkable subclass where one has a
|k|-grading of g, i.e. g =

⊕
−k≤i≤k gi s.t. [gi, gj ] ⊂ gi+j , and H is s.t. h =

⊕
0≤i≤k gi.

Both $ and Ω̄ split along the |k|-grading, and here also the LieH-part of ω is
a Ehresmann connection. An important example is conformal Cartan geometry,
based on the |1|-graded algebra so(r + 1, s + 1) = Rm ⊕ co(r, s) ⊕ Rm∗, with
co(r, s) = so(r, s)⊕ R, and where H is s.t. h = co(r, s)⊕ Rm∗. The spin version in
case m = 4, based on the |1|-grading of su(2, 2), is very closely related to twistor
geometry [129, 130].

Let us consider three notable examples, two reductive geometries and one
parabolic, together with related physical applications to gravity theories.
• Cartan-Riemann geometry: This geometry (P,$) is based on the group
G = H n Rm = SO(r, s) n Rm = ( S 0

0 1 ) ( 0 t
0 1 ), where we use a matrix notation to

make computations easy. The homogeneous (flat) model is G/H = Rm, equipped
with the metric η preserved by H = SO(r, s). The Cartan connection and its local
representative are

(17) $ =
(
ω θ
0 0

)
and Ā =

(
A e
0 0

)
,

while the Cartan curvature and its local representative are

(18) Ω̄ =
(

Ω Θ
0 0

)
and F̄ =

(
R T
0 0

)
=
(
dA+ 1

2 [A,A] de+Ae
0 0

)
,

where R is the Riemann curvature 2-form. The normality condition is just Θ = 0,
so that the normal Cartan connection is $N = ω(θ) + θ, with ω(θ) the Levi-Civita
connection – in this form, sometimes known as the “spin connection”.

The gauge group of the bundle is Autv(P ) ' SO(r, s), i.e. the local pseudo-rotation
group, with element γ = ( S 0

0 1 ). The gauge transformations of the local Cartan
connection and its curvature are

(19)
Āγ = γ−1Āγ + γ−1dγ and F̄ γ = γ−1F̄ γ

=
(

S−1AS + S−1dS S−1e
0 0

)
=
(

S−1RS S−1T
0 0

)
.

The linear transformation of the connection, for χ =
(
χ 0
0 0
)
∈ LieSO(r, s), is

δχĀ = D̄χ = dχ+ [Ā, χ], splitting as δχA = Dχ = dχ+ [A,χ] and δχe = −χe.
Given the SO(r, s)-invariant bilinear form η : Rm×Rm → R, we have an induced

metric g = η ◦ e on M . It allows to defined a Hodge operator on Ω•(M).
Physics: The above geometry is usually taken to provide the kinematics of a
formulation of General Relativity known variously as the tetrad formulation, the

11As reformulated by Cartan via his “moving frame”, and independently by Einstein via his
“vierbein/vielbein”, i.e. the soldering e.
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Palatini formulation, the Sciama-Kibble formulation, or yet, the Einstein-Cartan
formulation. It is the following.

If one is to built a gauge theory of gravitation based on the above geometry,
for m = 4 and (r, s) = (1, 3) – i.e. the gauge symmetry of the theory is the local
Lorentz group – its Lagrangian

(20)
L : Φ = Ā → Ω4(M),

Ā 7→ L(Ā) = L(A, e)
must be SO(1, 3)-invariant to satisfy the gauge principle. One may use the two
immediately available tensorial form, e and F̄ . Given the SO-invariant polynomial
M • N := MabN cdεabcd, one may feed it the antisymmetric 2-forms e ∧ eT and
Rη−1, with η the Minkowski metric on R4. The Lagrangian of vacuum GR (without
matter) with cosmological constant Λ is

(21)
LEC(Ā) = Rη−1 • e ∧ eT − Λ

6 e ∧ e
T • e ∧ eT

=
(
Rabeced − Λ

6 e
aebeced

)
εabcd .

The cosmological constant Λ is known to be non-zero and positive since a SnIa
survey in 1998. The variational principle gives

(22)
δLEC = EEC + dθEC = E(δĀ; Ā) + dθ(δĀ; Ā)

= 2
(
δe ∧ eT • (R− Λ

3 e ∧ e
T ) + δA • T • eT

)
+ d

(
δA • e ∧ eT

)
.

The piece of EEC = 0 linear in δe is Einstein’s field equation. The piece linear in
δA is the torsion-free condition in vacuum, implying A = A(e): i.e. the normal
Cartan connection is solution of the vacuum field equation. From the potential one
get the SO(1, 3)-Noether charge

(23) QEC
Σ (χ; Ā) =

∫
Σ
δχA • e ∧ eT =

∫
Σ
Dχ • e ∧ eT =̂

∫
∂Σ
χ • e ∧ eT .

The last equality, noted on-shell, actually uses only T = 0, not Einstein’s equation.
In the theory coupled to matter, LEC(Ā) + Lmatter(φ), this charge essentially gives
the mass of the distribution of source matter enclosed by ∂Σ.12

One may observe that the groundstate of the theory is the de Sitter (or anti-de
Sitter) space M = (A)dS, and not the homogeneous model, the Minkowski space
M = (R4, η). One also see that the charge is a priori non-zero on the groundstate,
which is physically unappealing (given the above interpretation). So, the physical
theory is misaligned with the underlying geometry providing its kinematics. These
defects are cured by selecting the right Cartan geometry, which we discuss next.

• Cartan-de Sitter geometry: This geometry (P,$) is based on the group
G = SO(1, 4) (or G = SO(2, 3)) and H = SO(1, 3), so that the homogeneous
models is the (anti-)de Sitter space, G/H ' (A)dS. The gauge group is thus still
the local Lorentz group, Autv(P ) ' SO(1, 3) 3 γ = ( S 0

0 1 ). The Lie algebra splits
as g = h⊕ R4, with elements written in matrix form as

( s τ
−ετt 0

)
, where τ t = τT η,

12When χ is the gradient of a timelike Killing symmetry (χab = ∂aξb), the charge is known
as the Komar mass, or Komar integral. See e.g. [46, 82, 100].
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η being the Minkowski metric, and ε = ± for the dS and AdS cases, respectively.
We may thus write the Cartan connection and its local representative as

(24) $ =
(

ω 1
` θ−ε

` θ
t 0

)
and Ā =

(
A 1

` e−ε
` e

t 0

)
,

with ` a constant with dimension of length s.t. 1
`2 = Λ

3 . The Cartan curvature and
its local representative are
(25)

Ω̄ =
(

Ω 1
`Θ

−ε
` Θt 0

)
and F̄ =

(
F 1

`T−ε
` T

t 0

)
=
(
R− 1

`2 e ∧ eT 1
` (de+Ae)

−ε
` (de+Ae)t 0

)
.

