Atlas of Metabolite SERS Fingerprints obtained by means of q-Gaussian deconvolutions and Fityk Software

Amelia Carolina Sparavigna

Department of Applied Science and Technology, Polytechnic University of Turin, Turin, Italy

Torino, 15 Dicembre 2024, amelia.sparavigna@polito.it

Abstract: This atlas is proposing the fingerprints of the SERS (Surface-Enhanced Raman Spectroscopy) spectra of metabolites, published by Sherman et al. in Talanta, 2020, in an article entitled "A surface-enhanced Raman spectroscopy database of 63 metabolites". The atlas of fingerprints is based on q-Gaussian deconvolutions and Fityk software. Comparison with data available in literature is also proposed.

Introduction

In <u>Sparavigna 2023</u>, we considered three of the Surface-Enhanced Raman spectra of metabolites (L-Cysteine, Cysteamine and Homocysteine), among the 63 spectra provided by <u>Sherman et al.</u>, 2020. The aim was to investigate the line shapes of SERS peaks by means of the q-Gaussian functions. These functions are considered by the author (AC Sparavigna) fundamental for any deconvolution of Raman spectra, as shown by several cases (see for instance, Sparavigna, 2023, 2024). In November 2023, we proposed the fingerprints of some of the Sherman et al.'s SERS spectra, to show the relevance of gaining information from them. The fingerprints had been derived from spectra according to a method based on the first derivative behavior, that is on the "first derivative spectrum" (Mosier-Boss et al., 1995). To determine the position of the Sherman and coworkers' 63 SERS spectra of metabolites, all obtained by means of q-Gaussian deconvolutions. The used software is Fityk.

Fingerprints

The first use of the term "fingerprint" in relation to the Raman spectroscopy, to the best of my knowledge, is in an article published in 1947 about the Raman spectra of hydrocarbons by Fenske and coworkers. Fenske et al., 1947, wrote that the bands of the Raman spectrum, "which are called Raman lines, are characteristic of the substance illuminated and are therefore a "fingerprint" of that substance". From that time on, the points of identification, such as positions of peaks, shoulders and valleys create the characteristic spectral pattern which is known as the "Raman fingerprint" of a given material. This pattern allows the material classification, "without any preliminary information about composition and structural origin of the individual features" (D'Ippolito et al., 2015).

SERS Data

Sherman et al. provide the SERS spectra of metabolites organized in alphabetical order, with their classification, and formulae. Here we use the same alphabetic order, providing fingerprints in the form of spectra and tables. *Many thanks to Sherman and coworkers for providing access to their precious data.*

About metabolites

The abstract of the article by Sherman et al., 2020, explains that "Metabolomics, the study of metabolic profiles in a biological sample, has seen rapid growth due to advances in measurement technologies such as mass spectrometry (MS). While MS metabolite reference libraries have been generated for metabolomics applications, mass spectra alone are unable to unambiguously identify many metabolites in a sample; these unidentified compounds are typically annotated as "features". Surface-enhanced Raman spectroscopy (SERS) is an interesting technology for metabolite identification based on <u>vibrational spectra</u>. However, no reports have been published that present SERS metabolite spectra from chemical libraries". Sherman and coworkers, in their article of 2020, "demonstrate that an untargeted approach utilizing citrate-capped silver nanoparticles yields SERS spectra for 20% of 80 compounds chosen randomly from a commercial metabolite library. Furthermore, prescreening of the metabolites according to chemical functionality allowed for the efficient identification of samples within the library that yield distinctive SERS spectra under our experimental conditions".

The Atlas

Using the data provided by Sherman et al., <u>pmc.ncbi.nlm.nih.gov</u>, we propose the fingerprints of metabolites by means of q-Gaussian deconvolutions. Deconvolutions are obtained using Fityk software (Wojdyr, 2010). The centers of the peaks and the parameters of the components are given in files .peaks by Fityk. The q-Gaussians are defined by Sparavigna in a script for this software. In some cases, the first-derivative spectrum has been already considered in <u>Sparavigna, 2023</u>. In the method based on the first-derivative spectrum, to evaluate the peak positions, some data smoothing is necessary; here, the data are used as they are. Baseline corrections are necessary to avoid negative values of intensity.

q-Gaussian function and its asymmetric q-BWF form

The fitting of Raman spectra with q-Gaussian line shapes has been proposed for the first time in 2023 by A. C. Sparavigna. The q-Gaussian line shape is a function based on the Tsallis q-form of the exponential function (Tsallis, 1988). This exponential form is characterized by a q-parameter. When q is equal to 2, we have the Lorentzian function. If q is close to 1, we have a Gaussian function. For values of q between 1 and 2, we have a bell-shaped symmetric function with power-law wings ranging from Gaussian to Lorentzian tails.

The q-Gaussian is given as $f(x) = Ce_q(-\gamma x^2)$, where $e_q(.)$ is the q-exponential function and C a scale constant (Hanel et al., 2009). The q-exponential has expression: $e_q(u) = [1 + (1-q)u]^{1/(1-q)}$. For spectroscopy, we write the q-Gaussian function with the center of the band at x_0 :

$$q\text{-}Gaussian = Cexp_q(-\gamma(x-x_o)^2) = C \left[1 + (q-1)\gamma(x-x_o)^2\right]^{1/(1-q)}.$$

We can apply q-Gaussian functions by means of Fityk software. In Fityk, a q-Gaussian function can be defined in the following manner:

define Qgau(height, center, hwhm, q=1.5) = height*(1+(q-1)*((x-center)/hwhm)^2)^(1/(1-q))

where q=1.5 is the initial guessed value of the q-parameter. Parameter hwhm is the half width at half maximum of the line, in the case of a Lorentzian function. In fact, when q=2, the q-Gaussian turns into a Lorentzian function, that we can find defined in Fityk as:

Lorentzian(height, center, hwhm) = height/(1+((x-center)/hwhm)^2)

When q is close to 1, the q-Gaussian becomes a Gaussian function.

In Fityk, to define a function, use please Session > New Script > Blank Fityk Script

💉 Fityk 1.3.1					-		×
Session Data Functions	Fit Tools	GUI Help					
Execute Script	Ctrl-X) 🔍 🖻 🖗 🗠 🖓 🕅 🦀	Constant 🗸 🔨	\$ 3			
New Script	>	Blank Fityk Script		data	functi	ons variables	•
Edit Script		Blank Lua Script		Ne	4F N		-
Recent Scripts	>	From Command History			#F P	lame	

In the Blank Fityk Script paste the "define" of the function, for instance the Qgau given above.

💉 Fityk	1.3.1												_		\times
Session	Data Fu	inctions	Fit Tool	s GUI	Help										
Q.M.	♪☆ 🎊 🤇	QQ(Q Q (2, 🥵	े 🚷	¢ ¢:	🔁 🖪	Æ	Constant		6.0				
											data	fun	ctions	variable	S
	unnai	med *								×	No	#F	Name	е	
-800				R	×						0	0+0			
	Execut	e Step	Save	Save as	s Close										
-600	1 2	# Fity define	yk scri e Qgau	ipt. 1 (heigł	Fityk v ht, cer	version nter, 1	n: 1.3 hwhm,	.1 q=1.	5) = he	igh					

Then, save the Script, and execute it. Using Functions > Definition Manager, in the list of the functions, it will be the q-Gaussian function too.

🍠 Fityk 1.3.1						-		\times
Session Dat	Functions Fit Tools	GUI Help						
QWA	Function Type	>	🖆 🚰 🔀 📓 📣 Constant	~ <u> </u>	(h 2)			
	Definition Manager				data	function	s variable	ç
	Guess Peak				Ne	#F Ne	-	
-800	Auto-Freeze					#r Na 0+0	ne	

As shown on many occasions, the q-Gaussians are suitable for fitting Raman spectra (by examples proposed in <u>SSRN</u> to the <u>SERS</u> cases, for instance). For applying the q-Gaussians to <u>asymmetric</u> <u>bands</u>, we can define also an asymmetric function, turning the Breit-Wigner-Fano (BWF) function into a q-BWF function (Sparavigna, 2023). Let us write the BWF as follow:

BWF(x) =
$$C \frac{\left[1 - \xi \gamma^{1/2} (x - x_o)\right]^2}{\left[1 + \gamma (x - x_o)^2\right]}$$

When asymmetry parameter ξ is zero, BWF becomes a symmetric Lorentzian function. Note that the center of the line does not correspond to the position of the peak of the function. As in <u>Sparavigna, 2023</u>, we can define the q-BWF function in the following manner:

q-BWF =
$$C[1 - \xi \gamma^{1/2}(q-1)^{1/2}(x-x_o)]^2[1 + (q-1)\gamma(x-x_o)^2]^{1/(1-q)}$$

In fact, the Lorentzian function is substituted by a q-Gaussian function. In Fityk, the <u>q-Breit-Wigner-Fano</u> (q-BWF) can be defined as:

Qbreit(height, center, hwhm, q=1.5, xi=0.1) = (1-xi*(q-1)*(x-center)/hwhm)^2 * height*(1+(q-1)^0.5 *((x-center)/hwhm)^2)^(1/(1-q))

And the BWF can be defined as:

Breit(height, center, hwhm, xi=0.1) = (1-xi*(x-center)/hwhm)^2 * height/(1+((x-center)/hwhm)^2)

Using +xi instead of -xi does not change the fitting results in Fityk.

In the following Atlas, we provide for each metabolite, a screenshot of Fityk software, where the green dots are data from Sherman et al., 2020, red curves the q-Gaussian components, yellow curve the sum of components. In the lower part of the screenshot, the misfit is given (difference between data and yellow curve).

Supplementary material is providing two folders containing the Fityk files name_metabolite.fit and name_metabolite-fingerprint.peaks.

1-Methylnicotinamide

As told by Sherman and coworkers, "While a spectrum of this molecule has not been previously reported to our knowledge, comparable spectra have been published for the analogous nicotinamide" in Jaworska, et al., 2012.

PeakType Center Parameters: Height Center hwhm q (height > 0.045, **Bold** h>0.10) The position of the centers is in cm^{-1} , intensity in arbitrary unit.

%_8	Qgau	558.953	0.105979	558.953	18.2871	2.26664
%_14	Qgau	998.287	0.0554683	998.287	8.86794	2.61864
%_43	Qgau	1017.85	0.0582474	1017.85	5.32125	1.07878
%_42	Qgau	1027.14	0.365554	1027.14	3.48534	1.56505
%_1	Qgau	1032.98	0.954419	1032.98	6.49359	1.00002
%_13	Qgau	1206.29	0.0648222	1206.29	11.6139	1.88741
%_3	Qgau	1213.78	0.185379	1213.78	9.1399	1.07241
%_38	Qgau	1331.26	0.059443	1331.26	26.5227	1.81559
%_19	Qgau	1390.5	0.0518422	1390.5	12.6854	0.999816
%_4	Qgau	1411.48	0.20852	1411.48	14.7099	1.42494
%_ 4 %_9	Qgau Qgau	1411.48 1444.25	0.20852 0.0947042	1411.48 1444.25	14.7099 17.9707	1.42494 1.57323
%_ 4 %_9 %_31	Qgau Qgau Qgau	1411.48 1444.25 1467.22	0.20852 0.0947042 0.0485978	1411.48 1444.25 1467.22	14.7099 17.9707 9.69591	1.42494 1.57323 1.00166
%_ 4 %_9 %_31 % _5	Qgau Qgau Qgau Qgau	1411.48 1444.25 1467.22 1590.96	0.208520.09470420.04859780.162519	1411.48 1444.25 1467.22 1590.96	14.709917.97079.6959116.7199	1.42494 1.57323 1.00166 1.50445
%_4 %_9 %_31 %_5 %_6	Qgau Qgau Qgau Qgau Qgau Qgau	1411.48 1444.25 1467.22 1590.96 1631.12	0.20852 0.0947042 0.0485978 0.162519 0.135273	1411.48 1444.25 1467.22 1590.96 1631.12	14.709917.97079.6959116.719923.168	 1.42494 1.57323 1.00166 1.50445 0.999633
%_4 %_9 %_31 %_5 %_6 %_34	Qgau Qgau Qgau Qgau Qgau Qgau	1411.48 1444.25 1467.22 1590.96 1631.12 1730.76	 0.20852 0.0947042 0.0485978 0.162519 0.135273 0.0484485 	1411.48 1444.25 1467.22 1590.96 1631.12 1730.76	 14.7099 17.9707 9.69591 16.7199 23.168 18.6942 	1.42494 1.57323 1.00166 1.50445 0.999633 2.03091
%_4 %_9 %_31 %_5 %_6 %_34 %_17	Qgau Qgau Qgau Qgau Qgau Qgau Qgau	1411.48 1444.25 1467.22 1590.96 1631.12 1730.76 1839.67	0.20852 0.0947042 0.0485978 0.162519 0.135273 0.0484485 0.0493608	1411.48 1444.25 1467.22 1590.96 1631.12 1730.76 1839.67	14.7099 17.9707 9.69591 16.7199 23.168 18.6942 10.3953	1.42494 1.57323 1.00166 1.50445 0.999633 2.03091 2.34436
%_4 %_9 %_31 %_5 %_6 %_34 %_17 %_11	Qgau Qgau Qgau Qgau Qgau Qgau Qgau Qgau	1411.48 1444.25 1467.22 1590.96 1631.12 1730.76 1839.67 1907.18	0.20852 0.0947042 0.0485978 0.162519 0.135273 0.0484485 0.0493608 0.0516374	1411.48 1444.25 1467.22 1590.96 1631.12 1730.76 1839.67 1907.18	14.7099 17.9707 9.69591 16.7199 23.168 18.6942 10.3953 20.0302	1.42494 1.57323 1.00166 1.50445 0.999633 2.03091 2.34436 0.999874

Therefore, the centers are: $(in \text{ cm}^{-1})$:

558.953(m)	998.287	1017.85	1027(s)	1032.98(vs)	1206.29
1213.78(m)	1331.26	1390.5	1411.48(m)	1444.25	1467.22
1590.96(m)	1631.12(m)	1730.76	1839.67	1907.18	1970.8

In Jaworska, et al., 2012, we find the following fingerprints for nicotinamide (solid state and solutions). In **bold**, the peaks which are corresponding to q-Gaussian centers given above, within $+/-5 \text{ cm}^{-1}$ (in *italic*, within $+/-10 \text{ cm}^{-1}$):

Solid: 390 629 789 **994** 1043(vs) 1094 1124 1161 **1211 1393** 1579 1597 1616 1677

Solution (pH=12): 394 631 787 847 **997 1032(vs)** 1042(vs) 1101 1154 **1202 1395** 1424 **1441** 1489 1574 1597 1672

Solution (pH=2): 368 621 779 836 990 **1030(s)** 1046(vs) 1107 1157 1267 1368 1424(s) 1605 *1641(s)* 1695

SERS pH=9: 789 992 1032(vs) 1078 1371 1410 1439 1489 1586 1601

According to Jaworska and coworkers, "the normal FT-Raman spectrum of the aqueous solution at low pH reveals the presence of two bands at 1030 and 1046 cm⁻¹, which are attributed to vibrations 1 and 12 of the pyridine ring, respectively. Mode 1 originates from the trigonal bend of the ring (breathing), while mode 12 is a combination of the ring C-C and C-N stretches". If we consider Figure 3 in Jaworska et al., we can note that the intensity of the peak at 1030 cm⁻¹ changes according to pH.

A detail of the two q-Gaussian components at 1027 and 1033 cm^{-1} .

In Majzner et al., 2016, among the supplementary information, we can find the Raman spectra of arachidonic acid (AA) and 1-methyl-nicotinamide (MNA). The fingerprint provided by Majzner and coworkers is:

209233367398525643739845899**1030(vs)**1129119412891399(s)1503**1586**163916822588280329513067

Let us repropose the SERS fingerprint, and compare within 5 cm^{-1} (bold) and within 10 cm^{-1} (italic):

558.953(m)	998.287	1017.85	1027(s)	1032.98(vs)	1206.29
1213.78(m)	1331.26	1390.5	1411.48(m)	1444.25	1467.22
1590.96(m)	1631.12(m)	1730.76	1839.67	1907.18	1970.8

1-naphthylamine

As told in Sherman et al., "SERS spectra have previously been reported for this molecule" by Alvarez-Puebla et al., 2007.

# Peak	кТуре	Center	Parameters:	Height	Center	HWHM	q (height > 0.25 Bold h > 0.40)
%_48	Qgau	499.592		0.522043	499.592	13.1201	1.34321
%_14	Qgau	522.941		0.41493	522.941	11.4354	1.51673
%_19	Qgau	579.012		0.317255	579.012	23.6034	1.68347
%_8	Qgau	622.498		0.497027	622.498	11.4899	1.03955
%_20	Qgau	1149.7		0.290043	1149.7	16.123	1.74769
%_23	Qgau	1200.06		0.264314	1200.06	17.416	1.57414
%_15	Qgau	1224.54		0.277563	1224.54	13.4779	1.88233
%_11	Qgau	1250.08		0.43203	1250.08	14.3411	1.95591
%_13	Qgau	1324.93		0.445613	1324.93	19.9008	1.82074
%_5	Qgau	1358.43		0.835659	1358.43	13.1081	1.80107
%_16	Qgau	1374.18		0.284494	1374.18	8.7291	1.23907
%_10	Qgau	1394.67		0.480097	1394.67	14.4381	1.74448
% 18	Qgau	1436.06		0.279891	1436.06	18.5879	1.91098
%_12	Qgau	1462.82		0.370136	1462.82	17.1288	1.69961
%_17	Qgau	1499.18		0.280505	1499.18	19.2749	1.78655
% 7	Ogau	1538.37		0.595345	1538.37	16.1571	1.94248
%_6	Qgau	1566.92		0.580069	1566.92	13.717	2.08098
%_9	Qgau	1598.48		0.500772	1598.48	14.5671	1.69709

Therefore, the centers are:

499.592(s)	522.941(s)	579.012	622.498(s)	1149.7	1200.06
1224.54	1250.08(s)	1324.93(s)	1358.43(vs)	1374.18	1394.67(s)
1436.06	1462.82	1499.18	1538.37(s)	1566.92(s)	1598.48(s)

In bold, the centers which are corresponding to data in Alvarez-Puebla et al., within ± -5 cm⁻¹. In Alvarez-Puebla et al., 2007, we find the study of two "important environmental pollutants, 1-naphthylamine (1NA) and pyridine (PYR)". "The Raman and SERS spectra (with the pollutant added before and after the preparation of the nanoparticles) of 1NA and PYR are shown in Fig. 5 [of Alvarez-Puebla et al.]. Raman spectra of 1NA (Fig. 5A) is dominated by ring stretching (1575 and 1454 cm⁻¹), and C–N stretching (1376 cm⁻¹). 1NA SERS spectra on HA–AuNP ... is characterized by ring stretching (1575, *1567*, *1462* and 1454 cm⁻¹), C=C and C–N stretching (*1377* cm⁻¹)".

Let us add data from the IR spectrum from the NIST/EPA Gas-Phase Infrared Database, available at <u>https://webbook.nist.gov/cgi/cbook.cgi?ID=C134327&Mask=80</u>. The main peaks are:

563.3 769.5 1015.5 1086 1285 1379 1414 **1461** 1515 1590 1625

2-Quinolinecarboxilic Acid

PeakType Center Parameters: characters for height > 0.30)

Height	Center	HWHM	q (height > 0.1 Bold
--------	--------	------	-------------------------------

%_8	Qgau	531.131
%_13	Qgau	580.413
%_3	Qgau	782.538
%_14	Qgau	810.648
%_10	Qgau	998.892
%_9	Qgau	1023.39
%_15	Qgau	1118.53
%_50	Qgau	1166.47
%_5	Qgau	1300.66
%_11	Qgau	1347.79
%_1	Qgau	1375.95
%_7	Qgau	1430.13
%_2	Qgau	1461.89
%_6	Qgau	1593.72
%_4	Qgau	1623.15
%_19	Qgau	1642.29

0.240283	531.131	10.7482	1.58802
0.152971	580.413	33.2128	1.06819
0.403204	782.538	8.56315	1.3799
0.142473	810.648	33.846	2.24916
0.20039	998.892	7.84557	0.999979
0.24717	1023.39	8.77852	1.45528
0.107309	1118.53	16.5132	1.76095
0.142384	1166.47	21.7435	1.2464
0.302995	1300.66	15.7266	2.26704
0.302995 0.166581	1300.66 1347.79	15.7266 20.2771	2.26704 1.253
0.302995 0.166581 0.999205	1300.66 1347.79 1375.95	15.7266 20.2771 11.3259	2.267041.2531.57419
 0.302995 0.166581 0.999205 0.26981 	1300.66 1347.79 1375.95 1430.13	15.7266 20.2771 11.3259 13.412	2.267041.2531.574190.999849
0.302995 0.166581 0.999205 0.26981 0.6015	1300.66 1347.79 1375.95 1430.13 1461.89	15.7266 20.2771 11.3259 13.412 11.1805	 2.26704 1.253 1.57419 0.999849 1.47625
0.302995 0.166581 0.999205 0.26981 0.6015 0.323765	1300.66 1347.79 1375.95 1430.13 1461.89 1593.72	15.7266 20.2771 11.3259 13.412 11.1805 14.0857	2.26704 1.253 1.57419 0.999849 1.47625 1.69766
0.302995 0.166581 0.999205 0.26981 0.6015 0.323765 0.305301	1300.66 1347.79 1375.95 1430.13 1461.89 1593.72 1623.15	15.7266 20.2771 11.3259 13.412 11.1805 14.0857 11.169	2.26704 1.253 1.57419 0.999849 1.47625 1.69766 1.06056

3'-5'-Cyclic AMP 3', 5'-cyclic adenosine monophosphate (AMP).

PeakType Center (h > 0.15, bold h > 0.25)

%_17	Qgau	531.5
%_5	Qgau	564.412
%_8	Qgau	714.877
%_9	Qgau	762.265
%_7	Qgau	804.158
%_33	Qgau	834.133
%_32	Qgau	858.453
%_15	Qgau	913.046
%_13	Qgau	993.445
%_2	Qgau	999.917
%_11	Qgau	1025.87
%_37	Qgau	1130.08
%_36	Qgau	1164.55
%_38	Qgau	1272.96
%_39	Qgau	1308.71
%_40	Qgau	1341.54
%_41	Qgau	1376.98
%_46	•	1 4 4 2 0 2
	Qgau	1442.82
%_45	Qgau Qgau	144 <i>2.82</i> 1464.54

0.186584	531.5	14.9697	1.30829
0.334314	564.412	19.8898	0.999887
0.22756	714.877	13.9872	1.21092
0.220584	762.265	11.8189	1.94594
0.344244	804.158	16.3874	1.40253
0.239719	834.133	21.2652	1.44203
0.4075	858.453	19.0275	0.999746
0.200361	913.046	12.5196	1.62419
0.274204	993.445	4.84623	1.90005
0.423528	999.917	6.40414	1.21384
0.186371	1025.87	9.6439	0.999989
$0.186371 \\ 0.162462$	1025.87 1130.08	9.6439 21.9856	0.999989 2.08123
0.186371 0.162462 0.200073	1025.87 1130.08 1164.55	9.6439 21.9856 17.0445	0.999989 2.08123 1.39851
0.186371 0.162462 0.200073 0.227295	1025.87 1130.08 1164.55 1272.96	9.6439 21.9856 17.0445 25.3669	0.999989 2.08123 1.39851 1.45812
0.186371 0.162462 0.200073 0.227295 0.208174	1025.87 1130.08 1164.55 1272.96 1308.71	9.6439 21.9856 17.0445 25.3669 10.2481	0.999989 2.08123 1.39851 1.45812 2.06841
0.186371 0.162462 0.200073 0.227295 0.208174 0.21001	1025.87 1130.08 1164.55 1272.96 1308.71 1341.54	9.6439 21.9856 17.0445 25.3669 10.2481 16.9198	0.999989 2.08123 1.39851 1.45812 2.06841 2.44676
0.186371 0.162462 0.200073 0.227295 0.208174 0.21001 0.229396	1025.87 1130.08 1164.55 1272.96 1308.71 1341.54 1376.98	9.6439 21.9856 17.0445 25.3669 10.2481 16.9198 22.8388	0.999989 2.08123 1.39851 1.45812 2.06841 2.44676 2.27672
0.186371 0.162462 0.200073 0.227295 0.208174 0.21001 0.229396 0.313052	1025.87 1130.08 1164.55 1272.96 1308.71 1341.54 1376.98 1442.82	9.6439 21.9856 17.0445 25.3669 10.2481 16.9198 22.8388 11.9285	0.999989 2.08123 1.39851 1.45812 2.06841 2.44676 2.27672 1.52154
0.186371 0.162462 0.200073 0.227295 0.208174 0.21001 0.229396 0.313052 0.548247	1025.87 1130.08 1164.55 1272.96 1308.71 1341.54 1376.98 1442.82 1464.54	9.6439 21.9856 17.0445 25.3669 10.2481 16.9198 22.8388 11.9285 16.9416	0.999989 2.08123 1.39851 1.45812 2.06841 2.44676 2.27672 1.52154 0.999707

3-Methoxytyramine

As told by Sherman and coworkers, the SERS spectrum of 3-methoxytyramine have previously been reported Lee et al. 1988. The following Table is proposing their results.

SERS sints (ciii)								
V _{C-O} V ₃ V _{19a} V _{8a} V _{8b}								
1273	1363	1578	1601					

SERS shifts (cm⁻¹)

PeakType Center Para

Parameters Height Center hwhm q (height > 0.13, **bold** h > 0.40)

%_4	Qgau	706.307	0.629718	706.307	7.63984	1.7298
%_5	Qgau	790.396	0.467177	790.396	11.8253	2.41048
%_10	Qgau	999.562	0.142311	999.562	7.16415	1.56206
%_7	Qgau	1027.74	0.269247	1027.74	10.2847	1.12087
%_28	Qgau	1188.19	0.189406	1188.19	11.1802	1.87053
%_6	Qgau	1253.12	0.183342	1253.12	14.1057	2.02955
%_34	Qgau	1276.41	0.493423	1276.41	16.6394	2.15852
%_35	Qgau	1316.07	0.215772	1316.07	19.3529	2.15666
%_29	Qgau	1360.2	0.439941	1360.2	33.4662	1.67333
<u>%_</u> 2	Qgau	1449.46	0.64263	1449.46	27.6449	2.24146
%_30	Qgau	1508.99	0.135781	1508.99	23.4604	1.11215
%_22	Qgau	1561.55	0.136789	1561.55	28.9504	1.96478
%_21	Qgau	1604.21	0.362019	1604.21	17.7133	2.51739
%_1	Qgau	1626.1	0.549836	1626.1	19.5846	2.46796
%_14	Qgau	1696.77	0.202231	1696.77	38.3693	2.58073

Therefore, the q-Gaussian centers are:

706.307(s)	790.396(s)	999.562	1027.74(m)	1188.19	1253.12
1276.41(s)	1316.07	1360.2(s)	1449.46(s)	1508.99	1561.55
1604.21(m)	1626.1(s)	1696.77			

As previously told, in Lee et al. we find the SERS shifts (in bold, the peaks which are corresponding to centers given above, within +/-5 cm⁻¹, and in italic, within +/-10 cm⁻¹):

1273 1363 1441 1507 1578 1601

As we can see from the Table given in the previous page, we have some q-Gaussian components which have a q-parameter greater than 2. That is, we have fat tails of the line shape. To reduce the role of the tail, we can try to add further components. The fit is proposed in the following image. We can find just some small improvement of the misfit.

%_9 Qgau	552.375	х	х	0.132223 552.375 16.3061 2.94561
%_4 Qgau	706.247	Х	X	0.621548 706.247 7.66745 1.66303
%_5 Qgau	788.847	X	Х	0.410713 788.847 11.021 1.15093
%_11 Qgau	808.323	Х	х	0.167201 808.323 13.4801 1.83597
%_10 Qgau	999.509	Х	х	0.153592 999.509 8.11765 1.4459
%_7 Qgau	1027.72	Х	х	0.278812 1027.72 10.8717 1.00793
%_27 Qgau	1159.04	Х	х	0.131124 1159.04 8.09418 0.999914

%_28 Qgau	1187.74	Х	Х	0.198444 1187.74 11.7757 1.74643
%_6 Qgau	1253.9	х	Х	0.233884 1253.9 15.6213 2.06796
%_34 Qgau	1276.21	X	Х	0.482606 1276.21 14.179 2.18849
%_35 Qgau	1321.26	Х	Х	0.202588 1321.26 18.2082 1.70216
%_29 Qgau	1360.98	X	Х	0.487771 1360.98 31.4059 1.8383
%_2 Qgau	1448.7	X	Х	0.618138 1448.7 26.1096 1.95863
%_30 Qgau	1511.67	Х	Х	0.145332 1511.67 26.2348 1.41157
%_22 Qgau	1562.98	Х	Х	0.175103 1562.98 31.0861 1.9807
%_21 Qgau	1603.76	х	Х	0.299136 1603.76 16.4645 2.48782
%_1 Qgau	1624.68	X	Х	0.605469 1624.68 19.2242 2.24542
%_14 Qgau	1697.84	х	Х	0.219136 1697.84 37.2766 2.22763
%_8 Qgau	1774.85	Х	Х	0.15245 1774.85 21.4257 1.46477
%_12 Qgau	1902.38	Х	Х	0.143522 1902.38 25.9448 1.75693

We have used the same thresholds for height (height > 0.13, bold h > 0.40). The centers are:

552.375	706.247(s)	788.847(s)	808.323	999.509	1027.72(m)
1159.04	1187.74	1253.9(m)	1276.21(s)	1321.26	1360.98(s)
1448.7(s)	1511.67	1562.98	1603.76(m)	1624.68(s)	1697.84
1774.85	1902.38				

We can compare with the centers obtained before, which are:

706.307(s)	790.396(s)	999.562	1027.74(m)	1188.19	1253.12
1276.41(s)	1316.07	1360.2(s)	1449.46(s)	1508.99	1561.55
1604.21(m)	1626.1(s)	1696.77			

The largest variation of the center position is 5 cm⁻¹, from 1316 to 1321 cm⁻¹. In fact, a further component is present between the two strong peaks at 1276 and 1361 cm⁻¹.

3-Methyladenine

Sherman and coworkers tell that the SERS spectra for 3-Methyladenine have previously been reported by Harroun et al., 2017, and by Nguyen et al., 2017.

# PeakType	Center	Parameters	Height	Center	hwhm q	(h > 0.08,	bold	h >	0.20.)
%_19 Qgau	535.109		0.0897919	535.109	0 14.4715	2.1924			
%_26 Qgau	603.185		0.0957003	603.185	5 11.3101	1.53316			
% 1 Ogau	656.303		0.988356	656.303	8 10.3341	1.8972			
% 5 Qgau	801.295		0.247788	801.295	5 8.35259	1.24499			
% 24 Ogau	809.351		0.115062	809.351	7.07465	1.97317			
% 14 Qgau	854.773		0.0847764	854.773	3 15.8237	1.14921			
%_47 Qgau	997.673		0.129678	997.673	9.04125	2.25515			
%_16 Qgau	1028.71		0.166022	1028.71	7.673	2.37184			
%_9 Qgau	1060.25		0.160606	1060.25	5 11.6573	0.999862			
%_6 Qgau	1215.37		0.312233	1215.37	16.6507	1.22759			
%_13 Qgau	1259.83		0.0965649	1259.83	3 14.0671	0.999658			
%_4 Qgau	1294.45		0.577864	1294.45	5 12.2958	1.74939			
%_12 Qgau	1322.95		0.0828656	1322.95	5 13.0129	1.09422			
%_7 Qgau	1432.24		0.296223	1432.24	17.3177	1.71632			
%_2 Qgau	1470.45		0.834111	1470.45	5 14.8157	1.28347			
%_28 Qgau	1481.06		0.0869664	1481.06	5 3.80723	1.96985			
%_3 Qgau	1588.19		0.767821	1588.19	11.638	1.54062			
%_48 Qgau	1641.93		0.0992832	1641.93	3 11.2123	2.47543			
% 49 Ogau	1657		0.150396	1657	10.404	1.57514			

Therefore, the centers are at:

535.109	603.185	656.303(vs)	801.295	809.351	854.773
997.673	1028.71(m)	1060.25(m)	1215.37(s)	1259.83	1294.45(s)
1322.95	1432.24(s)	1470.45(vs)	1481.06	1588.19(vs)	1641.93
1657(m)					

Harroun et al., 2017, are providing in their Table 3 the following SERS peaks (assignments are also given):

486(s)	533	600(m)	646(s)	693	743	789
826(s)	850	924(s)	962	1021	1048	1140
1209	1244	1272	1291	1323(s)	1364	1396
1409	1421	1461(s)	1476(vs)	1528	1567	1632

As previous cases, we have marked the correspondences of q-Gaussian centers and peaks, in bold within ± -5 cm⁻¹, and in italic, within ± -10 cm⁻¹.

