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PHASE SPACE ANALYSIS OF SPECTRAL MULTIPLIERS FOR THE
TWISTED LAPLACIAN

S. IVAN TRAPASSO

Abstract. We prove boundedness results on modulation and Wiener amalgam spaces

for some families of spectral multipliers for the twisted Laplacian. We exploit the meta-

plectic equivalence relating the twisted Laplacian with a partial harmonic oscillator,

leading to a general transference principle for the corresponding spectral multipliers.

Our analysis encompasses powers of the twisted Laplacian and oscillating multipliers,

with applications to the corresponding Schrödinger and wave flows. On the other hand,

elaborating on the twisted convolution structure of the eigenprojections and its connec-

tion with the Weyl product of symbols, we obtain a complete picture of the boundedness

of the heat flow for the twisted Laplacian. Results of the same kind are established for

fractional heat flows via subordination.

1. Introduction

In this note we deal with the phase space analysis of several flows stemming from the
second-order partial differential operator on even-dimensional Euclidean spaces known as
the twisted Laplacian, or the special Hermite operator. To be precise, setting z = (x, y) ∈
R2d, we consider

L := −
d∑

j=1

[(
∂xj

− i

2
yj
)2

+
(
∂yj +

i

2
xj

)2]
= −∆z +

1

4
|z|2 − i

d∑
j=1

(
xj∂yj − ∂xj

yj
)
.

The study of this operator dates back at least to the works by Strichartz [51] and
Thangavelu on Hermite and Laguerre expansions [54, 55, 56]. The spectral analysis of L
is also a well-developed topic in the mathematical physics literature, where this operator
is usually known as the Landau Hamiltonian, as it governs the quantum dynamics of a
charged particle under the influence of a uniform magnetic field. The twisted Laplacian
has also received much attention over the years from the harmonic analysis community,
due to its intimate connection with the sub-Laplacian on the Heisenberg group, that is
Hd = Cd × R endowed with the product

(z, t)(w, s) =
(
z + w, t+ s+

1

2
Im(z · w)

)
,

from which it can be derived via inverse Fourier transform with respect to the center.

Much is known on L as a differential operator, especially concerning the local regularity
aspects. It is a densely defined, essentially self-adjoint positive operator on L2(R2d), which
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2 S. I. TRAPASSO

can be viewed as the pseudo-differential operator Lw with Weyl symbol

(1) L(z, ζ) =
d∑

j=1

[(
ξj −

yj
2

)2

+
(
ηj +

xj

2

)2]
, z = (x, y), ζ = (ξ, η) ∈ R2d.

The zero set of L shows that L is in fact a degenerate elliptic operator, meaning that it is
not globally elliptic (in the sense of Helffer [33]) in any Hörmander symbol class. Never-
theless, L is known to be globally regular [25, 62] — that is, for a temperate distribution
f ∈ S ′(R2d), if Lf ∈ S(R2d) then f ∈ S(R2d). This property happens to be satisfied by
every Weyl operator aw that is globally elliptic in the sense of Shubin [50], namely such
that the symbol a satisfies

|a(z, ζ)| ≥ C(1 + |z|2 + |ζ|2), |z|2 + |ζ|2 > R,

for suitable constants C,R > 0. On the other hand, it is easy to realize that L fails to
be globally elliptic (or even hypoelliptic) in the context of the Shubin Γ-calculus or the
Parenti-Cordes G-calculus.

The careful analysis of twisted differential operators given in [9] shows that, at least in
dimension d = 2, the global regularity of L actually comes along with the global ellipticity
and the injectivity in S ′(Rd) of its source, that is the companion operator

H =
d∑

j=1

[
− ∂2

xj
+ x2

j

]
= −∆+ |x|2.

This is the well known Hermite operator, or quantum harmonic oscillator — the Weyl
operator with symbol H(q, p) = q2 + p2, (q, p) ∈ R2d. Mentioning this result is barely
scratching the surface of the deep entanglement between the twisted Laplacian and the
harmonic oscillator. Indeed, if H coincides with the quantization of H according to the
standard rule

qj 7→ Xj = xj, pj 7→ Dj = −i∂xj
,

then L can be similarly viewed as a non-standard quantization of H according to the
correspondence

qj 7→ Vj = −i∂xj
− 1

2
yj, pj 7→ Wj = −i∂yj +

1

2
xj.

This form of quantization where differentiation and multiplication get intertwined has
been widely explored in connection with quantum mechanics in phase space. A quite
complete picture of the relation between standard Weyl and the so-called Landau-Weyl
operators has been given in [24, 25, 26], especially with regard to their spectral structure.
Considering the twisted Laplacian and the harmonic oscillator for the sake of concreteness,
it turns out that these operators have the same discrete spectrum

σ(H) = σ(L) = d+ 2N := {d+ 2k : k ∈ N},

but the eigenvalues of L (the so-called Landau levels) are severely degenerate. To be
precise, we have the resolutions of the identity

H =
∑
k∈N

(d+ 2k)Pk, L =
∑
k∈N

(d+ 2k)Qk,

where:
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– Pk is the orthogonal projection onto the finite-dimensional eigenspace spanned by
d-dimensional Hermite functions Φα, α ∈ Nd, with |α| = α1 + . . .+ αd = k.

– The range of the eigenprojection Qk for the twisted Laplacian is spanned by the
so-called special Hermite functions Φα,β, α, β ∈ Nd, with |β| = k, which are
ultimately related to Laguerre polynomials [55].

A more detailed review of these properties can be found in Section 2.4. From a more
abstract point of view, these spectral relationships come not as a surprise, since the
operators involved in the Landau-Weyl quantization satisfy the canonical commutation
relation [Vj,Wk] = −iδj,k. As a result, the Stone-von Neumann theorem implies the
unitary intertwining of the action of L on L2(R2d) with that of a partial harmonic oscillator
I ⊗H on L2(Rd)⊗L2(Rd), where I is the identity operator. To be precise, there exists a
unitary operatorAJ on L2(R2d) such that L = AJ(I⊗H)A∗

J . This quantitative connection
is actually a fundamental ingredient in the characterization of the global regularity of L
given in [9].

1.1. Phase space analysis. The results discussed so far point out to two considerations
at least. First, there are several bridges connecting the twisted Laplacian and the Hermite
operator that could be possibly exploited — for instance, establishing transference prin-
ciples (in both directions) is a traditional and powerful approach in this context [55, 61].
Secondly, the rise of L as a twisted phase space quantization of the symbol H, as well as
the investigations on the global regularity of this operator, naturally call into play ideas
and techniques of phase space analysis.

Aspects of both approaches are embraced in this note, where we perform a Gabor wave
packet analysis of the twisted Laplacian and related flows — such as those arising from
the Schrödinger, heat or wave equation for L and its fractional powers Lν , 0 < ν < 1.
More precisely, we prove boundedness results for such semigroups on modulation spaces
and Wiener amalgam spaces, which are families of Banach spaces characterized by the
(mixed, possibly weighted) Lebesgue summability of a phase space representation of their
members. In short, the Gabor transform of f ∈ S ′(Rd) with respect to the atom g ∈
S(Rd) \ {0} is defined by

Vgf(x, ξ) = (2π)−d/2

∫
Rd

e−iξ·yf(y)g(y − x) dy, (x, ξ) ∈ Rd × R̂d = R2d,

and it can be viewed as the (coefficient of a continuous) decomposition of f into Gabor
wave packets of the form π(x, ξ)g(y) = (2π)−d/2eiξ·yg(y − x).

The modulation space Mp,q(Rd), 1 ≤ p, q ≤ ∞, is the collection of the distributions
satisfying

∥f∥Mp,q =
(∫

Rd

(∫
Rd

|Vgf(x, ξ)|p dx
)q/p

dξ
)1/q

< ∞,

with obvious modifications in the case where p = ∞ or q = ∞. We write Mp(Rd) if
q = p. As a rule of thumb, the index p essentially reflects the Lebesgue summability of
f , while the index q relates with the summability of its Fourier transform — hence, with
the regularity of f . Refinements can be provided by introducing suitable weights in the
modulation space norms — more details and generalizations as needed in this note can
be found in Section 2 below.



4 S. I. TRAPASSO

1.2. A transference principle for spectral multipliers. We investigate the phase
space structure of some spectral multipliers associated with L and H. In general, given
m ∈ L∞(d+ 2N;C), we consider the spectral multipliers defined as follows:

m(H)f :=
∑
k∈N

m(d+ 2k)Pkf, m(L)g :=
∑
k∈N

m(d+ 2k)Qkg,

where f ∈ L2(Rd) and g ∈ L2(R2d). The study of their boundedness on Lebesgue or Hardy
spaces is a classical problem of harmonic analysis, especially for the harmonic oscillator.
Inspired by the analogous problem for Fourier multipliers, it is certainly interesting to in-
vestigate the behaviour of spectral multipliers for H and L on modulation spaces. Indeed,
as far the standard Laplacian is concerned, it is remarkable that several flows associated
with oscillating multipliers (including the Schrödinger and wave semigroups) preserve the
time-frequency concentration of the initial datum — in the sense that they are bounded
on Mp, while they generally fail to be bounded on Lebesgue spaces except for L2 = M2

[3].