The normality condition is again Θ = 0, and the normal Cartan connection is s.t.
ω = ω(θ) is the Levi-Civita connection. The gauge transformations of the local
Cartan connection and its curvature are

(26)
Āγ = γ−1Āγ + γ−1dγ and F̄ γ = γ−1F̄ γ

=
(

S−1AS + S−1dS S−1e
∗ 0

)
=
(

S−1FS S−1T
∗ 0

)
.

With linearisation, for the connection, still δχĀ = D̄χ, with χ ∈ LieSO(1, 3),
splitting as δχA = Dχ and δχe = −χe.
Physics: The above Cartan-de Sitter geometry provides the kinematics for a
gauge formulation of (vacuum) GR known as the MacDowell-Mansouri formulation
[116, 155, 172]. Like YM theory, its Lagrangian is quadratic in the (so(1, 3)-part of
the) curvature:
(27)
LMM(Ā) = 1

2 Fη
−1 • Fη−1 = 1

2 Rη
−1 •Rη−1 − ε

`2LEC(Ā)
= 1

2 F
abF cdεabcd = 1

2 R
abRcdεabcd − ε

`2

(
Rabeced − ε

2`2 e
aebeced . . .

)
εabcd .

The term quadratic in the Riemann 2-form R is the Euler density of M ; as such, it
is called a topological term, and since it is a boundary term it does not change the
field equation, but only the symplectic potential. The variational principle indeed
gives:

(28)
δLMM = EMM + dθMM = E(δĀ; Ā) + dθ(δĀ; Ā)

= − ε
`2

(
δe ∧ eT • F + δA • T • eT

)
+ d (δA • F ) .

The Einstein equation are still the piece of EMM = 0 linear in δe, while the piece
linear in δA is the torsion-free condition. The normal Cartan connection is again
solution of the vacuum field equation.

Compared with LEC, the Euler density contributes R • e ∧ eT to the potential
θMM, from which one gets the SO(1, 3)-Noether charge

(29) QMM
Σ (χ; Ā) =

∫
Σ
Dχ • F =̂

∫
∂Σ
χ • F .

The last on-shell equality uses only T = 0. We observe that the groundstate of the
theory is again (A)dS, which is also the homogeneous model of the geometry, for
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which the Noether charge vanishes (F̄ = 0 implies F = 0). A physically sensible
feature. See [82] for more comments.

As for the Cartan-Riemann case, spinors belong naturally to this geometry as
sections of associated bundles S = P ×ρ̃ C2n: Weyl C2-spinors are associated to
the spin represention ρ̃ : SO(1, 3) → spin(1, 3) = SL(2,C), Dirac C4-spinors to
ρ̃′ : SO(1, 3) → SL(2,C) × SL(2,C)∗ – two Weyl spinors in conjugate represen-
tations. The full theory coupled with matter fields, described by Dirac spinors
ψ, is LGrav(Ā, ψ) = LMM(Ā) + LDirac(Ā, ψ). See e.g. [84]. Via δLGrav(Ā) one ob-
tains the field equations, EGrav = −2ε

`2 δe
(
eT • F − T (ψ, e)

)
+ −2ε

`2 δA
(
• T ∧ eT −

S(ψ, e)
)

+ 〈δψ, /Dψ − µψ〉, where T (ψ, e) is the energy-momentum tensor of the
Dirac field ψ source of the Einstein equation, and S(ψ, e) is the spin density of ψ
sourcing the torsion – In the full theory, the Cartan connection cannot be normal.
The Dirac equation /Dψ = µψ describes the propagation of the Dirac field into
M as it interacts with the gravitational potential Ā; via an Eikonal or WKB
(Wentzel-Kramers-Brillouin) approximation, one would relate the Dirac equation
to the geodesic equations for a particle with non-zero spin/angular momentum
(the Mathisson-Papapetrou-Pirani-Dixon equations) [139].

On-shell, one finds QGrav
Σ (χ; Ā, ψ) = QMM

Σ (χ; Ā), meaning that the contribution
of matter fields to the charge is measured by its sourcing of the gravitational fields
(this is a gravitational Gauss law).
• Conformal Cartan geometry: This geometry (P,$) is based on the conformal
group G = SO(r+1, s+1) and H = CO(r, s)nRm∗, where R4∗ are special conformal
transformations [28, 106, 125, 149]. The homogeneous models is the conformally
compactified Minkowski space, G/H ' M̄. It is a |1|-parabolic geometry, the Lie
algebra of G splitting as g = g−1⊕g0⊕g1 = Rm⊕ co(r, s)⊕Rm∗, and the structure
group being h = g0 ⊕ g1 = co(r, s)⊕ Rm∗.

In matrix notation, we write the gauge group Autv(P ) ' H = H0 n H1 =(
z 0 0
0 S 0
0 0 z−1

)(
1 r 1

2 rr
t

0 1 rt

0 0 1

)
, where z ∈ C∞(M) is a Weyl rescaling function. The

Cartan connection and its curvature are $ = $−1 + $0 + $1 = θ + ω and
Ω̄ = Ω̄−1 + Ω̄0 + Ω̄1 = Θ + Ω. In matrix notation, their local representatives are

(30) Ā =

a K 0
e A Kt

0 et −a

 and F̄ =

−f C 0
T W Ct

0 T t −f

 .

Often it is argued that, without loss of generality, the Weyl potential can be set
to zero: a = 0 (understood as a choice of gauge in physics,13 as a choice of Weyl
structure in mathematics [28, 81]).

The soldering form induces a metric in the usual way, and a Hodge operator.
Given that the gauge group acts on Ā s.t. eγ = zS−1e, it is clear that the induced
metric g = η ◦ e gauge transforms as gγ = z2g. In other words, a conformal Cartan
connection induces a conformal metric [g] on M .

13Or as a so-called “dressing operation”. See [8, 9].
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For the (local) normal Cartan connection ĀN = ĀN(e) the curvature is F̄N =( 0 C 0
0 W Ct

0 0 0

)
and s.t. Ric(W ) := W a

bac = 0, i.e. W is the Weyl tensor. The T = 0
condition allows to write A = A(e). The condition f = 0 enforces the symmetry
of K and Ric(W ) = 0 allows to write K = K(A): This makes K the Schouten
tensor. So C, the covariant derivative of K, becomes the Cotton tensor. We see
that the normality conditions allow to write Āi+1 in terms of Āi, so that in the
end the normal connection only depends on its soldering part Ā−1 = e. Clearly
then, a normal conformal geometry (P,$N) encodes exactly the (gauge) geometry
of a conformal manifold (M, [g]).
Physics: This geometry supplies the kinematics of a gauge model of gravity, once
considered an alternative to GR, known as 4D (m = 4) conformal gravity. To
comply with the gauge principle it should be H-invariant, not SO(2, 4)-invariant. A
Lagrangian quadratic in F̄ is a natural candidate. The Hodge dual of a (invariant)
p-form B gauge transforms as (∗B)γ = zm−2p(∗B), in dim m = 4 we have that ∗F̄
has the same tensoriality as F̄ .14 So the Lagrangian of 4D conformal gravity is
(31) LConf(Ā) = Tr

(
F̄ ∗F̄

)
,

in exact analogy with YM theory. The variational principle gives, similarly,

(32)
δLconf = Econf + dθconf = E(δĀ; Ā) + dθ(δĀ; Ā)

= Tr(δĀ D̄∗F̄ ) + dTr(δĀ ∗F̄ ) ,

which yields the YM equation for the conformal Cartan connection, D̄ ∗F̄ = 0. In
the normal case this reduces to
(33) LConf(ĀN) = Tr

(
F̄N ∗F̄N

)
= Tr(W ∗W ) = LWeyl(e) .