The Raman peaks given by Harroun et al. are (for comparison with the q-Gaussian centers, in bold within +/-5 cm⁻¹, and in italic, within +/-10 cm⁻¹):

481(s)	539	583	617	664(vs)	694	732
796	817	828	886	928	955	1059
1112	1178	1212	1254	1285(s)	1316	1367
1408	1431	1457	1471	1529	1575	<i>1641</i>

Nguyen et al., 2017, are providing *Raman and SERS* on Au data (for comparison with q-Gaussian centers, in bold, within +/-5 cm⁻¹, and in italic, within +/-10 cm⁻¹):

481	580	660(vs)	803	956	1053	1106
1167	1240	1267(s)	1322	1410(s)	1457	1519
1567(s)	1628 (R a	aman)				
503	597	642(s)	812(s)	940	1034(s)	
1128	1165	1223	1258(s)	1329(vs)	1416	
1470(s)	1531(vs)	1572(s)	1639(s)	(SERS on Au)		

4-Imidazoleacetic acid

%_1 Qgau 555.252 0.764792 555.252 17.93 1.40203 %_3 Qgau 713.995 0.468404 713.995 11.9505 1.38044 %_7 Qgau 760.418 0.370185 760.418 10.7779 1.8768 %_4 Qgau 850.971 0.412089 850.971 16.4771 1.44034 %_11 Qgau 802.976 0.283064 802.976 11.1995 1.31442 %_9 Qgau 883.791 0.345797 883.791 14.8631 1.51016)
%_3 Qgau 713.995 0.468404 713.995 11.9505 1.38044 %_7 Qgau 760.418 0.370185 760.418 10.7779 1.8768 %_4 Qgau 850.971 0.412089 850.971 16.4771 1.44034 %_11 Qgau 802.976 0.283064 802.976 11.1995 1.31442 %_9 Qgau 883.791 0.345797 883.791 14.8631 1.51016	
%_7 Qgau 760.418 0.370185 760.418 10.7779 1.8768 %_4 Qgau 850.971 0.412089 850.971 16.4771 1.44034 %_11 Qgau 802.976 0.283064 802.976 11.1995 1.31442 %_9 Qgau 883.791 0.345797 883.791 14.8631 1.51016	
%_4 Qgau 850.971 0.412089 850.971 16.4771 1.44034 %_11 Qgau 802.976 0.283064 802.976 11.1995 1.31442 %_9 Qgau 883.791 0.345797 883.791 14.8631 1.51016	
%_11Qgau802.9760.283064802.97611.19951.31442%_9Qgau883.7910.345797883.79114.86311.51016	
%_9 Qgau 883.791 0.345797 883.791 14.8631 1.51016	
%_16 Qgau 974.925 0.152207 974.925 8.70443 1.92419	
%_5 Qgau 995.636 0.434743 995.636 7.16485 1.69447	
%_17 Qgau 1027.03 0.159663 1027.03 10.8022 1.10759	
%_45 Qgau 1160.65 0.190324 1160.65 16.5144 0.999652	
%_18 Qgau 1221.97 0.157471 1221.97 12.8491 0.999793	
%_48 Qgau 1297.28 0.155587 1297.28 18.7029 1.20064	
%_12 Qgau 1271.12 0.231336 1271.12 21.0803 1.53804	
%_6 Qgau 1312.81 0.289805 1312.81 12.2031 1.47017	
%_49 Qgau 1378.03 0.212151 1378.03 20.4595 1.58675	
%_50 Qgau 1409.66 0.162721 1409.66 13.5699 1.01189	
%_2 Qgau 1440.34 0.572245 1440.34 17.772 1.86828	
%_8 Qgau 1468.1 0.353439 1468.1 15.9704 0.999734	
%_15 Qgau 1598.85 0.170455 1598.85 26.1734 1.35947	
%_10 Qgau 1630.28 0.246575 1630.28 16.5975 1.76537	

5-oxo-L-proline

# PeakType	Center	Parameters	Height	Ce	nter HW	HM q	(height	> 0.15,	bold	h >	0.40)
%_16 Qgau	528.376		0.224202	528.376	9.23023	1.9134	2				
%_1 Qgau	568.666		1.06175	568.666	8.58585	1.1483					
%_7 Qgau	589.823		0.339663	589.823	10.2177	1.68003	3				
%_19 Qgau	609.842		0.254816	609.842	6.35479	1.17895	5				
%_17 Qgau	727.871		0.193114	727.871	10.5156	1.09687	7				
%_15 Qgau	816.969		0.264728	816.969	15.3226	1.76945	5				
%_50 Qgau	859.092		0.356304	859.092	13.3166	1.8101					
%_51 Qgau	885.448		0.202675	885.448	8.85459	2.0062					
%_10 Qgau	999.791		0.309807	999.791	7.17605	1.30205	5				
%_55 Qgau	1135.27		0.669826	1135.27	9.25538	1.35581	L				
%_56 Qgau	1157.69		0.394534	1157.69	9.67869	1.96836	5				
%_12 Qgau	1183.75		0.421502	1183.75	11.0511	1.40259)				
%_66 Qgau	1253.9		0.265053	1253.9	9.95135	1.7749	4				
%_58 Qgau	1270.66		0.711915	1270.66	13.5148	1.87724	l I				
%_59 Qgau	1284.51		0.293077	1284.51	9.29025	1.97957	7				
%_68 Qgau	1298.04		0.277126	1298.04	9.12413	1.64683	3				
%_6 Qgau	1322.94		0.666514	1322.94	9.00307	1.84737	7				
%_14 Qgau	1351.85		0.261353	1351.85	29.2274	2.12759)				
%_62 Qgau	1434.18		0.762772	1434.18	9.57799	1.59745	5				
%_63 Qgau	1453.44		0.417919	1453.44	10.2565	2.05014	l I				
%_39 Qgau	1472.4		0.37552	1472.4	16.3574	1.52171					
%_18 Qgau	1528.17		0.238252	1528.17	14.0235	1.16648	3				
%_11 Qgau	1622.01		0.239853	1622.01	30.9479	0.99924	1				
%_2 Qgau	1655.26		0.93971	1655.26	9.83303	1.58128	3				
% 64 Ogau	1702.53		0.214659	1702.53	14.9946	1.079					

Agmatine Sulfate

# Peak	сТуре	Parameters	Height	Center HV	VHM q	(height >	0.14, bold	h >0.40)
%_18	Qgau	531.981		0.141439	531.981	13.6065	0.999929	
%_15	Qgau	572.887		0.207158	572.887	38.6744	1.10126	
%_6	Qgau	899.53		0.590259	899.53	12.48 1.	45465	
%_3	Qgau	962.038		0.687379	962.038	20.6693	1.59863	
%_13	Qgau	1001.56		0.273127	1001.56	9.40753	1.0002	
%_11	Qgau	1026.6		0.31235	1026.6	11.7838	1.12164	
%_5	Qgau	1080.54		0.600028	1080.54	12.9321	1.76471	
%_12	Qgau	1164.45		0.273022	1164.45	17.8005	0.999546	
%_21	Qgau	1249.18		0.153476	1249.18	7.28787	1.00039	
%_8	Qgau	1263.06		0.326839	1263.06	12.8507	1.15016	
%_16	Qgau	1281.07		0.264179	1281.07	15.3649	0.999829	
%_ 7	Qgau	1313.54		0.485759	1313.54	16.7005	1.81503	
%_14	Qgau	1356.9		0.251929	1356.9	31.6421	2.29504	
%_4	Qgau	1418.07		0.55933	1418.07	12.4194	2.1354	
%_1	Qgau	1443.39		0.87945	1443.39	14.0127	1.40472	
%_9	Qgau	1468.42		0.422695	1468.42	14.7778	1.53927	
%_19	Qgau	1503.74		0.235537	1503.74	15.7858	0.999895	
%_17	Qgau	1566.57		0.152636	1566.57	23.8556	0.99957	
<u>%_</u> 2	Qgau	1623.31		0.969752	1623.31	12.0288	2.27352	
%_10	Qgau	1648.89		0.289271	1648.89	16.2633	2.69073	
%_26	Qgau	1686.76		0.146647	1686.76	24.1083	2.53812	

Biliverdin

# Peal	кТуре	Center	Parameters	Height	Cente	er HWE	IM q (H	Height > 0.1	5, bold $h > 0.30$)
%_20	Qgau	533.17		0.1	74925	533.17	13.156	2.10512	
%_8	Qgau	562.325		0.3	8109	562.325	17.5031	0.999854	
%_13	Qgau	717.943		0.2	230636	717.943	20.4684	0.999767	
%_10	Qgau	761.161		0.3	827309	761.161	14.1227	1.97741	
<u>%_2</u>	Qgau	805.309		0.4	853	805.309	15.0605	1.37269	
%_4	Qgau	849.804		0.4	6121	849.804	20.691	1.3117	
%_15	Qgau	886.358		0.2	244251	886.358	15.4334	1.50217	
%_7	Qgau	912.946		0.3	825374	912.946	10.0145	1.55505	
%_19	Qgau	939.655		0.1	82866	939.655	17.7734	1.05464	
%_31	Qgau	976.137		0.1	87003	976.137	10.9601	0.99991	
%_5	Qgau	997.166		0.4	07926	997.166	9.84068	1.00002	
%_16	Qgau	1025.11		0.2	233371	1025.11	11.5146	1.79901	
%_9	Qgau	1169.97		0.2	93996	1169.97	18.2218	1.82655	
%_14	Qgau	1270.02		0.2	29655	1270.02	21.4019	0.999217	
%_12	Qgau	1309.02		0.2	281782	1309.02	15.9272	1.42901	
%_17	Qgau	1342.05		0.2	231364	1342.05	13.6724	1.57671	
%_11	Qgau	1375.8		0.2	96836	1375.8	23.0032	0.999329	
%_1	Qgau	1465.91		0.4	99978	1465.91	17.0584	1.77127	
%_6	Qgau	1442.35		0.3	87912	1442.35	12.5895	1.62978	
%_18	Qgau	1589.69		0.1	55373	1589.69	17.9558	1.77618	
% 3	Qgau	1621.32		0.4	56948	1621.32	13.1644	1.96945	

Bis(3-aminopropyl)amine

# PeakT	Гуре	Center		Parameters	Height	Center 1	HWHM	q (H > 0.09,	Bold	H>0.2)
%_14	Qgau	579.14	Х	Х	0.130698	579.14	34.7279	1.01466		
%_21	Qgau	694.096	Х	х	0.100422	694.096	30.8049	0.999445		
%_9	Qgau	752.297	X	X	0.242158	752.297	18.8103	1.48545		
%_13	Qgau	847.294	Х	Х	0.160348	847.294	43.3934	0.998588		
%_23	Qgau	900.084	Х	Х	0.110346	900.084	20.65	0.999714		
%_20	Qgau	957.422	Х	Х	0.122052	957.422	12.4786	1.62887		
%_41	Qgau	991.932	Х	Х	0.126049	991.932	7.30613	1.49002		
%_42	Qgau	1018.49	Х	Х	0.126318	1018.49	18.2717	1.88191		
%_1	Qgau	1034.71	X	X	0.992971	1034.71	8.27992	1.43966		
%_11	Qgau	1157.24	Х	Х	0.16046	1157.24	14.7725	1.3027		
%_6	Qgau	1205.03	X	X	0.376324	1205.03	10.9745	2.25702		
%_15	Qgau	1253.94	Х	Х	0.12978	1253.94	13.7609	1.81443		
%_30	Qgau	1282.55	X	X	0.200504	1282.55	25.6306	0.999089		
%_29	Qgau	1310.01	Х	Х	0.18663	1310.01	6.98851	2.72594		
%_28	Qgau	1329.17	X	X	0.209496	1329.17	11.2987	2.30499		
%_3	Qgau	1359.87	X	X	0.540645	1359.87	22.6112	1.402		
%_32	Qgau	1396.93	Х	Х	0.162643	1396.93	16.5709	0.999655		
%_35	Qgau	1420.03	Х	Х	0.114052	1420.03	10.8879	1.10331		
%_31	Qgau	1442.77	X	X	0.531637	1442.77	11.6138	1.68907		
%_34	Qgau	1465.67	Х	X	0.225919	1465.67	11.3358	0.999893		
%_10	Qgau	1492.34	Х	Х	0.170111	1492.34	21.4431	1.03815		
%_18	Qgau	1578.86	Х	Х	0.107916	1578.86	18.7236	1.6849		
%_2	Qgau	1604.88	Х	X	0.540546	1604.88	19.8346	1.64896		
%_7	Qgau	1638.54	Х	X	0.393314	1638.54	13.4776	1.9372		
%_5	Qgau	1679.79	Х	Х	0.46947	1679.79	19.3682	1.50165		
%_19	Qgau	1778.16	Х	Х	0.099056	5 1778.16	19.0525	1.61508		
% 16	Ogau	1897.68	Х	х	0.106957	1897.68	21.2605	1.67011		

Bis(3-aminpropyl)amine has been already investigated in <u>Sparavigna</u>, <u>2023</u>. Here in the following image, the peaks are determined with the first-derivative spectrum. The blue line represents a threshold.

Let us compare the positions in the Table given above with the centers of the q-Gaussians given below. Some little differences exist.

581.50	749.00	849.00	897.50	991.00	1035.00
1157.50	1204.00	1280.00	1292.50	1309.50	1361.50
1444.00	1462.50	1495.00	1513.00	1604.00	1636.00
1680.00	1717.00	1778.00	1894.50		
579.14	694.096	752.297(m)	847.294	900.084	957.422
991.932	1018.49	1034.71(vs)	1157.24	1205.03(s)	1253.94
1282.55(m)	1310.01(m)	1329.17 (m)	1359.87(s)	1396.93	1420.03
1442.77(s)	1465.67(m)	1492.34	1578.86	1604.88(s)	1638.54(s)
1679.79(s)	1778.16	1897.68			

For other metabolites proposed in <u>Sparavigna, 2023</u>, we can observe differences. Differences are due to the involved methods, that is, deconvolution in components of the spectrum, and use of the first-derivative spectrum. Moreover, further differences come from the used baselines.

Regarding literature, let us suggest the article by Dongil et al., 2014, about the insertion of bis (3-aminopropyl) amine into graphite oxide.

Caffeine

SERS spectra have previously been reported (Sherman et al., 2020) in the literature (Pavel et al., 2003, Alharbi et al., 2015, Zheng et al., 2016). Let us also add Edwards et al., 2005, Baranska and Proniewicz, 2008, Hédoux et al., 2011, Kang et al., 2011, and Zareef et al., 2020.

# Peak]	Гуре Center	Parameters	Height Center	HWHM	q (height	above 0.08,	Bold h	> ().30)
%_16	Qgau	531.467	0.0914161	531.467	37.4459	0.999352			
%_24	Qgau	569.994	0.085199	569.994	9.80618	1.18148			
%_14	Qgau	659.489	0.127382	659.489	19.6592	0.999786			
%_21	Qgau	758.035	0.119518	758.035	22.6832	1.18291			
% _40	Qgau	808.885	0.493561	808.885	19.6707	1.22397			
%_41	Qgau	829.743	0.237029	829.743	9.62846	0.999943			
% _37	Qgau	844.438	0.444253	844.438	11.1953	1.00685			
%_36	Qgau	862.005	0.682168	862.005	13.2155	1.12924			
%_42	Qgau	897.898	0.0880217	897.898	10.8249	1.99505			
%_10	Qgau	914.965	0.255041	914.965	20.1982	1.56256			
%_19	Qgau	938.797	0.0769385	938.797	9.1078	1.69223			
% _4	Qgau	997.683	0.469875	997.683	8.54077	1.39884			
%_11	Qgau	1023.56	0.261468	1023.56	8.03156	1.26004			
%_34	Qgau	1125.1	0.339096	1125.1	43.4381	1.38016			
%_15	Qgau	1171.76	0.164507	1171.76	14.7999	1.24373			
%_17	Qgau	1263.71	0.28104	1263.71	23.0412	1.07572			
%_32	Qgau	1293.27	0.179753	1293.27	12.5303	1.41733			
%_35	Qgau	1306.26	0.202028	1306.26	15.9324	1.76058			
%_3	Qgau	1344.26	0.323139	1344.26	15.5518	1.52349			
%_8	Qgau	1374.9	0.251476	1374.9	24.763	2.66219			
%_54	Qgau	1412.57	0.114308	1412.57	22.75	2.28797			
%_53	Qgau	1446.46	0.437509	1446.46	11.0786	1.0769			
% _49	Qgau	1465.53	0.865632	1465.53	14.6203	0.999798			
%_2	Qgau	1620.66	0.169268	1620.66	13.8408	1.7399			

Therefore, the q-Gaussian centers are:

531.467	569.994	659.489	758.035	808.885(s)	829.743
844.438(s)	862.005(vs)	897.898	914.965(m)	938.797	997.683(s)
1023.56(m)	1125.1(s)	1171.76	1263.71(m)	1293.27	1306.26
1344.26(s)	1374.9(m)	1412.57	1446.46(s)	1465.53(vs)	1620.66

In the following, these centers are compared with data from literature (bold, within 5 cm⁻¹, and italic. within 10 cm⁻¹).

Pavel et al. give the following peaks for SERS pH 2.5:

375	392	450	488(m)	555	611	648(m))	693	745(m)	806
926	980	1028	1066	1078	1237(r	n)	1253	1285	1325(vs)	1362
1390	1414	1436	1555	1604(n	n)	1657	1712(r	n)		

And for SERS pH 8.5 (Pavel et al.):

316	366	420	472	526	570(s)	613	640(s)	686(m)	754	800
926	952	1036	1063	1075	1130	1162(m)	1223	1236(m)	1311(vs)
1359(vs	s)	1384(s)	1398(m	ı)	1414(s))	1496	1540	1607(vs)	1649

Pavel et al. are also proposing Raman data:

223 609 643 801 314 367 391 444 483 555(vs) 698 740 927 974 1021 1073 1134 1191 1214 1241 1251 1283 1327(vs) 1359 1391 1409 1431 1454 1470 1488 1552 1599(s) 1654 1698(s)

Alharbi et al., 2015, are providing the SERS peaks at:

509 650 693 1006 1247 1450 1672

Zheng et al., 2016:

556(vs) 644(s) 741(s) 801(s) 928 974 **1020** 1239 1284 1328(vs) 1410 1601 (Raman) 607 658 **807(vs)** 958(s) 1040(vs) **1269** 1327 **1415** 1593 (SERS)

Edwards et al., 2005:

 391
 442
 483
 555(s)
 647
 744
 890
 930
 1076
 1242
 1255
 1290
 1333(s)
 1361
 1409

 1445
 1475
 1551
 1605(s)
 1698(s)
 (Raman, Caffeine hydrate)

 390
 442
 484
 556(s)
 644
 741
 928
 1073
 1241
 1251
 1284
 1328
 1360
 1408
 1456

1470 1554 1600(s) 1654 1698(s) (Raman, Anhydrous caffeine)

Baranska and Proniewicz (2008):

555(s) 647 890 930 1076 1255 1290 1333(s) 1361 **1409** 1605(s) 1698(s) (Caffeine hydrate) 556(s) 644 928 1073 1284 1328(s) 1360 **1408** 1554 1600 1656 1698(s) (Anhydrous caffeine)

Caffeine has been already investigated in <u>Sparavigna</u>, <u>2023</u>. Here in the following image, the peaks are determined with the first-derivative spectrum. The blue line represents a threshold.

Position (in cm ⁻¹)	Relative intensity	Position (in cm ⁻¹)	Relative intensity
531.50	0.10	1164.00	0.40
565.50	0.11	1265.50	0.42
659.00	0.13	1294.50	0.49
762.50	0.15	1344.50	0.54
809.00	0.51	1464.50	0.98
858.00	0.75	1515.00	0.11
911.00	0.34	1529.50	0.10
998.00	0.51	1620.00	0.31
1024.00	0.36	1670.00	0.12
1125.50	0.43	1701.50	0.12
1149.00	0.40	1717.50	0.12

Let us compare the peaks with the q-Gaussian centers:

565.50	659.00	762.50	809.00	858.00
998.00	1024.00	1125.50	1149.00	1164.00
1294.50	1344.50	1464.50	1515.00	1529.50
1670.00	1701.50	1717.50		
569.994	659.489	758.035	808.885(s)	829.743
862.005(vs)	897.898	914.965(m)	938.797	997.683(s)
1125.1(s)	1171.76	1263.71(m)	1293.27	1306.26
1374.9(m)	1412.57	1446.46(s)	1465.53(vs)	1620.66
	565.50 998.00 1294.50 1670.00 569.994 862.005(vs) 1125.1(s) 1374.9(m)	565.50659.00998.001024.001294.501344.501670.001701.50569.994659.489862.005(vs)897.8981125.1(s)1171.761374.9(m)1412.57	565.50659.00762.50998.001024.001125.501294.501344.501464.501670.001701.501717.50569.994659.489758.035862.005(vs)897.898914.965(m)1125.1(s)1171.761263.71(m)1374.9(m)1412.571446.46(s)	565.50 659.00 762.50 809.00 998.00 1024.00 1125.50 1149.00 1294.50 1344.50 1464.50 1515.00 1670.00 1701.50 1717.50 569.994 569.994 659.489 758.035 808.885(s) 862.005(vs) 897.898 914.965(m) 938.797 1125.1(s) 1171.76 1263.71(m) 1293.27 1374.9(m) 1412.57 1446.46(s) 1465.53(vs)

Carbamoyl phosphate

# PeakType	Center	Parameters	Height	Canter I	HWHM	q (height > 0.15)
%_19 Qgau	529.632		0.2308	529.632	11.8033	0.999936
%_9 Qgau	569.467		0.490629	569.467	14.0025	1.33428
%_15 Qgau	725.927		0.233332	725.927	9.02135	1.54307
%_18 Qgau	760.699		0.265129	760.699	10.3407	2.68279
%_22 Qgau	793.269		0.248517	793.269	8.83712	1.20726
%_4 Qgau	806.832		0.723814	806.832	11.4589	1.04653
%_23 Qgau	829.329		0.180475	829.329	16.0023	0.999889
%_13 Qgau	857.749		0.284789	857.749	20.336	1.34815
%_6 Qgau	913.15		0.620673	913.15	8.87531	1.04599
%_32 Qgau	975.079		0.159856	975.079	15.4962	0.999819
%_36 Qgau	998.132		0.216574	998.132	7.77219	1.82106
%_16 Qgau	1126.44		0.202827	1126.44	34.3326	2.01955
% _2 Qgau	1174.09		0.825171	1174.09	13.5993	1.65408
%_10 Qgau	1260.74		0.42221	1260.74	22.0917	0.999168
%_7 Qgau	1295.13		0.542871	1295.13	22.0708	1.83263
%_8 Qgau	1351.43		0.435548	1351.43	21.822	1.29374
%_41 Qgau	1367.29		0.151474	1367.29	7.95077	0.999968
%_3 Qgau	1382.71		0.652717	1382.71	15.6097	1.32574
%_25 Qgau	1411.9		0.176713	1411.9	13.5878	0.99981
%_5 Qgau	1448.45		0.649994	1448.45	18.4651	1.57792
%_12 Qgau	1471.16		0.406851	1471.16	12.4476	1.65054
%_17 Qgau	1535.79		0.221965	1535.79	25.8216	1.74478
%_11 Qgau	1589.78		0.233724	1589.78	13.0755	0.999927
%_1 Qgau	1621.16		0.989627	1621.16	9.11309	1.96347

Bold characters for peaks with height > 0.40.

Cys-Gly

Literature from Sherman et al. for L-cysteine-L-glycine (Cys-Gly) is Dong and Lam, 2011. Let us add literature about L-methionine (Met), L-cysteine (Cys), L-glycine (Gly), L-leucine (Leu), L-phenylalanine (Phe), L-proline (Pro) and their homodipeptides Met-Met, Cys-Cys, Gly-Gly, LeuLeu, Phe-Phe, and Pro-Pro in Podstawka et al., 2004.

# PeakType	Parameters	Height Center	HWHN	Aq (height > (0.15,	Bold	h>	0.30.)
%_9 Qgau	516.208	0.40208	516.208	36.0095	0.999502				
%_19 Qgau	575.76	0.179343	575.76	10.326	1.08231				
%_30 Qgau	633.528	0.194436	633.528	10.2605	0.999985				
%_1 Qgau	663.469	1.12826	663.469	20.6749	1.09642				
%_37 Qgau	724.519	0.159834	724.519	8.42838	1.72293				
%_7 Qgau	795.423	0.30453	795.423	18.0011	1.60324				
%_35 Qgau	821.7	0.188433	821.7	11.6658	0.999944				
%_36 Qgau	844.294	0.198055	844.294	15.2784	1.73081				
%_5 Qgau	868.75	0.180306	868.75	17.5994	1.26083				
%_2 Qgau	884.198	0.381497	884.198	14.8583	1.43791				
%_11 Qgau	915.966	0.416355	915.966	15.5626	1.65283				
%_23 Qgau	938.925	0.193715	938.925	7.20694	1.00005				
%_6 Qgau	998.637	0.412255	998.637	9.53423	1.03149				
%_15 Qgau	1024.93	0.240581	1024.93	16.5256	0.999827				
%_14 Qgau	1093.86	0.210649	1093.86	27.4441	0.999073				
% _39 Qgau	1270.57	0.400027	1270.57	20.5671	2.11077				
%_4 Qgau	1311.35	0.310678	1311.35	17.1461	1.41395				
%_10 Qgau	1379.98	0.331637	1379.98	21.538	1.7499				
%_42 Qgau	1415.37	0.181311	1415.37	10.3524	1.60629				
%_41 Qgau	1439.05	0.184089	1439.05	8.51605	1.70917				
%_3 Qgau	1460	0.513357	1460	18.1175	1.9337				
%_8 Qgau	1614.33	0.376848	1614.33	39.1264	1.61849				
% 17 Ogau	1703.33	0.158477	1703.33	37.9622	0.999093				

Cys-Gly has been already investigated in <u>Sparavigna</u>, <u>2023</u>. Here in the following image, the peaks are determined with the first-derivative spectrum. The blue line represents a threshold.

Position (in cm ⁻¹)	Relative intensity	Position (in cm ⁻¹)	Relative intensity
514.00	0.37	1023.00	0.26
663.50	0.99	1271.50	0.42
795.50	0.40	1315.50	0.44
820.00	0.33	1379.50	0.38
879.50	0.53	1460.00	0.53
914.50	0.44	1619.50	0.42
934.00	0.30	1691.00	0.29
999.00	0.41	1718.50	0.26

Cysteamine

# Peal	kType	Center	Parameters	Height	Center H	IWHM	q
%_53	Qgau	619.372		0.204235	619.372	11.9654	1.60872
%_52	Qgau	635.414		0.952468	635.414	15.8847	1.07473
%_3	Qgau	721.027		0.133766	721.027	19.2694	1.49283
<u>%_</u> 4	Qgau	803.55		0.127846	803.55	10.303	1.10061
%_15	Qgau	824.036		0.0328436	824.036	12.9071	1.3223
%_2	Qgau	866.25		0.144842	866.25	15.1942	1.22946
% _7	Qgau	913.294		0.0581742	913.294	20.6005	1.14986
%_12	Qgau	941.912		0.0333498	941.912	11.5504	1.15299
%_6	Qgau	1015.42		0.0785633	1015.42	19.3324	1.107
%_10	Qgau	1065.66		0.0396224	1065.66	18.9899	1.40754
%_14	Qgau	1128.24		0.0145713	1128.24	9.26353	1.14423
%_17	Qgau	1223.44		0.0170236	1223.44	24.0621	1.80948
%_40	Qgau	1235.28		0.0169896	1235.28	5.69847	3.09605
%_37	Qgau	1289.88		0.0289994	1289.88	26.7493	2.12131
%_42	Qgau	1413.84		0.0139418	1413.84	8.35939	1.92051
%_43	Qgau	1442.05		0.0345895	1442.05	10.7688	5.08741
%_46	Qgau	1462.52		0.0120811	1462.52	10.3275	2.05886
%_47	Qgau	1599.2		0.0193048	1599.2	53.817	1.52384
%_45	Qgau	1787.63		0.0114776	1787.63	16.2027	1.4014
%_16	Qgau	1894.5		0.0128305	1894.5	53.4924	1.77827
Bold	characte	ers for pea	ks with heig	ght above	0.05.		

Literature given by Sherman et al. for this molecule is Michota et al., 2000, 2001, 2002, Goto and Watarai, 2010, and Jiang et al., 2013. Let us add Kudelski and Hill, 1999. Cysteamine has been investigated in <u>Sparavigna, 2023</u>. Let us compare the data from first-derivative spectrum (first line), the q-Gaussian deconvolution by Fityk (second line) and literature:

Sherman et al.,	6	34 7	21	804.5		866.5	910		1015.5	
Sherman et al., 61	9.5 6	35.5 7	21.0	803.5	824.0	866.25	913.3	941.9	1015.4	2 1065.7
Jiang et al., 2013, Cys/silver: 387		640			831			9	78	1047
Jiang et al., 2013, Cys powder:	510	66	1 7	'93				9	87	1045
Kudelski and Hill, 1999, Cys solid			75	8				938	1012	
Kudelski and Hill, 1999, Cys sol	510	666	5 75	3	817			936	1013	
Kudelski and Hill, 1999, Cys mono	o 509	640	726					946	1014	

Cytochrome C

Literature reported for this molecule by Sherman et al. are Delfino et al., 2005, and Qu et al., 2013. Let us add Strekas and Spiro, 1972, Murgida and Hildebrandt, 2004, Brazhe et al., 2015.

#	Pea	akType	Center	Parameters	Height	Cente	r HW	HM q
%_	_19	Qgau	524.007		0.0665223	524.007	15.4766	2.65571
%_	_14	Qgau	558.22		0.102031	558.22	21.8446	1.2526
%_	_30	Qgau	643.299		0.15255	643.299	12.0515	1.53655
%_	_21	Qgau	680.953		0.389964	680.953	20.8036	0.999835
%_	_10	Qgau	714.676		0.549271	714.676	18.0899	1.40682
%_	_16	Qgau	745.247		0.543089	745.247	17.1963	1.49251
%_	_38	Qgau	782.973		0.103346	782.973	20.3319	0.999729
%_	_39	Qgau	825.162		0.10808	825.162	16.9665	1.73982
%_	_40	Qgau	846.971		0.0694217	846.971	14.8549	1.05378
%_	_41	Qgau	881.247		0.071215	881.247	7.99838	1.00014
%_	_42	Qgau	896.626		0.0798935	896.626	8.31753	2.58221
%_	_43	Qgau	943.359		0.0275413	943.359	8.47648	3.08027
%_	_24	Qgau	968.248		0.233349	968.248	16.1786	1.77344
%_	_17	Qgau	1001.9		0.416649	1001.9	13.7546	1.88213
%_	_27	Qgau	1024.56		0.21091	1024.56	11.6871	1.08861
%_	_44	Qgau	1041.69		0.0902759	1041.69	11.073	0.99988
%_	_29	Qgau	1082.3		0.144294	1082.3	16.3373	0.999685
%_	_37	Qgau	1105.64		0.142968	1105.64	11.7425	0.999916
%_	_15	Qgau	1126.05		0.492147	1126.05	15.7547	1.558
%_	_26	Qgau	1155.92		0.306745	1155.92	17.5873	1.00102
%_	_45	Qgau	1177.57		0.213898	1177.57	14.0123	0.999713
%_	_46	Qgau	1204.12		0.443974	1204.12	16.126	1.69247
%	7	Qgau	1233.29		0.586131	1233.29	21.599	0.999393

%_1	Qgau	1254.25	0.629822	1254.25	14.1421	1.45585
%_12	Qgau	1274.22	0.603109	1274.22	17.2482	0.99957
%_47	Qgau	1292.44	0.332256	1292.44	10.4378	1.05884
%_3	Qgau	1310.41	0.781752	1310.41	13.7177	1.4388
%_18	Qgau	1328.28	0.394971	1328.28	11.4888	1.01836
%_5	Qgau	1344.82	0.644361	1344.82	14.6778	1.35589
%_13	Qgau	1366.09	0.509742	1366.09	16.1313	1.02208
%_8	Qgau	1390.07	0.521596	1390.07	13.4729	1.39543
%_23	Qgau	1404.69	0.253934	1404.69	10.9671	1.00553
%_32	Qgau	1420.65	0.181244	1420.65	10.1295	1.00002
%_9	Qgau	1439.28	0.575297	1439.28	15.366	2.43357
%_48	Qgau	1465.68	0.366737	1465.68	15.5325	2.0157
%_51	Qgau	1484.82	0.104432	1484.82	18.1162	0.999736
%_33	Qgau	1500.77	0.182177	1500.77	19.8606	1.95793
%_22	Qgau	1526.15	0.303098	1526.15	21.6399	1.66666
%_11	Qgau	1548.56	0.430224	1548.56	14.7971	1.21239
%_20	Qgau	1566.47	0.386362	1566.47	12.4199	1.00012
%_4	Qgau	1585.35	0.713699	1585.35	14.1155	0.999965
%_36	Qgau	1600.18	0.280777	1600.18	9.33993	0.999949
%_2	Qgau	1610.71	0.352325	1610.71	12.4385	1.00108
%_6	Qgau	1626.96	0.655939	1626.96	22.3783	0.999763
%_25	Qgau	1666.03	0.221657	1666.03	40.9672	1.54301
%_34	Qgau	1772.46	0.0608262	1772.46	27.8928	0.99964
%_50	Qgau	1834.45	0.0488929	1834.45	13.6795	0.999914
%_35	Qgau	1896.62	0.0732631	1896.62	22.1991	1.17009
%_52	Qgau	1971.16	0.0606333	1971.16	18.9365	2.08492

Cytochrome C has been already investigated in <u>Sparavigna</u>, 2023. Here in the following image, the peaks are determined with the first-derivative spectrum. The blue line represents a threshold.

Position (in cm ⁻¹)	Relative intensity	Position (in cm ⁻¹)	Relative intensity
647.50	0.16	1170.00	0.40
683.50	0.45	1255.00	1.00
717.50	0.62	1311.50	0.86
742.00	0.60	1330.00	0.84
827.00	0.13	1344.50	0.84
842.50	0.12	1390.50	0.70
972.00	0.28	1439.50	0.66
1002.50	0.43	1464.50	0.62
1082.50	0.18	1493.00	0.47
1127.50	0.50	1551.50	0.66
1157.50	0.41	1605.00	0.90

In	Delfino et al.	. 2005.	Figs.	1.3.6. and	Table 1.	we can	find the	e following	data:
		, ,		-,0,0,000				, 10110 , 1115	

750	1128	1172	1230	1313	1363	1398	1544	1584	1621	1639 (Raman, liquid)
746	1127	1170	1226	1310	1358	1396	1488	1539	1584	1621 (Raman, solid)
674 1568	750 1587	804 1605	1130 1626	1174 1640	1232	<i>1314</i> (Delfi	<i>1375</i> no et al.	<i>1400</i> Table	1408 1, Rama	1501 <i>1540</i> an data from literature)
674	804	1144	1312	1360	1391	1498	1584	1622	(SERS:	aver. 1800 spectra)
667	1167	1310	1360	1398	1483	1534	1562	1604	1640 (SERS, averaged 500 spectra)

These data are compared with the q-Gaussian centers (bold, within $\pm - 5 \text{ cm}^{-1}$, italic, within $\pm - 10 \text{ cm}^{-1}$). Here the q-Gaussian centers for h>0.2, given for the reader's convenience.