Spectral multipliers of Mikhlin-Hörmander type for the Hermite operator were proved to
be continuous on suitable modulation spaces in [4], where additional boundedness results
for m(H) were obtained via a reverse transference theorem involving the Lp continuity of
spectral multipliers for L on the polarised Heisenberg group. Moreover, in the recent series
of papers [6, 5, 15] the authors focused on the time-frequency analysis of the fractional
powers Hν and the fractional heat propagator e−tHν

, ν > 0.

The phase space analysis of H-multipliers performed in the aforementioned papers
largely benefits from the Gabor analysis of pseudo-differential operators, that is nowadays
widely developed — especially for the Shubin Γ-classes, the symbol H being globally
elliptic in this sense. In order to obtain boundedness results for m(L) we establish a
transference principle on modulation spaces, by exploiting old and new results on Hermite
multipliers in conjunction with the intertwining relationship

(2) m(L) = AJ(I ⊗m(H))A∗
J ,

which extends the unitary equivalence between the twisted Laplacian and a partial har-
monic oscillator to the corresponding spectral functions. A simplified, unweighted form
of the transference Theorem 3.3 reads as follows.

Theorem. If m(H) is bounded on Mp(Rd) for every 1 ≤ p ≤ ∞, then m(L) is bounded
on Mp(R2d) for every 1 ≤ p ≤ ∞.

In particular, we are able to investigate the phase space behaviour of singular oscillating
multipliers of the form

mt(L) = L−δ/2eitL
γ/2

, δ ≥ 0, γ ≤ 1, t > 0,

as detailed in Corollary 3.12. For δ ∈ {0, 1} and γ = 1 we obtain the Poisson-type
semigroups for L, for which only few results in the Euclidean setting are available to the
best of our knowledge — see for instance [22] for refined dispersive estimates, [59] about
the finite speed of propagation and [55] for Lp boundedness results.

The analysis of the oscillating multipliers for L allows us to characterize the phase
space regularity of the solutions of the wave equation ∂2

t u + Lu = 0 with initial data
u(z, 0) = f(z) and ∂tu(z, 0) = g(z), (z, t) ∈ R2d × R. These are given by

u(z, t) = cos(tL1/2)f(z, t) + L−1/2 sin(tL1/2)g(z, t),
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and the time-frequency regularity of the initial data (as captured by the Mp norm) is
preserved by the wave flow, locally uniformly in time. More precisely, if f, g ∈ Mp(R2d),
1 ≤ p < ∞ and t ∈ [0, T ] for some T > 0, there exists C(T ) > 0 such that

∥u∥Mp ≤ C(T )(∥f∥Mp + ∥g∥Mp).

This result is obtained via a refined pseudo-differential analysis of the corresponding
problem for the Hermite operator (Theorem 3.10), which is of independent interest due to
the improvement of the currently available results given in [4]. In Section 3.1 we are also
able to use transference beyond the bounded functional calculus, proving boundedness
results on (possibly weighted) modulation spaces for fractional powers Lν with ν ∈ R.

A key ingredient of the phase space transference principle behind these results is the
full characterization of the unitary equivalence in (2), which happens to be of metaplectic
type. Indeed, as already realized in [30, 31], AJ is a metaplectic operator, ultimately
related to the Fourier-Wigner transform linking Hermite and special Hermite functions.
The action of metaplectic operators on modulation spaces is well understood, especially
in light of their role in the Gabor analysis of the Schrödinger equation — see e.g., [20, 23]
for a comprehensive overview. Indeed, metaplectic operators can be characterized as the
Schrödinger flows e−itFw

associated with the Weyl quantization Fw of quadratic classic
Hamiltonian functions F . As such, boundedness results on modulation spaces for the
(periodic) semigroups e−itH and e−itL fall within this framework — see Proposition 2.9
and related comments in this connection.

1.3. The twisted convolution structure and the heat flow. While the transference
approach is quite powerful, it should be highlighted that the tensor product structure of
I ⊗ m(H) and the action of the metaplectic intertwiners combine into an unavoidable
restriction of the scope of the results established for the Hermite multipliers — including
the obvious loss of smoothing effects or the range shrinkage of modulation spaces indices.
These aspects are pretty manifest when transference is applied to negative powers of H
or the heat diffusion flows e−tHν

, studied in full generality in [6].

An undoubtedly better approach would rely on a refined time-frequency analysis of
the twisted Laplacian and its spectral projections, which have a quite peculiar form: Qkf
operates a twisted convolution of f with a suitable Laguerre function φk — see Section 2.3
for details, and the articles [39, 40] for the highly non-trivial problem of obtaining sharp
Lp bounds for Qk. It is reasonable to expect that such a twisted structure reverberates
somehow into the spectral multipliers, but an explicit characterization of this phenomenon
is contrasted by the occurrence of special functions and the limited knowledge on their
time-frequency features. Nevertheless, in the case of the heat flow e−tL, it is possible to
obtain the integral representation

e−tLf(z) = (16π2 sinh t)−d

∫
R2d

e−2iσ(z,w)e−
1
4
coth(t)|z−w|2f(w) dw, t ̸= 0,

where σ is the standard symplectic form on R2d — that is, σ(z, w) = z2 · w1 − z1 · w2,
for z = (z1, z2) and w = (w1, w2). This formula can be conveniently viewed as a twisted
convolution with a suitable kernel, namely

e−tLf = f × pt, pt(w) = (16π sinh t)−de−
1
4
coth(t)|w|2 ,

revealing the behind-the-scenes role of the twisted structure of the eigenprojections.
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The twisted representation of the heat flow for the special Hermite operator is partic-
ularly favourable in the context of phase space analysis. Indeed, the twisted convolution
of functions relates via symplectic Fourier transform with the Weyl product of symbols
(i.e., the bilinear form # such that (a#b)w = awbw) in pretty much the same way the
Fourier transform turns the standard convolution into a pointwise product. The Gabor
analysis of pseudo-differential operators, hence of their composition, has already led to a
comprehensive characterization of the continuity of the Weyl product on modulation and
amalgam spaces [21, 35], which can be conveniently exploited here to derive a full range of
boundedness results for the twisted Laplacian heat flow e−tL (Theorem 4.2). Boundedness
results can be proved as well for the fractional heat flow e−tLν

, 0 < ν < 1, essentially
by means of subordination to the solutions of the standard heat flow (Theorem 4.5). In
short, our results read as follows.

Theorem. For 0 < ν ≤ 1 and t > 0, the special Hermite heat semigroup e−tLν
is a

continuous map Mp1,q1(R2d) → Mp2,q2(R2d), 1 ≤ p1, q1, p2, q2 ≤ ∞, if and only if q2 ≥ q1.
In such case, the following bound holds:

∥e−tLν

f∥Mp2,q2 ≤ Cν(t)∥f∥Mp1,q1 ,

where

Cν(t) =

{
Ce−tdν (t ≥ 1)

Ct−λν (0 < t ≤ 1),
λν := max

{d

ν

( 1

p2
− 1

p1

)
, 0
}
,

for a constant C > 0 that does not depend on f or t.

Note that the decay for large times is sharp — it is enough to test the bound in the
ground state case where f = Φ0,0. Moreover, having in mind that the phase space effect
of L is roughly comparable to that of a partial harmonic oscillator, a singularity for small
times is expected as well, as heuristically illustrated in [6] concerning the heat flow of H.
Let us also stress that this heuristic link relying on metaplectic equivalence barely agrees
with the occurrence of the condition q2 ≥ q1 — so that e−tLν

f can have at best the same
regularity of f . The necessity of this constraint is actually due to the underlying twisted

structure e−tLν
f = f × p

(ν)
t . Even if an explicit formula for p

(ν)
t seems to be unachievable

unless ν = 1, cheap time-frequency estimates for the involved Laguerre functions are
enough to show that the fractional twisted heat propagator belongs to M1(R2d). As a

result, sharpness of the index constraint follows from the failure of the map f 7→ f × p
(ν)
t

to be bounded Mp1,q1(R2d) → Mp2,q2(R2d) if q2 < q1 — see Proposition 2.6 and [35,
Proposition 3.3] for details. These remarks illustrate that, as already anticipated, a phase
space analysis relying on the twisted structure leads to a much more complete picture
than the one that can be obtained via transference from the heat flows e−tHν

.