The Lagrangian quadratic in the Weyl tensor W defines Weyl gravity [10]. It
is known that the field equation for the latter, obtained by variation w.r.t. the
soldering e (or the metric g), is the Bach equation Bab = 0, with Bab the Bach
tensor. Given the above, we have the immediate result that the Bach equation is
encoded as the YM equation for the normal conformal Cartan connection:
(34) D̄N ∗F̄N = 0 ⇔ Bab = 0 .
This was first shown in a computational way in [111]. Cartan geometry provides a
straightforward conceptual proof.

The spin version of conformal Cartan geometry in m = 4 is based on the
group Ḡ = Spin(2, 4) = SU(2, 2), with the complexified Cartan connection ĀC

and curvature F̄ C taking values in the |1|-parabolic Lie algebra ḡ. The quadratic
Lagrangian LConf(ĀC) = Tr

(
F̄ C ∗F̄ C

)
is that of generalised twistor gravity. Indeed,

in the normal case this reduces to
(35) LConf(ĀC

N) = Tr
(
F̄ C

N ∗F̄ C
N

)
= Tr(W C ∗W C) = LWeyl(ē) ,

whereW C is the complexified Weyl tensor, ē ∈ Herm(2,C) the complexified soldering
form, and ĀC

N known as the twistor 1-form, in the sense of Penrose, as first noticed

14Notice it also means that YM theory is Weyl-invariant in dimension 4.
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in [85]. It thus follows that the YM equation for the twistor equation, the field
equation for twistor gravity, encodes the Bach equation:
(36) D̄C

N ∗F̄ C
N = 0 ⇔ Bab = 0 ,

where D̄C
N is known in physics as the “twistor transport”, or twistor connection

[129, 130]. This was first shown, again computationaly, in [117, 118]. One may
appreciate how Cartan geometry streamlines the proof.

We invite the reader to consult [8, 9] for more details on the above and for the
treatment of conformal tractors fields and twistor spinors in conformal Cartan
geometry. We now turn to our description of the group manifold approach to gravity
and supergravity.

3. Supergroup manifold approach and Cartan supergeometry

In this section we will review the key aspects of the so-called (super)group
manifold approach to (super)gravity, clarifying the physical and mathematical
dictionary and making contact with Cartan supergeometry.

3.1. Group manifold approach to pure gravity and Cartan geometry. In
1978, Y. Ne’eman and T. Regge, driven by the growing interest on graded Lie
algebras in physics, proposed a geometric approach to supersymmetric theories (in
particular, supergravity). Such theories (and any gauge theory involving the action
of a gauge group with nontrivial action on spacetime) are naturally formulated by
using the concept of Grassmann algebras of forms in the context of the theory of
Lie groups. As reported by the authors themselves [121], much of the necessary
foundational work had been anticipated by Cartan and was already commonplace in
mathematical literature at that time. However, it was not yet widely spread among
physicists. Actually, even today, when within the physics community reference is
made to the Cartan formulation of some physical theory, typically of gravity, the
first (and, sometimes, unique) thing that come to mind is the use of differential
forms, while, in fact, the differential (bundle) geometric setup adopted is much
richer and constitutes a mathematical framework that lends itself particularly well
to applications, extensions and generalizations.

The idea of Ne’eman and Regge, whose key aspects will be briefly reviewed
in the following, consists of developing the formalism of gravitational theories as
gauge theories on a (super)group manifold, that is adding a differential structure
to the (super)group.15 Giving a manifold structure to a Lie (super)group G allows
to take limits and derivatives in G and define the notion of a tangent space at the
identity of G. The latter gives us the Lie (super)algebra g associated with G, which
is often easier to work with. All of this is standard in Klein geometry, where the
use of the term “group manifold” is implicit and a principal H-bundle geometry
for G is assumed as a starting point.

Klein geometry can be seen as the rigid (or flat) limit (giving the vacuum
configuration in physics) of Cartan geometry, in which the Cartan curvature vanishes
and the Cartan connection $ boils down to $G satisfying the Maurer-Cartan

15With the term supergroup we mean graded Lie groups.
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equations. Performing the rigid limit of a Cartan geometry (P,$) therefore amounts
to considering the flat Cartan geometry (P,$)flat locally isomorphic to the Klein
geometry (G,$G). On the other hand, one could say that a Cartan geometry
is obtained by “softening” a Klein geometry. In the group manifold approach
literature, this procedure, in general terms, is referred to as deforming the group
manifold G into a “soft group manifold” G̃, the Maurer Cartan (MC) 1-form on
G being deformed into a 1-form on G̃ enjoying curvature. Let us describe the
procedure as it appears in the physics literature.

3.1.1. Soft group manifold. A soft group manifold G̃ is endowed with a g-valued
1-form %A16 with curvature

RA := d%A + 1
2C

A
BC%

B ∧ %C .(37)

where CABC are the structure constants of the Lie algebra g. The curvature fulfills
the Bianchi identity ∇RA = 0, where ∇ is the “G̃-covariant derivative”, w.r.t. %A.17

Now, let H ⊂ G be a subgroup of G and G/H the corresponding homogeneous
manifold. The soft group manifold G̃ can be then considered as a principal bundle
with fiber H and base space M . Let Uα be a covering of M and π the projection
G

π−→ M ; π−1(Uα) ' Uα × H is parameterized by the elements (x, yα), where
x ∈M and yα ∈ H – a.k.a. local trivialisation of G̃. We give transition functions
ςαβ(x) ∈ H on Uα∩Uβ s.t., on Uα∩Uβ∩Uγ , ςαβςβγ = ςαγ . We identify the elements
(x, yα) = (x, yβ), where yα = ςαβyβ and x ∈ Uα ∩ Uβ . All the sets π−1(Uα) are
“glued” together into G̃. Over each Uα, we have a map

χα : π−1(Uα) ⊂ G̃→ H ⊂ G ,(38)
(x, yα) 7→ yα .(39)

Given the left-invariant Maurer-Cartan form σA on G, one has the form χ∗ασ
A

on π−1(Uα) ⊂ G̃ with vanishing curvature. Then, given a g-valued 1-form τAα on
Uα ⊂M , one requires that the restriction of %A on π−1(Uα) is s.t.