680.953	714.676(s)	745.247(s)	968.248	1001.9(s)	1024.56
1126.05(s)	1155.92	1177.57	1204.12(s)	1233.29(s)	1254.25(s)
1274.22(s)	1292.44	1310.41(vs)	1328.28(s)	1344.82(vs)	1366.09(s)
1390.07(s)	1404.69	1439.28(s)	1465.68	1526.15	1548.56(s)
1566.47	1585.35(vs)	1600.18	1610.71	1626.96(vs)	1666.03

Dethiobiotin

# PeakType			Parameters	Height	Center	HWHM	q (height	above	0.07)	
%_7	Qgau	578.68		0.190438	578.68	16.921	1.19041			
%_38	Qgau	760.673		0.252403	760.673	9.65629	2.26665			
%_1	Qgau	783.367		0.99309	783.367	18.3984	1.33456			
%_12	Qgau	822.016		0.0854246	822.016	6.46117	1.06604			
%_45	Qgau	833.28		0.0930614	833.28	6.80514	1.04078			
%_46	Qgau	846.752		0.0979455	846.752	9.1957	1.25281			
%_47	Qgau	866.47		0.0821213	866.47	17.3897	0.999762			
%_26	Qgau	894.455		0.0775728	894.455	27.2074	0.999583			
%_24	Qgau	944.662		0.0987189	944.662	15.9579	2.21752			
%_48	Qgau	961.429		0.222232	961.429	14.068	2.3805			
%_25	Qgau	998.843		0.274798	998.843	8.86197	2.82286			
%_15	Qgau	1036.23		0.166533	1036.23	15.8576	0.999817			
%_29	Qgau	1133.98		0.125745	1133.98	22.331	3.08859			
%_31	Qgau	1213.26		0.0742828	1213.26	25.0431	2.67602			
%_13	Qgau	1280.39		0.078985	1280.39	27.851	1.04968			
%_4	Qgau	1313.43		0.220736	1313.43	19.5478	2.68583			
%_11	Qgau	1357.22		0.114636	1357.22	20.8055	0.999752			
%_41	Qgau	1413.03		0.109597	1413.03	12.9737	1.59281			
<u>%_</u> 2	Qgau	1444.12		0.818909	1444.12	13.9328	1.01764			
%_39	Qgau	1460.83		0.288385	1460.83	9.54964	1.00154			
%_6	Qgau	1473.8		0.451347	1473.8	10.505	1.65764			
%_9	Qgau	1637.53		0.128455	1637.53	29.6106	1.19058			
Bold characters for peaks with height above 0.10.										

33

Dihydrofolate

# PeakType		Center	Parameters H	leight Ce	enter HV	VHM q	(h > 0.10)
%_4	Qgau	528.205	0.697782	528.205	8.65267	1.00005	
%_18	Qgau	559.681	0.223815	559.681	12.6656	0.99996	
%_7	Qgau	578.362	0.583572	578.362	9.31023	0.999993	
%_17	Qgau	608.8	0.205068	608.8	17.2193	0.999883	
%_34	Qgau	684.291	0.275614	684.291	9.81341	1.50131	
%_37	Qgau	705.346	0.539975	705.346	14.7896	1.35482	
%_16	Qgau	738.75	0.444069	738.75	14.707	1.87372	
%_11	Qgau	776.017	0.324381	776.017	10.144	1.44044	
%_15	Qgau	811.299	0.239531	811.299	11.0422	1.32977	
%_22	Qgau	883.682	0.124332	883.682	22.5751	3.00253	
%_13	Qgau	927.545	0.237626	927.545	14.7601	1.94793	
%_12	Qgau	1001.11	0.271069	1001.11	12.4548	1.77097	
%_19	Qgau	1152.67	0.142714	1152.67	14.7877	1.86662	
%_29	Qgau	1175.46	0.101007	1175.46	12.0616	0.999841	
%_14	Qgau	1209.84	0.252755	1209.84	12.355	1.33154	
%_21	Qgau	1269.41	0.189598	1269.41	12.0718	1.07746	
%_9	Qgau	1307.06	0.299586	1307.06	36.2467	1.27972	
%_2	Qgau	1366.73	0.863951	1366.73	15.2401	2.43106	
%_3	Qgau	1531.22	0.640838	1531.22	18.7888	1.81117	
%_23	Qgau	1403.9	0.169579	1403.9	17.4865	0.999731	
%_8	Qgau	1454.19	0.489505	1454.19	32.0238	1.06053	
%_6	Qgau	1496.6	0.453765	1496.6	22.8429	1.17814	
%_43	Qgau	1570.01	0.173565	1570.01	24.2429	1.94286	
%_20	Qgau	1585.59	0.240223	1585.59	10.7385	1.45946	
%_1	Qgau	1603.55	0.824487	1603.55	21.0216	1.96897	
%_42	Qgau	1632.72	0.121448	1632.72	25.5122	0.999496	
%_10	Qgau	1684.36	0.33811	1684.36	37.6321	2.11617	

Dihydrofolate has been already investigated in <u>Sparavigna, 2023</u>. Here in the following image, the peaks are determined with the first-derivative spectrum. The blue line represents a threshold.

Raman shift (cm -1)

https://doi.org/10.26434/chemrxiv-2024-85119-v2 ORCID: https://orcid.org/0000-0003-4502-8974 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0
Dopamine

PeakType Center Parameters: Height Center HWHM q (height > 0.05)

%_18	Qgau	534.576	0.0672526	534.576	13.2355	2.66539
%_11	Qgau	575.637	0.260624	575.637	35.6865	1.76787
%_28	Qgau	608.927	0.0561813	608.927	12.0024	1.47542
%_15	Qgau	644.773	0.105925	644.773	18.2131	0.999819
%_21	Qgau	729.245	0.049647	729.245	16.5314	1.54131
%_42	Qgau	986.91	0.0641393	986.91	16.1713	1.6481
%_41	Qgau	1103.72	0.065592	1103.72	9.64448	2.97502
%_25	Qgau	1131.79	0.0705868	1131.79	10.1616	2.64804
%_40	Qgau	1149.17	0.155478	1149.17	14.3976	2.91933
%_39	Qgau	1184.99	0.201346	1184.99	24.5155	2.17509
%_38	Qgau	1223.72	0.263353	1223.72	21.6693	2.84917
%_5	Qgau	1270.06	0.478972	1270.06	25.0395	1.74123
%_19	Qgau	1292.81	0.139714	1292.81	9.24206	2.00442
%_12	Qgau	1307.9	0.310811	1307.9	13.3339	1.55029
%_49	Qgau	1329.14	0.549262	1329.14	19.4215	1.37303
%_8	Qgau	1360.27	0.424096	1360.27	23.063	1.1419
%_22	Qgau	1387.63	0.112341	1387.63	12.8744	0.999797
%_46	Qgau	1419.65	0.606993	1419.65	39.8152	1.71804
%_45	Qgau	1490.15	0.729414	1490.15	22.8775	1.49893
%_10	Qgau	1518.73	0.185404	1518.73	17.067	0.999727
%_47	Qgau	1555.12	0.556087	1555.12	27.1367	1.67997
%_7	Qgau	1603.08	0.521465	1603.08	34.8251	1.34361
%_13	Qgau	1639.73	0.285107	1639.73	23.8022	1.96959
%_16	Qgau	1710.88	0.0755049	1710.88	37.3299	0.999049

Sherman et al. report literature: Wang et al., 2015, and McGlashen et al., 1990.

Data from Wang et al, are: 591 635 771 816 1267 1358 1424 1482 (SERS, Wang et al., 2015)

In McGlashen et al., we find mentioned the C—O stretch mode at 1269 cm⁻¹ and v_{19b} at 1479 cm⁻¹ "which is primarily a phenyl C—C stretch".

Here the q-Gaussian centers for comparison:

534.576	575.637(m)	608.927	644.773	729.245	986.91
1103.72	1131.79	1149.17	1184.99(m)	1223.72(m)	1270.06(s)
1292.81	1307.9(m)	1329.14(s)	1360.27(s)	1387.63	1419.65(vs)
1490.15(vs)	1518.73	1555.12(s)	1603.08(s)	1639.73(m)	1710.88

Some centers have been marked, in **bold** for correspondence within +/-5 cm⁻¹.

Glutathione

# PeakType	Center		Parameters	Height	Center	HWHM	q (height > 0.05)
% 27 Ogau	536.007	х	х	0.0547519	536.007	3.24141	1.00018
%_5 Qgau	553.927	Х	X	0.249743	553.927	17.8992	1.77739
%_24 Qgau	564.306	Х	х	0.0837745	564.306	2.06509	2.24099
%_1 Qgau	655.401	Х	х	1.04599	655.401	20.3839	1.49549
%_16 Qgau	677.241	Х	х	0.105765	677.241	16.0279	1.45826
%_7 Qgau	716.463	Х	X	0.230702	716.463	18.7528	0.999787
%_3 Qgau	793.173	Х	X	0.453925	793.173	16.3589	1.17664
%_11 Qgau	828.748	Х	Х	0.117624	828.748	13.6246	1.52802
%_4 Qgau	879.585	Х	X	0.284483	879.585	13.0842	1.62667
%_2 Qgau	909.018	Х	X	0.4779	909.018	17.5125	2.02669
%_13 Qgau	961.236	Х	Х	0.0918966	961.236	8.14201	2.95923
%_25 Qgau	994.473	Х	Х	0.0708151	994.473	4.53895	2.3707
%_8 Qgau	1025.87	Х	X	0.20019	1025.87	17.8638	0.99994
%_14 Qgau	1223.66	Х	Х	0.110315	1223.66	24.5172	2.50792
%_22 Qgau	1257.96	Х	Х	0.0699137	1257.96	12.6826	1.70807
%_10 Qgau	1283.86	Х	Х	0.117212	1283.86	18.2406	1.11297
%_12 Qgau	1323.99	Х	Х	0.0997824	1323.99	22.6173	0.999256
%_6 Qgau	1413.39	Х	X	0.211364	1413.39	14.7713	2.29633
%_9 Qgau	1646.89	Х	Х	0.173046	1646.89	58.2366	2.0528
%_15 Qgau	1750.11	Х	X	0.0646977	1750.11	23.5459	1.71593

Literature provided by Sherman et al.: Huang et al., 2009, and Podstawka et al., 2004.

Here the centers of the q-Gaussian components (in cm^{-1}):

536.007	553.927(m)	564.306	655.401(vs)	677.241	716.463(m)
793.173(s)	828.748	879.585(m)	909.018(s)	961.236	994.473
1025.87(m)	1223.66	1257.96	1283.86	1323.99	1413.39(m)
1646.89	1750.11				

In De Gelder et al., 2007, we find the following Raman peaks for Glutathione (in bold, the peaks which are corresponding to centers, within +/-5 cm⁻¹ of the q-Gaussians given above; in italic, within +/-10 cm⁻¹):

400(s), 446(w), 523(w), **550**(*m*), 625(vs), 643(m), **660**(*s*), **679**(*vs*), 722(*w*), 776(s), 811(m), **828**(*m*), 867(m), 885(s), 917(*m*), 931(s), 953(*m*), 972(m), 988(*m*), 1015(m), 1041(m), 1074(w), 1117(w), 1143(w), 1169(m), **1224**(*m*), 1235(m), **1255**(*w*), **1280**(*s*), 1309(m), *1334*(*m*), 1368(m), 1403(m), **1415**(*m*), 1443(m), 1455(m), 1536(w), 1629(m), 1660(w), 1703(w)

As told by De Gelder and coworkers, "in the spectrum of glutathione, intense bands are related to the presence of the Sulphur atom: (1) (C–S) stretching causes intense bands in the region 600–700 cm⁻¹ and (2) the band at 400 cm⁻¹ can be assigned to v(C–S) deformations. Furthermore, the (C-O) stretching of amide and carboxylic groups gives rise to a broad band at 1630 cm⁻¹". In Huang et al., 2009, a reference suggested by Sherman et al., we have the possibility of a further comparison with the spectrum obtained by means of the "heat-induced surface-enhanced Raman

scattering sensing method". Then, let us propose once more the fingerprint obtained from the Sherman et al.'s data (in bold, the centers which are corresponding, within +/-5 cm⁻¹, to peaks given by Huang et al.):

536.007	553.927(m)	564.306	655.401 (vs)	677.241	716.463(m)
793.173 (s)	828.748	879.585 (m)	909.018 (s)	961.236	994.473
1025.87(m)	1223.66	1257.96	1283.86	1323.99	<i>1413.39</i> (m)
1646.89	1750.11	(q-Gaussian o	centers)		

231 539 660 717 795 838 880 905 1007 1034 1053 1125 1258 1414 (Fingerprint from the Table 1, in Huang et al.).

As in De Gelder et al., 2007, Huang and coworkers assign the peak at 660 cm⁻¹, here at 655.4 cm⁻¹, to C-S stretching. Centers at 716.5 and 793.2 cm⁻¹ are due to the -COO⁻ deformation and the -COO⁻ bending. Center 879.6 cm⁻¹ is coming from the C-C stretching. Component at 909 (905) is assigned by Huang and coworkers to C-COO⁻ stretching. Component with center at 1258 is assigned to amide III. And 1413.4 is assigned to -COO⁻ symmetric stretching.

Histamine

# PeakT	Гуре	Center	Parameters		Height	Center	HWHM	q
%_23 (Qgau	527.49	0.106677	527.49	39.0871	0.999351		-
%_37 (Qgau	573.294	0.0642975	573.294	10.8441	1.44455		
%_36 (Qgau	620.383	0.101789	620.383	5.35963	2.04651		
%_19 (Qgau	647.079	0.130199	647.079	19.573	0.999995		
%_41 (Qgau	720.936	0.0797191	720.936	12.5386	2.39696		
%_42 (Qgau	743.498	0.0230481	743.498	18.6459	2.43694		
%_34 (Qgau	783.33	0.066663	783.33	26.7276	2.13613		
%_43 (Qgau	822.937	0.107349	822.937	17.1129	2.3569		
%_16 (Qgau	848.298	0.192326	848.298	16.4116	2.20556		
%_44 (Qgau	887.244	0.00907325	887.244	16.6555	2.05575		
%_26 (Qgau	958.864	0.0685701	958.864	24.9426	0.999448		
%_9 Q	gau	992.868	0.564799	992.868	14.0947	1.70675		
%_35 (Qgau	1021.62	0.0748717	1021.62	2.99341	1.77457		
%_11 (Qgau	1030.24	0.490134	1030.24	16.9603	1.28823		
%_18 (Qgau	1097.03	0.193857	1097.03	25.3574	0.999462		
%_33 (Qgau	1129.21	0.133754	1129.21	8.27595	1.59216		
%_13 (Qgau	1159.09	0.424256	1159.09	22.468	1.44395		
%_46 (Qgau	1172.73	0.153148	1172.73	7.08702	1.42382		
%_4 Q	gau	1186.23	0.460229	1186.23	11.936	1.51547		
%_15 (Qgau	1205.99	0.354122	1205.99	18.325	0.999479		
%_39 (Qgau	1221.55	0.100407	1221.55	4.08317	1.12604		
%_24 (Qgau	1231.98	0.21309	1231.98	8.16037	0.999894		
%_7 Q	gau	1260.7	0.648215	1260.7	19.0229	1.54029		
% 20 0	Ogau	1284.93	0.202691	1284.93	11.1322	0.999797		

%_47	Qgau	1296.13	0.104465	1296.13	10.828	1.85523
%_12	Qgau	1312.57	0.527497	1312.57	17.8226	1.45387
%_6 (Qgau	1335.63	0.415372	1335.63	13.9069	1.16535
%_30	Qgau	1348.48	0.120394	1348.48	6.29783	1.00758
%_17	Qgau	1363.68	0.235544	1363.68	19.4888	1.16656
%_10	Qgau	1402.3	0.518257	1402.3	33.3744	1.64757
%_49	Qgau	1420.65	0.237078	1420.65	8.34639	1.28701
%_3 (Qgau	1439.23	0.564621	1439.23	15.6618	1.18327
%_1 (Qgau	1463.9	0.652849	1463.9	14.4634	1.57659
%_50	Qgau	1477.97	0.103674	1477.97	3.25385	1.54925
%_5 (Qgau	1493.39	0.761118	1493.39	21.4964	1.66263
%_31	Qgau	1530.22	0.0582327	1530.22	12.8113	1.22813
% <u>8</u>	Qgau	1585.76	0.559376	1585.76	29.0512	1.59228
%_29	Qgau	1606.85	0.0710362	1606.85	9.44842	1.83661
%_48	Qgau	1621.35	0.263186	1621.35	10.6001	1.05289
%_2 (Qgau	1632.61	0.59483	1632.61	11.5678	1.85976
%_14	Qgau	1665.79	0.287285	1665.79	27.7981	1.42708
%_38	Qgau	1695.14	0.0581424	1695.14	9.12184	1.06787
%_28	Qgau	1717.23	0.0974879	1717.23	20.3347	1.99417
%_21	Qgau	1776.11	0.110208	1776.11	32.0432	0.999364
%_32	Qgau	1830.54	0.0838345	1830.54	10.1602	1.19316
%_51	Qgau	1855.88	0.00111574	1855.88	9.07953	1.47953
%_22	Qgau	1894.02	0.117205	1894.02	22.4857	1.69743
%_27	Qgau	1970.96	0.0774743	1970.96	17.5982	1.8575

Histamine has been investigated in <u>Sparavigna</u>, 2023. Here in the following image, the peaks are determined with the first-derivative spectrum. The blue line represents a threshold.

SERS spectra reported by Sherman et al. are Gao et al., 2015, Lin et al., 2012, Janči et al., 2017. Let us mention Chen et al., 2022, 2024, Torreggiani et al., 2003, and Itabashi et al., 1982, too.

In Gao et al., 2015, we can find that "SERS spectral collection was conducted by 10 s exposure times to increase the signal-to-noise ratio. ... Featured bands at 1267, 1304, 1317 and 1576 cm⁻¹ in the SERS spectra ... The enhancement factor based on Raman band of histamine at 1576 cm⁻¹ was calculated to be ~104. As the structural analogue of histamine, L-histidine did not show a high SERS activity ... Moreover, the band positions could further facilitate distinguishing L-histidine from histamine".

In the Supplementary Data by Gao et al., 2015, we can find the peak assignment of histamine in normal Raman spectroscopy:

1105 *1164* **1232** *1267 1305* 1320 *1356* 1383 **1440** 1481 1570

That we can compare with the q-Gaussian centers (h>0.15):

848.298	992.868(s)	1030.24(s)	1097.03	1159.09(s)	1172.73
1186.23(s)	1205.99	1231.98	1260.7(vs)	1284.93	1312.57(s)
1335.63	1363.68	1402.3 (s)	1420.65	1439.23(s)	1463.9(vs)
1493.39(vs)	1585.76(s)	1621.35	1632.61(s)	1665.79	

Again, in bold within ± -5 cm⁻¹, in italic within ± -10 cm⁻¹. Let us consider the data from Lin et al., 2012, from their Table 2, which contains also assignments.

279.66	390.32	634.24	727.24	775.55	819.23
854.01	897.29	927.45	953.21	983.17	1025.78
1085.07	1164.85	1235.59	1289.27	1318.03	1342.6
1407.75	1448.20	1472.38	1536.46	1623.82	(Raman)
226.95	407.22	547.88	672.97	1024.73	1084.05
1358.07	1378.46	1455.46	1567.1		(SERS)

In the Figure 1 by Janči et al., 2017, we find the peaks at:

1264 1320 1437 1570 (SERS)	1264	1320	1437	1570	(SERS)
----------------------------	------	------	------	------	--------

In the Table 1 by Torreggiani et al., 2003, we have the "Wavenumbers and Assignments of Main Raman Bands of Free Hmand Cu(II)-Hm (M/L 1) Aqueous System at pH 9 and 6".

359	379	989	1093	1165(m)		<i>1230(m)</i>
1250(sh)	1274(s)	1455(m)	1569(m)	1599		(Raman, pH 9)
289(vs) 1088	394 1270(s)	464 1435(m)	490 1579	536 1590(m)	980 1618	1005(m) <i>1630</i> (Raman, pH 6)

482	630	646(m)	860(m)	940	970
990(m)	1004	1036	1075	1090	1102(m)
1160(m)	1230(m)	1268(s)	1306(m)	1320(m)	1354
1442(m)	1490(m)	1570(s)	1590		(Raman, pH 11.85)
480	630	648(m)	852	894	953(m)
990(m)	1006	1032	1090	1108	1160(m)
1230(m)	1278(vs)	1328(m)	1360	1385	1450(m)
1495(m)	1574(s)				(Raman, pH 8,52)
480	630(m)	652	852	958	994(m)
1038	1098	1196(s)	1269(vs)	1446(m)	1498(vs)
1634(s)					(Raman, pH 3.44)

In Itabashi et al., 1982, we find the data (with assignments):

As previously, in bold within ± -5 cm⁻¹, in italic within ± -10 cm⁻¹, the data compared with the q-Gaussian centers (h>0.15), here given again for reader's convenience:

848.298	992.868(s)	1030.24(s)	1097.03	1159.09(s)	1172.73
1186.23(s)	1205.99	1231.98	1260.7(vs)	1284.93	1312.57(s)
1335.63	1363.68	1402.3 (s)	1420.65	1439.23(s)	1463.9(vs)
1493.39(vs)	1585.76(s)	1621.35	1632.61(s)	1665.79	

Homocysteine

Literature : Zheng et al., 2023.

#	Center	Parameters	Heigh	t Center	HWH	Mq (1	height >	0.04,	bold	h	>0.08)
%_12	Qgau	528.117 x	х	0.0650858	528.117	19.608	0.999837					
%_16	Qgau	609.987 x	X	0.0839277	609.987	12.5643	1					
%_3	Qgau	642.893 x	X	0.431558	642.893	22.8363	1.51267					
<u>%_</u> 2	Qgau	709.421 x	X	1.0244	709.421	19.6631	1.65678					
%_18	Qgau	746.607 x	Х	0.0568473	746.607	9.95242	0.999993					
%_5	Qgau	769.083 x	X	0.210457	769.083	19.3797	0.999792					
%_8	Qgau	847.176 x	Х	0.0783994	847.176	12.9028	1.38805					
%_11	Qgau	867.714 x	X	0.167157	867.714	13.4385	1.4915					
%_4	Qgau	893.428 x	X	0.411221	893.428	18.2392	1.217					
%_13	Qgau	975.586 x	X	0.113782	975.586	21.9833	1.19494					
%_20	Qgau	1010.61 x	X	0.134285	1010.61	16.7956	0.999746					
%_6	Qgau	1051.6	X	0.195153	1051.6	22.1978	1.44431					
%_21	Qgau	1088.59 x	Х	0.0447134	1088.59	14.719	0.999844					
%_22	Qgau	1145.13 x	Х	0.0563891	1145.13	25.637	0.999135					
%_15	Qgau	1215.2 x	Х	0.0574025	1215.2	49.74	1.37894					
%_14	Qgau	1266.39 x	Х	0.0625667	1266.39	14.4205	1.00002					
%_25	Qgau	1291.61 x	Х	0.0569048	1291.61	18.1939	1.51948					
%_24	Qgau	1324.59 x	X	0.117217	1324.59	21.3606	1.5667					
%_23	Qgau	1352.17 x	X	0.0954933	1352.17	14.5949	2.30727					
%_26	Qgau	1420.98 x	X	0.161467	1420.98	18.9969	1.7664					
%_30	Qgau	1486.94 x	Х	0.0465937	1486.94	31.1235	1.43307					
%_28	Qgau	1546.1 x	Х	0.0566472	1546.1	20.1668	2.99065					
%_29	Qgau	1623.94 x	Х	0.0588805	1623.94	49.0563	1.91071					
%_9	Qgau	1712.31 x	Х	0.0636533	1712.31	14.4229	1.11057					

Homocysteine has been investigated in <u>Sparavigna</u>, 2023. Here in the following image, the peaks are determined with the first-derivative spectrum. The blue line represents a threshold.

Position (in cm ⁻¹)	Relative intensity	Position (in cm ⁻¹)	Relative intensity
643.00	0.45	1328.00	0.16
708.50	0.98	1347.00	0.16
764.50	0.26	1421.00	0.19
893.00	0.42	1476.50	0.08
976.50	0.12	1493.00	0.08
1011.00	0.17	1545.50	0.09
1052.50	0.20	1632.00	0.08
1269.50	0.12	1711.50	0.09

Homocystine

#	Center	Para	meters	Height	Center	HWHN	Л q	(height	above	0.05)
%_8	Qgau	521.854	Х	x	0.125228	521.854	17.3184	0.99988		
%_10	Qgau	612.221	Х	X	0.19999	612.221	14.0269	1.06507		
%_2	Qgau	638.784	Х	X	0.614286	638.784	17.6191	1.58923		
%_1	Qgau	709.235	Х	X	0.955922	709.235	20.9581	1.48294		
%_5	Qgau	764.481	Х	Х	0.247401	764.481	23.3945	1.44433		
%_4	Qgau	857.325	Х	Х	0.246369	857.325	35.1213	1.08865		
%_20	Qgau	810.09	Х	Х	0.0806111	810.09	12.1146	0.999908		
%_3	Qgau	894.601	Х	X	0.332444	894.601	15.6921	1.60249		
%_25	Qgau	997.638	Х	X	0.133169	997.638	11.8242	0.999874		
%_26	Qgau	1022.06	Х	Х	0.0800839	1022.06	13.0029	0.999889		
%_27	Qgau	1052.55	Х	X	0.107437	1052.55	14.2564	0.999813		
%_28	Qgau	1081.37	Х	Х	0.0571147	1081.37	20.841	1.26932		
%_30	Qgau	1128.62	Х	Х	0.0621891	1128.62	13.5369	1.35247		
%_19	Qgau	1169.82	Х	Х	0.0580814	1169.82	13.4674	0.999738		
%_33	Qgau	1265.85	Х	Х	0.0862004	1265.85	16.9907	0.999635		
%_34	Qgau	1294.9	Х	Х	0.0659788	1294.9	13.4772	1.34765		
%_44	Qgau	1311.16	Х	Х	0.0594297	1311.16	9.72223	1.62565		
%_45	Qgau	1328.15	Х	Х	0.0947884	1328.15	11.0467	1.62116		
%_46	Qgau	1348.67	Х	X	0.124694	1348.67	16.7369	1.9626		
%_39	Qgau	1418.37	Х	Х	0.112329	1418.37	15.4447	1.8054		
%_40	Qgau	1463	X	Х	0.114044	1463	16.1805	1.33128		
%_17	Qgau	1624.7	Х	Х	0.0631931	1624.7	49.5056	3.52736		
%_12	Qgau	1716.46	х	Х	0.0587963	1716.46	12.2933	1.39666		
Dold	abarata	no for no	also with he	hight abo	10^{-10}					

Bold characters for peaks with height above 0.10.

Homocystine has been investigated in <u>Sparavigna</u>, 2023. Here in the following image, the peaks are determined with the first-derivative spectrum. The blue line represents a threshold.

It is interesting to compare the two SERS spectra of homocysteine and homocystine as in the following plot.

According to the fingerprints obtained from the first-derivative spectrum in Sparavigna, 2023, within the uncertainty of plus/minus 2 cm⁻¹, the comparison is as follows:

Homocysteine		643	708	.5 764	.5		893	976.5	011			
Homocystine	524.5	638.5	708	.5 762	2.5 81	1.5 871	891	998	1020			
Homocysteine	1052.5			1269.5	1328	1347	1421	1476.5	1493	1545.5	1632	1711.5
Homocystine	1052.5	1129.5	1149	1267.5	1330	1344.5	1419	1460		1620	1634	1715.5

Let us repeat the comparison with the data obtained by means of the q-Gaussian deconvolutions.

Homoc	ysteine	Homocy	stine
%_12 Qgau	528.117	%_8 Qgau	521.854
%_16 Qgau	609.987		612.221
%_3 Qgau	642.893	% 2 Ogau	638,784
%_2 Qgau	709.421		709 235
%_18 Qgau	746.607	% 5 Ogau	764.481
%_5 Qgau	769.083	% 4 Ogau	857 325
%_8 Qgau	847.176	% 20 Ogau	810.00
%_11 Qgau	867.714	10_20 Qgau	010.03 004 CO1
%_4 Qgau	893.428	%_3 Qgau	894.001
% 13 Ogau	975.586	% 25 Qgau	997.638
% 20 Ogau	1010.61	%_26 Qgau	1022.06
% 6 Ogau	1051.6	%_27 Qgau	1052.55
% 21 Ogau	1088.59	%_28 Qgau	1081.37
% 22 Ogau	1145 13	%_30 Qgau	1128.62
% 15 Ogau	1215.2	%_19 Qgau	1169.82
% 14 Ogau	1266.39	%_33 Qgau	1265.85
% 25 Ogau	1291.61	%_34 Qgau	1294.9
% 24 Ogau	1324.59	%_44 Qgau	1311.16
% 23 Ogau	1352.17	%_45 Qgau	1328.15
%_26 Qgau	1420.98	%_46 Qgau	1348.67
% 30 Ogau	1486.94	%_39 Qgau	1418.37
%_28 Qgau	1546.1	%_40 Qgau	1463
%_29 Qgau	1623.94		1624.7
%_9 Qgau	1712.31	%_12 Qgau	1716.46

Indole-3-acetic acid

# PeakType	Center	Parameters:	Height	Center	HWHM	l q	(height > 0.1, bold h>0.2)
%_10 Qgau	536.045		0.11237	536.045	14.4895	1.44512	2
%_39 Qgau	571.395		0.17417	571.395	20.6907	0.99985	54
%_31 Qgau	662.54		0.112366	662.54	7.46312	2.31789)
%_30 Qgau	757.939		0.11894	757.939	43.5302	1.21908	3
%_29 Qgau	805.728		0.366326	805.728	15.6099	1.14596	5
%_37 Qgau	839.153		0.398191	839.153	22.0377	0.99980)9
%_26 Qgau	862.307		0.486219	862.307	14.5255	0.99984	18
%_13 Qgau	914.488		0.244159	914.488	28.991	0.99936	56
%_4 Qgau	999.297		0.556612	999.297	8.61866	1.54358	3
%_14 Qgau	1026.08		0.238881	1026.08	9.44412	1.00819	
%_8 Qgau	1118.59		0.363919	1118.59	42.7171	0.99779	95
%_15 Qgau	1172.45		0.218078	1172.45	25.7108	0.99925	55
%_16 Qgau	1254.19		0.239651	1254.19	15.9635	2.12635	5
%_5 Qgau	1300.08		0.438246	1300.08	28.5262	1.94179	
%_3 Qgau	1346.24		0.394952	1346.24	16.8054	0.99973	3
%_34 Qgau	1375.45		0.300744	1375.45	18.2939	0.99958	38
%_24 Qgau	1410.44		0.290442	1410.44	23.2548	1.98403	3
%_2 Qgau	1447.82		0.488318	1447.82	10.1738	1.44222	2
%_1 Qgau	1466.14		0.961573	1466.14	15.8595	1.25248	3
%_38 Qgau	1513.36		0.104628	1513.36	20.7551	0.99957	17
%_35 Qgau	1562.77		0.117879	1562.77	17.6498	0.99978	32
%_21 Qgau	1591.41		0.146861	1591.41	15.367	1.00009)
%_22 Qgau	1625.02		0.394003	1625.02	18.9762	2.28608	3
%_17 Qgau	1712.65		0.119672	1712.65	26.4446	1.40234	1

Kynurenine

# Peal	kType	Center	Parameter	s	Height	Center	r HWH	IMq (h>0.05,	bold	h>0.12)
<u>%_</u> 27	Qgau	513.373	Х	х	0.1	20626	513.373	6.39926	1.31922		
%_1	Qgau	527.236	Х	х	0.1	50343	527.236	3.06483	1		
%_49	Qgau	533.966	Х	Х	1.0	2852	533.966	8.26442	1.23945		
%_9	Qgau	547.572	Х	X	0.3	45901	547.572	6.06794	0.99998	3	
%_14	Qgau	574.455	X	Х	0.2	05883	574.455	5.53224	2.3934		
%_4	Qgau	581.202	X	X	0.3	36568	581.202	6.79711	0.99998		
<u>%_2</u>	Qgau	642.715	X	Х	0.6	44034	642.715	6.93595	1.07326		
%_5	Qgau	648.11	X	Х	0.1	87777	648.11	2.81833	1.00004		
%_13	Qgau	662.074	X	X	0.1	42319	662.074	7.79482	1.57131		
%_18	Qgau	767.698	Х	Х	0.0	648257	767.698	14.0522	1.64255		
%_24	Qgau	843.914	Х	Х	0.0	529193	843.914	6.93109	2.30171		
%_11	Qgau	886.252	X	Х	0.1	20842	886.252	5.45849	2.00578		
%_34	Qgau	892.572	Х	Х	0.0	700003	892.572	4.42244	0.999999	5	
%_40	Qgau	1041.5	Х	Х	0.0	745293	1041.5	8.99635	2.02773		
%_23	Qgau	1108.11	Х	Х	0.0	551641	1108.11	18.92	1.59997		
%_8	Qgau	1170.42	X	Х	0.1	63397	1170.42	9.15875	2.0382		
%_21	Qgau	1237.46	Х	Х	0.1	05451	1237.46	10.4151	1.10047		
%_44	Qgau	1258.26	X	Х	0.2	50496	1258.26	11.1443	1.69562		
%_15	Qgau	1307.82	X	Х	0.1	86777	1307.82	9.53921	1.28567		
%_46	Qgau	1325.01	X	Х	0.2	77907	1325.01	9.05506	1.14314		
%_10	Qgau	1366.68	X	Х	0.1	48191	1366.68	13.2945	2.40961		
%_7	Qgau	1595.44	Х	Х	0.1	88057	1595.44	10.0265	1.49582		
%_19	Qgau	1623.71	Х	Х	0.0	685103	1623.71	11.3866	2.94344		
%_3	Qgau	1661.26	Х	Х	0.6	08047	1661.26	9.08178	1.44948		

Using the first-derivative spectrum, in Sparavigna, 2023, we obtained the following peaks:

We can compare these peaks with the q-Gaussian centers obtained from deconvolution:

513.373	527.236(m)	533.966(vs)	547.572(s)	574.455(m)	581.202(s)
642.715(vs)	648.11(m)	662.074(m)	767.698	843.914	886.252
892.572	1041.5	1108.11	1170.42(m)	1237.46	1258.26(m)
1307.82(m)	1325.01(m)	1366.68	1595.44(m)	1623.7	1661.26(vs)

As told by Sherman et al., SERS spectra have previously been reported for this molecule by Nie et al., 1990. Let us add here a discussion from the recent work by Das et al., 2021. The abstract of their review is proposing the Surface-Enhanced Raman spectroscopy (SERS) as "a powerful tool for biosensing applications owing to its *fingerprint recognition*, high sensitivity, multiplex detection, and biocompatibility" (Das et al., 2021). According to the authors, their review is offering "an overview of the most significant aspects of SERS for biomedical and biosensing applications" (Das et al., 2021). In the review, kynurenine is mentioned as follow. "Intrinsic SERS signals can be used to detect specific biomarkers or physiologically relevant biomolecular species inside or near individual cells, such as important metabolites in normal and tumor cells, or other cellular components such as exosomes. The application of SERS to identify the presence of extracellular metabolites, secreted by cancer cells and relevant to tumor biology, including tryptophan, *kynurenine*, and purine derivatives, has been demonstrated by Plou et al., 2020". (Das and coworkers are mentioning Plou et al., 2020). In Figure 7 in Das et al., 2021, the Panel (e) allows a "comparison of Raman and SERS spectra for kynurenine (Kyn) and tryptophan (Trp)". The nanoparticles are of gold.