The phase space continuity estimates for e−tLν
just illustrated extend via subordination

and embeddings to Lebesgue spaces Lp → Lq with 1 ≤ p ≤ q ≤ ∞, cf. Corollary 4.6. In
the case where p ≤ 2 ≤ q the bound reads

∥e−tLν

f∥Lq ≤ C(ν)
p,q (t)∥f∥Lp , C(ν)

p,q (t) =

{
Ce−tdν (t ≥ 1)

Ct−
d
ν
( 1
p
− 1

q
) (0 < t ≤ 1),

encompassing known contractivity results already proved in the case ν = 1 in [62, 63]. A
subordination argument yields the same estimates for negative powers L−ν , ν > 0.
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1.4. Comments and future work. A phase space analysis of spectral multipliers for
the twisted Laplacian is the first step towards a thorough analysis of the correspond-
ing evolution equations, possibly in presence of nonlinearities or potential perturbations.
Inspired by the similar quest for the standard Schrödinger equation [20], we expect to
build upon the content of the present note to obtain a wide array of results in connec-
tion with problems of local/global well-posedness (also including Strichartz estimates) on
modulation and amalgam spaces — see [5, 6] for examples in this vein for the Hermite
operator.

At a more fundamental level, a deeper understanding of the time-frequency distribution
of the eigenfunctions of L would be as desirable as it is challenging, but it could pave
the way to many interesting results — including sharp bounds on modulation spaces for
the eigenprojections Qk in the spirit of [39, 40] or extension of the boundedness results
for oscillating multipliers to a broader range of modulation spaces, thus bypassing the
restrictions coming along with transference. A related, far-reaching goal would be a full
characterization of the space of Mp-bounded spectral multipliers for L. In fact, as already
discussed, this problem is largely open even for the harmonic oscillator — to the best of
our knowledge, the results in [4] and the novel ones in Section 3 are the only ones currently
available, and there is reason to believe that they can be improved, at least in connection
with the regularity of the multipliers (see Remark 2.10) or the time dependence of the
constants. We plan to pursue this intriguing quest in future work.

Another interesting problem would be to elucidate the connection between modulation
spaces and regularity spaces of Lipschitz-Hölder type or atomic decomposition spaces of
Besov and Triebel-Lizorkin type associated with the twisted Laplacian — see e.g., [11] for
a recent example of their use to obtain sharp Lp bounds for the Schrödinger equation. It
is well known that modulation and amalgam spaces provide a robust family of functional
spaces with non-trivial embeddings with standard Lebesgue, Sobolev or potential spaces
[20] — notably including those associated with the Hermite operator [38].

Finally, we believe that the phase space analysis of “exotic” differential operators and
related flows can lead to interesting results from an original perspective, especially in the
case where the standard machinery of pseudo-differential calculus on modulation spaces
cannot be directly called into play. These obstacles stimulate the development of novel
lines of attack. Besides the twisted Laplacian, there are several operators of interest in
harmonic analysis (such as the Grushin operators [32]) of which very little is known from
the time-frequency side, which we plan to investigate in future work.

2. Preparation

2.1. Notation. The set of natural numbers is N = {0, 1, 2 . . .}. We write 2N = {2n : n ∈
N} to denote the set of even numbers. We write A ↪→ B to emphasize that the embedding
of A into B is continuous.

We make use of the symbol X ≲λ Y if the underlying inequality holds up to a positive
constant factor (i.e., X ≤ CλY ) that does not depend on X or Y but may depend on the
parameter λ. We write X ≍λ Y if X and Y are of comparable size, namely both X ≲λ Y
and X ≲λ Y hold.

We introduce a number of operators acting on f : Rd → C:
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– The translation Tx by x ∈ Rd: Txf(y) = f(y − x).
– The modulation Mξ by ξ ∈ Rd: Mξf(y) = (2π)−d/2eiξ·yf(y).
– The time-frequency shift π(x, ξ) = MξTx.
– The reflection: If(y) = f∨(y) = f(−y).

The L2 inner product ⟨f, g⟩ =
∫
Rd f(y)g(y) dy extends to a duality pairing between tem-

perate distributions f ∈ S ′(Rd) and functions in the Schwartz class g ∈ S(Rd), denoted
by the same bracket.

Recall that the tensor product f1 ⊗ f2 of two temperate distributions f1, f2 ∈ S ′(Rd) is
the unique element of S ′(R2d) such that

⟨f1 ⊗ f2, g1 ⊗ g2⟩ = ⟨f1, g1⟩⟨f2, g2⟩, ∀g1, g2 ∈ S(Rd),

where g1 ⊗ g2 ∈ S(R2d) is defined as usual by g1 ⊗ g2(x, y) = g1(x)g2(y), (x, y) ∈ R2d. We
remark here for future reference that, for all z = (z1, z2) and w = (w1, w2) in R2d,

(3) π(z, w)(g1 ⊗ g2) = π(z1, w1)g1 ⊗ π(z2, w2)g2.

Given two continuous linear operators T1, T2 : S ′(Rd) → S ′(Rd), we denote by T1 ⊗ T2

the unique operator on S ′(R2d) → S ′(R2d) such that

(T1 ⊗ T2)(u1 ⊗ u2) = T1u1 ⊗ T2u2, ∀u1, u2 ∈ S ′(Rd).

Recall that R2d is a symplectic vector space endowed with the standard form

σ(z, w) := Jz · w, J :=

[
O I
−I O

]
,

where O and I denote respectively the d × d null and identity matrix. In particular, if
z = (x, ξ) and w = (u, v) belong to Rd × Rd, then σ(z, w) = ξ · u− x · v.

2.2. Tools from Gabor analysis. The Fourier transform is normalized as follows:

Ff(ξ) = f̂(ξ) := (2π)−d/2

∫
Rd

e−iξ·xf(x) dx.

It is useful to introduce a (unitarily dilated) symplectic version of the Fourier transform
for functions defined on even-dimensional spaces such as R2d:

Fσf(ζ) = fσ(ζ) := 2dF(2Jζ) = π−d

∫
R2d

e−2iσ(ζ,z)f(z) dz.

Note that F−1
σ = Fσ, hence F2

σ coincides with the identity operator.

The Gabor transform of f ∈ S ′(Rd) with respect to a window g ∈ S(Rd)\{0} is defined
by

Vgf(x, ξ) := ⟨f,MξTxg⟩ = F(f · Txg)(ξ) = (2π)−d/2

∫
Rd

e−iξ·yf(y)g(y − x) dy.

Whenever concerned with functions on even-dimensional spaces, it is natural to consider
as well the symplectic Gabor transform: if g ∈ S(R2d) \ {0},

Vgf(z, ζ) := Fσ(f · Tzg)(ζ) = π−d

∫
R2d

e−2iσ(ζ,w)f(w)g(w − z) dw = 2dVgf(z, 2Jζ).
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The phase space summability of the Gabor transform gives rise to modulation spaces.
Given 1 ≤ p, q ≤ ∞ and g ∈ S(Rd), the modulation space Mp,q(Rd) consists of all the
distributions f ∈ S ′(Rd) such that

(4) ∥f∥Mp,q
std

:=
(∫

Rd

(∫
Rd

|Vgf(x, ξ)|p dx
)q/p

dξ
)1/q

< ∞,

with obvious modifications in the case where p = ∞ or q = ∞. We write Mp(Rd) if q = p.

Modulation spaces are a family of Banach spaces such that S(Rd) is a dense subset of any
Mp,q with max{p, q} < ∞, and using different windows to compute the Gabor transform
results into equivalent norms. Moreover, we have the inclusions Mp1,q1(Rd) ⊆ Mp2,q2(Rd)
if p1 ≤ p2 and q1 ≤ q2, as well as the identification M2(Rd) = L2(Rd) (with equivalent
norms).

Swapping the integration order in (4) gives rise to a different family of spaces. Precisely,
W p,q(Rd) consists of f ∈ S ′(Rd) such that

(5) ∥f∥W p,q
std

:=
(∫

Rd

(∫
Rd

|Vgf(x, ξ)|p dξ
)q/p

dx
)1/q

< ∞.

The connection between the latter and modulation spaces is given by the Fourier trans-
form: in view of the pointwise identity

(6) Vĝf̂(ξ,−x) = eix·ξVgf(x, ξ),

we have

f ∈ Mp,q(Rd) ⇐⇒ f̂ ∈ W p,q(Rd).

Note that if q = p then Mp(Rd) = W p(Rd), and these are Fourier-invariant spaces.

It is worth emphasizing that the spacesW p,q(Rd) considered here can be framed into the
general theory of Wiener amalgam spaces, introduced by Feichtinger in [28]. In particular,

from (5) we note that ∥f∥W p,q
std

≍
( ∫

Rd ∥f ·Txg∥qFLp dx
)1/q

, hence W p,q(Rd) coincides with

the amalgam space W (FLp, Lq)(Rd) of distributions that locally have the same regularity
of the Fourier transform of a Lp function and enjoy global Lq decay. An equivalent discrete
characterization resorting to bounded uniform partitions of unity can be provided as well,
see again [28] for further details.