%Aα = χ∗ασ
A + Ad(yα)BAτBα ,(40)

For this to hold for any Uα in the cover, the following matching conditions must
hold over Uα ∩ Uβ :

τAβ = ς∗αβ χ
∗
ασ

A + Ad(ςαβ)BAτBα .(41)

In the group manifold approach literature, if (40)–(41) hold, %A is called a factorized
c-bein on the pair (G̃,H).

As a matter of fact, %A is indeed a Cartan connection on the H-bundle G̃. The
name c-bein alludes to the vielbein of GR, or tetrad/(co)frame field, which provides
a parallelism on spacetime M : it is meant to say that, likewise, %A provides a frame
on the soft group manifold G̃. Which is exactly the distinctive defining property
(iii) of a Cartan connection as define in section 2.2.1. The local representatives

16Here, we use the abstract index convention: A is an abstract g index, no basis of the g is
assumed.

17To be understood in terms of the tractor derivative mentioned in section 2.2.1.
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τAα on Uα ⊂ M are called “Cartan gauges” in [149], with (41) being their gluing
relations. These are to be understood as the gravitational gauge potentials, with
(41) representing their (passive) gauge transformations.

All of this applies when G = P is the Poincaré group and H = SO(1, 3), with
homogeneous flat model G/H = R4. Then, P is softened to G̃ = P̃ over spacetime
M locally modeled on the flat model. This is but the Cartan-Riemann geometry
described in 2.2.2. But the idea can be extended, with adjustments, to the case of
Lie supergroups, e.g. G = GP the super-Poincaré group, softened to G̃ = G̃P), an
H = SO(1, 3)-bundle over the “superspace” M modeled on the super-Minkowski
space R4|4 [121, 122]. The first case is relevant to “bosonic” pure gravity (vacuum
GR), as shown in 2.2.2. The second, is the arena for what is known as N = 1 pure
supergravity (in four spacetime dimensions).

Let us also mention that, at the algebraic level, there is a vector subspace f
of g such that g = h ⊕ f, f ∩ h = ∅, with h the Lie algebras of H. If f is s.t.
Ad(h)f ⊂ f, h ∈ H, G/H is said to be a weakly reductive homogeneous manifold.
The g-valued forms %A and RA split accordingly. This corresponds to the reductive
Cartan geometries described in 2.2.2. In the case of pure bosonic gravity, for which
G̃ = P̃ and H = SO(1, 3), the splitting gives %A → {%ab, %a}, RA → {Rab, Ra} on
P̃ , and τA → {ωab, V a} on U ⊂ M (the indices a, b, . . . ∈ 0, 1, 2, 3 being for the
fundamental vector representation of the Lorentz group). The local objects ωab
and V a are commonly known in the physics literature as the “spin connection”
(in the general reductive case it is the h-components of the local representative
of the Cartan connection) and the vielbein 1-form V a = V aµ dx

µ, µ ∈ {0, . . . , 3},
which is the local soldering form). The h-components of the curvature RA is called
the proper curvature of %A (the h-components of the Cartan curvature), while the
f-components represent the torsion of the Cartan connection. In terms of their
local representatives, we have, respectively, the Riemann curvature 2-form and the
torsion 2-form

Rab = dωab + ωac ∧ ωcb ,(42)
Ra = dV a + ωab ∧ V b = DV a ,(43)

where D denotes the Lorentz-covariant derivative. Compare with (17)–(18) in 2.2.2.
Table 2 below gives summary of the dictionary between the notations used above,
typical of the group manifold approach endowed with a principal bundle structure,
and the ones used in section 2.2 to describe Cartan geometry.

3.1.2. Geometric Lagrangian and action for gravity. It is not our aim here to
review in details the group manifold approach to pure gravity, given that it ends up
being equivalent to the Cartan formulation already discussed.18 However, we sketch
how the action for pure GR is constructed in this approach, as it provides the
template for the supersymmetric case considered next. One considers the following

18For concise reviews of the subject we refer the reader to, e.g., [38, 58].
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Group manifold approach Cartan geometry

G̃; H; M P ; H; M

% (factorized c-bein, Cartan connection) $ (Cartan connection)

τ (local representative of %) Ā (local representative of $)

ωab (“spin connection”) Aab (h-components of the local rpr. of $)

V a = V aµdxµ (“vielbein”, meaning local
soldering form) ea = eaµdxµ (local soldering form)

R = {Rab, Ra} (Cartan curvature, or proper
curvature) Ω̄ = {Ωab,Θa} (Cartan curvature)

Rab (Riemann curvature 2-form) Rab (Riemann curvature 2-form)

Ra (torsion 2-form, local rep. of the torsion
Ra of %)

Ta (torsion 2-form, local rep. of the
Θa of $)

Tab. 2: Group manifold approach and Cartan geometry notations.

Lagrangian on P̃:19

L(4) = Rab ∧ %c ∧ %dεabcd .(44)

As it is a form on P̃, to obtain the action we need to integrate over a 4-dimensional
submanifold. One thus considers a smooth embedding map σ : M4 → P̃, so that:

S =
∫
σ(M4)

L(4) =
∫
M4

σ∗L(4) =
∫
M4
Rab ∧ V c ∧ V dεabcd .(45)

The last integral in (45) is performed over M4, identified with spacetime. So,
the action defined as the integral of L(4) over a section of P̃ is equivalent to the
Einstein-Cartan action for pure gravity, based on Cartan-Riemann geometry. We
observe that the above embedding should be understood as a global section of the
principal bundle P̃, which is then a trivial bundle over spacetime M4: P̃ = M4×H.

One usually argue for, or requires, independence of the integration performed in
(45) from the choice the section σ. This amounts to requiring that L(4) be basic on
P̃, i.e. that σ∗L(4) be invariant under gluings on M : in other words, it amounts
to requiring Lorentz gauge invariance of σ∗L(4). Which is the gauge principle
requirement.20

19The building rule for a “geometric” Lagrangian adopted in the (super)group manifold
approach can be found in [40].