From the plot by Plou et al. in Das et al., 2021, we can obtain the peaks above a certain threshold at positions that we can compare with those given by Sherman et al. (in cm^{-1}):

562.5	664.0	938.0	999.5	1039.5	1227.0
1350.5	1378.0				(Plou et al.)

L-arginine

#	Center	r		Parameters	Height Cer	nter HW	ΉM q .	$(h > 0.05, bold h > 0.15)$
%_18	Qgau	531.445	Х	Х	0.0965466	531.445	14.87	1.80809
%_22	Qgau	568.693	Х	х	0.067613	568.693	15.5271	1.15328
%_60	Qgau	648.893	Х	х	0.0537662	648.893	5.80739	1.69304
%_59	Qgau	661.492	Х	Х	0.0646335	661.492	9.74302	1.31092
%_23	Qgau	748.598	Х	Х	0.0589676	748.598	29.0783	1.26032
%_9	Qgau	806.805	Х	X	0.342536	806.805	18.4342	1.77269
%_17	Qgau	833.798	Х	X	0.277945	833.798	14.3488	1.31045
%_52	Qgau	847.229	Х	X	0.185334	847.229	9.2883	0.999971
%_51	Qgau	862.433	X	X	0.511955	862.433	13.59	1.20707
%_12	Qgau	910.998	X	X	0.260015	910.998	27.1723	0.999464
%_50	Qgau	939.937	Х	Х	0.0789916	939.937	12.5899	2.22329
%_6	Qgau	997.102	X	Х	0.379254	997.102	8.59164	1.35778
%_58	Qgau	1002.38	Х	Х	0.0511441	1002.38	2.71727	1.42405
%_10	Qgau	1024.87	X	Х	0.320029	1024.87	11.0673	1.51015
%_11	Qgau	1112.46	X	X	0.278516	1112.46	38.6364	1.70718
%_5	Qgau	1169.38	X	Х	0.326181	1169.38	17.4575	1.53757
%_24	Qgau	1224.5	Х	Х	0.0747978	1224.5	13.0212	1.00834
%_13	Qgau	1257.89	X	Х	0.190121	1257.89	16.4587	0.999551
%_32	Qgau	1272.13	Х	Х	0.0547543	1272.13	5.81358	1.05179
%_8	Qgau	1295.3	X	Х	0.338162	1295.3	22.5636	1.58389
%_7	Qgau	1344.56	X	Х	0.274593	1344.56	16.4393	1.6293
%_14	Qgau	1378.47	X	Х	0.221544	1378.47	23.0369	2.27487
%_21	Qgau	1409.98	Х	Х	0.0739174	1409.98	13.1975	1.02703
%_15	Qgau	1444.85	X	X	0.387734	1444.85	11.1535	2.06092
%_41	Qgau	1453.23	Х	Х	0.0684554	1453.23	5.67164	0.999979
%_2	Qgau	1465.65	X	X	0.652393	1465.65	15.1134	1.12798
%_16	Qgau	1591.48	Х	Х	0.100745	1591.48	16.3948	1.352
%_3	Qgau	1620.29	X	X	0.595589	1620.29	11.7483	1.73734

L-arginine has been investigated in <u>Sparavigna</u>, 2023. Here in the following table the peaks as have been determined with the first-derivative spectrum (with height above a given threshold):

Raman shift (cm -1)

We can compare the Table given above with the centers of the q-Gaussians given before:

%_18 Qgau	531.445	0.0965466	%_11 Qgau	1112.46	0.278516
%_22 Qgau	568.693	0.067613	%_5 Qgau	1169.38	0.326181
%_60 Qgau	648.893	0.0537662	%_24 Qgau	1224.5	0.0747978
%_59 Qgau	661.492	0.0646335	%_13 Qgau	1257.89	0.190121
%_23 Qgau	748.598	0.0589676	%_32 Qgau	1272.13	0.0547543
%_9 Qgau	806.805	0.342536	%_8 Qgau	1295.3	0.338162
%_17 Qgau	833.798	0.277945	%_7 Qgau	1344.56	0.274593
%_52 Qgau	847.229	0.185334	%_14 Qgau	1378.47	0.221544
%_51 Qgau	862.433	0.511955	%_21 Qgau	1409.98	0.0739174
%_12 Qgau	910.998	0.260015	%_15 Qgau	1444.85	0.387734
%_50 Qgau	939.937	0.0789916	%_41 Qgau	1453.23	0.0684554
%_6 Qgau	997.102	0.379254	%_2 Qgau	1465.65	0.652393
%_58 Qgau	1002.38	0.0511441	%_16 Qgau	1591.48	0.100745
%_10 Qgau	1024.87	0.320029	%_3 Qgau	1620.29	0.595589

In De Gelder et al., 2007, we find the following Raman peaks (in bold, the peaks which are corresponding to q-Gaussian centers, within +/-5 cm⁻¹):

376(w), 410(w), 490(mw), 551(m), 577(m), 613(m), **849(m)**, 879(mw), 922(m), 982(vs), 1036(mw), 1067(s), 1100(m), 1122(m), 1189(m), 1264(mw), **1298(m)**, 1330(m), **1377(mw)**, 1436(s), 1475(m), 1713(w)

As told by Sherman et al., SERS spectra of L-arginine have previously been reported in the literature for this molecule, Aliaga et al., 2010, Garrido et al., 2013. Let us add Botta and Bansal, 2015, Dummitt, 2023.

In Aliaga et al., 2010, we find the following SERS fingerprint (in cm⁻¹):

535611665781839891934978993108811711325135514121444147915691653

that we compared with the q-Gaussian centers (bold, within +/-5 cm⁻¹, and in italic, within +/-10 cm⁻¹), here given again below for reader's convenience:

531.445	568.693	648.893	661.492	748.598	806.805
833.798	847.229	862.433	910.998	939.937	997.102
1002.38	1024.87	1112.46	1169.38	1224.5	1257.89
1272.13	1295.3	1344.56	1378.47	1409.98	1444.85
1453.23	1465.65	1591.48	1620.29		

In Aliaga et al., the Raman spectrum is also given. And, again, we can compare:

389	455	524	571	613	675	746	759	793	<i>848</i>	858	899	971
997	1020	1046	1069	1085	1135	1218	<i>1268</i>	1287	1309	1316	1327	1358
1392	<i>1410</i>	<i>1443</i>	1457	1466	1523	1598	1650	1680)			

L-asparagine

Literature reported by Sherman et al.: Guicheteau et al., 2006, Kuang et al., 2016.

# PeakType	Center	Parameter	s :	Height Cent	er HW	HM q	(h > 0.09, bold h > 0.2)
% 12 Ogau	523.163	х	х	0.131469	523.163	5.39448	0.999987
% 24 Ogau	531.614	X	х	0.219004	531.614	7.22798	2.26907
% 6 Ogau	567.174	X	х	0.534704	567.174	11.4564	1.31481
% 32 Ogau	576.735	х	х	0.0971789	576.735	2.99727	1.00011
% 23 Ogau	666.598	х	x	0.110831	666.598	15.9135	1.1181
% 16 Ogau	727.566	x	x	0.277827	727.566	12.8277	1.52387
% 10 Ogau	758.962	x	x	0.273718	758.962	13.6352	1.30942
% 2 Ogau	803.082	x	x	0.907411	803.082	16.5992	0.999851
% 30 Ogau	833.783	x	x	0.168009	833.783	9.13045	1.76691
% 13 Ogau	856.947	x	x	0.240812	856.947	26.8927	1.64773
% 4 Ogau	911.64	x	x	0.685165	911.64	9.24071	1.33083
% 21 Ogau	939.395	X	x	0.125517	939.395	6.92238	1.5623
% 15 Ogau	973.267	х	х	0.245038	973.267	20.5676	1.19895
% 9 Ogau	997.55	х	x	0.196653	997.55	9.73733	0.999915
% 27 Ogau	1024.64	х	х	0.111826	1024.64	11.4238	1.19612
% 19 Ogau	1130.96	х	х	0.129617	1130.96	38.9454	0.998045
% 3 Ogau	1172.86	х	х	0.79788	1172.86	14.4206	1.20295
% 20 Ogau	1260.19	х	х	0.150347	1260.19	17.4823	0.999474
% 8 Ogau	1293.33	Х	х	0.3682	1293.33	16.976	1.56586
% 18 Ogau	1335.31	х	х	0.158077	1335.31	17.3152	0.999649
% 5 Ogau	1368.83	X	х	0.598571	1368.83	16.5794	1.95342
% 25 Ogau	1386.63	х	х	0.195043	1386.63	12.3302	1.59385
% 7 Ogau	1443.77	Х	х	0.42044	1443.77	13.8196	2.04867
% 14 Ogau	1468.05	Х	х	0.266218	1468.05	14.4949	1.0691
% 17 Ogau	1531.98	X	х	0.162975	1531.98	19.7601	2.07346
% 11 Qgau	1586.42	х	х	0.193293	1586.42	10.6437	1.71602
%_1 Qgau	1619.76	Х	Х	0.940533	1619.76	9.38334	1.98005

In Guicheteau et al., 2006, we can find the following data about asparagine:

450	539	752	876	940	1072	1111	1158	1261	1330	1415	1622 (Raman)
610	772	862	925	1048	1320	1396	1619				(SERS)

that we compared with the q-Gaussian centers (bold, within +/-5 cm⁻¹, and in italic, within +/-10 cm⁻¹), here given below:

523.163	531.614	567.174(s)	576.735	666.598	727.566(m)
758.962(m)	803.082(vs)	833.783	856.947(m)	911.64(s)	939.395
973.267	997.55	1024.64	1130.96	1172.86(vs)	1260.19
1293.33(s)	1335.31	1368.83(s)	1386.63	1443.77(s)	1468.05(m)
1531.98	1586.42	1619.76(vs)			

L-cystathionine

# PeakT	ype	Center		Parameters	Height	Center HW	/HM q	
%_16	Qgau	565.307	Х	х	0.117311	565.307	47.7822	1.30952
%_13	Qgau	660.167	Х	Х	0.120867	660.167	56.4195	1.20144
%_9	Qgau	712.853	X	Х	0.176985	712.853	10.7676	1.24603
%_27	Qgau	751.204	Х	х	0.065869	751.204	9.81566	2.44543
%_14	Qgau	816.455	Х	х	0.108378	816.455	25.0885	0.999715
%_7	Qgau	862.873	X	Х	0.305153	862.873	18.1504	2.47705
%_15	Qgau	927.743	Х	х	0.0376464	927.743	30.7411	1.65527
%_12	Qgau	997.939	X	X	0.224521	997.939	6.40355	1.00028
%_1	Qgau	1024.45	X	Х	1.0343	1024.45	14.9149	1.23089
%_8	Qgau	1099.95	X	Х	0.209668	1099.95	14.5022	1.14466
%_22	Qgau	1121.07	X	X	0.158742	1121.07	10.1405	2.77454
%_4	Qgau	1173.64	X	X	0.43261	1173.64	27.8784	1.52489
%_5	Qgau	1273.37	X	Х	0.408106	1273.37	43.021	1.46442
%_26	Qgau	1314.28	Х	х	0.125951	1314.28	12.9957	2.37511
%_10	Qgau	1345.08	X	Х	0.270214	1345.08	25.375	2.13761
%_29	Qgau	1387.97	Х	Х	0.11889	1387.97	29.8497	0.998951
%_3	Qgau	1453.37	X	X	0.620411	1453.37	37.2699	1.39333
%_30	Qgau	1520.11	Х	Х	0.123095	1520.11	12.9016	1.19186
%_6	Qgau	1557.93	X	Х	0.372912	1557.93	28.4327	1.12524
%_24	Qgau	1589.29	X	х	0.197464	1589.29	11.0825	1.16038
%_2	Qgau	1619.01	X	Х	0.956956	1619.01	16.6636	1.89993
%_21	Qgau	1643.35	Х	Х	0.13425	1643.35	15.0647	2.40336
%_11	Qgau	1709.76	Х	Х	0.139364	1709.76	30.1015	1.52098
%_20	Qgau	1783.86	Х	Х	0.0658436	1783.86	25.8645	0.999594
%_31	Qgau	1838.52	Х	Х	0.0363917	1838.52	29.0288	0.999536
%_17	Qgau	1901.86	Х	Х	0.0924939	1901.86	31.3436	0.999499
%_18	Qgau	1969.03	Х	х	0.0714026	1969.03	19.0599	1.19281

L-cysteic acid

# PeakT	ype	Center		Parameters	Height	Center	HWHM q	(h>0.10)
%_13	Qga	u528.456	X	х	0.264731	528.456	9.24909	1.27096
%_6	Qgau	567.873	X	Х	0.524611	567.873	12.1217	1.41245
%_30	Qgau	667.455	Х	х	0.100476	667.455	5 11.1299	2.01952
%_9	Qgau	727.744	Х	X	0.299078	727.744	8.69307	1.41494
%_32	Qgau	744.761	Х	Х	0.107725	744.761	6.6484	0.999973
%_11	Qga	u760.745	Х	X	0.291412	760.745	9.18634	0.999947
%_25	Qgau	793.054	Х	Х	0.106112	793.054	6.58518	1.19774
%_3	Qgau	805.067	Х	X	0.861605	805.067	14.0118	1.33369
%_19	Qgau	835.394	Х	Х	0.117068	835.394	9.33487	1.8188
%_5	Qgau	912.046	Х	X	0.642778	912.046	5 7.2332	1.44717
%_17	Qgau	918.484	Х	Х	0.144886	918.484	4.29933	1.00516
%_18	Qgau	941.125	Х	Х	0.131053	941.125	8.38408	0.999938
%_12	Qga	u976.174	X	х	0.237162	976.174	16.8716	1.64137
%_21	Qgau	998.296	Х	Х	0.126757	998.296	8.83525	1.69441
%_43	Qgau	1122.63	Х	Х	0.114515	1122.63	14.2397	1.60913
%_2	Qgau	1172.82	Х	X	0.846428	1172.82	15.0219	1.45483
%_22	Qgau	1252.31	Х	Х	0.113621	1252.31	31.5817	1.85037
%_8	Qgau	1295.35	X	Х	0.244584	1295.35	13.8456	1.35137
%_15	Qgau	1333.15	Х	Х	0.176704	1333.15	20.7628	1.84705
%_4	Qgau	1371.63	X	Х	0.590362	1371.63	19.4286	1.68897
%_53	Qga	u1389.5	Х	X	0.202911	1389.5	8.37401	1.60401
%_7	Qgau	1445.82	X	Х	0.376284	1445.82	18.2567	2.13228
%_16	Qgau	1478.92	Х	Х	0.141138	1478.92	2 12.9108	1.27985
%_10	Qga	u1533.48	X	Х	0.257518	1533.48	22.6134	1.41156
%_14	Qgau	u1588.55	X	Х	0.213888	1588.55	5 19.3352	1.17707
% 1	Ogau	1620.99	Х	X	0.991819	1620.99	8.48004	1.46199

L-cysteine

# Peal	kType	Center		Parameters	Heigh	t Center	r HWH	M q	(h > 0.04)
%_4	Qgau	517.445	Х	Х	0.213922	517.445	28.7274	1.65581	
%_9	Qgau	625.967	Х	х	0.188652	625.967	14.0799	1.00008	
%_1	Qgau	669.797	Х	х	1.07352	669.797	25.026	1.07137	
%_31	Qgau	707.701	х	х	0.125674	707.701	13.459	1.11066	
%_32	Qgau	729.214	х	Х	0.10742	729.214	10.241	1.2183	
%_37	Qgau	745.601	х	Х	0.0813513	745.601	12.7323	0.999991	
%_6	Qgau	801.425	Х	х	0.203425	801.425	13.7443	0.999897	
%_18	Qgau	823.342	х	Х	0.0935258	823.342	11.1204	0.999935	
<u>%_</u> 2	Qgau	893.798	Х	Х	0.685963	893.798	16.4834	1.15393	
%_36	Qgau	920.819	х	Х	0.0589538	920.819	11.7514	1.2019	
%_10	Qgau	955.778	х	Х	0.119422	955.778	23.4839	0.999521	
%_17	Qgau	1043.05	х	Х	0.0416432	1043.05	14.4385	1.06833	
%_5	Qgau	1057.47	Х	Х	0.180427	1057.47	19.1766	1.37861	
%_13	Qgau	1130.91	х	Х	0.0569785	1130.91	23.7926	1.09622	
%_16	Qgau	1286.9	х	Х	0.0765448	1286.9	8.72292	1.38671	
%_3	Qgau	1298.28	Х	Х	0.235413	1298.28	12.107	1.37223	
%_8	Qgau	1343.87	Х	Х	0.1553	1343.87	13.2249	1.567	
%_7	Qgau	1395.99	Х	Х	0.168389	1395.99	16.4244	1.09507	
%_22	Qgau	1420.63	х	Х	0.0535573	1420.63	14.5872	0.999806	
%_30	Qgau	1598.76	х	х	0.0510395	1598.76	10.941	1.98585	
%_28	Qgau	1621.39	Х	Х	0.0551901	1621.39	11.9534	1.84365	
%_24	Qgau	1641.97	х	х	0.0548389	1641.97	10.7495	2.09447	

L-cysteine has been investigated in <u>Sparavigna</u>, 2023. Here in the following table the peaks as have been determined with the first-derivative spectrum (with height above a given threshold):

Literature about L-cysteine: Diaz Fleming et al., 2009, Jing and Fang, 2007, Brolo et al., 2002, Graff and Bukowska, 2005, Yao and Huang, 2018.

Let us consider the centers of the q-Gaussians that we have given before, and compare with data from literature in the table given below. In bold within ± -5 cm⁻¹, in italic within ± -10 cm⁻¹, the q-Gaussian centers which are close to the peaks.

517.445 625.967 669.797 707.701 729.214 745.601 801.425 823.342 893.798 920.819 955.778 1043.05 1057.47 1130.91 1286.9 1298.28 1343.87 1395.99 1420.63 1598.76 1621.39 1641.97

In the following table, data from literature.

Diaz Fleming et al., 2009.	667	778 815		903	947 1002	1058	120	00	1292	1347	1402
Jing and Fang, 2007.	663	725		908		1033			1291	1341	1395
Graff and Bukowska, 2005.	670	725		890							1395
Yao and Huang, 2018.	673	789	832	900	949	1050	1125	1232	1292	1339	1391

L-cystine Literature on L-cystine: Lee et al., 1991, Su et al., 2022, Itoh and Hanari, 2022.

# Peak7	Type Center	Pa	rameters		Height Center	HWHM	q (h > 0.10)
%_15	Qgau	535.434	Х	Х	0.082677	535.434	9.70627	2.08344
%_14	Qgau	626.648	Х	Х	0.125887	626.648	16.5337	1.01067
%_1	Qgau	666.885	X	Х	1.04685	666.885	20.7877	1.26573
%_7	Qgau	689.062	Х	Х	0.109095	689.062	12.8326	1.15127
%_19	Qgau	714.089	Х	Х	0.159291	714.089	22.7415	1.42957
%_30	Qgau	750.062	X	Х	0.290384	750.062	16.8527	1.9841
%_29	Qgau	805.709	X	Х	0.37457	805.709	16.3025	1.63571
%_3	Qgau	823.484	Х	Х	0.0961291	823.484	8.34062	1.00529
%_20	Qgau	842.099	X	Х	0.222777	842.099	14.2008	0.999995
%_9	Qgau	861.879	X	Х	0.225927	861.879	11.7972	0.999892
<u>%_2</u>	Qgau	895.911	X	Х	0.41584	895.911	15.8149	1.23523
%_10	Qgau	996.541	Х	Х	0.139399	996.541	4.6311	1.16102
%_12	Qgau	1134.49	Х	Х	0.104714	1134.49	47.6545	0.99704
%_4	Qgau	1294.84	X	Х	0.316848	1294.84	16.0032	1.80115
%_13	Qgau	1343.31	Х	Х	0.182575	1343.31	12.7225	1.59931
%_32	Qgau	1383.39	Х	Х	0.156429	1383.39	14.0507	1.10228
%_33	Qgau	1405.83	Х	Х	0.134175	1405.83	16.8948	1.63444
%_6	Qgau	1458.09	X	Х	0.243735	1458.09	21.9402	1.05254
%_11	Qgau	1619.71	Х	Х	0.123442	1619.71	47.0623	1.1741
%_5	Qgau	1707.73	X	Х	0.283449	1707.73	14.3828	1.36595

L-cystine has been investigated in <u>Sparavigna</u>, <u>2023</u>. Here in the following plot and table the peaks as have been determined with the first-derivative spectrum (with height above a given threshold):

As we did for homocysteine and homocysteine, let us compare the spectra.

Comparing the fingerprints (in bold characters, the centers which have close values, within $+/-5 \text{ cm}^{-1}$):

L-cysteine

517.445 **625.967 669.797** 707.701 729.214 745.601 **801.425 823.342 893.798** 920.819 955.778 1043.05 1057.47 **1130.91** 1286.9 **1298.28 1343.87** 1395.99 1420.63 1598.76 **1621.39** 1641.97 L-cystine 535.434 **626.648 666.885** 689.062 714.089 750.062 805.709 **823.484** 842.099 861.879 **895.911** 996.541 **1134.49 1294.84 1343.31** 1383.39 1405.83 1458.09 **1619.71** 1707.73

Leucine

Sherman and coworkers propose references Stewart and Fredericks, 1999, and Negri and Schultz, 2014.

# Peak	Гуре	Center		Parameters	s Height	Center H	IWHM q	(h > 0.80)
%_14	Qgau	512.18	х	X	0.150056	512.18	6.4972	0.999984
%_12	Qgau	535.347	Х	Х	0.132432	535.347	5.9648	1.72617
%_27	Qgau	542.377	Х	Х	0.112065	542.377	2.03594	2.1105
%_16	Qgau	665.997	Х	Х	0.105326	665.997	8.6785	1.54874
%_33	Qgau	805.709	Х	Х	0.102214	805.709	17.5525	2.13158
%_9	Qgau	855.465	Х	X	0.152539	855.465	27.6916	0.999423
%_35	Qgau	907.031	Х	Х	0.0894207	907.031	13.9381	1.39074
%_15	Qgau	962.224	Х	Х	0.131395	962.224	12.7988	1.27383
%_7	Qgau	1046.31	Х	X	0.274086	1046.31	10.8575	1.85383
%_18	Qgau	1214.92	Х	Х	0.0837155	1214.92	13.6064	0.999949
%_13	Qgau	1252.19	X	X	0.174106	1252.19	8.36908	2.02458
%_4	Qgau	1269.09	Х	X	0.522888	1269.09	19.3881	1.6368
%_45	Qgau	1303.37	Х	X	0.26926	1303.37	11.4275	1.70702
%_3	Qgau	1327.72	X	X	0.612553	1327.72	14.5944	1.96967
%_47	Qgau	1354.33	Х	Х	0.110775	1354.33	9.17224	1.53178
%_1	Qgau	1388	Х	X	0.814109	1388	14.6941	1.70734
%_6	Qgau	1416.87	Х	X	0.258597	1416.87	13.1672	1.97903
%_2	Qgau	1447.43	X	X	0.670485	1447.43	22.7853	1.98122
%_10	Qgau	1473.3	Х	Х	0.106807	1473.3	7.45322	1.56356
%_8	Qgau	1493.37	X	X	0.173821	1493.37	30.3714	0.999063
%_11	Qgau	1558.76	Х	X	0.182376	1558.76	14.8433	1.52328
%_5	Qgau	1591.89	Х	X	0.35613	1591.89	22.0416	2.03853
%_39	Qgau	1612.2	Х	Х	0.0821004	1612.2	9.18521	1.59104
%_40	Qgau	1631.57	X	X	0.155174	1631.57	17.7204	1.51022
%_17	Qgau	1913.83	Х	Х	0.0840255	1913.83	29.8215	2.70657

The q-Gaussian centers:

512.18	535.347	542.377	665.997	805.709	855.465(m)
907.031	962.224	1046.31(m)	1214.92	1252.19	1269.09(s)
1303.37(m)	1327.72(vs)	1354.33	1388(vs)	1416.87(m)	1447.43(vs)
1473.3	1493.37	1558.76	1591.89(s)	1612.2	1631.57
1913.83					

Table 4 from Stewart and Fredericks, 1999, provides data and assignments. The reported peaks are:

620	718	835	845	928	944	962	1130	1342	1410	1455

L-Histidine

Sherman and coworkers propose as literature: Stewart and Fredericks, 1999, Lim et al., 2008, Martusevičius et al., 1996.

# Peak	сТуре	Center		Parameters	Height	Center	HWHM	q $(h > 0.1)$
%_17	Qgau	560.408	х	Х	0.301956	560.408	12.8061	1.63981
%_1	Qgau	715.172	х	Х	0.71107	715.172	10.0375	1.61021
%_34	Qgau	736.561	х	х	0.137551	736.561	10.0535	1.00014
%_8	Qgau	767.334	х	X	0.452209	767.334	24.1083	1.26779
%_5	Qgau	801.304	х	X	0.428227	801.304	12.6506	1.69634
%_12	Qgau	843.892	х	X	0.349469	843.892	28.134	1.21357
%_50	Qgau	864.236	х	х	0.100737	864.236	11.4838	1.24183
<u>%_</u> 2	Qgau	882.367	х	X	0.597978	882.367	12.3898	1.42412
%_25	Qgau	917.819	х	х	0.147573	917.819	20.8349	1.31545
%_46	Qgau	976.972	х	X	0.278196	976.972	12.203	2.24447
%_45	Qgau	999.425	х	X	0.25302	999.425	8.7543	1.00972
%_9	Qgau	1028.68	х	X	0.433691	1028.68	13.5383	1.35414
%_48	Qgau	1160.51	х	Х	0.135096	1160.51	15.3214	1.99569
%_13	Qgau	1183.64	х	х	0.209011	1183.64	12.4847	2.48762
%_16	Qgau	1216.02	х	X	0.268593	1216.02	31.2931	1.32521
%_24	Qgau	1255.5	х	х	0.171643	1255.5	12.0003	0.999855
%_10	Qgau	1271.44	х	X	0.278802	1271.44	11.2618	0.999853
%_14	Qgau	1290.8	х	X	0.264102	1290.8	14.1843	1.26923
%_6	Qgau	1318.7	Х	X	0.392091	1318.7	15.0808	1.62196
%_20	Qgau	1341.48	х	х	0.177248	1341.48	26.4153	1.68352
%_49	Qgau	1378.39	х	X	0.272027	1378.39	18.8562	1.62214
%_51	Qgau	1403.31	х	Х	0.11858	1403.31	12.9751	2.34933
%_18	Qgau	1423.13	х	х	0.150462	1423.13	19.6822	1.46038
%_4	Qgau	1440.4	х	X	0.331913	1440.4	13.2271	1.99065
%_7	Qgau	1466.89	Х	X	0.436676	1466.89	20.5567	1.94772
%_15	Qgau	1590.2	Х	X	0.249331	1590.2	28.3836	1.98963
%_3	Qgau	1627.35	Х	X	0.493789	1627.35	21.2911	1.85602
%_22	Qgau	1677.84	х	х	0.100635	1677.84	40.7983	1.32226

Therefore, the centers of the component are:

560.408(s)	715.172(vs)	736.561	767.334(s)	801.3048s)	843.892(s)
864.236	882.367(vs)	917.819	976.972(m)	999.425(m)	1028.68(s)
1160.51	1183.64	1216.02(m)	1255.5	1271.44(m)	1290.8
1318.7	1341.48	1378.39	1403.31	1423.13	1440.4(s)
1466.89(s)	1590.2(m)	1627.35(s)	1677.84		

In De Gelder et al., 2007, we find the following Raman peaks (in bold, the peaks which are corresponding to centers, within +/-5 cm⁻¹, in italic within +/-10 cm⁻¹).

404(m), 422(mw,sh), 540(mw), 623(mw), 656(m), 680(w), **731**(*mw*), 784(mw), **804**(*m*), 824(mw), 852(m), **918**(*m*), 929(mw,sh), 963(*m*), **976**(*m*), 1061(m), 1087(s), 1111(m), 1140(mw), 1174(m), 1224(m), **1250**(*m*), **1271**(*s*), **1317**(*vs*), 1336(*m*), 1347(*m*), **1407**(*m*), 1430(*m*), 1476(*mw*), 1498(m), 1538(w), 1571(m), 1608(w), 1639(w)

Lipoamide

# Peak	Туре Се	enter		Parameters	Height	Center	HWHM	q $(h > 0.08)$
%_16	Qgau	576.709	х	Х	0.123722	576.709	9.89256	0.999953
%_1	Qgau	606.867	Х	X	1.04181	606.867	20.1998	1.67159
%_14	Qgau	659.002	Х	X	0.208648	659.002	20.8459	1.37568
%_15	Qgau	815.616	х	Х	0.167216	815.616	16.6678	1.14561
%_11	Qgau	872.054	Х	Х	0.268494	872.054	23.9697	1.07415
%_4	Qgau	911.35	Х	Х	0.358155	911.35	15.8095	1.69298
%_22	Qgau	929.301	х	Х	0.161215	929.301	13.5887	1.01223
%_10	Qgau	997.431	Х	X	0.242576	997.431	6.32839	0.999962
%_33	Qgau	1004.43	Х	X	0.0815081	1004.43	2.91366	1.19068
%_2	Qgau	1042.29	Х	Х	0.438237	1042.29	19.5897	1.59738
%_57	Qgau	1079.64	х	Х	0.177668	1079.64	16.6888	0.999848
%_55	Qgau	1153.96	Х	X	0.324393	1153.96	48.0996	1.37703
%_5	Qgau	1210.99	х	Х	0.080018	1210.99	22.894	2.00186
%_9	Qgau	1244.76	Х	X	0.234593	1244.76	29.5433	1.85521
%_3	Qgau	1284.78	Х	X	0.237381	1284.78	24.3565	1.3597
%_6	Qgau	1313.62	х	Х	0.107375	1313.62	13.9962	1.41333
%_7	Qgau	1348.48	Х	Х	0.200406	1348.48	35.0018	2.014
%_19	Qgau	1412.66	х	Х	0.160123	1412.66	15.495	1.69246
%_43	Qgau	1437.77	Х	X	0.286492	1437.77	21.7964	1.71896
%_44	Qgau	1482.34	х	Х	0.125877	1482.34	4.2173	1.50771
%_47	Qgau	1583.11	Х	Х	0.236639	1583.11	49.499	0.997912
%_49	Qgau	1510.16	Х	X	0.234007	1510.16	30.9031	2.49847
%_48	Qgau	1652.17	х	х	0.188699	1652.17	38.7433	2.60028

L-lysine

# Peal	xType	Center	Parame	ters	Height	Center	HWHM	q	(h >	0.09)
% 34	Ógau	565.568x	Х	Х	0.10804	565.568	18.501 0.9	999872		
% 37	Ogau	756.229x	Х	х	0.100926	756.229	23.002 1.2	27844		
% 8	Ogau	805.665x	X	Х	0.232742	805.665	19.1429 1	.70557		
%_ <u>3</u> 9	Qgau	828.89 x	Х	х	0.141639	828.89 1	0.3958 2.0	02729		
%_48	Qgau	842.797x	Х	х	0.120523	842.797	10.0273 0	.999998		
%_38	Qgau	859.672x	Х	х	0.404788	859.672	16.6498 1	.48266		
%_10	Qgau	909.254x	Х	х	0.19314	909.254	21.0803 0	.999673		
%_49	Qgau	940.185x	Х	Х	0.130523	940.185	17.7422 1	.66115		
%_3	Qgau	997.706x	Х	х	0.412654	997.706	9.47971 1	.04221		
%_6	Qgau	1025.43x	X	Х	0.306007	1025.43	11.9403 1	.47385		
%_11	Qgau	1130.33x	Х	Х	0.146155	1130.33	40.4937 1	.76785		
%_40	Qgau	1170.57x	X	Х	0.273028	1170.57	21.9174 2	.35852		
%_59	Qgau	1256.63x	Х	Х	0.193161	1256.63	15.5182 1	.88178		
%_60	Qgau	1273.6 x	Х	Х	0.1312	1273.6 1	1.0605 2.1	18907		
<u>%_42</u>	Qgau	1293.05x	X	Х	0.299483	1293.05	15.3753 1	.85177		
%_61	Qgau	1310.54x	Х	Х	0.145755	1310.54	10.0839 1	.46135		
%_69	Qgau	1330.44x	Х	х	0.169957	1330.44	13.7983 1	.7912		
%_62	Qgau	1346.05x	Х	х	0.260804	1346.05	12.3055 1	.88846		
%_64	Qgau	1375.79x	X	Х	0.204261	1375.79	16.6304 1	.00062		
%_65	Qgau	1406.25x	X	Х	0.208702	1406.25	22.1551 1	.57464		
%_1	Qgau	1466.7 x	X	Х	0.520765	1466.7 1	4.2637 1.3	39675		
%_67	Qgau	1444.73x	X	Х	0.384747	1444.73	13.4068 1	.81615		
%_4	Qgau	1587.84x	Х	Х	0.136498	1587.84	15.4859 1	.90074		
<u>%_</u> 2	Qgau	1621.36x	Х	Х	0.482424	1621.36	16.0409 1	.95601		
%_14	Qgau	1683.74x	Х	Х	0.0933717	1683.74	35.5198	1.39384		

L-lysine has been investigated in Sparavigna, 2023, with the first derivative spectrum.