Useful embeddings for standard Lebesgue and Fourier-Lebesgue spaces are known [52]:
if p′ denotes the Hölder conjugate index associated with p ≥ 1 (namely, 1/p+ 1/p′ = 1),
then

(7) W p1,p(Rd) ↪→ Lp(Rd) ↪→ W p2,p(Rd),

for all p1 ≤ min{p, p′} and p2 ≥ max{p, p′}.
In the case of functions and distributions on R2d it is natural to introduce symplec-

tic versions of modulation and amalgam norms. By resorting to the symplectic Gabor
transform, we consider

∥f∥Mp,q
sym

:=
(∫

R2d

(∫
R2d

|Vgf(z, ζ)|p dz
)q/p

dζ
)1/q

,

∥f∥W p,q
sym

:=
(∫

R2d

(∫
R2d

|Vgf(z, ζ)|p dζ
)q/p

dz
)1/q

.



10 S. I. TRAPASSO

It is easy to realize that such norms are equivalent to those already introduced on
Mp,q(R2d) and W p,q(R2d) respectively. In order to lighten the notation below, we assume
the following convention hereinafter: if f ∈ S ′(Rn), then we set

∥f∥Mp,q :=

{
∥f∥Mp,q

sym
(n even)

∥f∥Mp,q
std

(n odd),
∥f∥W p,q :=

{
∥f∥W p,q

sym
(n even)

∥f∥W p,q
std

(n odd).

We emphasize that, in view of the identity Vgσfσ(ζ, z) = e2iσ(z,ζ)Vgf(z, ζ), we also have
the characterization W p,q(R2d) = FσM

p,q(R2d), that is

(8) f ∈ Mp,q(R2d) ⇐⇒ fσ ∈ W p,q(R2d).

The phase space summability of a function can be further refined using suitable weight
functions. For our purposes, it is enough to consider the family of polynomial weights
vs(y) := ⟨y⟩s, for s ∈ R and y ∈ Rd, where ⟨y⟩ := (1 + |y|2)1/2 ≍ 1 + |y|. The modulation
space Mp,q

s (Rd) is defined as before, the (standard) norm being

∥f∥Mp,q
s

:=
(∫

Rd

(∫
Rd

|Vgf(x, ξ)|pvs((x, ξ))p dx
)q/p

dξ
)1/q

.

Similar definitions are given for W p,q
s (Rd) and the corresponding symplectic versions for

functions on R2d — along with the same convention on the norms agreed in the unweighted
case.

To avoid separate discussions and workarounds due to the lack of density of the Schwartz
class in Mp,q and W p,q with p = ∞ or q = ∞, we agree that an operator T : S(Rn) →
S ′(Rn) is said to be bounded Xp1,q1

s1
(Rn) → Xp2,q2

s2
(Rn) if there exists a constant C > 0

such that

∥Tf∥Xp2,q2
s2

≤ C∥f∥Xp1,q1
s1

, ∀ f ∈ S(Rn),

where Xp,q
s denotes either Mp,q

s or W p,q
s for every possible choice of 1 ≤ p, q ≤ ∞ and

s ∈ R.

Recall that the Schwartz kernel theorem states that a linear operator T : S(Rn) →
S ′(Rn) is continuous if and only if there exists a (unique) distribution KT ∈ S ′(R2n) such
that

⟨Tf, g⟩ = ⟨KT , g ⊗ f⟩, f, g ∈ S(Rn).

Results in the same vein have been proved for modulation spaces, and we isolate from
[1, Corollary 8] and [17, Theorem 3.6] a characterization of boundedness that plays a key
role below.

Proposition 2.1. Let T : S(R2d) → S ′(R2d) be a linear operator with kernel KT ∈ S(Rn).
Given a, b ∈ R:

(i) The operator T is bounded M1
a (Rn) → M1

b (Rn) if and only if, for some (hence
any) G ∈ S(R2n) \ {0},

I1 := sup
(u,v)∈Rn×Rn

⟨(u, v)⟩b
∫
Rn×Rn

|VGKT (z, u, w,−v)|⟨(z, w)⟩−a dz dw < ∞,

and in this case we have ∥T∥M1
a→M1

b
≍ I1.
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(ii) The operator T is bounded M∞
a (Rn) → M∞

b (Rn) if and only if, for some (hence
any) G ∈ S(R2n) \ {0},

(9) I∞ := sup
(u,v)∈Rn×Rn

⟨(u, v)⟩b
∫
Rn×Rn

|VGKT (u, z, v,−w)|⟨(z, w)⟩−a dz dw < ∞,

and in this case we have ∥T∥M∞
a →M∞

b
≍ I∞.

Another result that is needed below concerns complex interpolation of modulation
spaces, which behaves as detailed below — see [20, Proposition 2.3.17].

Proposition 2.2. Consider 1 ≤ p1, p2, q1, q2 ≤ ∞ with q2 < ∞ and r1, r2, s1, s2 ∈ R. Let
T be a linear operator and A1, A2 > 0 constants such that

∥Tf∥Mp1,q1
s1

≤ A1∥f∥Mp1,q1
r1

, ∀ f ∈ Mp1,q1
r1

(Rd),

∥Tf∥Mp2,q2
s2

≤ A2∥f∥Mp2,q2
r2

, ∀ f ∈ Mp2,q2
r2

(Rd).

Then, for all 0 < θ < 1 and 1 ≤ p, q ≤ ∞, r, s ∈ R such that

1

p
=

1− θ

p1
+

θ

p2
,

1

q
=

1− θ

q1
+

θ

q2
, r = r1(1− θ) + r2θ, s = s1(1− θ) + s2θ,

there exists a constant C > 0 independent of T such that

∥Tf∥Mp,q
s

≤ CA1−θ
1 Aθ

2∥f∥Mp,q
r
, ∀ f ∈ Mp,q

r (Rd).

We conclude this brief review of tools from time-frequency analysis by mentioning
some alternative (quadratic) phase space representations. In particular, the ambiguity
transform of f, g ∈ S(Rd) is defined by

A(f, g)(x, ξ) := (2π)−d

∫
Rd

e−iξ·yf(y + x/2)g(y − x/2) dy,

while the so-called Wigner transform is given by

W (f, g)(x, ξ) := (2π)−d

∫
Rd

e−iξ·yf(x+ y/2)g(x− y/2) dy.

We write A(f) and W (f) if g = f . It is useful to highlight the relations among the
different transforms. Setting z = (x, ξ) ∈ R2d, we have

A(f, g)(x, ξ) = ei
x·ξ
2 Vgf(x, ξ), A(f, g)(z) = 2−dFσW (f, g)(z/2) = FW (f, g)(Jz).

The following continuity result will be used below — see [18] for additional details.

Proposition 2.3. Let 1 ≤ p0, q0, p1, q1, p2, q2 ≤ ∞ be indices such that

q2 ≥ max{p0, q0, p1, q1}, min
{ 1

p0
+

1

p1
,
1

p0
+

1

p1

}
≥ 1

p2
+

1

q2
.

Then, for all f ∈ Mp0,q0(Rd) and g ∈ Mp1,q1(Rd),

∥A(f, g)∥W p2,q2 ≍ ∥W (f, g)∥Mp2,q2 ≲ ∥f∥Mp0,q0∥g∥Mp1,q1 .
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2.3. Weyl product and twisted convolution. The Weyl pseudo-differential operator
aw : S(Rd) → S ′(Rd) with symbol a ∈ S ′(R2d) is defined by the rule

⟨awf, g⟩ = ⟨a,W (g, f)⟩, f, g,∈ S(Rd).

At a formal level, we thus have the explicit representation

awf(x) = (2π)−d

∫
R2d

eiξ·(x−y)a
(x+ y

2
, ξ
)
f(y) dy dξ.

Continuity results for Weyl operators depend on the target spaces as well as on the
symbols. Consider for instance the space Sm(R2d), m ∈ R, of smooth functions a : R2d →
C such that for every α ∈ N2d there exists Cα > 0 such that

|∂αa(z)| ≤ Cα⟨z⟩m, z ∈ R2d.

Note that there is no gain in decay upon differentiation for symbols in Sm. On the other
hand, the condition

|∂αa(z)| ≤ Cα⟨z⟩m−|α|, z ∈ R2d,

characterizes the Shubin symbol class Γm(R2d). The classes Γm and Sm become Fréchet
spaces when the natural seminorms associated with the corresponding definitions are
taken into account, and clearly Γm ⊂ Sm. The time-frequency analysis of smooth symbol
classes performed in [2, 60] (see also [6, Theorem 2.2]) yields the following result.

Proposition 2.4. Consider m, s ∈ R and 1 ≤ p, q ≤ ∞. The Weyl operator aw : S(Rd) →
S ′(Rd) with symbol a ∈ Sm(R2d) extends to a bounded operator Mp,q

s+m(Rd) → Mp,q
s (Rd),

the operator norm depending only on a finite number of seminorms of a in Sm.

The composition of Weyl operators associates with a bilinear form on symbols, usually
known as the Weyl (or twisted) product: we have awbw = (a#b)w, where (formally)

a#b(z) = (4π)−2d

∫
R4d

e
i
2
σ(u,v)a(z + u/2)b(z − v/2) du dv.