20We remark that the requirement that L being basic implies in particular that the curvature
Rab is horizontal. So, the Lie derivative of the Cartan connection %A on P̃ along vertical vector
fields is an infinitesimal gauge transformation. Let us also observe that what are typically
called “general coordinate transformations” (GCTG) in the group manifold approach literature
(together with their anholonomized version; see e.g. [58, 121]) are just diffeomorphisms in P̃,
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The field equations obtained by varying the action (45) w.r.t. ωab and V a read,
respectively,

Rc ∧ V dεabcd = 0⇒ Ra = 0 , as, setting Ra = Raµνdxµdxν , we get Raµν = 0 ,
(46)

Rab ∧ V cεabcd = 0⇒ vacuum Einstein’s equations.
(47)

Let us also mention that one may try to extend the integration of L to the entire
P̃. In this case, one should write an action

S =
∫

P̃
Rab ∧ %c ∧ %dεabcd ∧ ν ,(48)

where ν is a 6-form including the dy differentials. As far as we know, no explicit
form for ν has ever been proposed such that the theory involving only “ordinary”
differential forms reproduces Einstein’s equations.21 However, a similar idea, based
on the notion of Poincaré dual and exploiting (delta, pseudo and) integral forms
(and introducing so-called “picture changing operators”), was considered in the
supersymmetric case in more recent literature [36, 37, 38, 41] as a way to perform
integration of a superspace geometric Lagrangian over the entire superspace, rather
than to a bosonic submanifold (identified with spacetime) immersed in superspace,
as it is done in the supergroup manifold approach.22

The implementation of the above setup to recover the MacDowell-Mansouri
formulation [116, 155, 172] of GR, whose kinematics is provided by Cartan-de
Sitter geometry, can be found in [121]. The scheme can be applied to derive 4D
conformal gravity. A more complete list of building rules for a general geometric
Lagrangian can be found in [40, 58], together with several applications both at the
“purely bosonic” level and to supergravity.

Usually, in the (super)gravity literature based on the (super)group manifold
approach, a principal bundle structure with the Lorentz group as the structure
group is assumed from the very beginning. On the other hand, supersymmetry
transformations in supergravity are (usually) not gauge/vertical transformations of
a bundle. So there is no simplifying factorization of the odd Grassmann direction.
As we are going to discuss in the following, the extension of the above treatment to
the case of supergroup manifolds yields a geometric interpretation of supersymmetry,
in which supersymmetry transformations are odd diffeomorphisms of superspace
M4|4.

whose infinitesimal version is just given by the action of the Lie derivative along the generating
vector field.

21Let us mention that in [91, 92] a “generalized” variational formulation was proposed to
integrate on the bundle, the difference being that the wedge product ρ ∧ ρ ∧ ν there is replaced
by a single 8-form. Moreover, other formulations involve the use of so-called “delta forms” (see,
e.g., [36, 38, 42]).

22For a rigorous introduction of pseudo forms in the algebraic context in terms of infinite
representations see [54].
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3.2. Supergroup manifold (a.k.a. “rheonomic”) approach to SUGRA.
The machinery of the (soft) group manifold approach, underpinned by Cartan
geometry, has been to extended to supergroups: it is known as the (soft) super-
group manifold approach, a.k.a. rheonomic approach [40], and has been applied to
build (or re-derive “geometrically”) both supergravity and rigid supersymmetric
theories. Here our focus will be on supergravity. We will see how it hints at Cartan
supergeometry.

A supergroup manifold G (softened to G̃) has both even (commuting, or “bo-
sonic”) and odd (“fermionic”) coordinates: (xµ, y µν , θ α), where the θ’s are the
fermionic Grassmann coordinates and α, β, . . . are spinor indices, which we will
generally omit in the following. For simplicity, we will restrict ourselves to the N = 1
case in four spacetime dimensions. In N -extended supersymmetric models, where
N is the number of supercharges, the θ’s also carry a so-called R-symmetry index
A = 1, . . . ,N . The framework can be generalized to higher spacetime dimensions
too.

A principal superbundle structure is considered for G̃, with H = SO(1, 3) (ver-
tical Lorentz directions), and the superspace M4|4 is modeled on the homogeneous
super-Minkowski space R4|4, so has coordinates (xµ, θ α). In the pure supergravity
case, and in the absence of cosmological constant, one considers G̃ = G̃P (soft
graded Poincaré). This setup corresponds to a Cartan supergeometric framework,
where the local representative of the Cartan superconnection ρA on G̃P is a (set
of) 1-form(s) superfield(s) τA on M4|4, with supercurvatures RA. The superfield
τA contains the supervielbein {V a, ψα}, which is an orthonormal basis of 1-forms
at each point of the cotangent plane to superspace M4|4 (V a is commonly referred
to as the “bosonic vielbein”, while ψα is the “fermionic” one, also called gravitino
1-form). Besides them, τA also includes the Lorentz spin connection ωab, as a
1-form superfield.

The supercurvatures RA,
RA := dτA + 1

2C
A
BCτ

B ∧ τC ,(49)

with CABC the structure constants of the Lie superalgebra g (super-Poincaré
algebra), are horizontal w.r.t. the Lorentz directions. But, since M4|4 does not
decompose into a bundle over M4 with Grassmannian fibers, RA is not “horizontal”
in the fermionic direction, along of the fermionic vielbein. This implies that local
supersymmetry transformations are not gauge tranformations. They correspond
instead to diffeomorphisms along the θ-directions of superspace (given linearly by
the Lie derivative `ε := ιεd+ dιε along the generating εα = δθα supersymmetry
(odd) vector field).

The superfields τA(x, θ), and their supercurvatures RA(x, θ) decomposes locally
on superspace as
(50) τA(x, θ) = τAµ(x, θ)dxµ + τAα(x, θ)dθα ,

RA(x, θ) = RAµν(x, θ)dxµ ∧ dxν +RAµα(x, θ)dxµ ∧ dθα +RAαβ(x, θ)dθα ∧ dθβ

= RAµν(x, θ)dxµ ∧ dxν +RALα(x, θ)dZL ∧ dθα ,(51)



266 J. FRANÇOIS AND L. RAVERA

where dZL = (dxµ, dθα). The superfunction RALα(x, θ) are called the “outer”
components of RA(x, θ), while RAµν(x, θ) are called the “inner” components (or
supercovariant field strengths). The superfield τA(x, θ) induces the corresponding
“spacetime quantity” (x-fields) τA(x) = τAµ(x)dxµ onM4 ⊂M4|4 via the restriction

τA(x) = τA(x, θ)|θ=dθ=0 = τAµ(x, 0)dxµ .(52)

Note that each component in the θ-expansion of a superfield represents, a priori, a
new x-space field. Hence, a priori, the theory defined in superspace could exhibit
extra dynamics (extra degrees of freedom) w.r.t. the spacetime restriction. If this
were the case, the resultant theory would fail to be equivalent to supergravity
formulated in terms of a local spacetime (super)symmetry. As we are going to
discuss, what allows the formulation of supergravity in superspace to be equivalent
to the one on spacetime is the so-called rheonomy principle.

Rheonomy: Let us consider the so-called rheonomic extension mapping

τA(x)→ τA(x, θ) .(53)

The knowledge of this mapping is crucial in order to interpret the theory based
on the superspace fields as a spacetime theory. Indeed, in order to have the same
physical content as the spacetime theory, we must be able to determine the fields
contained in the θ-expansion of τA(x, θ), and all its dθ components, in terms of its
spacetime restriction τAµ (x, 0)dxµ, that is what the knowledge of (53) amounts to.