Here in the following table the peaks as have been determined with the first-derivative spectrum (with height above a given threshold):

Position (in cm ⁻¹)	Relative intensity	Position (in cm ⁻¹)	Relative intensity
563.50	0.15	1168.00	0.56
762.50	0.21	1294.50	0.66
811.50	0.45	1347.00	0.63
855.50	0.66	1462.50	0.99
911.00	0.38	1517.50	0.23
998.00	0.68	1549.50	0.25
1026.50	0.53	1620.00	0.81
1127.50	0.47	1674.00	0.26

According to Sherman et al., SERS spectra have previously been reported for this molecule: Sengupta et al., 2005, Aliaga et al., 2009. Let us add Aboltaman et al., 2023, Yao and Huang, 2022, Das et al., 2020.

L-methionine sulfoximine

# Peak	Гуре	Center	F	Parameters	Height	Center	HWHM	q (H >	0.14)
%_27	Qgau	527.315	х	Х	0.149161	527.315	20.1785	1.43966	
%_22	Qgau	567.702	х	Х	0.245674	567.702	17.0966	0.999868	
%_ 7	Qgau	715.231	Х	Х	0.404512	715.231	10.659	1.76735	
%_15	Qgau	766.572	Х	X	0.37676	766.572	22.5161	1.79231	
%_8	Qgau	801.468	Х	Х	0.327621	801.468	13.7434	1.27653	
%_44	Qgau	831.053	х	Х	0.156774	831.053	14.1163	0.999929	
%_6	Qgau	851.902	Х	Х	0.404492	851.902	18.4409	1.40661	
%_5	Qgau	882.233	Х	Х	0.306169	882.233	11.6769	1.6926	
%_18	Qgau	917.711	Х	Х	0.317793	917.711	33.7592	1.46679	
%_26	Qgau	978.435	Х	Х	0.256376	978.435	12.6119	1.2873	
%_1	Qgau	997.85	Х	Х	0.634351	997.85	8.53498	1.01857	
%_3	Qgau	1026.4	Х	Х	0.541391	1026.4	14.9146	1.86747	
%_19	Qgau	1100.93	Х	Х	0.253897	1100.93	27.7559	1.56325	
%_16	Qgau	1132.51	Х	Х	0.222467	1132.51	18.5632	2.09692	
%_24	Qgau	1157.51	Х	Х	0.189082	1157.51	14.2477	1.18223	
%_12	Qgau	1179.25	Х	Х	0.24053	1179.25	15.2514	1.38356	
%_17	Qgau	1220.37	Х	Х	0.319163	1220.37	31.0505	1.8751	
%_13	Qgau	1270.32	Х	х	0.330432	1270.32	18.621	1.51841	
%_4	Qgau	1291.56	Х	Х	0.246453	1291.56	13.7163	2.00897	
%_9	Qgau	1314.81	Х	Х	0.369974	1314.81	19.1453	1.10784	
%_23	Qgau	1342.57	Х	Х	0.23917	1342.57	17.3359	0.999594	
%_14	Qgau	1377.95	Х	Х	0.369049	1377.95	21.4707	1.4216	
%_21	Qgau	1411.87	Х	Х	0.259938	1411.87	18.3481	1.21004	
%_10	Qgau	1443.18	Х	Х	0.362973	1443.18	14.7193	0.999781	
%_2	Qgau	1465.85	Х	Х	0.498816	1465.85	16.1384	1.39126	
%_46	Qgau	1593.96	Х	Х	0.248012	1593.96	26.8812	1.80829	
%_11	Qgau	1622.85	Х	х	0.2729	1622.85	15.1407 2	2.20583	

L-tryptophan

# Pea	akType	Center		Parameters	Height Center HWHM q	(h >	0.05)
%_23	Qgau	502.867 x	х	Х	0.107574 502.867 9.93948 1.00007		
%_39	Qgau	520.892 x	х	Х	0.125706 520.892 14.2531 1.79517		
%_37	Qgau	537.089 x	х	Х	0.131668 537.089 8.98731 1.64037		
%_30	Qgau	563.662 x	х	Х	0.251177 563.662 10.5553 1.55644		
%_31	Qgau	576.086 x	х	Х	0.100255 576.086 5.95915 2.19609		
%_32	Qgau	586.032 x	х	Х	0.115546 586.032 7.47295 1.88147		
%_33	Qgau	600.507 x	х	Х	0.0661625 600.507 9.95468 1.02793		
%_34	Qgau	629.01	х	Х	0.0348737 629.01 4.22579 1.00018		
%_35	Qgau	640.758 x	х	Х	0.0782045 640.758 5.33358 1.3205		
%_36	Qgau	649.08	х	Х	0.0492128 649.08 4.4669 1.65484		
%_14	Qgau	669.16	х	Х	0.178679 669.16 8.27613 1.00002		
%_25	Qgau	713.926 x	х	Х	0.106949 713.926 7.0626 1.00007		
%_13	Qgau	732.014 x	х	х	0.26742 732.014 14.3535 1.34556		
%_1	Qgau	754.478 x	х	Х	1.04483 754.478 9.16089 1.09287		
%_42	Qgau	758.901 x	х	Х	0.057346 758.901 2.29903 1.00998		
%_2	Qgau	772.585 x	х	х	0.282608 772.585 9.68552 1.122		
%_3	Qgau	790.633 x	х	Х	0.120398 790.633 13.7032 1.48374		
%_9	Qgau	804.674 x	х	Х	0.0678834 804.674 8.38702 1.97615		
%_7	Qgau	818.888 x	х	х	0.0942258 818.888 9.6279 1.61582		
%_46	Qgau	853.641 x	х	Х	0.250971 853.641 15.1664 2.25154		
%_20	Qgau	862.638 x	х	Х	0.0604697 862.638 9.21011 1.48268		
%_43	Qgau	878.059 x	х	х	0.337346 878.059 10.8218 2.19526		
%_17	Qgau	887.058 x	х	Х	0.0638588 887.058 7.21831 1.34542		
%_48	Qgau	982.281 x	Х	х	0.0545629 982.281 4.90071 2.01813		
% 8	Ogau	1002.85 x	х	х	0.488488 1002.85 10.4945 1.34517		
%_74	Qgau	1018.32 x	х	х	0.226792 1018.32 10.0937 0.99997		
------	------	-----------	---	---	-----------------------------------		
%_49	Qgau	1031.98 x	х	Х	0.472751 1031.98 10.0827 1.00001		
%_29	Qgau	1099.83 x	Х	Х	0.0642398 1099.83 13.0443 1.27293		
%_12	Qgau	1117.77 x	Х	Х	0.188738 1117.77 10.0907 1.81205		
%_5	Qgau	1157.77 x	х	х	0.400763 1157.77 16.2389 1.43101		
%_50	Qgau	1210.81 x	Х	Х	0.146988 1210.81 12.7999 2.39824		
%_51	Qgau	1225.25 x	Х	Х	0.155778 1225.25 8.47001 2.2198		
%_52	Qgau	1251.39 x	Х	Х	0.12004 1251.39 13.3395 2.88279		
%_18	Qgau	1272.62 x	Х	Х	0.175359 1272.62 14.1611 1.80673		
%_75	Qgau	1286.89 x	Х	Х	0.0960407 1286.89 12.8974 2.28344		
%_55	Qgau	1308.14 x	Х	Х	0.519178 1308.14 9.73966 1.92027		
%_54	Qgau	1318.38 x	Х	Х	0.0632579 1318.38 6.06906 1.00005		
%_53	Qgau	1328.8	Х	Х	0.716256 1328.8 12.6213 1.51458		
%_24	Qgau	1338.7	Х	Х	0.0747675 1338.7 4.10607 1.92211		
%_21	Qgau	1356.39 x	Х	Х	0.292399 1356.39 11.6362 1.40396		
%_28	Qgau	1377.71 x	Х	Х	0.123692 1377.71 14.1372 1.07609		
%_56	Qgau	1415.64 x	Х	Х	0.170769 1415.64 30.1941 1.55756		
%_57	Qgau	1446.99 x	Х	Х	0.382592 1446.99 12.4754 1.95744		
%_59	Qgau	1454.04 x	Х	Х	0.0758626 1454.04 3.66327 1.25291		
%_58	Qgau	1465.25 x	Х	Х	0.257199 1465.25 9.85173 2.23797		
%_61	Qgau	1488.68 x	Х	Х	0.0889039 1488.68 15.574 2.75942		
%_63	Qgau	1515.66 x	Х	Х	0.0702154 1515.66 9.78447 2.85423		
%_69	Qgau	1574.75 x	Х	Х	0.141918 1574.75 8.63019 2.02981		
%_68	Qgau	1593.2	Х	Х	0.190361 1593.2 15.1006 2.1287		
%_66	Qgau	1614.92 x	Х	Х	0.173896 1614.92 11.4481 2.3822		
%_67	Qgau	1626.91 x	Х	Х	0.173924 1626.91 13.5143 2.11237		
%_44	Qgau	1637.3	Х	Х	0.0680258 1637.3 7.9811 1.00006		
%_71	Qgau	1653.97 x	Х	Х	0.0838281 1653.97 25.0152 2.54035		
%_72	Qgau	1899.31 x	Х	Х	0.074355 1899.31 25.058 1.05671		
%_22	Qgau	1969.93 x	х	х	0.0741344 1969.93 20.9099 1.40791		

Further reducing the considered components:

# Peal	кТуре	Center		Parameters	Height	Center	HWHM	q (h	> 0.10, bold 0.15)
%_23	Qgau	502.867 x	х	х	0.107574	502.867	9.93948	1.00007	
%_39	Qgau	520.892 x	Х	х	0.125706	520.892	2 14.2531	1.79517	
%_37	Qgau	537.089 x	х	х	0.131668	537.089	8.98731	1.64037	
%_30	Qgau	563.662 x	Х	Х	0.251177	563.662	2 10.5553	1.55644	
%_31	Qgau	576.086 x	Х	х	0.100255	576.086	5.95915	2.19609	
%_32	Qgau	586.032 x	Х	х	0.115546	586.032	2 7.47295	1.88147	
%_14	Qgau	669.16	Х	Х	0.178679	669.16	8.27613	1.00002	
%_25	Qgau	713.926 x	Х	х	0.106949	713.926	7.0626	1.00007	
%_13	Qgau	732.014 x	Х	Х	0.26742	732.014	14.3535	1.34556	
%_1	Qgau	754.478 x	Х	Х	1.04483	754.478	9.16089	1.09287	
%_2	Qgau	772.585 x	Х	Х	0.282608	772.585	9.68552	1.122	
%_3	Qgau	790.633 x	Х	х	0.120398	790.633	13.7032	1.48374	
%_46	Qgau	853.641 x	Х	Х	0.250971	853.641	15.1664	2.25154	
%_43	Qgau	878.059 x	х	Х	0.337346	878.059	10.8218	2.19526	
%_8	Qgau	1002.85 x	Х	Х	0.488488	1002.85	10.4945	1.34517	
%_74	Qgau	1018.32 x	Х	х	0.226792	1018.32	10.0937	0.99997	
%_49	Qgau	1031.98 x	х	Х	0.472751	1031.98	10.0827	1.00001	
%_12	Qgau	1117.77 x	Х	Х	0.188738	1117.77	10.0907	1.81205	
%_5	Qgau	1157.77 x	Х	Х	0.400763	1157.77	16.2389	1.43101	
%_50	Qgau	1210.81 x	Х	х	0.146988	1210.81	12.7999	2.39824	
%_51	Qgau	1225.25 x	Х	Х	0.155778	1225.25	8.47001	2.2198	

Qgau	1251.39 x	х	х	0.12004 125	1.39 13.3395 2.88279
Qgau	1272.62 x	х	X	0.175359 127	2.62 14.1611 1.80673
Qgau	1308.14 x	х	X	0.519178 130	8.14 9.73966 1.92027
Qgau	1328.8	х	X	0.716256 132	8.8 12.6213 1.51458
Qgau	1356.39 x	х	X	0.292399 135	6.39 11.6362 1.40396
Qgau	1377.71 x	Х	х	0.123692 137	7.71 14.1372 1.07609
Qgau	1415.64 x	X	X	0.170769 141	5.64 30.1941 1.55756
Qgau	1446.99 x	х	X	0.382592 144	6.99 12.4754 1.95744
Qgau	1465.25 x	Х	Х	0.257199 146	5.25 9.85173 2.23797
Qgau	1574.75 x	Х	Х	0.141918 157	4.75 8.63019 2.02981
Qgau	1593.2	х	X	0.190361 159	3.2 15.1006 2.1287
Qgau	1614.92 x	X	X	0.173896 161	4.92 11.4481 2.3822
Qgau	1626.91 x	Х	Х	0.173924 162	6.91 13.5143 2.11237
	Qgau Qgau Qgau Qgau Qgau Qgau Qgau Qgau	Qgau 1251.39 x Qgau 1272.62 x Qgau 1308.14 x Qgau 1328.8 Qgau 1356.39 x Qgau 1377.71 x Qgau 1415.64 x Qgau 1446.99 x Qgau 1574.75 x Qgau 1593.2 Qgau 1614.92 x Qgau 1626.91 x	Qgau1251.39 xxQgau1272.62 xxQgau1308.14 xxQgau1328.8xQgau1356.39 xxQgau1377.71 xxQgau1415.64 xxQgau1446.99 xxQgau1574.75 xxQgau1593.2xQgau1614.92 xxQgau1626.91 xx	Qgau1251.39 xxxQgau1272.62 xxxQgau1308.14 xxxQgau1328.8xxQgau1356.39 xxxQgau1356.39 xxxQgau1377.71 xxxQgau1415.64 xxxQgau1446.99 xxxQgau1465.25 xxxQgau1574.75 xxxQgau1614.92 xxxQgau1614.92 xxx	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Therefore, the centers of the components are:

502.867	520.892	537.089	563.662(m)	576.086	586.032
669.16(m)	713.926	732.014(m)	754.478 (vs)	772.585(s)	790.633
853.641(m)	878.059(s)	1002.85(s)	1018.32(m)	1031.98(s)	1117.77(m)
1157.778(s)	1210.81	1225.25(m)	1251.39	1272.62	1308.1(s)
1328.8(vs)	1356.39(m)	1377.71	1415.64	1446.99 (s)	1465.25(m)
1574.75	1593.2(m)	1614.92	1626.91		

In De Gelder et al., 2007, we find the following Raman peaks (in **bold**, the peaks which are corresponding to q-Gaussian centers, within ± -5 cm⁻¹, and in italic, within ± -10 cm⁻¹):

393(w), 425(w), 456(w), 498(m), 509(m), 534(m), 548(w), 574(m), 596(m), 626(m), 683(w), 706(m), 741(m), 755(vs), 766(m), 778(m), 802(w), 840(m), 848(m), 865(m), 874(s), 988(w), 1009(vs), 1046(w), 1076(w), 1103(w), 1118(m), 1160(w), 1207(w), 1231(m), 1253(w), 1278(w), 1309(w), 1314(m), 1328(m), 1338(s), 1358(s), 1423(s), 1450(m), 1457(m), 1486(m), 1556(s), 1576(m), 1616(m)

Sherman et al. are mentioning the SERS spectra reported in Aliaga et al., 2009, Qu et al., 2012. Let us add Aboltaman et al., 2023, Gao et al., 2023, Xu et al., 2022, Gautam et al., 2022.

L-tryptophanamide

# PeakT	ype Center		Parameters	5	Height Center HWHM q
%_40	Qgau	505.14	Х	Х	0.0635918 505.14 13.5069 1.98942
%_18	Qgau	553.287	Х	Х	0.231473 553.287 16.1335 1.54068
%_34	Qgau	577.613	Х	Х	0.12871 577.613 10.0293 1.00001
%_26	Qgau	634.543	Х	Х	0.11583 634.543 11.041 1
%_31	Qgau	661.759	Х	Х	0.0890779 661.759 5.05891 1.16878
%_13	Qgau	684.503	Х	Х	0.346232 684.503 7.51814 1.31307
%_33	Qgau	693.323	Х	Х	0.0580727 693.323 13.9694 1.57172
%_19	Qgau	723.23	Х	Х	0.265304 723.23 11.1941 2.28803
%_5	Qgau	754.312	Х	Х	0.526487 754.312 11.4236 1.59839
%_23	Qgau	766.47	Х	Х	0.314042 766.47 5.76137 2.24499
%_35	Qgau	789.225	Х	Х	0.0622217 789.225 17.2845 1.00058
%_24	Qgau	820.509	Х	Х	0.201405 820.509 12.4435 1.50152
%_6	Qgau	848.619	Х	Х	0.489313 848.619 9.75321 1.30424
%_16	Qgau	863.585	Х	Х	0.335422 863.585 11.3583 0.999947
%_56	Qgau	874.664	Х	Х	0.108265 874.664 1.6102 1.19827
%_30	Qgau	882.657	Х	Х	0.102388 882.657 17.4521 1.00245
%_57	Qgau	908.42	Х	Х	0.0581179 908.42 0.612662 1.00285
%_37	Qgau	935.571	Х	Х	0.0653727 935.571 9.20733 1.00013
%_28	Qgau	982.964	Х	Х	0.128768 982.964 5.17918 2.71766
%_4	Qgau	1004.89	Х	Х	0.64004 1004.89 11.773 1.44036

%_38	Qgau	1019.56	Х	Х	0.0912701 1019.56 3.5143 1.00006
%_42	Qgau	1061.74	Х	Х	0.0451848 1061.74 10.0478 1.00011
%_17	Qgau	1107.98	Х	Х	0.212184 1107.98 30.1725 1.0569
%_58	Qgau	1110.56	Х	Х	0.0611348 1110.56 3.71738 1.00424
%_43	Qgau	1137.38	Х	Х	0.111894 1137.38 8.88737 1.17111
%_55	Qgau	1148.6	Х	Х	0.122926 1148.6 1.40327 1.76001
%_10	Qgau	1160.8	Х	Х	0.414775 1160.8 12.0726 1.51343
%_44	Qgau	1197.89	Х	Х	0.0948247 1197.89 14.0258 1.39427
%_11	Qgau	1224.72	Х	Х	0.311512 1224.72 11.2145 2.3611
%_53	Qgau	1242.08	Х	Х	0.0866367 1242.08 3.59074 1.00006
%_14	Qgau	1264.63	Х	Х	0.285693 1264.63 16.5368 2.06985
%_54	Qgau	1292.5	Х	Х	0.0949248 1292.5 18.331 0.999611
%_25	Qgau	1308.16	Х	Х	0.17389 1308.16 10.4585 1.00011
%_1	Qgau	1332.76	Х	Х	0.964426 1332.76 14.9919 2.11178
%_21	Qgau	1353.08	Х	Х	0.22717 1353.08 7.68316 2.01288
%_9	Qgau	1376.67	Х	Х	0.398508 1376.67 12.7339 1.92893
%_45	Qgau	1389.35	Х	Х	0.057847 1389.35 2.66674 1.00011
%_32	Qgau	1398.88	Х	Х	0.0890905 1398.88 8.55639 1.00009
%_7	Qgau	1417.47	Х	Х	0.415649 1417.47 15.0396 1.0001
%_2	Qgau	1442.55	Х	Х	0.756666 1442.55 16.4938 1.08408
%_46	Qgau	1466.44	Х	Х	0.383445 1466.44 12.1773 1.53446
%_47	Qgau	1483.25	Х	Х	0.196612 1483.25 13.8754 2.19354
%_52	Qgau	1508.27	Х	Х	0.103671 1508.27 14.5502 1.78408
%_20	Qgau	1537.91	Х	Х	0.211039 1537.91 13.5995 2.27228
%_8	Qgau	1568.3	Х	Х	0.348625 1568.3 18.9488 0.999984
%_15	Qgau	1591.17	Х	Х	0.248545 1591.17 9.17014 1.00003
%_3	Qgau	1618.2	Х	Х	0.618341 1618.2 15.6178 1.95411
%_48	Qgau	1641.71	Х	Х	0.0848378 1641.71 11.7919 1.3621
%_22	Qgau	1687.13	Х	Х	0.141623 1687.13 29.3284 2.28653
%_51	Qgau	1733.19	Х	Х	0.0344621 1733.19 19.347 2.3059
%_29	Qgau	1766.61	Х	Х	0.0792541 1766.61 8.66777 1.60466
%_50	Qgau	1781.16	Х	Х	0.0449193 1781.16 4.12127 1.00002
%_36	Qgau	1835.76	Х	Х	0.0726922 1835.76 14.0365 1.93869
%_27	Qgau	1895.7	Х	Х	0.0770053 1895.7 25.4399 0.999792
%_49	Qgau	1964.34	Х	Х	0.0596845 1964.34 28.455 2.12914

Lumichrome

Sherman et al. give reference to Lee et al., 1986.

# Pea	akType	Center		Parameters	Height	Center	HWHM	[q (h > 0.11)]
%_25	Qgau	529.263	Х	Х	0.191893	529.263	12.2125	1
%_12	Qgau	569.273	X	Х	0.573458	569.273	12.1165	1.39518
%_29	Qgau	617.621	Х	Х	0.152104	617.621	15.5966	2.40316
%_22	Qgau	661.859	Х	Х	0.132478	661.859	32.6555	2.22068
%_36	Qgau	667.147	Х	Х	0.161773	667.147	1.72378	1.8424
%_16	Qgau	726.358	X	X	0.327096	726.358	12.2655	1.45395
%_14	Qgau	759.654	X	X	0.429026	759.654	9.40073	2.46767
%_7	Qgau	800.885	X	X	0.605471	800.885	12.3191	1.60198
%_18	Qgau	811.997	X	X	0.281086	811.997	9.58003	2.14663
%_15	Qgau	853.288	Х	X	0.41283	853.288	34.2347	1.67934
%_8	Qgau	913.169	X	X	0.646509	913.169	7.71212	2.09087
<u>%_</u> 24	Qgau	947.251	X	X	0.208278	947.251	19.6533	0.999693
%_30	Qgau	974.688	Х	X	0.24934	974.688	9.32502	0.999947
%_11	Qgau	997.734	X	X	0.557776	997.734	12.856	0.999836
%_23	Qgau	1027.81	X	X	0.332632	1027.81	10.8187	0.999923
%_27	Qgau	1114.36	Х	Х	0.166784	1114.36	40.5208	1.04924
%_9	Qgau	1173	Х	X	0.638079	1173	16.0399	1.40173
%_19	Qgau	1295.88	Х	X	0.336211	1295.88	22.8326	1.49312
%_17	Qgau	1371.55	Х	X	0.477605	1371.55	25.7745	1.82464
%_13	Qgau	1387.99	Х	Х	0.185364	1387.99	5.8118	1.71749
%_10	Qgau	1445.27	Х	X	0.476587	1445.27	12.5856	1.98786
%_20	Qgau	1468.22	Х	X	0.393554	1468.22	19.4237	0.999698
%_28	Qgau	1539.08	Х	Х	0.14157	1539.08	18.4489	0.999811
%_21	Qgau	1590.49	Х	X	0.313518	1590.49	17.8876	0.999812
%_6	Qgau	1621.46	Х	X	0.910754	1621.46	9.33016	1.28042
%_26	Qgau	1637.63	Х	X	0.260213	1637.63	14.4352	1.26338
%_1	Qgau	1699.09	Х	Х	0.132134	1699.09	29.0974	0.999473

Mandelic acid

According to Sherman and coworkers, SERS spectra have been reported by Horváth et al., 2000.

# Peak	сТуре	Center	Pa	arameters	Height	Centers	HWHM	q (H	> 0.10)
%_11	Qgau	524.529	Х	Х	0.365171	524.529	11.2507	2.5227	
%_6	Qgau	566.541	Х	Х	0.479937	566.541	13.9895	1.18403	
%_12	Qgau	723.073	Х	X	0.316977	723.073	7.24003	2.01453	
%_15	Qgau	757.128	Х	Х	0.195239	757.128	8.50441	0.999953	
<u>%_</u> 2	Qgau	797.531	Х	Х	0.66494	797.531	12.8894	1.80022	
%_18	Qgau	852.753	Х	Х	0.151301	852.753	26.5972	2.34901	
%_7	Qgau	909.106	Х	Х	0.467348	909.106	8.8247	1.03973	
%_26	Qgau	936.711	Х	Х	0.139689	936.711	7.21454	1.5055	
%_36	Qgau	968.12	Х	Х	0.177547	968.12	7.83097	1.90477	
%_34	Qgau	994.365	Х	X	0.256618	994.365	6.29576	1.88754	
%_35	Qgau	1021.09	Х	Х	0.10411	1021.09	12.5927	1.64582	
%_21	Qgau	1115.46	Х	Х	0.100056	5 1115.46	23.8332	1.72481	
%_5	Qgau	1168.66	Х	X	0.549587	1168.66	16.9933	1.67855	
%_17	Qgau	1254.65	Х	Х	0.171751	1254.65	21.9679	1.23955	
%_9	Qgau	1293.29	Х	X	0.322068	3 1293.29	19.8282	2.25154	
%_19	Qgau	1335.77	Х	Х	0.135986	5 1335.77	12.6415	2.20283	
%_4	Qgau	1369.8	Х	Х	0.525523	3 1369.8	25.1006	1.62799	
%_20	Qgau	1409.63	Х	х	0.101278	8 1409.63	14.9265	2.0152	
%_3	Qgau	1438.89	Х	Х	0.445378	3 1438.89	12.3982	2.21022	
%_8	Qgau	1466.5	Х	Х	0.357661	1466.5	21.8518	1.82244	
%_16	Qgau	1529.52	Х	Х	0.21281	1529.52	31.6469	1.18723	
%_52	Qgau	1583.17	Х	Х	0.321350	5 1583.17	12.3455	1.29218	
%_1	Qgau	1615.71	Х	Х	0.918467	1615.71	9.29086	1.88638	
%_13	Qgau	1650.1	Х	Х	0.200951	1650.1	28.0185	1.56811	
%_23	Qgau	1704.11	Х	Х	0.130274	1704.11	36.3519	0.999087	
%_29	Qgau	1764.26	Х	х	0.107772	2 1764.26	23.0615	0.999667	

Methyl indole-3-acetate

# Pea	akType	Center	Paramete	ers	Height Center HWHM q (H > 0.05)
%_6	Qgau	587.705	х	Х	0.251383 587.705 17.4293 1.50447
%_49	Qgau	613.762	х	х	0.0744421 613.762 8.12969 1.55447
%_48	Qgau	622.562	х	х	0.10947 622.562 12.397 1.56293
%_19	Qgau	681.063	х	Х	0.0987309 681.063 12.8094 1.82762
%_47	Qgau	681.578	х	Х	0.050551 681.578 3.63483 1.6864
%_10	Qgau	707.353	х	Х	0.195081 707.353 13.5362 2.0279
%_11	Qgau	750.392	х	Х	0.184711 750.392 9.4841 1.00001
%_32	Qgau	773.722	х	Х	0.135549 773.722 13.4343 1.00518
%_21	Qgau	830.468	х	Х	0.0678266 830.468 13.8736 2.1235
%_22	Qgau	856.753	Х	Х	0.0576086 856.753 14.5445 2.02527
%_23	Qgau	878.945	Х	Х	0.0873483 878.945 11.4623 1.84409
%_14	Qgau	907.939	х	Х	0.171559 907.939 14.0262 1.12558
<u>%_</u> 2	Qgau	1130.33	X	Х	0.538634 1130.33 15.0269 1.4652
%_28	Qgau	1189.78	х	Х	0.0606854 1189.78 12.1902 2.27186
%_27	Qgau	1228.48	X	Х	0.461948 1228.48 20.7024 1.84966
%_16	Qgau	1267.58	Х	Х	0.115456 1267.58 30.6072 2.00414
%_15	Qgau	1304.09	Х	Х	0.157821 1304.09 9.88416 3.09823
%_40	Qgau	1325.7	х	Х	0.0806286 1325.7 7.68489 1.95988
%_1	Qgau	1349.49	X	Х	0.930018 1349.49 9.93448 1.70866
%_42	Qgau	1384.61	Х	Х	0.0511604 1384.61 11.6827 1.12939
%_3	Qgau	1402.12	X	Х	0.447755 1402.12 10.9205 2.17268
%_13	Qgau	1427.76	Х	Х	0.178449 1427.76 28.6062 0.999055
%_35	Qgau	1451.56	Х	Х	0.115117 1451.56 13.214 1.44806
%_37	Qgau	1472.49	X	Х	0.384839 1472.49 14.8663 1.83988
%_8	Qgau	1514.6	Х	Х	0.26406 1514.6 19.1907 1.56329
%_36	Qgau	1559	Х	Х	0.0570507 1559 14.1959 0.999821
%_12	Qgau	1586.17	Х	Х	0.188604 1586.17 15.0541 2.58803
%_9	Qgau	1621.26	Х	Х	0.231608 1621.26 10.864 1.81801

Methylguanidine

# Peak	Гуре Cente	r	Parame	eters	Height Center HWHM q
%_21	Qgau	380.221	Х	Х	2.26793e-019 380.221 9.508 1.42925
%_26	Qgau	486.009	Х	Х	0.175891 486.009 12.3142 1.58318
%_25	Qgau	529.115	Х	Х	0.200361 529.115 11.4244 1.17945
%_5	Qgau	567.917	Х	Х	0.777713 567.917 11.5302 1.31799
%_28	Qgau	607.996	Х	Х	0.136977 607.996 5.68909 2.61944
%_39	Qgau	633.933	Х	Х	0.0813946 633.933 15.6503 1.95416
%_37	Qgau	666.652	Х	Х	0.164329 666.652 7.77852 2.15031
%_38	Qgau	684.35	Х	Х	0.12638 684.35 8.37423 2.05434
%_40	Qgau	702.35	Х	Х	0.0984983 702.35 6.72031 1.11333
%_10	Qgau	723.965	Х	Х	0.406471 723.965 9.15019 1.36816
%_41	Qgau	737.35	Х	Х	0.221594 737.35 8.04174 1.66472
%_8	Qgau	760.011	Х	Х	0.468505 760.011 12.0451 1.34548
%_2	Qgau	801.686	Х	Х	0.865385 801.686 17.1636 1.07365
%_23	Qgau	816.174	Х	Х	0.303486 816.174 12.8788 1.37851
%_33	Qgau	838.36	Х	Х	0.264243 838.36 6.98722 1.02848
%_12	Qgau	856.9	Х	Х	0.371377 856.9 16.4765 1.97883
%_17	Qgau	886.217	Х	Х	0.199694 886.217 18.9812 1.69621
%_56	Qgau	898.113	Х	Х	0.0813316 898.113 1.29951 1.96001
%_3	Qgau	912.985	Х	Х	0.933013 912.985 7.36945 1.6743
%_34	Qgau	941.226	Х	Х	0.136694 941.226 5.62644 1.93994
%_42	Qgau	954.25	Х	Х	0.193467 954.25 12.6503 1.99792
%_62	Qgau	964.351	Х	Х	0.11547 964.351 2.29854 2.15031

%_43	Qgau	975.95	Х	Х	0.313867 975.95 10.4429 1.80568
%_9	Qgau	997.563	Х	Х	0.387431 997.563 9.53023 1.85126
%_60	Qgau	1024.39	Х	Х	0.17376 1024.39 7.14289 1.34075
%_31	Qgau	1035.63	Х	Х	0.135082 1035.63 10.7066 1.33393
%_45	Qgau	1067.66	х	Х	0.05347 1067.66 8.26765 1.98829
%_19	Qgau	1121.82	Х	Х	0.227896 1121.82 30.336 1.35982
%_4	Qgau	1174.17	Х	Х	0.800285 1174.17 14.6342 1.62878
%_46	Qgau	1209.15	Х	Х	0.0223393 1209.15 6.5983 1.31246
%_49	Qgau	1256.15	Х	Х	0.159168 1256.15 14.6483 0.999755
%_15	Qgau	1292.36	Х	Х	0.32545 1292.36 19.4564 1.56107
%_48	Qgau	1324.2	Х	Х	0.196522 1324.2 11.6503 1.7747
%_11	Qgau	1344.79	Х	Х	0.302508 1344.79 14.2081 1.84529
%_59	Qgau	1359.77	Х	Х	0.141439 1359.77 5.57259 1.78942
%_35	Qgau	1365.09	Х	Х	0.133922 1365.09 4.28472 1.85644
%_7	Qgau	1379.25	Х	Х	0.443481 1379.25 12.0594 1.42095
%_22	Qgau	1398.78	Х	Х	0.151967 1398.78 11.0331 1.90259
%_50	Qgau	1418.41	Х	Х	0.0832363 1418.41 5.94746 1.50099
%_6	Qgau	1447.42	Х	Х	0.714055 1447.42 12.8736 1.97582
%_14	Qgau	1474.17	Х	Х	0.283767 1474.17 13.4361 0.999836
%_36	Qgau	1509.65	Х	Х	0.0405841 1509.65 12.2835 1.07511
%_30	Qgau	1534.75	Х	Х	0.144376 1534.75 10.9817 1.55146
%_44	Qgau	1557.35	Х	Х	0.0339916 1557.35 13.5326 2.12933
%_13	Qgau	1586.26	Х	Х	0.272961 1586.26 7.90517 2.12249
%_47	Qgau	1602.13	Х	Х	0.189393 1602.13 16.8083 1.93285
%_61	Qgau	1616.88	Х	Х	0.121284 1616.88 1.69186 1.21858
%_1	Qgau	1622.27	Х	Х	1.06382 1622.27 8.07002 1.72279
%_18	Qgau	1640.37	Х	Х	0.227147 1640.37 7.71289 1.23825
%_53	Qgau	1655.75	Х	Х	0.144365 1655.75 8.33815 1.0004
%_54	Qgau	1683.05	Х	Х	0.0942756 1683.05 17.4917 1.47222
%_63	Qgau	1700.19	Х	Х	0.135289 1700.19 1.95181 1.0004
%_55	Qgau	1711.99	Х	Х	0.153413 1711.99 16.4496 1.57175
%_32	Qgau	1734.75	Х	Х	0.161512 1734.75 6.63531 2.00777
%_24	Qgau	1779.51	Х	Х	0.188855 1779.51 19.7034 1.39568
%_52	Qgau	1797.85	Х	Х	0.0620914 1797.85 5.88268 1.00419
%_27	Qgau	1836.87	Х	Х	0.188305 1836.87 14.1711 1.24294
%_57	Qgau	1854.95	Х	Х	0.0526337 1854.95 9.70946 1.58191
%_58	Qgau	1885.95	Х	Х	0.0923679 1885.95 11.6503 2.15031
%_64	Qgau	1897.43	Х	Х	0.105291 1897.43 2.875 1.5
%_20	Qgau	1910.74	Х	Х	0.235188 1910.74 13.3455 2.35588
%_51	Qgau	1932.21	х	Х	0.0259798 1932.21 4.5499 1.72832
%_29	Qgau	1971.27	Х	Х	0.148456 1971.27 13.7997 1.48835