Alternatively, the Weyl product can be recast in terms of twisted convolution. The twisted
convolution of a, b ∈ S(R2d) is defined by

a× b(z) := π−d

∫
R2d

e2iσ(z,w)a(z − w)b(w) dw = π−d

∫
R2d

e−2iσ(z,w)a(w)b(z − w) dw.

Note that a × b(z) = Fσ(a(Tzb)
∨)(z). The twisted convolution extends to a continuous

(non-commutative) multiplication on Lp(R2d) for 1 ≤ p ≤ 2, as well as S ′(R2d)×S(R2d) →
S ′(R2d).

As anticipated, twisted convolutions are intimately related to products of Weyl symbols:
it is easy to prove that

a#b = aσ × b, a, b ∈ S(R2d).

In particular, since the twisted convolution satisfies

Fσ(a× b) = a× bσ = aσ × b∨,

the symplectic Fourier transform turns the twisted product into the twisted convolution:

(10) Fσ(a#b) = aσ × bσ = a#bσ = a× b∨ = aσ#b∨.
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The Weyl product extends to a continuous map on modulation spaces, in accordance
with the following result — see [21] for further details.

Proposition 2.5. Consider 1 ≤ p0, q0, p1, q1, p2, q2 ≤ ∞. The Weyl product #: S(R2d)×
S(R2d) → S(R2d) extends to a continuous operator Mp0,q0(R2d)×Mp1,q1(R2d) → Mp2,q2(R2d)
if and only if

(11) max
{
1 +

1

q2
− 1

q0
− 1

q1
, 0
}
≤ min

{ 1

p0
,
1

p1
,
1

p′2
,
1

q′0
,
1

q′1
,
1

q2
,
1

p0
+

1

p1
− 1

p2

}
.

The condition in (11) is equivalent to

1

p2
≤ 1

p1
+

1

p0
, q2 ≥ q0, q1, 1 ≤ 1

q1
+

1

q0
,

max
{
1− 1

p1
+

1

q2
, 1− 1

p0
+

1

q2
,
1

p2
+

1

q2
, 1 +

1

q2

}
≤ 1

q1
+

1

q0
.

In particular, let us stress that boundedness of the Weyl product does not hold if q2 < q0
or q2 < q1. A straightforward proof of this fact is given in [35, Proposition 3.3]. Actually,
inspecting the argument given there reveals that a stronger conclusion can be drawn, as
detailed below — we retrace here the steps of the proof for the sake of clarity.

Proposition 2.6. Given 1 ≤ p1, q1, p2, q2 ≤ ∞ such that q2 < q1 and b ∈ M1(R2d) \ {0},
the mapping #b : M

1(R2d) → M1(R2d) defined by #b(a) = a#b does not extend to a
continuous map Mp1,q1(R2d) → Mp2,q2(R2d). The same result holds as well for the map
a 7→ b#a.

Proof. Recall that modulation spaces are increasing with the indices, hence there is no
loss of generality if one considers the case where p1 = 1 and q2 ≤ p2. We argue by
contradiction, assuming that the map #b is continuous Mp1,q1(R2d) → Mp2,q2(R2d). Let
h ∈ M1(Rd) be such that ⟨bwh, h⟩ = ⟨b,W (h)⟩ ̸= 0. Fix a non-trivial f ∈ M1,q1(Rd) \
Mp2,q2(Rd) and set a = W (f, h). By Proposition 2.3 we have that a ∈ M1,q1(R2d), hence
the assumption on the continuity of #b implies that a#b ∈ Mp2,q2(R2d). In particular, by
[20, Theorem 4.4.15] we have that (a#b)w is bounded Mp′2(Rd) → M q2(Rd). Given the
structure of the symbol a, explicit computations show that the action of aw is given by

awg = (W (f, h))wg = (2π)−d/2⟨g, h⟩f, g ∈ M1(Rd).

In particular, we have

(a#b)wh = aw(bwh) = (2π)−d/2⟨b,W (h)⟩f ∈ M1,q1(Rd) \Mp2,q2(Rd).

Since M q2(Rd) ⊆ Mp2,q2(Rd), this shows that (a#b)w is not continuous M1(Rd) →
M q2(Rd), therefore not even Mp′2(Rd) → M q2(Rd), which is a contradiction. □

Remark 2.7. In view of the relationships (8) and (10), Proposition 2.5 reflects into a
characterization (under the same assumptions) of the boundedness of twisted convolutions
on Wiener amalgam spaces. Furthermore, again as a consequence of (10), we have

∥a× b∥Mp2,q2 = ∥aσ#b∥Mp2,q2 = ∥a#b∨σ∥Mp2,q2 ,

hence the same characterization applies to the boundedness of the twisted convolution as
a map W p1,q1 ×Mp0,q0 → Mp2,q2 as well as Mp1,q1 ×W p0,q0 → Mp2,q2.
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In particular, Proposition 2.6 implies that if b ∈ W 1(Rd) = M1(Rd) is a non-trivial given
function, the maps a 7→ a×b and a 7→ b×a fail to be continuous Mp1,q1(R2d) → Mp2,q2(R2d)
in the case where q2 < q1.

2.4. Review of Hermite and Laguerre functions. Consider the Hermite operator
H = −∆+ |x|2 on Rd. It is well known that this is a positive definite self-adjoint operator
on L2(Rd) with domain D(H) = {f ∈ L2(Rd) : Hf ∈ L2(Rd)}. The corresponding
spectrum σ(H) is discrete, precisely

σ(H) = d+ 2N = {d+ 2k : k = 0, 1, 2, . . .}.
In order to describe the structure of the eigenspaces, we introduce the Hermite functions.
Recall that the Hermite polynomial of degree n on R is defined by

Hn(y) := (−1)ney
2 dn

dyn
(e−y2).

The normalized Hermite functions are then defined by

hn(y) := (2nn!
√
π)−1/2e−y2/2Hn(y).

These are bounded functions, uniformly in n, and form an orthonormal basis of L2(R).

The Hermite functions on Rd are obtained by taking elementary tensors: for a multi-
index α ∈ Nd, we set

Φα(x) := hα1(x1) · · ·hαd
(xd) =

(−1)|α|

(2|α|α!πd/2)1/2
e|x|

2/2∂α
x e

−|x|2 , x ∈ Rd,

where we set |α| := α1 + . . . + αd. It is clear that {Φα : α ∈ Nd} is an orthonormal basis
of L2(Rd) (as well as an unconditional Schauder basis of S(Rd)), actually consisting of
eigenfunctions of the harmonic oscillator:

HΦα = (d+ 2|α|)Φα.

Therefore, the eigenspace associated with the eigenvalue d + 2k is spanned by {Φα :
|α| = k}, hence it is finite dimensional. In particular, the orthogonal projection Pk =∑

|α|=k⟨·,Φα⟩Φα is regularizing — that is, Pk : S ′(Rd) → S(Rd) is continuous.

Recall that the spectral multiplier m(H) associated with a Borel measurable function
m : σ(H) → C is defined by

m(H)f :=
∑
k∈N

m(d+ 2k)Pkf, f ∈ D(m(H)),

with maximal domain D(m(H)) =
{
f ∈ L2(Rd) :

∑
k∈N |m(d+ 2k)|2∥Pkf∥2L2 < ∞

}
.

Let us consider now the special Hermite operator on R2d, also known as the twisted
Laplacian. Recall from the Introduction that it is defined as the sum of the Hermite
operator with a rotation operator — to be precise, setting z = (x, y) ∈ R2d, we have

L := −
d∑

j=1

[(
∂xj

− i

2
yj
)2

+
(
∂yj +

i

2
xj

)2]
= −∆z +

1

4
|z|2 − i

d∑
j=1

(
xj∂yj − ∂xj

yj
)
.

As far as the spectral features of L are concerned, the theory of Landau-Weyl operators
[25, 24] implies that some of the properties of H extend to L. In particular, H and L have
the same eigenvalues (hence σ(L) = d+2N), but these are now infinitely degenerate. More
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precisely, each eigenfunction h of H associates with a family of eigenfunctions of L of the
form {Ugh : g ∈ S(Rd), ∥g∥L2 = 1}, where Ug are the partial isometries L2(Rd) → L2(R2d)
given by ambiguity transforms indexed by normalized Schwartz functions:

Ugh(x, ξ) := A(h, g)(x, ξ).

In fact, these results follow from the more general intertwining relation LUg = UgH.

The previous results naturally lead us to introduce the so-called special Hermite func-
tions, indexed by α, β ∈ Nd:

Φα,β(z) := A(Φα,Φβ)(Jz) = FW (Φα,Φb)(−z), z ∈ R2d.

Exploiting the connection between the ambiguity and the Gabor transforms, as well as

the identity (6), it is not difficult to show that A(Φa,Φb)(Jz) = A(Φ̂α, Φ̂β)(z). It is then
useful to recall that the Hermite functions are eigenfunctions for the Fourier transform,

namely Φ̂α = (−i)|α|Φα, hence

|Φα,β(z)| = |A(Φα,Φβ)(z)|, z ∈ R2d.