For the mapping to be fully determined, a complete set of Cauchy data must be
known: not only τAµ(x, 0) but also the “normal derivatives”

(
∂
∂θα τ

A
µ(x, θ)

)
|θ=0 =

∂
∂θα τ

A
µ(x, 0). This, in general, is not the case. Now, considering the diffeomor-

phic mapping generated by the Lie derivative `ε, ε = εα ∂
∂θα , one can prove

[40] that the knowledge of τA(x, 0) (that is, besides τAµ(x, 0), also τAα(x, 0))
and

(
∂
∂θα τ

A(x, θ)
)
|θ=dθ=0 = ∂

∂θα τ
A
µ(x, 0)dxµ is equivalent to the knowledge of

τAµ(x, 0) only, together with RAαµ(x, 0). Actually, releasing the dθ = 0 restriction,
one can also show that the knowledge of τA(x, 0) and ∂

∂θ τ
A(x, 0) is equivalent to

that of τAµ(x, 0) together with RALα(x, 0).
The concept of rheonomy can now be introduced. Assume the following constraints

(a.k.a. rheonomic constraints) to hold:

RALα = CA|µνLα|BRBµν ,(54)

where CA|µνLα|B are suitable invariant tensors of the supergroup. Then, the
knowledge of a purely spacetime configuration {τAµ(x, 0), ∂µτAν(x, 0)} determines
in a complete way the extension mapping (53).
In other words, if (54) hold, given a purely spacetime configuration the complete
θ-dependence of the associated superfields τA(x, θ) can be recovered, as τAµ(x, 0)
and ∂µτAν(x, 0) (or, equivalently, τAµ(x, 0) and RAµν(x, 0)) constitute a complete
set of Cauchy data on spacetime when (54) is satisfied.
The property expressed by (54) was named “rheonomy” and a theory admitting a
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set of rheonomic constraints is likewise said to be rheonomic.23 From a physical
viewpoint, the restriction on the superspace parametrization of the supercurvatures
given by the rheonomic constraints guarantees that no additional degree of freedom
is introduced in the theory in superspace compared to those already present in
spacetime.

Alternatively, if we regard the Lie derivative as generating the functional change
of τA at the same coordinate point (“active” interpretation of the Lie derivative),

`ετ
A = µA

′(x, 0)− µA(x, 0) ,(55)
it transforms a given spacetime configuration into a new spacetime configuration
(supersymmetry transformations).

In particular, invariance of the theory, i.e. of the action (or the field equa-
tions), under diffeomorphisms along the odd directions in superspace amounts to
supersymmetry invariance of the theory restricted to spacetime. One may write,
schematically [40],
(56)

Superspace configuration τA(x, θ) εα-diffeomorphisms−−−−−−−−−−−−−−→ New superspace configuration τA
′(x, θ)

↑ Rheonomy ↓ Restriction to x-space

x-space configuration τA(x, 0) Supersymmetry−−−−−−−−−−−−−−→ New x-space configuration τA
′(x, 0)

Demanding the closure of the Lie derivative brackets (that is, requiring the
induced transformations to form a Lie super-algebra) is then equivalent to deman-
ding integrability of the rheonomic constraints, implying constraints on the inner
components of the supercurvature. Checking that d2 = 0 amounts to checking that
the Bianchi identities are satisfied by the supercurvatures RA.24 In the presence of
(54), the Bianchi identities loose the character of identities and become integrability
equations for the constraints. Since the rheonomic constraints express the outer
components RALα of RA in terms of the inner ones RAµν , the Bianchi relations
(Bianchi-integrability equations) are equations among the RAµν ’s which must be
valid everywhere in superspace. In particular on the restriction to the spacetime
hypersurface. Hence, we conclude that the supersymmetry transformations algebra
close only if RAµν satisfy certain integrability equations, obtained from the Bianchi
“identities”.

Physically, these equations are the spacetime field equations of the theory; we
may thus say that the supersymmetry algebra closes on-shell. In this respect, the
supersymmetry algebra is peculiar since supersymmetry representations have to
contain the same number of bosonic and fermionic degrees of freedom. However,
the on-shell condition changes in different ways the number of degrees of freedom
(d.o.f.) of fields of different spin (e.g. spinors halve their d.o.f., gauge vectors lower
by one their d.o.f., and scalars do not change them). As a consequence, when

23From the ancient Greek words “rhein”, which means flow, and “nomos”, which means law,
referring to the lift from an x-space configuration τA(x, 0) to a superspace one, τA(x, θ) (“passive”
interpretation of the Lie derivative along the odd directions of superspace).

24The Bianchi identities guarantee the closure of the given algebra when represented in terms
of fields.



268 J. FRANÇOIS AND L. RAVERA

supersymmetry is realized in terms of field representations (supermultiplets), as it
happens in supergravity theories, it is an algebra of transformations that closes on
the equations of motion (i.e., on-shell).25

Therefore, in a rheonomic theory (in the absence of auxiliary fields) we expect
the supersymmetry transformations to close an algebra only on the on-shell configu-
rations of τA(x, 0), implying that we can lift to superspace only those configurations
which are solutions of the x-space field equations, while arbitrary configurations
cannot be lifted.

3.2.1. Geometric Lagrangian in superspace and action. The on-shell closure of
the Bianchi “identities” provides the field equations that one may obtain from a
supersymmetric Lagrangian L in superspace: i.e. satisfying δεL = `εL = 0, maybe
up to boundary terms (note that L is not a top form in superspace).26 On the
supergroup manifold G̃ = G̃P, given a Lagrangian density L(4|4), one may write
the following action:

S =
∫
σ(M4|4)

L(4|4) =
∫
M4|4

σ∗L(4|4) =
∫
M4|4

L(4|4) ,(57)

where σ(M4|4) is a (global) section of G̃P. The latter being anH = SO(1, 3)-principal
superbundle, Lorentz invariance (basicity) of L(4|4) ensures freedom in the choice
of the section of integration. On the r.h.s., M4|4 is identified with superspace. This
prescription is along the lines of, e.g., [36, 38], where the idea is to construct a full
superspace Lagrangian L(4|4) = L(4|0) ∧ Y(0|4), where Y(0|4) is a so-called “picture
changing operator”, PCO, a differential object “inherited” from the string theory
and string field theory literature (see, e.g., [53] on the geometry of PCOs and
[55, 56] for a concise review of integration on supermanifolds, applied to super
Chern-Simons theory). This methods allows integration over the entire M4|4. PCOs
are typically built by hand and different choices of PCO can lead to different
formulations of the same theory. A particular choice of L(4|0) is the rheonomic
(geometric) 4-form Lagrangian, a bosonic 4-form in superspace:

L(4|0) = Rab ∧ V c ∧ V dεabcd + 4ψ̄ ∧ γ5γaDψ ∧ V a .(58)

The first term is the the so-called Einstein-Hilbert, the second is a Rarita-Schwinger
term. It is built with the superfields {ωab, V a, ψ} and the γ’s are Dirac gamma
matrices.
The supercurvatures (components of the local representative of the supercurvature

25This restriction can be relaxed by including auxiliary fields in the theory, but, considering a
finite number of auxiliary fields, this is possible only in few cases, while the most fruitful approach
so far has been that of the so-called harmonic superspace [86] (where spherical harmonics are
employed), involving an infinite number of auxiliary fields. In these cases, the Bianchi identities
are proper identities and the supersymmetry algebra closes off-shell; see, e.g., [132] for a concise
discussion on this topic.