N, N-dimethyl-1, 4-phenylenediamine

# PeakT	Type Center	Parame	eters		Height Center HWHM q
%_18	Qgau	511.218	Х	Х	0.237455 511.218 18.0746 1.95281
%_31	Qgau	527.361	Х	Х	0.0634541 527.361 5.69372 1.05507
%_2	Qgau	539.588	Х	Х	0.450965 539.588 12.2852 1.94725
%_11	Qgau	561.611	Х	Х	0.392325 561.611 13.0867 1.78821
%_58	Qgau	577.204	Х	Х	0.0375793 577.204 3.59901 1.62663
%_17	Qgau	583.86	Х	Х	0.114061 583.86 10.5929 1.11475
%_20	Qgau	609.221	Х	Х	0.223596 609.221 36.2761 1.65227
%_35	Qgau	643.893	Х	Х	0.0930664 643.893 10.7807 1.97722
%_59	Qgau	668.386	Х	Х	0.13511 668.386 9.21516 1.64766
%_19	Qgau	688.328	Х	Х	0.203018 688.328 9.70535 1.29485
%_60	Qgau	709.08	Х	Х	0.0641537 709.08 10.0053 1.37163
%_62	Qgau	721.572	Х	Х	0.0172454 721.572 5.75234 1.37132
%_25	Qgau	735.203	Х	Х	0.129681 735.203 18.459 1.05175
%_61	Qgau	761.748	Х	Х	0.0223779 761.748 10.0284 1.63998
%_39	Qgau	790.159	Х	Х	0.0900468 790.159 13.9555 1.65077
%_40	Qgau	816.833	Х	Х	0.125537 816.833 16.3898 1.49903
%_41	Qgau	845.12	Х	Х	0.0982779 845.12 18.0716 1.55843
%_34	Qgau	894.746	Х	Х	0.0566441 894.746 7.93439 1.3527
%_42	Qgau	968.982	Х	Х	0.00258298 968.982 5.80692 0.999968
%_44	Qgau	1034.95	Х	Х	0.00714393 1034.95 10.6523 1.52448
%_45	Qgau	1055.4	Х	Х	0.00817658 1055.4 9.35502 0.999909
%_46	Qgau	1095.93	Х	Х	0.0552341 1095.93 8.58569 1.74222

%_27	Qgau	1115.95	х	Х	0.116957 1115.95 12.4712 1.00041
%_21	Qgau	1142.01	Х	Х	0.164436 1142.01 17.7638 1.66853
%_13	Qgau	1174.56	Х	Х	0.296231 1174.56 16.7473 1.80818
%_63	Qgau	1194.7	Х	Х	0.120601 1194.7 12.8406 1.61304
%_12	Qgau	1224.77	Х	Х	0.345681 1224.77 17.2622 1.88517
%_16	Qgau	1255.13	Х	Х	0.214504 1255.13 19.4786 1.85079
%_65	Qgau	1238.95	Х	Х	0.0303601 1238.95 5.2366 1.4716
%_9	Qgau	1291.2	Х	Х	0.421153 1291.2 16.8181 1.9224
%_28	Qgau	1311.58	Х	Х	0.0904004 1311.58 10.0277 1.25388
%_10	Qgau	1333.07	Х	Х	0.389996 1333.07 21.2507 1.77283
%_43	Qgau	1341.67	Х	Х	0.0688247 1341.67 11.165 1.93075
%_66	Qgau	1349.67	Х	Х	0.0280837 1349.67 4.1684 1.50245
%_6	Qgau	1361.93	Х	Х	0.43158 1361.93 13.0773 2.16953
%_52	Qgau	1374.73	Х	Х	0.0856462 1374.73 5.46905 1.18463
%_7	Qgau	1387.39	Х	Х	0.519892 1387.39 14.7532 1.88326
%_55	Qgau	1401.33	Х	Х	0.0491415 1401.33 3.23568 1.54424
%_5	Qgau	1411.82	Х	Х	0.529875 1411.82 12.3821 1.54755
%_57	Qgau	1419.91	Х	Х	0.0368023 1419.91 3.22568 1.62564
%_32	Qgau	1426.98	Х	Х	0.0687054 1426.98 8.2502 0.999923
%_15	Qgau	1439.27	Х	Х	0.333004 1439.27 16.6637 0.99971
%_49	Qgau	1477.05	Х	Х	0.507274 1477.05 30.8445 1.61313
%_51	Qgau	1498.7	Х	Х	0.104448 1498.7 11.1682 1.27025
%_4	Qgau	1518.27	Х	Х	0.660069 1518.27 14.8299 2.18083
%_50	Qgau	1532	Х	Х	0.172831 1532 9.74282 0.999915
%_14	Qgau	1550.24	Х	Х	0.338104 1550.24 12.498 0.999867
%_1	Qgau	1568.51	Х	Х	0.77766 1568.51 15.4493 1.72148
%_37	Qgau	1592.11	Х	Х	0.137356 1592.11 20.2359 1.15503
%_64	Qgau	1605.88	Х	Х	0.121702 1605.88 11.9043 1.51075
%_3	Qgau	1629.06	Х	Х	0.801973 1629.06 22.603 1.51661
%_67	Qgau	1629.79	Х	Х	0.027013 1629.79 2.98114 1.4716
%_47	Qgau	1696.31	Х	Х	0.0623808 1696.31 19.9916 1.60516
%_53	Qgau	1749.46	Х	Х	0.00592445 1749.46 5.43899 1.35691
%_30	Qgau	1765.95	Х	Х	0.0501081 1765.95 31.3847 1.76796
%_36	Qgau	1822.89	Х	Х	0.0251595 1822.89 9.91636 1.06761
%_22	Qgau	1870.56	Х	Х	0.0216385 1870.56 16.839 1.33899
%_29	Qgau	1924.23	Х	Х	0.0483515 1924.23 27.9641 2.10525
%_48	Qgau	1976.87	Х	Х	0.030918 1976.87 8.40067 1.43904

N-acetyl-d-tryptophan

# Peak	кТуре	Center]	Parameters	Height Center HWHM q (H>0.12)
%_13	Qgau	566.159	Х	Х	0.238088 566.159 20.5046 1.90188
%_ 7	Qgau	735.258	Х	х	0.464463 735.258 14.1891 2.09541
%_20	Qgau	745.307	х	Х	0.127765 745.307 4.32428 0.999991
%_18	Qgau	860.083	х	Х	0.167362 860.083 26.0335 1.05043
%_9	Qgau	976.135	Х	X	0.28157 976.135 15.2194 1.22712
%_15	Qgau	997.245	х	Х	0.172615 997.245 5.97995 1.00001
%_24	Qgau	1021.97	х	Х	0.16649 1021.97 20.8565 0.999547
%_19	Qgau	1130.72	х	Х	0.122403 1130.72 17.2462 0.999623
%_14	Qgau	1182.27	Х	X	0.244736 1182.27 15.1304 1.26637
%_27	Qgau	1219.12	х	Х	0.137989 1219.12 10.431 1.86536
%_40	Qgau	1248.62	Х	X	0.239511 1248.62 10.1853 1.88892
%_43	Qgau	1264.89	х	Х	0.169383 1264.89 7.91133 1.86551
%_41	Qgau	1285.8	х	Х	0.17776 1285.8 11.0698 1.69996
%_1	Qgau	1325.74	Х	X	1.00679 1325.74 17.5039 1.73405
%_10	Qgau	1375.68	Х	X	0.295182 1375.68 22.8088 1.1836
%_4	Qgau	1412.02	Х	X	0.478279 1412.02 12.7893 1.89073
%_8	Qgau	1442.52	Х	X	0.337078 1442.52 11.604 0.999891
%_2	Qgau	1468.22	X	X	0.59377 1468.22 20.709 1.19245
%_12	Qgau	1512.98	Х	X	0.270307 1512.98 32.0195 1.00364
%_3	Qgau	1584.57	Х	X	0.599338 1584.57 12.8996 1.50883
%_6	Qgau	1622.15	Х	X	0.387661 1622.15 19.8076 0.999716
%_5	Qgau	1659.95	Х	X	0.544218 1659.95 14.6554 1.85321
%_17	Qgau	1708.65	х	X	0.14685 1708.65 18.2156 1.92442
%_22	Qgau	1839.45	х	Х	0.143121 1839.45 11.2783 1.03953
%_16	Qgau	1903.57	х	X	0.169793 1903.57 27.9599 0.999607
%_25	Qgau	1970.49	х	Х	0.137654 1970.49 13.5719 1.58799

N-acetyl-DL-glutamic acid

# Pea	akType	Center	Par	rameters	Height Area HWHM q (H>0.05)
%_10	Qgau	561.792	х	Х	0.130981 561.792 14.4509 1.72753
%_19	Qgau	612.72	х	х	0.06741 612.72 16.083 2.0049
%_20	Qgau	718.489	х	Х	0.0680714 718.489 12.1424 1.27442
%_11	Qgau	804.996	х	х	0.100692 804.996 13.616 2.20951
%_43	Qgau	861.882	х	Х	0.0754135 861.882 8.01757 2.21677
%_41	Qgau	883.556	х	Х	0.0784469 883.556 9.29368 1.72265
%_42	Qgau	911.218	х	Х	0.0555484 911.218 11.6176 2.21757
%_18	Qgau	994.634	х	х	0.0796551 994.634 9.66433 1.16306
%_15	Qgau	1073.03	х	Х	0.0821542 1073.03 8.50122 1.49405
%_3	Qgau	1144.05	х	X	0.555617 1144.05 8.24552 1.47139
%_16	Qgau	1176.69	х	Х	0.0841257 1176.69 15.2414 1.19612
%_1	Qgau	1268	х	X	0.97632 1268 8.723 1.39839
%_9	Qgau	1279.23	х	х	0.138706 1279.23 14.5256 2.18581
%_17	Qgau	1305.96	х	Х	0.106047 1305.96 13.1706 1.33162
%_47	Qgau	1319.89	х	х	0.0518296 1319.89 4.47132 1.57001
%_7	Qgau	1343.27	Х	х	0.250564 1343.27 15.0899 1.09785
%_49	Qgau	1349.9	х	Х	0.0699548 1349.9 2.78309 2.07977
%_5	Qgau	1378.87	Х	х	0.34629 1378.87 15.0291 1.1903
%_27	Qgau	1413.01	х	Х	0.0754615 1413.01 8.87905 1.21956
%_6	Qgau	1426.9	Х	Х	0.301433 1426.9 9.11204 1.5211
%_4	Qgau	1449.2	Х	X	0.483928 1449.2 14.8371 1.5752
%_12	Qgau	1476.62	х	х	0.133119 1476.62 11.4538 1.3507
%_2	Qgau	1500.85	х	X	0.916663 1500.85 12.0313 1.41525
%_22	Qgau	1536.87	х	Х	0.0852476 1536.87 10.9458 1.78915
%_14	Qgau	1574.71	х	х	0.082228 1574.71 33.6128 1.07167
%_8	Qgau	1620.55	х	Х	0.16742 1620.55 12.8811 1.93442
%_21	Qgau	1693.8	х	Х	0.0527822 1693.8 45.4537 1.97743

N-acetyl-L-cysteine

# Peal	кТуре	Center	Р	arameters	Height Center HWHM q (H>0.05)
%_7	Qgau	552.486	х	X	0.178097 552.486 17.318 1.19613
%_15	Qgau	583.686	х	Х	0.0549244 583.686 7.35758 1.3303
%_10	Qgau	616.626	х	Х	0.239406 616.626 12.1678 1.8131
%_32	Qgau	642.406	х	Х	0.111981 642.406 10.5435 1.96506
%_47	Qgau	650.523	х	Х	0.059506 650.523 4.22838 2.79642
%_31	Qgau	663.997	X	X	0.232677 663.997 12.6839 1.3009
%_30	Qgau	696.042	X	X	0.203241 696.042 10.9957 1.60167
%_16	Qgau	710.527	х	х	0.13825 710.527 12.4424 1.00078
%_46	Qgau	725.871	х	Х	0.11755 725.871 11.6761 1.00002
%_1	Qgau	744.198	X	X	0.996585 744.198 17.6012 1.12076
%_17	Qgau	747.326	х	Х	0.0614731 747.326 2.28378 1.64501
%_33	Qgau	807.831	х	Х	0.118021 807.831 11.3575 0.99991
%_34	Qgau	831.472	х	х	0.102681 831.472 15.2871 0.999839
%_35	Qgau	860.098	х	Х	0.0883044 860.098 26.9004 1.08333
%_5	Qgau	924.056	Х	X	0.297648 924.056 12.4654 1.98146
%_36	Qgau	949.246	X	X	0.17002 949.246 13.4865 0.999884
<u>%_</u> 2	Qgau	993.148	X	X	0.352332 993.148 22.3778 0.999706
%_14	Qgau	1020.13	Х	X	0.171473 1020.13 12.8986 1.19879
%_24	Qgau	1041.61	х	х	0.0563601 1041.61 12.2394 0.999838
%_12	Qgau	1171.76	X	X	0.146485 1171.76 17.1149 1.40455
%_19	Qgau	1226.38	х	Х	0.0821971 1226.38 13.3951 1.0018
%_3	Qgau	1280.01	Х	X	0.31356 1280.01 25.2227 1.18028
%_39	Qgau	1334.46	х	х	0.096516 1334.46 21.2649 1.1041
%_40	Qgau	1376.98	Х	X	0.171341 1376.98 17.3761 1.06051
%_41	Qgau	1414.29	Х	X	0.144339 1414.29 16.4206 1.8446
%_42	Qgau	1444.62	х	Х	0.126566 1444.62 12.8319 2.59585
%_13	Qgau	1468.12	х	Х	0.124049 1468.12 14.3668 1.01987
%_9	Qgau	1636.83	X	Х	0.147639 1636.83 44.0961 1.20693

Nicotinamide

Туре	Center		Paran	neters	Height Center HWHM q (H>0.02)
Qgau	531.399	Х	Х	Х	0.125903 531.399 14.145 0.999909
Qgau	569.655	Х	Х	Х	0.193152 569.655 19.938 0.99982
Qgau	595.418	Х	Х	Х	1.47569e-020 595.418 5.4813 1.4813
Qgau	628.361	Х	Х	Х	0.0556148 628.361 14.3144 0.999935
Qgau	667.803	Х	Х	Х	0.0730052 667.803 23.6366 0.999683
Qgau	718.626	Х	Х	Х	0.125024 718.626 24.4777 0.999691
Qgau	761.968	Х	Х	Х	0.0416537 761.968 4.24972 1.46967
Qgau	767.523	Х	Х	Х	0.196617 767.523 22.3676 1.6416
Qgau	804.556	Х	Х	Х	0.157106 804.556 12.9647 1.00042
Qgau	819.487	Х	Х	Х	0.068052 819.487 7.76789 1.88528
Qgau	852.64	Х	Х	Х	0.257228 852.64 31.0114 1.24758
Qgau	866.586	Х	Х	Х	0.0477409 866.586 1.34342 1.00004
Qgau	914.409	Х	Х	Х	0.120255 914.409 15.8232 1.90932
Qgau	937.21	Х	Х	Х	0.0462378 937.21 4.73374 1.62284
Qgau	969.374	Х	Х	Х	0.0454543 969.374 25.891 0.999393
Qgau	994.363	Х	Х	Х	0.212977 994.363 4.37771 1.92428
Qgau	1000.44	Х	Х	Х	0.419098 1000.44 5.96068 1.87595
Qgau	1017.64	Х	Х	Х	0.121863 1017.64 4.01566 1.092
Qgau	1025.12	Х	Х	Х	0.336157 1025.12 4.29255 0.999988
Qgau	1031.37	Х	Х	Х	1.01279 1031.37 6.74749 1.2302
Qgau	1073.93	Х	Х	Х	0.0353491 1073.93 3.06342 1.00041
Qgau	1103.18	Х	Х	Х	0.0504122 1103.18 27.0008 0.999084
	Type Qgau Qgau Qgau Qgau Qgau Qgau Qgau Qgau	TypeCenterQgau531.399Qgau569.655Qgau595.418Qgau628.361Qgau667.803Qgau718.626Qgau761.968Qgau767.523Qgau804.556Qgau819.487Qgau852.64Qgau914.409Qgau937.21Qgau994.363Qgau1000.44Qgau1017.64Qgau1031.37Qgau1073.93Qgau1103.18	Type Center Qgau 531.399 x Qgau 569.655 x Qgau 595.418 x Qgau 628.361 x Qgau 667.803 x Qgau 718.626 x Qgau 761.968 x Qgau 767.523 x Qgau 804.556 x Qgau 852.64 x Qgau 914.409 x Qgau 943.63 x Qgau 904.363 x Qgau 1000.44 x Qgau 1017.64 x Qgau 1025.12 x Qgau 1031.37 x Qgau 1073.93 x Qgau 1103.18 x	Type Center Paran Qgau 531.399 x x Qgau 569.655 x x Qgau 595.418 x x Qgau 628.361 x x Qgau 667.803 x x Qgau 667.803 x x Qgau 718.626 x x Qgau 761.968 x x Qgau 767.523 x x Qgau 804.556 x x Qgau 852.64 x x Qgau 914.409 x x Qgau 937.21 x x Qgau 969.374 x x Qgau 1000.44 x x Qgau 1017.64 x x Qgau 1031.37 x x Qgau 1031.37 x x	TypeCenterParametersQgau 531.399 xxxQgau 569.655 xxxQgau 595.418 xxxQgau 628.361 xxxQgau 667.803 xxxQgau 718.626 xxxQgau 761.968 xxxQgau 767.523 xxxQgau 804.556 xxxQgau 852.64 xxxQgau 852.64 xxxQgau 914.409 xxxQgau 994.363 xxxQgau 1000.44 xxxQgau 1007.64 xxxQgau 1031.37 xxxQgau 1073.93 xxxQgau 1103.18 xxx

%_47	Qgau	1143.34	Х	Х	Х	0.0514052 1143.34 5.18398 0.999971
%_17	Qgau	1144.55	Х	Х	Х	0.124191 1144.55 22.391 1.83628
%_49	Qgau	1168.7	Х	Х	Х	0.0410206 1168.7 7.90221 1.22869
%_9	Qgau	1202.65	Х	Х	Х	0.213277 1202.65 24.1825 1.30879
%_51	Qgau	1211.05	Х	Х	X	0.0457326 1211.05 7.32896 1.41471
%_58	Qgau	1245.82	Х	Х	X	0.025622 1245.82 3.5813 1.4813
%_6	Qgau	1267.29	Х	Х	Х	0.325947 1267.29 16.0877 1.61865
%_46	Qgau	1268.56	Х	Х	X	0.0661173 1268.56 4.05555 1.18226
%_45	Qgau	1290.83	Х	Х	X	0.0451052 1290.83 6.51408 1.60236
%_15	Qgau	1309.43	Х	Х	X	0.20916 1309.43 29.8791 1.07275
%_26	Qgau	1343.87	Х	Х	Х	0.12467 1343.87 16.0375 1.1186
%_10	Qgau	1380.8	Х	Х	Х	0.231691 1380.8 24.2869 1.24386
%_23	Qgau	1408.82	Х	Х	X	0.146871 1408.82 12.0612 0.999862
%_5	Qgau	1441.07	Х	Х	X	0.397916 1441.07 20.365 1.60867
%_14	Qgau	1463.98	Х	Х	X	0.249206 1463.98 16.4405 1.36307
%_21	Qgau	1499.14	Х	Х	Х	0.138123 1499.14 12.2157 1.37644
%_35	Qgau	1556.39	Х	Х	Х	0.0517027 1556.39 39.1539 1.40357
%_13	Qgau	1587.36	Х	Х	X	0.199638 1587.36 16.8835 1.10636
%_7	Qgau	1626.3	Х	Х	X	0.341006 1626.3 24.1771 1.53539
%_44	Qgau	1636.25	Х	Х	X	0.0733193 1636.25 2.17551 2.48556
%_25	Qgau	1695.92	Х	Х	Х	0.0954512 1695.92 32.9793 1.19805
%_32	Qgau	1767.93	Х	Х	Х	0.0466644 1767.93 29.0374 1.29335
%_38	Qgau	1832.18	Х	Х	X	0.0308424 1832.18 15.451 0.999891
%_30	Qgau	1891.43	Х	Х	Х	0.0544543 1891.43 18.6632 1.54473
%_37	Qgau	1969.06	Х	Х	X	0.0293224 1969.06 14.91 0.99995

Nicotinamide has been investigated in <u>Sparavigna</u>, 2023, with the first derivative spectrum. The following table provides the peaks above a given threshold.

Position (in cm ⁻¹)	Relative intensity	Position (in cm ⁻¹)	Relative intensity	
532.00	0.16	1204.50	0.29	
571.00	0.20	1267.50	0.43	
724.00	0.16	1342.50	0.28	
764.50	0.24	1379.50	0.30	
808.50	0.25	1408.50	0.34	
850.50	0.27	1443.50	0.50	
912.00	0.17	1496.50	0.25	
999.00	0.48	1589.00	0.34	
1029.50	0.95	1631.00	0.41	
1145.00	0.22	1685.00	0.18	

Literature about SERS spectrum and fingerprint of nicotinamide is: Xu et al., 2022, Gautam et al., 2022, Jaworska et al., 2012, Castro et al., 2013, Pal et al., 1998, Hernandez et al., 2020.

Let us consider the q-Gaussian centers

531.399	569.655(m)	595.418(vs)	628.361	667.803	718.626
761.968	767.523(m)	804.556	819.487	852.64(m)	866.586
914.409	937.21	969.374	994.363(m)	1000.44(s)	1017.64
1025.12(m)	1031.37(vs)	1073.93	1103.18	1143.34	1144.55
1168.7	1202.65(m)	1211.05	1245.82	1267.29(m)	1268.56
1290.83	1309.43(m)	1343.87	1380.8(m)	1408.82	1441.07(s)
1463.98(m)	1499.14	1556.39	1587.36	1626.3(s)	1636.25
1695.92	1767.93	1832.18	1891.43	1969.06	

As previously told, in Jaworska, et al., 2012, we have the fingerprints for nicotinamide in solid state and solutions. In *bold*, the peaks which are corresponding to q-Gaussian centers given above, within ± -5 cm⁻¹ (in *italic*, within ± -10 cm⁻¹):

Solid: 390 629 789 994 1043(vs) 1094 1124 1161 1211 1393 1579 1597 1616 1677

Solution (pH=12): 394 **631** 787 847 **997 1032(vs)** 1042(vs) **1101** 1154 **1202** 1395 1424 **1441** 1489 1574 1597 1672

Solution (pH=2): 368 621 779 836 **990 1030(s)** 1046(vs) **1107** 1157 **1267** 1368 1424(s) 1605 **1641(s) 1695**

SERS pH=9: 789 992 1032(vs) 1078 1371 1410 1439 1489 1586 1601

Again, as told by to Jaworska and coworkers, "the normal FT-Raman spectrum of the aqueous solution at low pH reveals the presence of two bands at 1030 and 1046 cm⁻¹, which are attributed to vibrations 1 and 12 of the pyridine ring, respectively".

Detail of the peak at 1030 cm^{-1} .

N-methyl-D-aspartic acid

# PeakType	Center		Parameti	rs Height Center HWHM q (H>0.05)
%_31 Qgau	517.963	х	Х	0.0435458 517.963 7.88891 1.01326
%_7 Qgau	531.168	х	Х	0.13991 531.168 36.6984 1.64766
%_23 Qgau	572.878	х	Х	0.0626833 572.878 9.5503 1.75143
%_33 Qgau	603.001	х	Х	0.0386237 603.001 2.75744 1.00016
%_24 Qgau	966.33	х	Х	0.0582535 966.33 37.8635 1.1583
%_11 Qgau	716.495	х	Х	0.0844223 716.495 10.0296 1.64554
%_19 Qgau	756.132	х	Х	0.0510117 756.132 10.8519 2.16395
%_26 Qgau	863.168	х	Х	0.0930458 863.168 36.97 1.95842
%_29 Qgau	914.293	х	Х	0.0969944 914.293 10.4379 1.71008
%_12 Qgau	999.104	х	Х	0.102057 999.104 7.42456 1.74841
%_4 Qgau	1029.19	х	Х	0.184373 1029.19 11.8274 1.16463
%_34 Qgau	1053.88	х	Х	0.0354625 1053.88 12.6901 1.13105
%_3 Qgau	1181.24	х	Х	0.206947 1181.24 9.86171 1.07092
%_13 Qgau	1195.64	х	Х	0.0999497 1195.64 11.8958 1.89646
%_9 Qgau	1264.42	х	Х	0.115033 1264.42 23.6764 1.87046
%_34 Qgau	1291.2	х	Х	0.102664 1291.2 19.4024 2.00134
%_35 Qgau	1320.5	х	Х	0.0995863 1320.5 14.8963 1.91443
%_18 Qgau	1360.54	х	Х	0.0547264 1360.54 22.741 1.50189
%_8 Qgau	1410.81	х	Х	0.12984 1410.81 26.4992 1.86448
%_2 Qgau	1450.87	х	Х	0.267468 1450.87 20.3539 1.8288
%_16 Qgau	1482.46	х	Х	0.0678135 1482.46 17.9272 1.5517
%_20 Qgau	1550.66	х	Х	0.0567171 1550.66 10.7574 2.65249
%_6 Qgau	1598.88	х	Х	0.160389 1598.88 28.8732 1.55264
%_1 Qgau	1626.72	х	Х	0.9767 1626.72 11.2821 1.60688
%_15 Qgau	1698.98	х	Х	0.0625437 1698.98 36.6713 1.39126
%_21 Qgau	1840.47	х	Х	0.0543642 1840.47 6.41342 1.40115
%_14 Qgau	1912.5	Х	Х	0.0730464 1912.5 24.5547 1.8238
%_17 Qgau	1975.06	х	Х	0.0656699 1975.06 14.1818 1.51452

N-methyltryptamine

# Peak	Туре	Center		Parameters	Height Center HWHM q (h>0.08)
%_26	Qgau	561.4	Х	Х	0.134713 561.4 25.5486 1.89271
%_40	Qgau	699.042	X	X	0.233325 699.042 9.18402 1.52421
%_35	Qgau	752.354	Х	Х	0.151638 752.354 3.73642 1.63
%_2	Qgau	763.601	Х	Х	1.01118 763.601 15.5096 1.32631
%_37	Qgau	770.779	Х	Х	0.106519 770.779 2.66518 1.15183
%_29	Qgau	821.225	Х	Х	0.159966 821.225 33.7875 1.0895
%_30	Qgau	858.079	Х	Х	0.120028 858.079 17.0484 1.05807
%_8	Qgau	877.644	X	X	0.353709 877.644 7.50384 0.999958
%_1	Qgau	1012.71	X	X	1.02165 1012.71 10.5105 1.18048
%_42	Qgau	1097.12	Х	Х	0.142649 1097.12 23.9291 1.89838
%_10	Qgau	1131.18	X	X	0.210747 1131.18 10.3241 2.22062
%_22	Qgau	1152.96	Х	Х	0.11987 1152.96 25.198 2.20381
%_4	Qgau	1228.77	X	X	0.55574 1228.77 16.9604 2.15886
%_44	Qgau	1253.67	Х	Х	0.0808227 1253.67 7.24395 1.12166
%_12	Qgau	1289.46	X	X	0.257267 1289.46 30.8255 1.40265
%_39	Qgau	1335.74	Х	Х	0.102179 1335.74 4.18793 1.34656
%_3	Qgau	1338.12	X	X	0.64293 1338.12 14.8228 1.68607
%_45	Qgau	1358.45	X	X	0.340383 1358.45 12.6028 1.62667
%_11	Qgau	1387.37	Х	X	0.246597 1387.37 15.1946 0.999705
%_36	Qgau	1397.27	Х	Х	0.0940129 1397.27 4.31351 1.3619
%_6	Qgau	1421.99	X	X	0.451131 1421.99 17.6854 2.30716
%_15	Qgau	1489.25	Х	Х	0.0958895 1489.25 16.4234 2.74589
%_9	Qgau	1459.28	X	X	0.268988 1459.28 13.7275 2.15659
%_5	Qgau	1567.64	Х	X	0.530499 1567.64 23.0139 1.61247
%_46	Qgau	1615.27	Х	Х	0.101896 1615.27 3.15844 1.63893
%_7	Qgau	1617.5	X	Х	0.350319 1617.5 13.7012 2.42038

Octopamine

Literature suggested by Sherman et al.: Kang et al., 2015.

# Peal	кТуре	Center			Parameters	Height Cenetr HWHM q
%_23	Qgau	534.581	Х	Х	Х	0.0943118 534.581 14.042 0.999988
%_7	Qgau	556.03		Х	Х	0.239062 556.03 13.8763 1.23213
%_13	Qgau	574.692	Х	Х	Х	0.176836 574.692 10.1368 1.73239
%_21	Qgau	611.806	Х	Х	Х	0.0991465 611.806 7.54415 1.86854
%_19	Qgau	641.544	Х	Х	Х	0.100883 641.544 7.82287 1.00009
%_15	Qgau	719.455	Х	Х	Х	0.154469 719.455 22.3249 1.333
%_6	Qgau	749.245	Х	Х	Х	0.25062 749.245 8.51345 2.28563
%_16	Qgau	766.412	Х	Х	Х	0.153169 766.412 13.4552 0.999912
%_40	Qgau	784.701	Х	Х	Х	0.0632523 784.701 3.80176 2.30088
%_41	Qgau	818.179	Х	Х	Х	0.675322 818.179 16.0616 1.41331
%_42	Qgau	832.731	Х	Х	Х	0.139912 832.731 6.16523 1.76309
%_39	Qgau	843.014	Х	Х	Х	0.250871 843.014 7.96939 1.47273
%_1	Qgau	861.346	Х	Х	Х	1.01902 861.346 12.432 1.55903
%_2	Qgau	885.057	Х	Х	Х	0.0623427 885.057 2.85633 2.00338
%_17	Qgau	893.902	Х	Х	Х	0.134897 893.902 13.3741 0.999883
%_8	Qgau	1000.65	Х	Х	Х	0.222643 1000.65 9.93112 1.33788
%_18	Qgau	1029.04	Х	Х	Х	0.105675 1029.04 10.8818 0.999875
%_27	Qgau	1125.75	Х	Х	Х	0.0305317 1125.75 16.5196 1.95867
%_35	Qgau	1158.6		Х	Х	0.0698835 1158.6 8.68287 0.999971
%_3	Qgau	1174.92	Х	Х	Х	0.479423 1174.92 9.34428 1.00003
%_10	Qgau	1204.52	Х	Х	Х	0.192813 1204.52 17.634 2.04474

%_4	Qgau	1255.54	Х	Х	Х	0.214385 1255.54 15.374 1.87486
%_12	Qgau	1273.72	Х	х	Х	0.125666 1273.72 41.531 1.90634
%_36	Qgau	1308.38	Х	Х	Х	0.0706802 1308.38 9.34209 1.28782
%_37	Qgau	1328.16	Х	Х	Х	0.102547 1328.16 12.0596 1.41574
%_38	Qgau	1346.05	Х	Х	Х	0.0381563 1346.05 6.43078 1.5037
%_11	Qgau	1377.98	Х	х	Х	0.142586 1377.98 22.4149 1.35635
%_22	Qgau	1402.59	Х	х	Х	0.0761776 1402.59 16.1271 1.10173
%_5	Qgau	1441.5		Х	Х	0.274676 1441.5 15.526 1.83857
%_14	Qgau	1464.97	Х	х	Х	0.144184 1464.97 17.4861 1.57269
%_28	Qgau	1514.96	Х	х	Х	0.0204935 1514.96 40.232 0.998413
%_30	Qgau	1724.43	Х	х	Х	0.0246363 1724.43 80.0925 1.89938
%_32	Qgau	1982.37	Х	х	Х	0.0268359 1982.37 31.4431 2.61452
%_9	Qgau	1614.5		Х	Х	0.200112 1614.5 29.7312 1.89637
%_26	Qgau	1898.41	Х	х	Х	0.0297512 1898.41 31.8323 3.19416

Octopamine has been investigated in Sparavigna, 2023, with the first derivative spectrum. The following table provides the peaks above a given threshold.