The family {Φα,β : α, β ∈ Nd} is clearly an orthonormal basis of L2(R2d) consisting of
eigenfunctions of L — as well as of the harmonic oscillator on L2(R2d):

LΦα,β = (d+ 2|β|)Φα,β, HΦα,β = (d+ |α|+ |β|)Φα,β.

Moreover, the eigenspace of L associated with the eigenvalue d+2k is spanned by {Φα,β :
|β| = k}. The corresponding eigenprojection Qk can be given a remarkable form in light of
some properties satisfied by the special Hermite functions. In particular, straightforward
computations show that

Φα,β × Φµ,ν = 4dΦα,νδβ,µ.

Therefore, in light of the expansion f =
∑

α,β∈Nd⟨f,Φα,β⟩Φα,β∈Nd , we have

f × Φν,ν =
∑

α,β∈Nd

⟨f,Φα,β⟩Φα,β × Φν,ν = 4d
∑
α∈Nd

⟨f,Φα,ν⟩Φα,ν .

As a result, we obtain

Qkf =
∑
|β|=k

∑
α∈Nd

⟨f,Φα,β⟩Φα,β = f ×
(
4−d

∑
|β|=k

Φβ,β

)
.

It is well known that the special Hermite functions can be expressed in terms of Laguerre
functions. Recall that the Laguerre polynomials Lδ

n of type δ > −1 and degree n ∈ N are
defined by

Lδ
n(y)e

−yyδ =
1

n!

dn

dyn
(
e−yyn+δ

)
, y ≥ 0.

They satisfy the following generating function identity: for all r ∈ R with |r| < 1,

(12)
∞∑
n=0

Lδ
n(y)r

n = (1− r)−δ−1e−
r

1−r
y.

Combining this identity with the Fourier transform and the definition of the special Her-
mite functions yields

(13) Φβ,β(x, ξ) = (2π)−d

d∏
j=1

L0
βj

( |xj|2 + |ξj|2

2

)
exp

(
− |xj|2 + |ξj|2

4

)
.
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A straightforward comparison of the associated generating functions shows that

(2π)d
∑
|β|=k

Φβ,β(z) = Ld−1
k

( |z|2
2

)
e−

1
4
|z|2 =: φk(z).

As a consequence, the projection Qk has an explicit structure as twisted convolution:

(14) Qkf = (8π)−df × φk.

The spectral multiplier m(L) associated with a Borel measurable function m : σ(H) →
C is then defined by

m(L)f :=
∑
k∈N

m(d+ 2k)Qkf, f ∈ D(m(L)),

with maximal domain D(m(L)) =
{
f ∈ L2(R2d) :

∑
k∈N |m(d+ 2k)|2∥Qkf∥2L2 < ∞

}
.

A refined time-frequency analysis of Hermite and special Hermite functions appears to
be quite difficult. Nevertheless, the following (quite pessimistic) asymptotic bounds will
suffice for the purposes of this note.

Proposition 2.8. Let β ∈ Nd be such that |β| = k. There exist N ∈ N such that, if
k ≥ N ,

(15) ∥Φβ∥M1 ≍ kd2−d/2,

(16) ∥Φβ,β∥M1 ≲ k2d2−d,

(17) ∥φk∥M1 ≲ k2d2−1.

Proof. Let us first consider (15). Since the identity |Vgf | = |A(f, g)| holds pointwise,
choosing f = g = Φβ ∈ S(R2d) we have

∥Φβ∥M1 = ∥A(Φβ,Φβ)∥L1 = ∥Φβ,β∥L1 .

In light of (13), after setting zj = (xj, ξj) ∈ R2d the problem boils down to prove bounds
for

∥Φβ∥M1 = (2π)−d

d∏
j=1

∥∥∥L0
βj

( |zj|2
2

)
exp

(
− |zj|2

4

)∥∥∥
L1
zj

.

Sharp asymptotic L1 bounds for Laguerre functions are known, see [55, Lemma 1.5.4],
and straightforward computations lead to the claim.

Concerning (16), application of Proposition 2.3 with p2 = q2 = 1 yields

∥Φβ,β∥M1 ≲ ∥Φβ∥2M1 ,

and the claim follows immediately from the previous step.

To conclude, the bound in (17) follows after noticing that

∥φk∥M1 ≤
∑
|β|=k

∥Φβ,β∥M1 ,

as a consequence of (16) and a standard stars-and-bars argument showing that
∑

|β|=k 1 =(
k+d+1

k

)
— the latter becoming comparable to kd−1 for k sufficiently large. □
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2.5. Metaplectic operators. The metaplectic representation is a faithful and strongly
continuous unitary representation on L2(Rd) of the two-fold covering Mp(d,R) of the
symplectic group Sp(d,R) — see [20, 23] for further details. In particular, every symplectic
matrix S ∈ Sp(d,R) associates with a pair of unitary operators that differ only by the
sign — we write µ(S) to denote any of them, with a slight abuse of notation. As a result,
for every S1, S2 ∈ Sp(d,R) we have that µ(S1)µ(S2) and µ(S1S2) coincide up to the sign.

The phase space analysis of metaplectic operators has been developed over the last
decade. In particular, there is a fairly complete picture of boundedness on modulation
spaces. We list below some results proved in [19, Corollary 3.4], [13, Theorem 1] and [29,
Theorems 3.2 and 4.6].

Proposition 2.9. Let µ(S) be a metaplectic operator associated with S ∈ Sp(d,R).

(i) µ(S) is an automorphism of S(Rd) and extends to a bounded operator on Mp(Rd)
for every 1 ≤ p ≤ ∞. In particular, there exists C > 0 such that, for all f ∈
Mp(Rd),

∥µ(S)f∥Mp ≤ C(σ1(S) · · ·σd(S))
|1/2−1/p|∥f∥Mp ,

where σ1(S) ≥ . . . ≥ σd(S) ≥ 1 are the d largest singular values of S. Moreover,
the following phase space dispersive estimate holds:

∥µ(S)f∥M∞ ≤ C(σ1(S) · · ·σd(S))
−1/2∥f∥M1 , f ∈ M1(Rd).

(ii) For 1 ≤ p, q ≤ ∞ with p ̸= q, µ(S) is bounded on Mp,q(Rd) if and only if S is an
upper block triangular matrix.

(iii) For s ∈ R and 1 ≤ p, q ≤ ∞, µ(S) is bounded on Mp,q
s (Rd) if and only if it is

bounded on Mp,q(Rd).

It is also well known that metaplectic operators can be characterized as the Schrödinger
propagators associated with real quadratic Hamiltonian operators. For instance, with
reference to (1), we have

e−itL = e−itLw

= cµ(Lt),

for a suitable c ∈ C, |c| = 1, where

(18) Lt = e−2tL, L :=

[
−J/2 I
−I/4 −J/2

]
.

Explicit integral representations for e−itL can be obtained via Mehler-type formulas for
metaplectic operators [20, 23, 37] or, as customary in physics, by means of a Wick rota-
tion t 7→ it in the heat flow setting discussed in Section 4 (more precisely, via analytic
continuation [42]), so that for a suitable c ∈ C with |c| = 1 we have

e−itL = c(f × qt), qt(z) = (16π sin t)−de
i
4
cot(t)|z|2 ,

provided that t /∈ E := {kπ : k ∈ Z}. Basic dispersive estimates can be read from this
representation, such as

∥e−itLf∥L∞ ≲ (sin t)−d∥f∥L1 , f ∈ S(R2d), t /∈ E.

It is worth comparing this result to the parallel modulation space setting in light of the
results listed in Proposition 2.9, which need access to the singular values of Lt. In fact, the
twisted Laplacian happens to be one of those rare cases where a closed-form expression



18 S. I. TRAPASSO

for the companion symplectic matrix Lt can be readily obtained, after noticing that the
powers of the Hamiltonian matrix L satisfy the identities

L2k = (−1)k−1L2, L2k+1 = (−1)kL, k ∈ N \ {0}.

We leave the explicit computations to the willing reader, and just claim that Lt comes
with two singular values ℓ−(t), ℓ+(t) of multiplicity 2d each, satisfying ℓ−(t)ℓ+(t) = 1 and
ℓ+(t) ≍ 1 uniformly with respect to t ∈ R. Therefore, from Proposition 2.9 we obtain

∥e−itLf∥M∞ ≤ C∥f∥M1 , f ∈ S(R2d), t ∈ R.

A subtler analysis of the phase space evolution requires the tools developed in [19]. We
also address the reader to [12, 16, 46] for the study of Gabor-type wave front sets (see
Remark 4.3 below), and the corresponding problem of propagation of singularities in phase
space.

Remark 2.10. Let m be the Fourier transform of a finite complex Borel measure µ on
R, that is

m(ξ) = (2π)−1/2

∫
R
e−ixξ dµ(x).