26We refer to, e.g., [4, 40, 48, 58] for a variety of simple models presented and studied in
details. Furthermore, building rules for a “geometric” superspace Lagrangian can be found in,
e.g., [58].
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2-form of the Cartan superconnection) are

Rab = dωab + ωac ∧ ωcb ,(59)

Ra = dV a + ωab ∧ V b −
i

2 ψ̄ ∧ γ
aψ = DV a − i

2 ψ̄ ∧ γ
aψ ,(60)

ρ = dψ + 1
4ω

ab ∧ γabψ = Dψ ,(61)

where Ra is called the supertorsion and ρ is the gravitino super field strength. The
field equations read27

Rc ∧ V dεabcd = 0 ,(62)
Rab ∧ V cεabcd − 2ψ̄ ∧ γ5γdDψ = 0 ,(63)
2γ5γaDψ ∧ V a − γ5γaψ ∧Ra = 0 .(64)

The analysis of their expansion along V V V , V V ψ, V ψψ, ψψψ yields the spacetime
field equations together with the rheonomic constraints on the outer components
of the supercurvatures, which therefore results to be expressed, on-shell, as linear
tensor combinations of the inner components.

On the other hand, in the original formulation of the geometric approach to
supergravity in superspace, the rheonomic Lagrangian L(4) = L(4|0) is integrated
over a bosonic hypersurface, opportunely identified with spacetime M4,28 immersed
in superspace. Let us mention that, in this setup, the invariance of the action does
not coincide, in general, with the invariance (typically, up to total divergences) of
the Lagrangian. In particular, assuming superspace to be compactified along the
spacetime directions, the diffeomorphisms in the odd directions of superspace are
an (off-shell) invariance of the action S built in this setup iff

S(M4 + δM4)− S(M4) =
∫
V
dL(4) = 0 → dL(4) = 0(65)

(i.e., if L(4) is a closed form in superspace).
We have denoted by V the supervolume contained between the two hypersurfaces
M4′ = M4 + δM4 and M4.

The application of the rheonomic approach to, e.g., the case G̃ = ˜OSp(1 | 4)
and to the supersymmetric extension of the MacDowell-Mansouri formulation for
gravity (“MacDowell-Mansouri supergravity”, we might say, based on Cartan-(Anti)
de Sitter supergeometry) can be found, respectively, in [40, 58] and [4, 7]. The
same construction can also be applied to the superconformal theory (see [61]). A

27Up to boundary terms.
28This is coherent, given the on-shell character of the construction. Indeed, once a geometric

supersymmetric (typically, up to total divergences) Lagrangian is constructed, in the spirit of [40],
the rheonomic constraints are recovered from the study of the field equations, meaning that the
theory on another bosonic submanifold immersed in superspace, with a different embedding, would
be given just by the supersymmetry transformed Lagrangian (plus a Lorentz gauge transformation,
if we think of the superspace M4|4 in turn immersed in the supergroup manifold), therefore
leaving unaltered the physical content.
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rather comprehensive list of applications and more recent results obtained in the
rheonomic approach is to be found in [38, 58].29

3.2.2. Higher forms supergravities and FDAs. Supergravity theories in 4 ≤ D ≤ 11
spacetime dimensions have a bosonic field content that generically includes, besides
the metric and a set of 1-form gauge potentials, also p-index antisymmetric tensors.30

Their vacuum structure are therefore appropriately discussed in the framework
of so-called “Free Differential Algebras” (FDAs) underlying the theory, which
extend the Maurer-Cartan equations by incorporating p-form gauge potentials.
The concept of FDA was introduced by Sullivan in [157]. Subsequently, the FDA
framework was applied to the study of supergravity theories by R. D’Auria and P.
FrÃ©, in particular in [60], where the FDA was referred to as Cartan Integrable
System (CIS), since the authors were unaware of the previous work by Sullivan.
In fact, FDA and CIS are equivalent concepts [59]. The latter is also known as
the Chevalley-Eilenberg Lie algebras cohomology (CE-cohomology) framework in
supergravity. Actually, the super algebraic structures called FDAs in the geometric
supergravity literature are super semifree differential graded-commutative algebras,
and nowadays one would relate them to super L∞-algebras [76, 143] (see also the
reviews [77, 94]).

Let us briefly recall the standard procedure to construct a minimal FDA,31

starting from an ordinary Lie algebra. Then, we will discuss the extension to the
supersymmetric case.

Let us thus start by considering the Maurer-Cartan 1-forms σA of a Lie algebra,
and let us construct the so-called (p+ 1)-cochains (Chevalley cochains) Ωi|(p+1) in
some representation Di

j of the Lie group, that is to say, (p+ 1)-forms of the type

Ωi|(p+1) = ΩiA1...Ap+1
σA1 ∧ · · · ∧ σAp+1 ,(66)

where ΩiA1...Ap+1
is a constant tensor. If the above cochains are closed,

dΩi|(p+1) = 0 ,(67)

they are cocycles. If a cochain is exact, it is called a coboundary. Of particular
interest are those cocycles that are not coboundaries, which are elements of the
CE-cohomology.32 In the case in which this happens, we can introduce a p-form
Ai|(p) and write the following closed equation:

dAi|(p) + Ωi|(p+1) = 0 ,(68)

29See also [35] for a geometric interpretation of the BRST symmetry developed within the
group manifold setup.

30An example in the geometric supergravity literature is given by the 3-index antisymmetric
tensor Aµνρ of the Cremmer-Julia-Scherk D = 11 supergravity theory [52], which is described
geometrically in terms of a 3-form gauge potential A(3) with super field strength F (4) = dA(3) −
1
2 Ψ̄ ∧ ΓabΨ ∧ V a ∧ V b [60].

31A minimal FDA is s.t. for any p-form A(p) in it, dA(p) is a polynomial of elements of the
FDA with form degree no greater than p.