Phenethylamine

# PeakType	Center	Parame	eters	Height Center HWHM $q (h > 0.025)$
%_21 Qgau	499.203	Х	Х	0.0296734 499.203 11.3121 3.01484
%_16 Qgau	571.506	Х	Х	0.0345262 571.506 22.5921 2.44381
%_9 Qgau	622.301	Х	Х	0.0735304 622.301 8.39485 0.999963
%_18 Qgau	701.797	Х	Х	0.028208 701.797 8.42292 1.58481
%_5 Qgau	765.079	Х	Х	0.186653 765.079 14.5652 1.36454
%_8 Qgau	825.152	Х	Х	0.11909 825.152 32.3426 1.77195
%_10 Qgau	961.85	Х	Х	0.0736342 961.85 24.4669 2.09934
%_30 Qgau	984.89	Х	Х	0.0559441 984.89 4.67277 1.00001
%_1 Qgau	998.769	Х	Х	0.890332 998.769 5.22143 1.39229
%_23 Qgau	1023.6	Х	Х	0.0387287 1023.6 3.73817 0.999989
%_2 Qgau	1029.18x	Х	Х	0.339725 1029.18 7.50594 1.45743
%_3 Qgau	1005.04x	Х	Х	0.510854 1005.04 4.38144 1.10491
%_13 Qgau	1155.45x	Х	Х	0.0509014 1155.45 12.8783 2.9206
%_11 Qgau	1180.01x	Х	Х	0.117717 1180.01 8.23121 1.04485
%_4 Qgau	1200.53x	Х	Х	0.246188 1200.53 11.8521 0.999789
%_37 Qgau	1202.93x	Х	Х	0.0471643 1202.93 2.2154 1.57446
%_32 Qgau	1315.93x	Х	Х	0.0340446 1315.93 72.8711 1.00043
%_7 Qgau	1448.63x	Х	Х	0.116213 1448.63 19.84 1.70228
%_12 Qgau	1580.53x	Х	Х	0.0858522 1580.53 6.78397 1.11554
%_24 Qgau	1561.78x	Х	Х	0.0272248 1561.78 10.1286 2.22663
%_6 Qgau	1599.99x	Х	Х	0.127023 1599.99 13.7709 1.56274
%_15 Qgau	1647.36x	Х	Х	0.0404801 1647.36 22.0027 2.42609
%_38 Qgau	1603.79x	х	Х	0.0434236 1603.79 3.8896 1.3996
%_35 Qgau	1756.79x	х	Х	0.0285283 1756.79 18.2903 1.9903

Pipecolate Literature suggested by Sherman and coworkers: Sobolewski et al., 2013.

# Peak	Туре	Center		Paramet	ers Height	Center	HWHI	M q (H>0.08)
%_17	Qgau	525.658	Х	Х	0.107164	525.658	16.4909	1.45034
%_10	Qgau	566.969	Х	Х	0.245009	566.969	9.05357	1.09504
%_48	Qgau	607.494	Х	Х	0.724982	607.494	3.70661	1.44435
%_60	Qgau	610.926	х	Х	0.30266 6	510.926 2.	3295 1.4	45049
%_61	Qgau	612.686	х	Х	0.170363	612.686	2.29879	1.62251
%_47	Qgau	615.518	х	Х	0.759812	615.518	3.90097	1.47981
%_25	Qgau	635.15	х	Х	0.0933598	8 635.15 6	5.81644	1.39659
%_15	Qgau	659.07	Х	Х	0.107092	659.07 7.	39882 0	.999978
%_5	Qgau	771.301	х	Х	0.577051	771.301	0.3826	1.05255
%_20	Qgau	780.936	х	Х	0.118469	780.936 4	4.84892	2.43667
%_19	Qgau	1001.65	Х	Х	0.0890385	5 1001.65	7.95042	1.63077
%_18	Qgau	1087.66	Х	Х	0.089509	1087.66	9.72184	1.19786
%_11	Qgau	1127.63	х	Х	0.234263	1127.63 9	9.49611	2.13266
%_6	Qgau	1182.13	х	Х	0.383138	1182.13	10.3769	1.35778
%_21	Qgau	1200.36	Х	Х	0.097444	1200.36	10.6803	0.99989
%_12	Qgau	1291.79	х	Х	0.194602	1291.79	4.7779	1.68326
%_4	Qgau	1311.7	х	Х	0.656908	1311.7 9.	32303 1	.35255
%_13	Qgau	1349.18	Х	Х	0.242106	1349.18	9.55428	1.54093
%_3	Qgau	1363.65	Х	Х	0.813406	1363.65 8	8.82116	1.19224
%_30	Qgau	1382.58	х	Х	0.0918508	3 1382.58	6.2555	1.76298
%_14	Qgau	1453.64	Х	Х	0.109455	1453.64	20.4829	1.80865
%_2	Qgau	1511.67	х	Х	0.989075	1511.67	0.8917	1.35315
%_8	Qgau	1575.62	х	Х	0.248463	1575.62	0.5212	1.28703
%_22	Qgau	1600.1	Х	Х	0.0838386	5 1600.1 9	9.08983	1.14286
%_7	Qgau	1651.47	х	Х	0.356433	1651.47 9	9.68638	1.07625

Pterin Literature: Stevenson et al., 2009, and Smyth et al., 2011.

# PeakType	Center			Parameters Height Center HWHM q (H>0.05)
%_19 Qgau	568.145	Х	Х	0.108662 568.145 34.2892 0.999428
%_17 Qgau	655.598	Х	Х	0.118245 655.598 23.2323 1.77128
%_24 Qgau	721.401	Х	Х	0.0677716 721.401 18.8381 1.98337
%_29 Qgau	762.45	Х	Х	0.0855823 762.45 13.6063 0.999885
%_7 Qgau	811.803	Х	Х	0.37319 811.803 26.1716 0.999517
%_3 Qgau	857.229	Х	Х	0.526094 857.229 20.0844 0.999748
%_14 Qgau	916.805	Х	Х	0.223026 916.805 25.1967 0.999503
%_5 Qgau	996.37	Х	Х	0.386768 996.37 4.80498 2.01139
%_20 Qgau	1002.94	Х	Х	0.266496 1002.94 3.7477 1.52563
%_12 Qgau	1027.05	Х	Х	0.23558 1027.05 7.20219 1.38291
%_8 Qgau	1111.04	Х	Х	0.242265 1111.04 29.902 1.21041
%_11 Qgau	1167.75	Х	Х	0.269769 1167.75 35.1487 1.81618
%_13 Qgau	1258.26	Х	Х	0.249236 1258.26 20.3862 1.10646
%_4 Qgau	1297.03	Х	Х	0.390469 1297.03 24.5585 0.999038
%_2 Qgau	1346.22	Х	Х	0.446987 1346.22 20.1724 1.88986
%_10 Qgau	1378.61	Х	Х	0.367035 1378.61 22.7317 1.91667
%_15 Qgau	1412.86	Х	Х	0.211936 1412.86 16.1267 0.999771
%_1 Qgau	1460.45	Х	Х	1.02224 1460.45 23.517 0.999473
%_25 Qgau	1510.8	Х	Х	0.101862 1510.8 13.6612 0.999831
%_18 Qgau	1537.78	Х	Х	0.106561 1537.78 27.4154 1.04051
%_9 Qgau	1590	Х	Х	0.28391 1590 17.9072 2.85701
%_6 Qgau	1627.07	Х	Х	0.306108 1627.07 18.0633 1.64725
%_16 Qgau	1706.21	Х	Х	0.121738 1706.21 38.6929 1.9528

Riboflavin

Literature: Liu et al., 2012, Bailey and Schultz, 2016, Dendisová-Vyškovská et al., 2013.

# PeakType	Center		Parameters	Height	Center	HWHM	q (h>0.13, bold h>0.20)
% 20 Ogau	509.548	х	х	0.132844	509.548	6.38009	0.999991
% 6 Qgau	615.63	х	X	0.388069	615.63	10.6448	0.999941
% 16 Qgau	662.036	х	X	0.205646	662.036	21.4606	1.69231
%_12 Qgau	713.545	Х	X	0.384037	713.545	16.7399	1.78736
%_33 Qgau	733.814	Х	Х	0.157629	733.814	5.56765	1.00005
%_1 Qgau	740.705	X	Х	0.409706	740.705	8.39408	1.14401
%_8 Qgau	760.54	X	Х	0.365545	760.54	23.3775	1.17989
%_4 Qgau	803.766	X	х	0.473947	803.766	16.7303	1.91826
%_9 Qgau	839.139	X	х	0.319764	839.139	17.2136	1.22164
%_36 Qgau	884.683	X	X	0.236503	884.683	21.1573	2.00948
%_3 Qgau	861.291	X	х	0.396463	861.291	14.4233	1.65361
%_14 Qgau	996.936	X	х	0.233248	996.936	8.18527	1.30717
%_19 Qgau	1025.27	х	Х	0.16103	1025.27	11.3529	1.32021
%_21 Qgau	1220.98	Х	Х	0.143912	1220.98	11.1476	1.51304
%_11 Qgau	1303.11	X	X	0.376702	1303.11	32.7884	1.67156
%_23 Qgau	1345.03	X	X	0.228627	1345.03	12.8569	1.00495
%_43 Qgau	1360.9	Х	Х	0.130955	1360.9	8.24518	1.22131
%_5 Qgau	1373.82	Х	Х	0.177525	1373.82	11.0558	1.001
%_7 Qgau	1405.66	Х	X	0.424245	1405.66	31.0457	1.96519
%_15 Qgau	1442.17	Х	X	0.314003	1442.17	10.8292	1.27372
%_2 Qgau	1464.65	X	X	0.613821	1464.65	14.2401	1.33739
%_30 Qgau	1543.71	X	X	0.230789	1543.71	27.058	1.78597
%_29 Qgau	1581.87	X	X	0.255827	1581.87	15.8048	0.999805
%_10 Qgau	1624.64	X	X	0.373628	1624.64	18.3203	1.42289

The centers of the q-Gaussians are:

509.548	615.63	662.036	713.545	733.814	740.705
760.54	803.766	839.139	884.683	861.291	996.936
1025.27	1220.98	1303.11	1345.03	1360.9	1373.82
1405.66	1442.17	1464.65	1543.71	1581.87	1624.64

In De Gelder et al., 2007, we find the following Raman peaks (in bold, the peaks which are corresponding to centers, within +/-5 cm⁻¹):

422(w), 451(w), 502(m), 531(w), 603(w), 677(w), **742(m)**, 785(m), 1158(m), 1184(m), 1226(s), 1253(w), **1345(vs)**, **1402(m)**, **1464(m)**, 1496(m), 1534(m), 1576(m), **1621(w)**, 1658(w), 1704(w)

Selenocystamine

# Pea	kType	Center		Parameters	Height Center HWHM q
%_2	Qgau	530.64	Х	Х	0.847653 530.64 18.4971 0.999842
%_3	Qgau	552.191	Х	Х	0.43485 552.191 10.3452 1.51614
%_7	Qgau	624.131	Х	Х	0.223044 624.131 12.917 2.40854
%_1	Qgau	642.114	х	х	0.943585 642.114 16.9689 1.1943
%_17	Qgau	739.864	Х	Х	0.0273157 739.864 15.1287 2.39113
%_12	Qgau	783.9	Х	Х	0.0441947 783.9 14.0605 1.16538
%_23	Qgau	834.409	Х	Х	0.0106968 834.409 9.0093 0.999943
%_9	Qgau	865.664	Х	Х	0.0998369 865.664 19.3645 1.92659
%_16	Qgau	911.967	х	х	0.0395918 911.967 14.9142 0.999886
%_4	Qgau	934.223	Х	Х	0.250479 934.223 19.8478 1.34842
%_26	Qgau	994.645	х	х	0.0207419 994.645 8.91478 0.999949
%_5	Qgau	1010.6	Х	Х	0.23874 1010.6 15.6565 1.29529
%_24	Qgau	1052.91	х	х	0.01921 1052.91 26.8769 0.999199
%_19	Qgau	1128.82	Х	Х	0.0251368 1128.82 12.9014 0.999805
%_6	Qgau	1209.48	Х	Х	0.206013 1209.48 15.1887 1.66881
%_20	Qgau	1222.88	Х	Х	0.033979 1222.88 9.24872 0.999885
%_25	Qgau	1278.44	х	х	0.0094367 1278.44 21.0128 0.999262
%_13	Qgau	1321.26	Х	Х	0.046481 1321.26 21.7214 1.56834
%_8	Qgau	1372.55	Х	Х	0.112534 1372.55 11.8888 1.61565
%_18	Qgau	1411.56	х	х	0.0339854 1411.56 11.3182 0.999873
%_10	Qgau	1445.8	х	х	0.070841 1445.8 28.3946 1.53804
%_28	Qgau	1497.13	х	х	0.0158504 1497.13 9.44661 2.23175
%_11	Qgau	1602.65	х	Х	0.0544409 1602.65 55.1025 1.37757
%_27	Qgau	1776.78	х	Х	0.00744753 1776.78 32.4871 3.98511
%_22	Qgau	1959.77	х	Х	0.0146226 1959.77 86.1106 2.71729

Selenomethionine

# PeakType	Center	Para	meters	Height Center HWHM q (h>0.08)
%_15 Qgau	519.359	х	Х	0.159045 519.359 20.1139 2.03809
%_1 Qgau	554.958	Х	Х	0.797872 554.958 28.746 1.50041
%_18 Qgau	615.003	Х	Х	0.11468 615.003 27.8742 1.32456
%_7 Qgau	814.295	Х	Х	0.293294 814.295 24.7806 1.79844
%_5 Qgau	858.718	Х	Х	0.37126 858.718 19.0781 0.999727
%_14 Qgau	910.428	Х	Х	0.215692 910.428 15.3376 1.9974
%_9 Qgau	999.567	Х	Х	0.290363 999.567 8.38493 0.999942
%_11 Qgau	1027.27	Х	Х	0.239793 1027.27 10.0181 1.21226
%_10 Qgau	1107.03	Х	Х	0.230338 1107.03 28.169 1.72529
%_8 Qgau	1158.25	Х	Х	0.198651 1158.25 24.7318 1.29899
%_28 Qgau	1180.8	Х	Х	0.0951656 1180.8 9.89773 2.11022
%_4 Qgau	1276.94	Х	Х	0.50432 1276.94 30.9281 0.998411
%_30 Qgau	1307.11	Х	Х	0.131914 1307.11 8.77823 0.999881
%_20 Qgau	1319.7	Х	Х	0.0887815 1319.7 5.40437 1.10437
%_6 Qgau	1345.99	Х	Х	0.407982 1345.99 25.1496 1.35555
%_32 Qgau	1381.8	Х	Х	0.0896634 1381.8 7.40437 1.10437
%_12 Qgau	1407.97	Х	Х	0.22268 1407.97 23.5294 1.72906
%_2 Qgau	1460.1	Х	Х	0.824643 1460.1 22.3084 0.999468
%_13 Qgau	1588.64	Х	Х	0.207902 1588.64 12.6857 1.60668
%_3 Qgau	1624.27	Х	Х	0.477812 1624.27 21.0842 1.50003
%_16 Qgau	1711.89	Х	Х	0.166713 1711.89 23.9374 1.112
%_35 Qgau	1892.43	Х	Х	0.0802105 1892.43 10.6907 1.32815
%_17 Qgau	1913.01	Х	Х	0.131007 1913.01 20.2139 1.19799
%_23 Qgau	1970.23	Х	Х	0.12608 1970.23 14.5486 1.29808

Spermidine

# Peak	Туре	Center		Parameter	rs Height Center HWHM q (h>0.08)
%_18	Qgau	520.775	х	Х	0.122775 520.775 40.4705 1.91163
%_17	Qgau	748.249	х	Х	0.0994429 748.249 26.0612 1.65247
%_48	Qgau	889.335	х	Х	0.118396 889.335 24.2851 1.97284
%_13	Qgau	944.186	х	Х	0.225544 944.186 24.9729 1.79914
%_1	Qgau	1036.03	х	Х	0.963732 1036.03 9.54562 1.61564
%_41	Qgau	1102.73	х	Х	0.106019 1102.73 37.1723 1.39964
%_43	Qgau	1148.94	х	Х	0.144489 1148.94 22.6281 1.76855
%_3	Qgau	1198.98	х	Х	0.440486 1198.98 20.3334 1.63656
%_45	Qgau	1231.49	х	Х	0.122883 1231.49 11.7865 1.98138
%_44	Qgau	1256.34	х	Х	0.211051 1256.34 18.0749 1.65218
%_7	Qgau	1291.51	х	Х	0.292228 1291.51 20.7111 1.73551
%_27	Qgau	1310.33	х	Х	0.0862096 1310.33 7.19528 1.5202
%_6	Qgau	1325.99	Х	Х	0.298761 1325.99 12.396 1.88855
%_15	Qgau	1347.23	х	Х	0.2086 1347.23 11.5378 1.22579
%_5	Qgau	1367.66	х	Х	0.264787 1367.66 13.5809 1.55559
%_10	Qgau	1391.3	х	Х	0.25148 1391.3 21.5855 1.07021
%_4	Qgau	1440.05	х	Х	0.347634 1440.05 21.4145 1.82966
%_46	Qgau	1467.1	х	Х	0.221386 1467.1 18.2052 2.25507
%_47	Qgau	1494.38	х	Х	0.15765 1494.38 20.0245 2.02432
%_19	Qgau	1547.98	х	Х	0.14409 1547.98 33.0461 1.26059
%_8	Qgau	1598.1	х	Х	0.261202 1598.1 20.9476 1.2309
%_9	Qgau	1685.06	х	Х	0.274725 1685.06 25.0606 2.08978
%_2	Qgau	1636.82	х	Х	0.65994 1636.82 14.3417 2.22483
%_40	Qgau	1832.3	х	х	0.0827289 1832.3 51.6759 2.21761

Tetrahydrofolate

# PeakType	Center		Paramet	ers Height Center HWHM q)h>0.08)
%_14 Qgau	553.823	Х	Х	0.20531 553.823 10.4983 1.54255
%_13 Qgau	582.964	х	Х	0.20274 582.964 9.56396 1.00007
%_24 Qgau	643.74	х	Х	0.0997166 643.74 11.2105 0.99997
%_9 Qgau	677.741	Х	Х	0.287546 677.741 13.2324 1.83211
%_12 Qgau	702.355	Х	Х	0.244454 702.355 14.3129 1.49719
%_20 Qgau	791.53	х	Х	0.128869 791.53 15.2612 1.91217
%_22 Qgau	835.635	Х	Х	0.088785 835.635 15.917 1.3718
%_25 Qgau	882.993	Х	Х	0.0975354 882.993 11.9181 2.29348
%_19 Qgau	911.965	Х	Х	0.112932 911.965 15.878 1.11731
%_42 Qgau	1072.98	Х	Х	0.123056 1072.98 11.8921 1.3579
%_43 Qgau	1089.57	Х	Х	0.114432 1089.57 9.0659 0.999925
%_45 Qgau	1124.73	Х	Х	0.09848 1124.73 8.17193 1.40926
%_8 Qgau	1144.68	Х	Х	0.360314 1144.68 10.1961 0.999883
%_15 Qgau	1184.92	Х	Х	0.147978 1184.92 14.0185 1.56921
%_3 Qgau	1268.55	Х	Х	0.805086 1268.55 10.212 2.06036
%_10 Qgau	1313.9	Х	Х	0.250937 1313.9 22.2029 1.00534
%_5 Qgau	1344.09	Х	Х	0.332053 1344.09 17.7606 1.04235
%_7 Qgau	1380.4	Х	Х	0.415672 1380.4 23.4879 1.8625
%_16 Qgau	1415.67	х	Х	0.195055 1415.67 15.3098 0.999847
%_21 Qgau	1426.59	Х	Х	0.175185 1426.59 11.4525 1.63671
%_6 Qgau	1446.04	Х	Х	0.391116 1446.04 16.612 1.04045
%_49 Qgau	1466.54	Х	Х	0.113508 1466.54 10.7509 1.01522
%_4 Qgau	1499.81	Х	Х	0.721518 1499.81 20.3961 1.82659
%_51 Qgau	1531.29	Х	Х	0.115961 1531.29 9.31122 1.00006
%_17 Qgau	1548.13	х	Х	0.230385 1548.13 13.0543 0.999854
%_2 Qgau	1581.71	х	Х	0.95351 1581.71 20.8756 1.775
%_11 Qgau	1638.44	х	Х	0.238333 1638.44 46.7953 1.22994
%_23 Qgau	1701.01	х	Х	0.124496 1701.01 29.7112 1.54596

Thiamine

# PeakT	ype	Center		Paran	neters	Height	Center	HWHM	q	
	-						~			
%_19 (Qgau	514.651	Х	Х	Х	0.0981	844 514	.651 6.6586	7 0.9	999983
%_22 (Qgau	542.196	Х	Х	Х	0.1306	84 542.1	96 5.62575	1.00)008
%_3 Q	gau	548.963	Х	Х	Х	0.3959	16 548.9	63 7.31937	1.45	5626
%_10 (Qgau	580.073	Х	х	Х	0.1908	77 580.0	73 12.6792	1.00)002
%_6 Q	gau	627.386	Х	Х	Х	0.3471	56 627.3	86 12.5156	1.04	1543
%_26 (Qgau	651.274	Х	х	Х	0.0569	842 651	274 10.759	9 1.3	3389
%_5 Q	gau	673.312	Х	Х	Х	0.3572	91 673.3	12 13.0119	1.27	/956
%_27 (Qgau	722.056	Х	х	Х	0.0159	725 722.	.056 6.5431	7 1.0)0002
%_18 (Qgau	747.027	Х	х	Х	0.0567	107 747.	.027 3.0834	5 1.2	29763
%_1 Q	gau	752.458	Х	Х	Х	1.0079	752.458	9.63899 1	.218	
%_16 (Qgau	778.623	Х	х	Х	0.1444	37 778.6	23 22.0782	1.05	5659
%_2 Q	gau	813.996	Х	х	Х	0.4654	23 813.9	96 12.8653	1.51	543
%_21 (Qgau	855.565	Х	х	Х	0.0747	697 855.	565 19.158	8 0.9	99721
%_29 (Qgau	881.733	Х	х	Х	0.0436	283 881.	733 11.173	6 0.9	999962
%_12 (Qgau	913.484	Х	х	Х	0.1680	29 913.4	84 15.1273	1.12	2966
%_4 Q	gau	935.005	Х	х	Х	0.3410	54 935.0	05 16.0221	1.11	645
%_32 (Qgau	961.236	Х	х	Х	0.0815	373 961.	236 16.705	2 2.8	37961
%_31 (Qgau	988.98	Х	Х	Х	0.0584	77 988.9	8 16.9669	1.057	/15
%_30 (Qgau	1027.56	Х	х	Х	0.0375	431 102	7.56 16.878	7 0.9	99719
%_33 (Qgau	1056.85	Х	х	Х	0.0219	195 105	6.85 22.980	7 3.7	/4143

%_25	Qgau	1101.29	Х	Х	Х	0.0207686 1101.29 32.4881 0.99873
%_34	Qgau	1127.6	Х	Х	Х	0.0163769 1127.6 8.11052 0.999959
%_20	Qgau	1172.02	Х	Х	Х	0.0757417 1172.02 19.3703 0.999456
%_7	Qgau	1216.14	Х	Х	Х	0.294854 1216.14 16.3539 1.38769
%_24	Qgau	1250.71	Х	Х	Х	0.0476886 1250.71 13.972 0.999678
%_14	Qgau	1282.4	Х	Х	Х	0.116689 1282.4 18.3748 1.4764
%_17	Qgau	1311.16	Х	Х	Х	0.104741 1311.16 12.2129 1.78325
%_28	Qgau	1332.49	Х	Х	Х	0.0401341 1332.49 11.9499 1.10426
%_9	Qgau	1380.08	Х	Х	Х	0.163005 1380.08 23.9056 1.27475
%_37	Qgau	1414.41	Х	Х	Х	0.0205421 1414.41 14.1617 1.0032
%_8	Qgau	1441.4	Х	Х	Х	0.201211 1441.4 15.8368 2.93324
%_36	Qgau	1471.65	Х	Х	Х	0.109265 1471.65 9.96138 0.999902
%_35	Qgau	1491.99	Х	Х	Х	0.0516749 1491.99 25.375 3.6521
%_23	Qgau	1542.95	Х	Х	Х	0.056347 1542.95 20.9342 3.96312
%_11	Qgau	1600.1	Х	Х	Х	0.135232 1600.1 25.1752 1.74137
%_15	Qgau	1654.41	Х	Х	Х	0.0646294 1654.41 16.7576 2.20697
%_13	Qgau	1658.36	Х	х	Х	0.0481326 1658.36 6.77852 1.58572

Thiamine has been investigated in Sparavigna, 2023, with the first derivative spectrum. The following table provides the peaks above a given threshold.

Position (in cm ⁻¹)	Relative intensity	Position (in cm ⁻¹)	Relative intensity
547.50	0.40	1217.00	0.32
579.50	0.18	1284.00	0.18
627.00	0.33	1309.50	0.18
672.50	0.34	1380.00	0.24
751.00	0.93	1442.00	0.26
813.50	0.45	1470.50	0.25
932.50	0.39	1545.50	0.14
989.50	0.10	1598.00	0.21
1174.50	0.12	1656.00	0.18

Sherman et al. provide the following reference: Leopold et al., 2005.

342(m)	408	515	543(m)	583(s)	632(m)	667
755(vs)	778	804	825	<i>881</i>	922	942(s)
1064(m)	1108(m)	1177	1229(m)	1254(m)	1297(m)	1313
1340(m)	1380(s)	1400(s)	1439	1447	1456	1484(s)
1514(m)	1550	1597(s)	1628	1657(vs)	(Ra	man, pH 4)

341(m)	417	512	548(m)	592(m)	639	678
760(vs)	780	803	826	878	921	941(s)
1059(m)	1107(m)	1170	1210(m)	1239(m)	1255(m)	1290(m)
1311	1341	1366	1375(s)	1398	1436	1442
1450	1483(s)	1564	1603(vs)	1633	<i>1654</i> (R	aman, pH 7)

We have marked in *bold*, the peaks which are corresponding to the q-Gaussian centers, within +/- 5 cm⁻¹, and in *italic*, within +/- 10 cm⁻¹). Here below, the q-Gaussian centers as obtained from deconvolution.

514.651	542.196	548.963(s)	580.073(m)	627.386(s)	651.274
673.312(s)	722.056	747.027	752.458(vs)	778.623	813.996(s)
855.565	881.733	913.484	935.005(s)	961.236	988.98
1027.56	1056.85	1101.29	1127.6	1172.02	1216.14(s)
1250.71	1282.4	1311.16	1332.49	1380.08(m)	1414.41
1441.4(m)	1471.65	1491.99	1542.95	1600.1(m)	1654.41
1658.36					

Thyrotropin releasing hormone

# Peal	сТуре	Center			Parameters	Height Center HWHM q (h>0.08)
%_14	Qgau	509.451	Х	Х	Х	0.169585 509.451 20.0768 2.2471
%_16	Qgau	570.5	Х	Х	Х	0.121276 570.5 8.83928 1.04773
%_21	Qgau	608.556	х	Х	Х	0.107961 608.556 15.0003 0.999888
%_9	Qgau	715.399	X	X	X	0.206903 715.399 9.77513 1.41387
%_17	Qgau	764.035	Х	Х	Х	0.101505 764.035 19.2871 2.24503
%_11	Qgau	807.135	х	Х	Х	0.192888 807.135 12.7175 1.43095
%_8	Qgau	855.098	X	X	X	0.236309 855.098 11.5824 2.3082
%_20	Qgau	912.464	х	Х	Х	0.0912671 912.464 7.6276 1.11554
<u>%_</u> 2	Qgau	1002.41	X	X	X	0.636373 1002.41 8.37746 1.33764
%_32	Qgau	1027.54	х	Х	Х	0.0889135 1027.54 10.4485 1.52575
%_13	Qgau	1129.75	х	Х	Х	0.195296 1129.75 8.65717 0.999969
%_ 7	Qgau	1178.42	X	X	X	0.266843 1178.42 18.3167 1.86749
%_3	Qgau	1233.8	X	X	X	0.406305 1233.8 14.2879 1.27711
%_6	Qgau	1274.79	X	X	X	0.272666 1274.79 11.7658 2.00364
%_22	Qgau	1308.79	Х	Х	Х	0.119219 1308.79 18.5998 0.999489
%_12	Qgau	1360.45	Х	Х	Х	0.158611 1360.45 29.5975 1.22262
%_1	Qgau	1394.41	X	X	X	0.953371 1394.41 12.3319 2.03324
%_4	Qgau	1451.54	X	X	X	0.332646 1451.54 12.8114 2.37118
%_15	Qgau	1505.72	Х	Х	Х	0.133996 1505.72 18.3823 1.56691
%_19	Qgau	1564.28	х	Х	Х	0.135086 1564.28 11.6919 1.24706
%_10	Qgau	1588.55	Х	Х	Х	0.175214 1588.55 13.7735 0.99984
%_5	Qgau	1621.05	Х	х	Х	0.345333 1621.05 12.2902 2.52062
Tryptamine

Literature: Hussain and Pang, 2015.

# Peal	сТуре	Center	Param	eters	Height Center HWHM q (h>0.10)
%_16	Qgau	564.333	Х	Х	0.172682 564.333 11.821 1.79201
%_11	Qgau	698.484	X	X	0.307853 698.484 8.40896 1.66452
%_22	Qgau	727.198	Х	Х	0.155806 727.198 10.871 1.54796
%_1	Qgau	757.668	Х	X	0.85938 757.668 10.9925 0.999922
%_14	Qgau	771.24	X	X	0.44952 771.24 12.6216 1.63912
%_38	Qgau	852.947	Х	Х	0.137068 852.947 11.8014 1.66714
%_7	Qgau	876.163	Х	X	0.404248 876.163 8.0608 1.12587
<u>%_</u> 2	Qgau	1010.33	Х	X	0.83245 1010.33 9.86063 1.32082
%_23	Qgau	1026.16	Х	Х	0.132476 1026.16 17.0774 1.45389
%_18	Qgau	1093.2	Х	X	0.208945 1093.2 13.5646 1.51456
%_12	Qgau	1126.03	Х	X	0.223271 1126.03 14.9481 1.50902
%_13	Qgau	1161.47	Х	X	0.225258 1161.47 15.0958 0.999678
%_30	Qgau	1182.13	Х	Х	0.114423 1182.13 11.1471 1
%_19	Qgau	1198.17	Х	Х	0.187216 1198.17 11.8825 0.999843
%_4	Qgau	1227.66	Х	X	0.627591 1227.66 13.8941 1.59592
%_46	Qgau	1257.33	х	Х	0.14357 1257.33 11.8272 1.43074
%_45	Qgau	1290.85	Х	Х	0.177242 1290.85 26.7959 1.3069
%_44	Qgau	1309.55	Х	Х	0.109989 1309.55 11.1071 0.999811
%_41	Qgau	1335.94	X	X	0.748472 1335.94 13.7204 1.93957
%_42	Qgau	1362.27	X	X	0.262833 1362.27 14.6226 1.2566
%_43	Qgau	1383.28	Х	Х	0.173901 1383.28 13.1771 0.999785
%_5	Qgau	1421.64	Х	X	0.457833 1421.64 13.9182 2.29627
%_9	Qgau	1456.49	X	X	0.265396 1456.49 18.2553 1.54057
%_20	Qgau	1519.13	х	Х	0.112283 1519.13 35.9609 1.38954
%_24	Qgau	1547.62	Х	Х	0.105761 1547.62 9.72981 0.999968
%_8	Qgau	1572.25	Х	X	0.312963 1572.25 25.2684 1.12261
%_6	Qgau	1617.77	Х	Х	0.442489 1617.77 13.0105 2.42514

The centers of the q-Gaussian components are:

564.333	698.484(m)	727.198	757.668(vs)	771.24(s)	852.947
876.163(s)	1010.33(vs)	1026.16	1093.2	1126.03	1161.47
1182.13	1198.17	1227.66(s)	1257.33	1290.85	1309.55
1335.94(vs)	1362.27(m)	1383.28	1421.64(s)	1456.49(m)	1519.13
1547.62	1572.25(m)	1617.77(s)			

In Hussain and Pang, 2015, in their Fig. 6, we can find data. The figure caption tells: "SERS of (a) tryptophan (TRP) and (b) tryptamine (TMN) with the CT gold colloid, and SERS of (c) TRP, (d) TMN, and (e) 3-indolepropionic acid (IPA) with the BH gold colloid". The same concentration was used for SERS measurements.

759(m) 1417(m)	871 1534(m)	991(m) 1598(s)	1112	1220(m)	1347(m) (b, TMN)
711(m) 1534(s)	818 1600(vs)	1144(s)	1259(m)	1342(s)	1434(s) (d, TMN)

Bold and *italic* used to guide the comparison.