It is then straightforward to check the (pointwise) identity

m(H)f(y) = (2π)−1/2

∫
R
e−ixHf(y) dµ(x), y ∈ Rd, f ∈ S(Rd).

The Schrödinger propagator e−ixH is a metaplectic operator satisfying ∥e−ixHf∥Mp ≤
C∥f∥Mp, where the constant C does not depend on x in view of the periodic phase space
dynamics of the harmonic oscillator. As a result, m(H) is a bounded operator on Mp(Rd)
for all 1 ≤ p ≤ ∞, and similar arguments apply to m(L).

3. A transference principle for the spectral multipliers of L

As anticipated in the Introduction, we first establish a unitary (in fact, metaplectic)
intertwining relationship between the twisted Laplacian and a partial harmonic oscillator.
This result is consistent with the findings obtained in [9, 30, 31] and will be the main
ingredient of the subsequent transference principle.

Proposition 3.1. Let AJ be the operator defined by

AJf(x, y) := (2π)−d

∫
Rd

eix·uf(u+ y/2, u− y/2) du, f ∈ S(R2d).

(i) AJ is a metaplectic operator, namely

AJ = cµ(AJ), AJ =

[
A1 A2

A3 A4

]
,

for some c ∈ C, |c| = 1, where the 2d× 2d blocks of AJ are given by

A1 =

[
−I/2 −I/2
O O

]
, A2 =

[
O O
I/2 −I

]
, A3 =

[
O O
I −I

]
, A4 =

[
−I/2 −I
O O

]
.

As such, AJ is a unitary operator on L2(R2d) that extends to a continuous operator
on Mp

s (R2d) for all 1 ≤ p ≤ ∞ and s ∈ R.
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(ii) The following intertwining relation holds:

AJ(I ⊗H) = LAJ .

Proof. We haveAJ = F−1
1 Tf , where F1 denotes the partial Fourier transform of a function

on R2d with respect to the first group of d variables, that is

F1f(ξ, y) = (2π)−d/2

∫
Rd

e−iξ·xf(x, y) dx,

and T amounts (up to a factor) to a linear change of variables:

Tf(u, v) := (2π)−d/2f(u+ v/2, u− v/2).

It is well known that partial Fourier transforms and linear changes of variables are meta-
plectic operators — see for instance [23, 41]. Boundedness on modulation spaces follows
from Proposition 2.9. The details about determining the block structure of the matrix
AJ are left to the interested reader.

Concerning the intertwining property, it is enough to show that AJ(I⊗H)f and LAJf
coincide for all f ∈ S(R2d). To this aim, let us first highlight that AJ satisfies

(19) AJ(Φα ⊗ Φβ)(x, y) = A(Φα,Φβ)(y,−x) = Φα,β(x, y).

Therefore, we expand an arbitrarily chosen f ∈ S(R2d) with respect to the orthonormal
basis {Φα ⊗ Φβ : α, β ∈ Nd} and, setting cα,β = ⟨f,Φα ⊗ Φβ⟩, we get

AJ(I ⊗H)f =
∑

α,β∈Nd

cα,βAJ(I ⊗H)(Φα ⊗ Φβ)

=
∑

α,β∈Nd

cα,βAJ(Φα ⊗ (d+ 2|β|)Φβ)

=
∑

α,β∈Nd

(d+ 2|β|)cα,βΦα,β

=
∑

α,β∈Nd

cα,βLΦα,β

= LAJf. □

As a consequence of the previous result, we infer that L is unitarily equivalent to I⊗H
on S(R2d). In particular, they are isospectral operators with unitarily equivalent spectral
projections, hence unitarily equivalent functional calculi: for all m ∈ L∞(d+2N), we have

m(L) = AJm(I ⊗H)A∗
J .

It is straightforward to check that σ(I ⊗H) = σ(H) = d + 2N, the eigenspace of I ⊗H
associated with the eigenvalue d+ 2k being spanned by {gj ⊗Φβ : j ∈ N, |β| = k}, where
(gj)j∈N is any orthonormal basis of L2(Rd). Therefore, expansion with respect to the
orthonormal basis {Φα ⊗ Φβ : α, β ∈ Nd} yields the following result.

Lemma 3.2. If m ∈ L∞(d+ 2N), then m(I ⊗H) = I ⊗m(H).

We are ready to prove a transference principle for spectral functions of the twisted
Laplacian in terms of the corresponding ones for the harmonic oscillator.
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Theorem 3.3. Let m ∈ L∞(d+2N) and consider the spectral multipliers m(L) on L2(R2d)
and m(H) on L2(Rd).

If m(H) is a bounded operator Mp
s (Rd) → Mp

r (Rd) for some s, r ≥ 0 and every 1 ≤ p ≤
∞, then m(L) is a bounded operator Mp

s (R2d) → Mp(R2d), 1 ≤ p ≤ ∞, satisfying

∥m(L)∥Mp
s→Mp ≤ C∥m(H)∥1/pM1

s→M1
r
∥m(H)∥1/p

′

M∞
s →M∞

r
,

for some constant C > 0.

Proof. We argue by interpolation between the extremal cases M1
s (R2d) → M1(R2d) and

M∞
s (R2d) → M∞(R2d). Detailed arguments are given here for the latter case only, since

the other one is identical up to obvious modifications.

With reference to Proposition 2.1, let us consider I∞ with n = 2d, b = 0 and a = s ≥ 0.
It is not restrictive to assume that G = g ⊗ g with g = g0 ⊗ g0 ∈ S(R2d) for some real-
valued g0 ∈ S(Rd) \ {0}. Combining the definition of the Gabor transform, the Schwartz
kernel theorem and the identity (3), we get

|VGKT (u, z, v,−w)| = |⟨K, π(u, z, v,−w)g ⊗ g⟩|
= |⟨KT , π(u, v)g ⊗ π(z,−w)g⟩|
= |⟨Tπ(z, w)g, π(u, v)g⟩|.(20)

In the case where T = I ⊗m(H) we have in particular

|VGKT (u, z, v,−w)| = |⟨Tπ(z, w)g, π(u, v)g⟩|
= |⟨(I ⊗m(H))π(z1, w1)g0 ⊗ π(z2, w2)g0, π(u1, v1)g0 ⊗ π(u2, v2)g0⟩|
= |⟨π(z1, w1)g0, π(u1, v1)g0⟩||⟨m(H)π(z2, w2)g0, π(u2, v2)g0⟩|
= |Vg0g0(u1 − z1, v1 − w1)||VgKm(H)(u2, z2, v2,−w2)|.

Using that ⟨(x1, x2, y1, y2)⟩−q ≤ ⟨(x2, y2)⟩−q ≤ 1 for all x1, x2, y1, y2 ∈ Rd and q ≥ 0, the
initial condition on the kernel of T reduces to the finiteness of

I∞ =
(

sup
(u1,v1)∈Rd×Rd

∫
Rd×Rd

|Vg0g0(u1 − z1, v1 − w1)| dz1 dw1

)
×

(
sup

(u2,v2)∈Rd×Rd

⟨(u2, v2)⟩r
∫
Rd×Rd

|VgKm(H)(u2, z2, v2,−w2)|⟨(z2, w2)⟩−s dz2 dw2

)
.

The first factor is finite since g0 ∈ S(Rd) implies Vg0g0 ∈ S(Rd) — see for instance [20,
Theorem 1.2.23]. Concerning the second one, from (20) we recognize that the finiteness
of this quantity is equivalent to the condition (9) for the kernel of the Hermite multi-
plier m(H), which in turn characterizes the boundedness of the latter as an operator
M∞

s (Rd) → M∞
r (Rd). Since this is true by assumption, we infer that the second factor is

finite — and actually equivalent to the operator norm ∥m(H)∥M∞
s →M∞

r
, so that

∥I ⊗m(H)∥M∞
s →M∞ ≲ ∥m(H)∥M∞

s →M∞
r
.

We then resort to Proposition 2.9 and Lemma 3.2 to conclude that, for all f ∈ S(R2d),

∥m(L)f∥M∞ = ∥AJm(I ⊗H)A∗
Jf∥M∞

≲ ∥(I ⊗m(H))A∗
Jf∥M∞

≤ ∥(I ⊗m(H))∥M∞
s →M∞∥A∗

Jf∥M∞
s

≲ ∥m(H)∥M∞
s →M∞

r
∥f∥M∞

s
.
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Repeating the argument for I1, we obtain similarly

∥m(L)∥M1
s→M1 ≲ ∥m(H)∥M1

s→M1
r
.

Finally, we have proved that m(L) is a bounded operator on both weighted M1(R2d)
and M∞(R2d), which is enough to obtain boundedness on all the intermediate modulation
spaces Mp(R2d), 1 < p < ∞, by complex interpolation via Proposition 2.2. □

Remark 3.4. In view of Proposition 2.9, given that the symplectic matrix AJ associated
with the intertwining metaplectic operator AJ is not block triangular, the transference
principle in Theorem 3.3 does not extend to Mp,q with p ̸= q.