32If the cocycles are also coboundaries, then the cohomology class is trivial.
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which, together with the Maurer-Cartan equations of the Lie algebra, is the first
germ of a FDA. The latter contains, besides the Maurer-Cartan 1-forms σA, also
the new p-form Ai|(p).
The procedure can be iterated taking as basis of new cochains Ωj|(p′+1) the full set
of forms, namely σA and Ai|(p), and looking again for cocycles. If a new cocycle
Ωj|(p′+1) exists, then we can add to the FDA a new equation,

dAj|(p
′) + Ωj|(p

′+1) = 0 .(69)
The procedure can be iterated again and again, till no more cocycles can be found.
In this way, we obtain the largest FDA associated with the initial Lie algebra.
Extension to supersymmetric theories: In the supersymmetric case, a set of
nontrivial cocycles is generally present in superspace due to the existence of Fierz
identities obeyed by the wedge products of gravitino 1-forms.
The 1-form fields one starts from are the vielbein V a, the gravitino ψ, the spin
connection ωab and, possibly, a set of gauge fields. We request that the FDA is
described in terms of fields living on ordinary superspace, whose cotangent space
is spanned by the supervielbein only. This corresponds to the physical request of
a principal superbundle structure, with superspace as base space, the rest of the
fields spanning the fiber. This fact implies horizontality of the FDA, corresponding
to gauge invariance: All the fields but the supervielbein must be excluded from the
construction of the cochains. This corresponds to require the CE-cohomology to be
restricted to the H-relative CE-cohomology.

For instance, the FDA underlying D = 11 supergravity [40, 60] is

Rab := dωab + ωac ∧ ωcb = 0 ,(70)

Ra := DV a − i

2Ψ̄ ∧ ΓaΨ = 0 ,(71)

ρ := DΨ = 0 ,(72)

F (4) := dA(3) − 1
2Ψ̄ ∧ ΓabΨ ∧ V a ∧ V b = 0 ,(73)

F (7) := dB(6) − 15A(3) ∧ dA(3) − i

2Ψ̄ ∧ Γa1...a5Ψ ∧ V a1 ∧ · · · ∧ V a5 = 0 ,(74)

where Ψ is a 32-components Majorana spinor, the Γ’s are Dirac gamma matrices
in eleven dimensions, and a, b, . . . ∈ {0, 1, . . . , 10}. On the l.h.s. of (70) we have
defined the super field strengths, whose vanishing defines the vacuum. The latter
corresponds to the r.h.s. of (70), that is the FDA. As we can see, the fully extended
FDA (70) includes also a (“magnetic”) 6-form gauge potential B(6), related to the
Hodge-dual of the field strength of A(3) on spacetime. The d2-closure of this FDA
is a consequence of 3-gravitinos Fierz identities in D = 11.

Let us conclude by mentioning that it was shown in [60] that the FDA can
be traded for an ordinary Lie superalgebra (written in its dual Maurer-Cartan
formulation), namely in terms of 1-form gauge fields valued in nontrivial tensor
representations of Lorentz group SO(1, 10), allowing the disclosure of the so-called
hidden superalgebra underlying the FDA (70). This superalgebra, at least locally,
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describes a supergroup manifold (hidden supergroup, which is an ordinary Lie
supergroup, of the FDA) which could be considered at the group-theoretical
starting point for a construction of the supergravity theory. In this case, we say
that the FDA has been trivialized in terms of hidden 1-form fields (always referring,
actually, to its dual description).

The procedure was done explicitly, decomposing the 3-form A(3) in terms of a
set of trilinear (wedge) products of 1-forms and requiring the decomposition to
fulfill the integrability of the original FDA equation for A(3), that is d(A(3)

dec.) −
1
2 Ψ̄ ∧ ΓabΨ ∧ V a ∧ V b = 0. This prescription, in principle, can be applied to any
FDA. However, there is no strong reason to think that the trivialization of a FDA,
meaning the hidden superalgebra obtained, is unique. Case by case analysis has
shown, for now, that among the new 1-forms needed to ensure that the given
decomposition reproduces the integrable equation of a FDA, there appears (at
least) one extra spinor 1-form field. The role of these spinor 1-forms, investigated in
[5, 6, 131], is to ensure that the new 1-form fields introduced to trivialize the FDA
do not carry physical degrees of freedom (the dependence on the new coordinates
introduced is completely factorized and the curvatures are horizontal).
Adopting a more abstract mathematical terminology, understanding an “FDA” as
a super L∞-algebra, hence a higher stack, a hidden supergroup corresponds to an
atlas for such stack [3, 78].

We conclude by mentioning that, recently, in [57], the so-called Molien-Weyl
integral formula and Hilbert-Poincaré series33 have been adopted to systemati-
cally construct FDAs, reproducing the associated pure supergravity spectrum and
nonperturbative objects.

4. Conclusion

We have here argued for the foundational relevance of Cartan geometry and
Cartan supergeometry for gauge field theories of gravity and supergravity. Actually,
this is true for the class of theories where the (super) gauge potentials are 1-forms
and symmetries are 0-forms. The class of theories with higher form fields and
symmetries, such as encountered supergravity (as just mentioned) and string models,
should be understood via higher geometry. In that context, a popular approach
relies on the (1-)categorification of the notion of connection and its extension to
n-categories (n ≥ 2) [12, 95, 96]. A related algebraic approach, corresponding
to a trivial geometric structures, relies on homotopy (L∞-)algebras [102]. Quite
naturally, higher Cartan (super)geometry ought to be the relevant mathematical
foundations for this broader class. It is still a largely underdeveloped area of enquiry,
and contributions to it promise much clarifying insight into supergravity and string
theory – see e.g. the recent [68]. From a mathematical perspective, higher Cartan
geometry may be considered a higher extension of natural geometric structures
as defined in [110], and therefore another chapter in the study of the geometry of

33In particular, given a set of fields, the Hilbert-Poincaré series allows to compute all possible
invariants and consequently derive the cohomology structure.
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(super)manifolds. In particular, its flat limit, higher Klein geometry, would lay the
basis for a “higher Erlangen program”.

Supergeometry is the mildest form of non-commutativity. One may submit that
non-commutative Cartan geometry would be a beautiful subject to investigate. Here
again, several approach to non-commutative (NC) geometry exist: à la Connes
via spectral triples [49, 50], à la Dubois-Violette via derivations [64, 65], via Hopf
algebras (a.k.a. “quantum groups”) and deformations etc., giving as many possible
incarnations of NC Cartan geometry. In the latter case, it would generalise the
NC Klein geometry of spaces otherwise known as quantum homogeneous spaces
[99, 123, 146], and would also give an encompassing framework for NC gauge field
theory on κ-Minkowski space, the homogeneous space for the κ-Poincaré group
[93]. More generally, NC Cartan geometry is a natural mathematical arena for
models of quantum gravity (at least “phenomenological” ones). A topic that has
been, and remains, a driving motivation at the frontier of knowledge in theoretical
and mathematical physics.
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