Tyramine Literature: Buccolieri et al., 2018, Wang et al., 2018)

# PeakType	Center	Par	ameters	Height Center HWHM q $(H > 0.10)$
%_26 Qgau	530.442	Х	Х	0.10213 530.442 1.84259 3.4022
%_14 Qgau	563.983	х	Х	0.100269 563.983 8.28542 2.25087
%_1 Qgau	583.686	х	Х	0.127025 583.686 14.5714 1.99546
%_28 Qgau	645.425	х	Х	0.113699 645.425 7.77892 1.31453
%_21 Qgau	716.465	Х	Х	0.152091 716.465 13.7628 0.999904
%_12 Qgau	758.874	х	Х	0.167819 758.874 18.1039 1.34726
%_36 Qgau	825.149	Х	X	0.731402 825.149 10.6879 2.16381
%_8 Qgau	846.23	X	X	0.472515 846.23 16.6335 1.28713
%_46 Qgau	864.236	Х	Х	0.158068 864.236 12.447 1.52734
%_17 Qgau	921.784	х	Х	0.103437 921.784 28.1791 1.78405
%_11 Qgau	1004.91	Х	Х	0.158673 1004.91 17.1785 0.999703
%_23 Qgau	1031.47	Х	Х	0.159879 1031.47 10.9004 0.999884
%_19 Qgau	1133.02	Х	Х	0.131978 1133.02 14.2528 2.01934
%_27 Qgau	1153.19	Х	Х	0.102969 1153.19 8.86784 0.999902
%_6 Qgau	1174.84	Х	X	0.570733 1174.84 9.21034 1.38342
%_2 Qgau	1204.34	X	X	0.708924 1204.34 10.4567 1.92392
%_13 Qgau	1234.15	Х	Х	0.164892 1234.15 13.8575 0.999674
%_3 Qgau	1256.39	Х	X	0.476833 1256.39 16.8452 1.55883
%_15 Qgau	1303.53	Х	X	0.279396 1303.53 31.4566 2.01095
%_32 Qgau	1365.77	X	X	0.302625 1365.77 41.7873 1.43511
%_33 Qgau	1419.15	Х	X	0.200111 1419.15 14.1194 3.3823
%_5 Qgau	1450.71	Х	X	0.517782 1450.71 24.815 1.71351
%_34 Qgau	1470.14	Х	Х	0.131468 1470.14 12.515 0.999855
%_16 Qgau	1517.36	Х	Х	0.184965 1517.36 8.5515 2.77753
%_9 Qgau	1569.62	Х	Х	0.197798 1569.62 36.7295 0.998817
%_4 Qgau	1616.88	Х	X	0.506827 1616.88 30.1246 1.53338
%_10 Qgau	1694.91	Х	Х	0.175337 1694.91 38.6235 2.17556
%_20 Qgau	1771.85	Х	х	0.119136 1771.85 12.5948 1.94615

Therefore, the q-Gaussian centers (h>0.15) are:

716.465	758.874	825.149(vs)	846.23(s)	864.236
1004.91	1031.47	1174.84(s)	1204.34(vs)	1234.15
1256.39(s)	1303.53(m)	1365.77(m)	1419.15	1450.71(s)
1517.36	1569.62	1616.88(s)	1694.91	

In Wang et al., we can find data in their Fig.2. The figure caption tells: "AgNPs mediated SERS responses of Tyr bands after derivatization at the presence of different salts, excited by 532 (A), 633 (B) and 785 (C) nm lasers, respectively". Then let us use the values of the Raman shift given in this figure.

667(m)	815(vs)	1215(s)	1548(s)	1613(m)	(A)
770(m) 1243(s)	834(vs) 1453(m)	1046(m) <i>1621(m)</i>	1187(s) 1645(m)	1214(vs)	(B)
649(s) 1211(m)	764(m) 1262	830(s)	1006(m)	1108(m)	(C)

Again, in bold within ± -5 cm⁻¹, in italic within ± -10 cm⁻¹.

Vitamin B12

Literature: Radu et al., 2016, Zhang et al., 2009.

# Peak	Type	Center		Pa	rameters	Height Center HWHM a
% 28	Ogau	529.825	x	x	x	0.0714747 529.825 15.8532 1.04531
% 38	Ogau	558.372	x	x	x	0.0952555 558 372 11.2125 1.00013
% 13	Ogau	573.28	x	x	x	0.203419 573.28 13.047 1.21121
% 20	Ogau	625.083	x	x	x	0.14817 625.083 20.9654 1.15306
% 29	Ogau	647.422	x	x	x	0.0415624 647 422 9 63803 1 00012
% 45	Ogau	694 683	x	x	x	0.0521468 694 683 4 64109 2 90725
% 34	Ogau	705 993	x	x	x	0.0955493 705 993 4 37714 2 55202
% 15	Ogau	716.242	x	x	x	0.228502 716 242 8 60174 1 3029
% 9	Ogau	740.383	x	x	x	0.368613 740.383 16.481 1.27377
% 41	Ogau	761.257	x	x	x	0.0483728 761.257 7.12263 1.00095
% 36	Ogau	775.037	x	x	x	0.1144 775.037 12.3865 1.0001
% 21	Ogau	805.186	x	x	x	0.165116 805.186 18.3794 1.07195
% 12	Ogau	844.681	x	x	X	0.23305 844.681 14.9289 1.34732
% 46	Ogau	865.36	x	x	x	0.0473498 865.36 7.1077 1.51564
% 18	Ogau	883.559	x	x	x	0.186477 883.559 12.7702 1.49984
% 27	Ogau	942.221	x	x	x	0.0576988 942.221 22.7553 0.999539
% 32	Ogau	975.896	x	x	x	0.0691548 975.896 10.9884 0.999919
% 19	Ogau	997.508	x	x	X	0.151457 997.508 9.74574 1.35655
% 25	Ogau	1020.85	X	x	X	0.123601 1020.85 13.8814 1.09805
% 44	Ogau	1037.65	X	X	X	0.0396675 1037.65 8.41204 1.17912

%_24	Qgau	1075.93	Х	Х	Х	0.10844 1075.93 17.129 1.81601
%_39	Qgau	1101.34	Х	Х	х	0.0617912 1101.34 13.957 0.999878
%_7	Qgau	1129.37	X	Х	X	0.343905 1129.37 14.8124 2.21726
<u>%_</u> 2	Qgau	1165.13	X	Х	X	0.513594 1165.13 13.0329 2.0495
%_10	Qgau	1186.97	Х	Х	х	0.185994 1186.97 11.4388 0.999907
%_17	Qgau	1213.28	Х	Х	х	0.244906 1213.28 20.3585 0.999423
%_30	Qgau	1237.85	Х	Х	х	0.0527564 1237.85 11.1325 0.99996
%_4	Qgau	1264.12	Х	Х	х	0.29286 1264.12 10.0595 1.5034
%_5	Qgau	1295.97	X	Х	X	0.434188 1295.97 37.2735 1.65659
%_16	Qgau	1333.95	Х	Х	х	0.139905 1333.95 13.7307 0.999965
%_3	Qgau	1378.29	X	Х	X	0.488688 1378.29 18.6686 1.65704
%_22	Qgau	1404.8	Х	Х	х	0.0867957 1404.8 13.0301 1.95863
%_33	Qgau	1420.02	Х	Х	Х	0.133195 1420.02 12.5208 2.29538
%_1	Qgau	1446.75	X	Х	X	0.78199 1446.75 17.8931 1.4098
%_26	Qgau	1466.7	X	Х	X	0.453422 1466.7 15.5772 1.14397
%_6	Qgau	1491.36	X	Х	X	0.477513 1491.36 18.096 1.83906
%_14	Qgau	1563.62	Х	Х	х	0.15996 1563.62 42.9472 1.82076
%_8	Qgau	1625.68	X	Х	X	0.338702 1625.68 22.7747 1.91937
%_23	Qgau	1704.07	Х	Х	Х	0.112433 1704.07 26.2109 1.4487
%_37	Qgau	1778.03	Х	Х	х	0.02948 1778.03 18.9254 1.13484
%_42	Qgau	1832.34	Х	Х	х	0.029044 1832.34 14.8205 1.06322
%_31	Qgau	1896.11	Х	Х	Х	0.0424228 1896.11 21.5254 1.30385
%_35	Qgau	1971.5	Х	Х	Х	0.0334599 1971.5 16.4355 1.64012
In bol	d , $h > 0$.	.3				

In Radu et al., 2016, Fig. 2, we can find the pH dependence of the SERS signal of B2 and B12. For B12, we can find reported peaks at 1270, 1495 and 1580 cm⁻¹. In the Fig.3 of Radu et al., the "fingerprints" of B2 and B12 are given.

The q-Gaussian centers are (for h>0.1):

573.28	625.083	716.242	740.383(m)	775.037	805.186
844.681(m)	883.559	997.508	1020.85	1075.93	1129.37(m)
1165.13(s)	1186.97	1213.28(m)	1264.12(m)	1295.97(s)	1333.95
1378.29(s)	1420.02	1446.75(vs)	1466.7(s)	1491.36(s)	1563.62
1625.68(m)	1704.07				

In Zhang et al., 2009, we find Raman and SERS data, and compare (in *bold*, the peaks which are corresponding to q-Gaussian centers given above, within +/-5 cm⁻¹, in *italic*, within +/-10 cm⁻¹):

320	457	481	587	633	726(m)
<i>841</i>	882	1163(s)	1206(m)	1350(s)	1394(m)
1454(m)	1498(vs)	1602(m)			(Raman)
383	611	716	1008(m)	1052	1159
1239(m)	1337	1395(s)	1493(s)	1601	(SERS, Ag sol)

272	310(m)	452(m)	496(m)	608	672(vs)
732	848	949	1006	1060	1140
1170(s)	1224	1258	1356(m)	1400	1473(m)
1507(vs)	1595(s)				(SERS, Ag)

A detail of the spectrum given before.

References

- 1. Aboltaman, R., Kiamehr, Z., Cheraghi, A., & Malekfar, R. (2023). Application of sensitive SERS plasmonic biosensor for high detection of metabolic disorders. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 290, 122204.
- 2. Alharbi, O., Xu, Y., & Goodacre, R. (2015). Simultaneous multiplexed quantification of caffeine and its major metabolites theobromine and paraxanthine using surface-enhanced Raman scattering. Analytical and bioanalytical chemistry, 407, 8253-8261.
- Aliaga, A.E., Garrido, C., Leyton, P., Gomez-Jeria, J.S., Aguayo, T., Clavijo, E., Campos-Vallette, M.M., & Sanchez-Cortes, S. (2010). SERS and theoretical studies of arginine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76(5), pp.458-463.
- Aliaga, A.E., Osorio-Roman, I., Garrido, C., Leyton, P., Cárcamo, J., Clavijo, E., Gómez-Jeria, J.S., & Campos-Vallette, M.M. (2009). Surface enhanced Raman scattering study of L-lysine. Vibrational Spectroscopy, 50(1), pp.131-135.
- Aliaga, A.E., Osorio-Román, I., Leyton, P., Garrido, C., Carcamo, J., Caniulef, C., Celis, F., Díaz F, G., Clavijo, E., Gómez-Jeria, J.S., & Campos-Vallette, M.M. (2009). Surfaceenhanced Raman scattering study of L-tryptophan. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 40(2), pp.164-169.
- Alvarez-Puebla, R. A., dos Santos Jr, D. S., & Aroca, R. F. (2007). SERS detection of environmental pollutants in humic acid–gold nanoparticle composite materials. Analyst, 132(12), 1210-1214.
- 7. Bailey, M. R., & Schultz, Z. D. (2016). SERS speciation of the electrochemical oxidation–reduction of riboflavin. Analyst, 141(17), 5078-5087.
- 8. Baranska, M., & Proniewicz, L. M. (2008). Raman mapping of caffeine alkaloid. Vibrational Spectroscopy, 48(1), 153-157.
- Botta, R., & Bansal, C. (2015, June). Surface enhanced Raman scattering (SERS) study of L-arginine adsorbed on Ag nanoclusters on glass substrate by nanocluster deposition method. In AIP Conference Proceedings (Vol. 1665, No. 1). AIP Publishing.
- Brazhe, N. A., Evlyukhin, A. B., Goodilin, E. A., Semenova, A. A., Novikov, S. M., Bozhevolnyi, S. I., Chichkov, B. N., Sarycheva, A. S., Baizhumanov, A. A., Nikelshparg, E. I., Deev, L. I., Maksimov, E. G., Maksimov, G. V. & Sosnovtseva, O. (2015). Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy. Scientific reports, 5(1), 13793.
- Brolo, A. G., Germain, P., & Hager, G. (2002). Investigation of the adsorption of Lcysteine on a polycrystalline silver electrode by surface-enhanced Raman scattering (SERS) and surface-enhanced second harmonic generation (SESHG). The Journal of Physical Chemistry B, 106(23), 5982-5987.
- 12. Buccolieri, A., Bettini, S., Salvatore, L., Baldassarre, F., Ciccarella, G., & Giancane, G. (2018). Sub-nanomolar detection of biogenic amines by SERS effect induced by hairy Janus silver nanoparticles. Sensors and Actuators B: Chemical, 267, 265-271.
- 13. Castro, J. L., Arenas, J. F., Lopez-Ramirez, M. R., Soto, J., & Otero, J. C. (2013). Surfaceenhanced Raman scattering of picolinamide, nicotinamide, and isonicotinamide: Unusual

carboxamide deprotonation under adsorption on silver nanoparticles. Journal of colloid and interface science, 396, 95-100.

- 14. Celis, F., Campos-Vallette, M. M., Gómez-Jeria, J. S., Clavijo, R. E., Jara, G. P., & Garrido, C. (2016). Surface-enhanced Raman scattering and theoretical study of the bilichromes biliverdin and bilirubin. Spectroscopy Letters, 49(5), 336-342.
- 15. Chen, C., Zhang, Y., Wang, X., Qiao, X., Waterhouse, G. I., & Xu, Z. (2024). A coresatellite self-assembled SERS aptasensor containing a "biological-silent region" Raman tag for the accurate and ultrasensitive detection of histamine. Food Science and Human Wellness, 13(2), 1029-1039.
- 16. Chen, C., Wang, X., Waterhouse, G. I., Qiao, X., & Xu, Z. (2022). A surface-imprinted surface-enhanced Raman scattering sensor for histamine detection based on dual semiconductors and Ag nanoparticles. Food Chemistry, 369, 130971.
- 17. Das, G. M., Managò, S., Mangini, M., & De Luca, A. C. (2021). Biosensing using SERS active gold nanostructures. Nanomaterials, 11(10), 2679.
- Das, S., Satpati, B., Bhattacharya, T. S., & Bala, T. (2020). Synthesis of Au–Ag triangular nanocomposite with promising SERS activity. Nano-Structures & Nano-Objects, 22, 100438.
- 19. Delfino, I., Bizzarri, A. R., & Cannistraro, S. (2005). Single-molecule detection of yeast cytochrome c by Surface-Enhanced Raman Spectroscopy. Biophysical chemistry, 113(1), 41-51.
- 20. De Gelder, J., De Gussem, K., Vandenabeele, P., & Moens, L. (2007). Reference database of Raman spectra of biological molecules. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 38(9), 1133-1147.
- 21. Dendisová-Vyškovská, M., Kokaislová, A., Ončák, M., & Matějka, P. (2013). SERS and in situ SERS spectroscopy of riboflavin adsorbed on silver, gold and copper substrates. Elucidation of variability of surface orientation based on both experimental and theoretical approach. Journal of Molecular Structure, 1038, 19-28.
- 22. Diaz Fleming, G., Finnerty, J. J., Campos-Vallette, M., Célis, F., Aliaga, A. E., Fredes, C., & Koch, R. (2009). Experimental and theoretical Raman and surface-enhanced Raman scattering study of cysteine. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 40(6), 632-638.
- D'Ippolito, V., Andreozzi, G. B., Bersani, D., & Lottici, P. P. (2015). Raman fingerprint of chromate, aluminate and ferrite spinels. Journal of Raman Spectroscopy, 46(12), 1255-1264.
- Dong, O., & Lam, D. C. (2011). Silver nanoparticles as surface-enhanced Raman substrate for quantitative identification of label-free proteins. Materials Chemistry and Physics, 126(1-2), 91-96.
- 25. Dongil, A. B., Bachiller-Baeza, B., Rodríguez-Ramos, I., & Guerrero-Ruiz, A. (2014). Exploring the insertion of ethylenediamine and bis (3-aminopropyl) amine into graphite oxide. Nanoscience Methods, 3(1), 28-39.
- Dummitt, R. (2023). Chemical Effects in Protein Analysis: A Systematic Investigation of Amino Acid Spontaneous Raman and SERS Responses (Doctoral dissertation, The Ohio State University).

- Edwards, H. G., Munshi, T., & Anstis, M. (2005). Raman spectroscopic characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(7), 1453-1459.
- Fenske, M. R., Braun, W. G., Wiegand, R. V., Quiggle, D., McCormick, R., & Rank, D. H. (1947). Raman spectra of hydrocarbons. Analytical Chemistry, 19(10), 700-765.
- 29. Gao, F., Grant, E., & Lu, X. (2015). Determination of histamine in canned tuna by molecularly imprinted polymers-surface enhanced Raman spectroscopy, Analytica Chimica Acta 901. 68-75.
- 30. Gao, W., Duan, W., Peng, D., Li, J., Hu, Z., Wang, D., Gong, Z., & Fan, M. (2023). Surface-enhanced Raman Scattering (SERS) microbial sensor for fresh water acute toxicity monitoring. Microchemical Journal, 191, 108822.
- 31. Garrido, C., Aguayo, T., Clavijo, E., Gómez-Jeria, J. S., & Campos-Vallette, M. M. (2013). The effect of the pH on the interaction of L-arginine with colloidal silver nanoparticles. A Raman and SERS study. Journal of Raman Spectroscopy, 44(8), 1105-1110.
- 32. Gautam, R., Chaturvedi, D., Sil, S., Kuhar, N., Singh, S., & Umapathy, S. (2022, September). Characterization of Aggregating Agents towards Sensitive Optical Detection of Tryptophan Using Lab-on-a-Chip. In Photonics (Vol. 9, No. 9, p. 648). MDPI.
- 33. Goto, T., & Watarai, H. (2010). SERS study of rotational isomerization of cysteamine induced by magnetic pulling force. Langmuir, 26(7), 4848-4853.
- 34. Graff, M., & Bukowska, J. (2005). Adsorption of Enantiomeric and Racemic Cysteine on a Silver Electrode– SERS Sensitivity to Chirality of Adsorbed Molecules. The Journal of Physical Chemistry B, 109(19), 9567-9574.
- 35. Guicheteau, J., Argue, L., Hyre, A., Jacobson, M., & Christesen, S. D. (2006, May). Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification. In Chemical and Biological Sensing VII (Vol. 6218, pp. 174-184). SPIE.
- 36. Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
- 37. Harroun, S. G., Zhang, Y., Chen, T. H., Ku, C. R., & Chang, H. T. (2017). Biomarkers of cigarette smoking and DNA methylating agents: Raman, SERS and DFT study of 3methyladenine and 7-methyladenine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 176, 1-7.
- Hédoux, A., Decroix, A. A., Guinet, Y., Paccou, L., Derollez, P., & Descamps, M. (2011). Low-and high-frequency Raman investigations on caffeine: polymorphism, disorder and phase transformation. The Journal of Physical Chemistry B, 115(19), 5746-5753.
- Hernandez, S., Perales-Rondon, J. V., Arnaiz, A., Perez-Estebanez, M., Gomez, E., Colina, A., & Heras, A. (2020). Determination of nicotinamide in a multivitamin complex by electrochemical-surface enhanced Raman spectroscopy. Journal of Electroanalytical Chemistry, 879, 114743.
- 40. Hernandez, S., Perales-Rondon, J. V., Heras, A., & Colina, A. (2020). Electrochemical SERS and SOERS in a single experiment: A new methodology for quantitative analysis. Electrochimica Acta, 334, 135561.

- 41. Horvath, E., Kristof, J., Frost, R. L., Rintoul, L., Redey, A., & Forsling, W. (2000). Investigation of mandelic acid bonding on Pirkle type chromatographic stationary phases by Raman spectroscopy. Journal of Chromatography A, 893(1), 37-46.
- 42. Huang, G.G., Han, X.X., Hossain, M.K., & Ozaki, Y. (2009). Development of a Heat-Induced Surface-Enhanced Raman Scattering Sensing Method for Rapid Detection of Glutathione in Aqueous Solutions, Analytical Chemistry 81(14), 5881-5888.
- 43. Hussain, S., & Pang, Y. (2015). Surface geometry of tryptophan adsorbed on gold colloidal nanoparticles. Journal of Molecular Structure, 1096, 121-128.
- 44. Itabashi, M., Shoji, K., & Itoh, K. (1982). Raman spectra of copper (II)-histamine (1: 2) and nickel (II)-histamine (1: 2) aqueous solutions. Inorganic Chemistry, 21(9), 3484-3489.
- 45. Itoh, N., & Hanari, N. (2022). Reliable estimation of Raman shifts for peaks of l-cystine (NMIJ CRM 6025-a) in the low-frequency region. Analytical Sciences, 38(4), 657-664.
- 46. Janči, T., Valinger, D., Kljusurić, J. G., Mikac, L., Vidaček, S., & Ivanda, M. (2017). Determination of histamine in fish by Surface Enhanced Raman Spectroscopy using silver colloid SERS substrates. Food Chemistry, 224, 48-54.
- Jaworska, A., Malek, K., Marzec, K. M., & Baranska, M. (2012). Nicotinamide and trigonelline studied with surface-enhanced FT-Raman spectroscopy. Vibrational Spectroscopy, 63, 469-476.
- 48. Jiang, X., Yang, M., Meng, Y., Jiang, W., & Zhan, J. (2013). Cysteamine-modified silver nanoparticle aggregates for quantitative SERS sensing of pentachlorophenol with a portable Raman spectrometer. ACS applied materials & interfaces, 5(15), 6902-6908.
- 49. Jing, C., & Fang, Y. (2007). Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of 1-cysteine on gold/silver nanoparticles, Chemical Physics 332(1), 27-32.
- 50. Kang, M., Park, S. G., & Jeong, K. H. (2015). Repeated solid-state dewetting of thin gold films for nanogap-rich plasmonic nanoislands. Scientific reports, 5(1), 14790.
- 51. Kang, J., Gu, H., Zhong, L., Hu, Y., & Liu, F. (2011). The pH dependent Raman spectroscopic study of caffeine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(2), 757-762.
- 52. Kuang, X., Ye, S., Li, X., Ma, Y., Zhang, C., & Tang, B. (2016). A new type of surfaceenhanced Raman scattering sensor for the enantioselective recognition of d/l-cysteine and d/l-asparagine based on a helically arranged Ag NPs@ homochiral MOF. Chemical Communications, 52(31), 5432-5435.
- 53. Kudelski, A., & Hill, W. (1999). Raman study on the structure of cysteamine monolayers on silver. Langmuir, 15(9), 3162-3168.
- 54. Lee, N. S., Sheng, R. S., Morris, M. D., & Schopfer, L. M. (1986). The active species in surface-enhanced Raman scattering of flavins on silver colloids. Journal of the American Chemical Society, 108(20), 6179-6183.
- 55. Lee, N. S., Hsieh, Y. Z., Paisley, R. F., & Morris, M. D. (1988). Surface-enhanced Raman spectroscopy of the catecholamine neurotransmitters and related compounds. Analytical chemistry, 60(5), 442-446.
- 56. Lee, H., Kim, M. S., & Suh, S. W. (1991). Raman spectroscopy of sulphur-containing amino acids and their derivatives adsorbed on silver. Journal of Raman spectroscopy, 22(2), 91-96.

- Leopold, N., Cîntă-Pînzaru, S., Baia, M., Antonescu, E., Cozar, O., Kiefer, W., & Popp, J. (2005). Raman and surface-enhanced Raman study of thiamine at different pH values. Vibrational Spectroscopy, 39(2), 169-176.
- 58. Lim, J. K., Kim, Y., Lee, S. Y., & Joo, S. W. (2008). Spectroscopic analysis of L-histidine adsorbed on gold and silver nanoparticle surfaces investigated by surface-enhanced Raman scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(1), 286-289.
- 59. Lin, W. C., Tsai, T. R., Huang, H. L., Shiau, C. Y., & Chiang, H. P. (2012). SERS study of histamine by using silver film over nanosphere structure. Plasmonics, 7, 709-716.
- 60. Liu, F., Gu, H., Lin, Y., Qi, Y., Dong, X., Gao, J., & Cai, T. (2012). Surface-enhanced Raman scattering study of riboflavin on borohydride-reduced silver colloids: Dependence of concentration, halide anions and pH values. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 85(1), 111-119.
- Majzner, K., Chlopicki, S., & Baranska, M. (2016). Lipid droplets formation in human endothelial cells in response to polyunsaturated fatty acids and 1-methyl-nicotinamide (MNA); confocal Raman imaging and fluorescence microscopy studies. Journal of Biophotonics, 9(4), 396-405.
- 62. Martusevičius, S., Niaura, G., Talaikyté, Z., & Razumas, V. (1996). Adsorption of Lhistidine on copper surface as evidenced by surface-enhanced Raman scattering spectroscopy. Vibrational Spectroscopy, 10(2), 271-280.
- 63. McGlashen, M. L., Davis, K. L., & Morris, M. D. (1990). Surface-enhanced Raman scattering of dopamine at polymer-coated silver electrodes. Analytical chemistry, 62(8), 846-849.
- 64. Michota, A., Kudelski, A., & Bukowska, J. (2000). Chemisorption of cysteamine on silver studied by surface-enhanced Raman scattering. Langmuir, 16(26), 10236-10242.
- 65. Michota, A., Kudelski, A., & Bukowska, J. (2001). Influence of electrolytes on the structure of cysteamine monolayer on silver studied by surface-enhanced Raman scattering. Journal of Raman Spectroscopy, 32(5), 345-350.
- 66. Michota, A., Kudelski, A., & Bukowska, J. (2002). Molecular structure of cysteamine monolayers on silver and gold substrates: Comparative studies by surface-enhanced Raman scattering. Surface science, 502, 214-218.
- 67. Mosier-Boss, P. A., Lieberman, S. H., & Newbery, R. (1995). Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques. Applied Spectroscopy, 49(5), 630-638.
- Murgida, D. H., & Hildebrandt, P. (2004). Electron-transfer processes of cytochrome c at interfaces. New insights by surface-enhanced resonance Raman spectroscopy. Accounts of chemical research, 37(11), 854-861.
- 69. Negri, P., & Schultz, Z. D. (2014). Online SERS detection of the 20 proteinogenic L-amino acids separated by capillary zone electrophoresis. Analyst, 139(22), 5989-5998.
- Nie, S., Castillo, C. G., Bergbauer, K. L., Kuck Jr, J. F., Nabiev, I. R., & Yu, N. T. (1990). Surface-enhanced Raman spectra of eye lens pigments. Applied spectroscopy, 44(4), 571-575.
- Nguyen, D. B., Joo, S. W., & Choo, J. (2017). Interfacial structures of 1-methyladenine, 3methyladenine, 7-methyladenine, and 9-methyladenine on gold nanoparticles by Raman spectroscopy. Journal of Molecular Structure, 1128, 215-220.

- 72. Pal, T., Narayanan, V. A., Stokes, D. L., & Vo-Dinh, T. (1998). Surface-enhanced Raman detection of nicotinamide in vitamin tablets. Analytica chimica acta, 368(1-2), 21-28.
- 73. Pavel, I., Szeghalmi, A., Moigno, D., Cîntă, S., & Kiefer, W. (2003). Theoretical and pH dependent surface enhanced Raman spectroscopy study on caffeine. Biopolymers: Original Research on Biomolecules, 72(1), 25-37.
- 74. Plou, J., García, I., Charconnet, M., Astobiza, I., García-Astrain, C., Matricardi, C., Mihi, A.; Carracedo, A., & Liz-Marzán, L.M. (2020). Multiplex SERS detection of metabolic alterations in tumor extracellular media. Adv. Funct. Mater. 2020, 30, 1910335.
- Podstawka, E., Ozaki, Y., & Proniewicz, L. M. (2004). Part I: Surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides adsorbed on colloidal silver. Applied spectroscopy, 58(5), 570-580.
- 76. Qu, L. L., Li, D. W., Qin, L. X., Mu, J., Fossey, J. S., & Long, Y. T. (2013). Selective and sensitive detection of intracellular O2•–using Au NPs/Cytochrome c as SERS nanosensors. Analytical chemistry, 85(20), 9549-9555.
- 77. Qu, L. L., Li, D. W., Xue, J. Q., Zhai, W. L., Fossey, J. S., & Long, Y. T. (2012). Batch fabrication of disposable screen printed SERS arrays. Lab on a Chip, 12(5), 876-881.
- 78. Radu, A. I., Kuellmer, M., Giese, B., Huebner, U., Weber, K., Cialla-May, D., & Popp, J. (2016). Surface-enhanced Raman spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals. Talanta, 160, 289-297.
- 79. Sengupta, A., Laucks, M. L., Dildine, N., Drapala, E., & Davis, E. J. (2005). Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS). Journal of aerosol science, 36(5-6), 651-664.
- Sherman, L. M., Petrov, A. P., Karger, L. F., Tetrick, M. G., Dovichi, N. J., & Camden, J. P. (2020). A surface-enhanced Raman spectroscopy database of 63 metabolites. Talanta, 210, 120645.
- Smyth, C. A., Mehigan, S., Rakovich, Y. P., Bell, S. E., & McCabe, E. M. (2011). Pterin detection using surface-enhanced Raman spectroscopy incorporating a straightforward silver colloid–based synthesis technique. Journal of Biomedical Optics, 16(7), 077007-077007.
- Sobolewski, D., Proniewicz, E., Skołuba, D., Prahl, A., Ozaki, Y., Kim, Y., & Proniewicz, L. M. (2013). Characterization of adsorption mode of new B2 bradykinin receptor antagonists onto colloidal Ag substrate. Journal of Raman Spectroscopy, 44(2), 212-218.
- 83. Sparavigna, A. C. (2023). SERS Spectral Bands of L-Cysteine, Cysteamine and Homocysteine Fitted by Tsallis q-Gaussian Functions. International Journal of Sciences, 12(09), 14-24.
- 84. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes and Raman Spectral Bands. International Journal of Sciences, 12(03), 27-40.
- Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes for Raman Spectroscopy (June 7, 2023). SSRN Electronic Journal. DOI: 10.2139/ssrn.4445044
- 86. Sparavigna A. C. (2023). Tsallis q-Gaussian function as fitting lineshape for Graphite Raman bands. ChemRxiv. Cambridge: Cambridge Open Engage; 2023.
- 87. Sparavigna, A. C. (2023). Some SERS Fingerprints of Metabolites from the Database Provided by Sherman et al., 2020. Available at SSRN 4634640
- 88. Sparavigna, A. C. (2023). The Raman Fingerprints of Quartz, Albite and Calcite (October 10, 2023). Available at SSRN 4594641

- Sparavigna, A. C. (2024). Raman and Attenuated Total Reflectance Infrared RRUFF Spectra: some cases of deconvolution with q-Gaussians and q-BWF functions. Zenodo. <u>https://doi.org/10.5281/zenodo.14220559</u>
- Stevenson, R., Stokes, R.J., MacMillan, D., Armstrong, D., Faulds, K., Wadsworth, R., Kunuthur, S., Suckling, C.J., & Graham, D. (2009). In situ detection of pterins by SERS. Analyst, 134(8), pp.1561-1564.
- 91. Stewart, S., & Fredericks, P.M. (1999). Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 55(7) (1999) 1615-1640.
- 92. Stewart, S., & Fredericks, P.M. (1999). Surface-enhanced Raman spectroscopy of amino acids adsorbed on an electrochemically prepared silver surface, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 55(7) (1999) 1641-1660.
- 93. Strekas, T. C., & Spiro, T. G. (1972). Cytochrome c: resonance Raman spectra. Biochimica et Biophysica Acta (BBA)-Protein Structure, 278(1), 188-192.
- 94. Su, Y., Hessou, E. P., Colombo, E., Belletti, G., Moussadik, A., Lucas, I. T., Frochot, V., Daudon, M., Rouzière, S., Bazin, D., Li, K., Quaino, P. & Tielens, F. (2022). Crystalline structures of l-cysteine and l-cystine: a combined theoretical and experimental characterization. Amino Acids, 54(8), 1123-1133.
- 95. Sui, H., Wang, Y., Zhang, X., Wang, X., Cheng, W., Su, H., ... & Ozaki, Y. (2016). Ultrasensitive detection of thyrotropin-releasing hormone based on azo coupling and surface-enhanced resonance Raman spectroscopy. Analyst, 141(17), 5181-5188.
- 96. Torreggiani, A., Tamba, M., Bonora, S., & Fini, G. (2003). Raman and IR study on copper binding of histamine. Biopolymers: Original Research on Biomolecules, 72(4), 290-298.
- 97. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
- 98. Wang, P., Xia, M., Liang, O., Sun, K., Cipriano, A.F., Schroeder, T., Liu, H., & Xie, Y.H., (2015). Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure. Analytical chemistry, 87(20), pp.10255-10261.
- 99. Wang, L., Xu, X. M., Chen, Y. S., Ren, J., & Liu, Y. T. (2018). HPTLC-FLD-SERS as a facile and reliable screening tool: exemplarily shown with tyramine in cheese. journal of food and drug analysis, 26(2), 688-695.
- 100. Wojdyr, M. (2010). Fityk: a general-purpose peak fitting program. Journal of applied crystallography, 43(5), 1126-1128.
- Xu, J., Xue, Y., Jian, X., Zhao, Y., Dai, Z., Xu, J., Gao, Z., Mei, Y., & Song, Y. Y. (2022). Understanding of chiral site-dependent enantioselective identification on a plasmon-free semiconductor based SERS substrate. Chemical Science, 13(22), 6550-6557.
- 102. Yao, G., & Huang, Q. (2018). DFT and SERS Study of l-Cysteine Adsorption on the Surface of Gold Nanoparticles. The Journal of Physical Chemistry C, 122(27), 15241-15251.
- 103. Yao, G., & Huang, Q. (2022). Theoretical and experimental study of the infrared and Raman spectra of L-lysine acetylation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 278, 121371.
- 104. Zareef, M., Hassan, M. M., Arslan, M., Ahmad, W., Ali, S., Ouyang, Q., Li, H., Wu, X. & Chen, Q. (2020). Rapid prediction of caffeine in tea based on surface-enhanced Raman spectroscopy coupled multivariate calibration. Microchemical Journal, 159, 105431.

- 105. Zhang, Z., Wang, B., Yin, Y., & Mo, Y. (2009). Surface-enhanced Raman spectroscopy of Vitamin B12 on silver particles in colloid and in atmosphere. Journal of Molecular Structure, 927(1-3), 88-90.
- 106. Zheng, H., Ni, D., Yu, Z., Liang, P., & Chen, H. (2016). Fabrication of flower-like silver nanostructures for rapid detection of caffeine using surface enhanced Raman spectroscopy. Sensors and Actuators B: Chemical, 231, 423-430.
- 107. Zheng, X. B., Liu, S. H., Panneerselvam, R., Zhang, Y. J., Wang, A., Zhang, F. L., Jin, S., & Li, J. F. (2023). Clinical detection of total homocysteine in human serum using surface-enhanced Raman spectroscopy. Vibrational Spectroscopy, 126, 103526.