We emphasize that our proof exploits interpolation between characterizations of bounded-
ness on the “endpoint” modulation spaces M1 and M∞. Similar Schur-type characteriza-
tions at the level of the kernel in the intermediate cases Lp → Lq are known to be hard to
establish — sufficient (but non-necessary) conditions to prove boundedness Mp → M q of
an operator in terms of the regularity of its Gabor matrix can be found for instance in [27,
Proposition 3.28]. It is natural to wonder whether a different proof strategy could lead to
a sharper transference result, such as: if m(H) is bounded on Mp(Rd), 1 < p < ∞, then
m(L) is bounded on Mp(R2d) as well, with ∥m(L)∥Mp→Mp ≲ ∥m(H)∥Mp→Mp.

Remark 3.5. It is easy to realize that, up to minor adjustments in the proof, the trans-
ference Theorem 3.3 directly applies to H and L in place of m(H) and m(L) respectively.
In fact, taking care of domain issues, the result also extends to more general (e.g., un-
bounded) spectral functions. A closer inspection of the proof of Theorem 3.3 actually
reveals that the claim still holds if m(H) and m(L) are replaced by linear continuous op-
erator T : S(Rd) → S ′(Rd) and U(I ⊗ T )V respectively, where U, V are linear operators
that are bounded on every modulation space Mp

s (R2d) with 1 ≤ p ≤ ∞ and s ≥ 0.

3.1. Boundedness of L and its fractional powers. In light of the transference princi-
ple just discussed, let us investigate the boundedness of L and its (real) fractional powers
on modulation spaces. We are preliminarily led to examine the continuity of the har-
monic oscillator and its powers, for which a comprehensive pseudo-differential analysis is
available.

Proposition 3.6. The operator Hν, with ν ∈ R and densely defined on S(Rd), is pseudo-
differential with Weyl symbol in the Shubin class Γ2ν(R2d), hence it extends to a bounded
operator Mp,q

s+2ν(Rd) → Mp,q
s (Rd) for all 1 ≤ p, q ≤ ∞ and s ∈ R.

Proof. If ν > 0, the first part of the claim follows from the general theory of positive
powers of globally elliptic Weyl operators with Shubin symbols, and is a restatement
of [6, Proposition 2.3] — see the corresponding proof for additional details. The claim
then follows by symbolic calculus [50, Theorem 25.4] in the case where ν < 0, since
Hν = (H−ν)−1 and 0 /∈ σ(H). To conclude, boundedness on modulation spaces follows
by Proposition 2.4, in view of the embedding Γ2ν ⊂ S2ν . □

The results in Proposition 3.6 motivates the analysis of general real powers of L. Given
ν ∈ R, we define here the fractional powers Lν by spectral expansions such as

(21) Lνf :=
∑
k∈N

(d+ 2k)νQkf, f ∈ Q := span{Φα,β : α, β ∈ Nd}.
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Note that Q is a dense subset of S(R2d) — in fact, one can assume f ∈ S(R2d) as well.

If ν ≤ 0 then boundedness of Lν on Mp(R2d) follows by straightforward application of
Theorem 3.3 — notably, at the price of the loss of the smoothing effect associated with
the action of Hν .

The case ν > 0 requires additional comments, since the scope of Theorem 3.3 is re-
stricted to bounded multipliers. Note that the operators Lν (densely defined on Q) and
(I ⊗ H)ν (densely defined on P := span{Φα ⊗ Φβ : α, β ∈ Nd}) are unitarily equivalent
via AJ , with A∗

J(Q) = P as a consequence of (19). One can also prove that, as in Lemma
3.2, (I ⊗H)ν and I ⊗Hν coincide on the (non-empty) intersection of their domains, for
instance on P or S(R2d). Transference in this setting then follows as outlined in Remark
3.5.

Let us distill the previous discussion into a boundedness result for the fractional twisted
Laplacian, parallel to Proposition 3.6 — note in particular the case ν = 1, since bound-
edness of L is obtained in spite of the current lack of a refined phase space analysis of the
eigenprojections Qk.

Corollary 3.7. For every ν ∈ R and 1 ≤ p ≤ ∞, the operator Lν defined in (21) is a
bounded operator Mp

max{2ν,0}(R
2d) → Mp(R2d).

We conclude this section with some remarks on other spectral multipliers related to
powers of the Hermite and the special Hermite operators.

Remark 3.8. Consider the Riesz transforms for the harmonic oscillator, namely the
operators Rj(H) = AjH−1/2, j = 1, . . . , d, where Aj = −∂xj

+ xj is the so-called lowering
operator. They were first studied in [57] in connection with the wave equation for H. In
[4] the authors prove a boundedness result for Rj on Mp,q(Rd) under constraints on p, q.
In fact, Rj(H) is bounded on Mp,q

s (Rd) for any choice of 1 ≤ p, q ≤ ∞ and s ∈ R, since
H−1/2 is a Weyl operator with symbol in Γ−1, while Aj is a Weyl operator with symbol in
Γ1. As a result, Rj(H) has symbol in Γ0 ⊂ S0, hence it is bounded on every modulation
space. The same result obviously holds for H−1/2Aj, j = 1, . . . , d.

By transference, the Riesz transforms for the twisted Laplacian Rj(L) = AjL−1/2 are
bounded on Mp(Rd) for all 1 ≤ p ≤ ∞ and j = 1, . . . , d — see [44, 55] for the analysis of
these operators in the context of Lebesgue spaces.

3.2. Oscillating multipliers for L. Let us consider now oscillating multipliers of the
form

m(x) = x−δ/2eix
γ/2, x, γ, δ > 0.

In [4] the authors proved boundedness results for such spectral functions of the harmonic
oscillator (and more general ones of Mikhlin-Hörmander type) by exploiting the connection
with Fourier multipliers on the torus. In particular, they obtained that m(H) is bounded
on Mp(Rd), 1 ≤ p < ∞, provided that δ/γ > d|1/p− 1/2|.
Such a boundedness result for oscillating multipliers for H can be actually improved via

pseudo-differential analysis. The main ingredient comes from the analysis of semilinear
parabolic equations performed in [43, Theorem 1.2], from which we isolate a special case
of interest.
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Lemma 3.9. Let b be a real-valued symbol in S1. Given T > 0, the Schrödinger propagator
eitb

w
is a pseudo-differential operator whose Weyl symbol belongs to a bounded set of S0,

uniformly with respect to t ∈ [0, T ].

Theorem 3.10. Given γ ≤ 1 and δ ≥ 0, for x > 0 and t > 0 consider the spectral
multiplier

mt(H) := H−δ/2eitH
γ/2

.

The operator mt(H) is bounded Mp,q
s (Rd) → Mp,q

s+δ(Rd) for all 1 ≤ p, q ≤ ∞ and s ∈ R.
Moreover, if 0 < t ≤ T , there exists C(T ) > 0 such that

∥mt(H)f∥Mp,q
s+δ

≤ C(T )∥f∥Mp,q
s
.

Proof. In light of Proposition 3.6, H−δ/2 is bounded Mp,q
s (Rd) → Mp,q

s+δ(Rd). It is then

enough to establish the boundedness onMp,q
s (Rd) of the fractional Schrödinger flow eitH

γ/2
.

To this aim, Proposition 3.6 shows that Hγ/2 is a Weyl operator with symbol in Γγ ⊆
Γ1 ⊂ S1, so that the assumptions of Lemma 3.9 are satisfied. Boundedness on every
modulation space Mp,q

s then follows from Proposition 2.4, along with information about
the structure of the operator norm. □

Remark 3.11. Continuity results for oscillating Hermite multipliers on Lebesgue and
Hardy spaces were proved for instance in [58], and in [14] for general Schrödinger flows
associated with operators whose kernel satisfies a pointwise upper bound of Gaussian type.
More recently, Lp bounds for oscillating Hermite multipliers were obtained in [8] under
the constraint δ/γ ≥ d|1/p− 1/2|.

Boundedness on modulation spaces of oscillating multipliers for the twisted Laplacian
is thus obtained via transference (Theorem 3.3).

Corollary 3.12. Given γ ≤ 1 and δ ≥ 0, for x > 0 and t > 0 consider the spectral
multiplier

mt(L) := L−δ/2eitL
γ/2

.

The operator mt(L) is bounded on Mp(R2d) for all 1 ≤ p ≤ ∞. Moreover, if 0 < t ≤ T ,
there exists C(T ) > 0 such that

∥mt(L)f∥Mp ≤ C(T )∥f∥Mp .

4. The heat semigroup for the twisted Laplacian

Let us consider now the heat semigroup associated with the twisted Laplacian, namely
e−tL with t > 0. By the spectral calculus this is defined by

e−tLf =
∞∑
k=0

e−(2k+d)tQkf, f ∈ L2(R2d).

It is not surprising that the heat semigroup inherits a twisted convolution structure from
(14) — see also [55, 63]. Precisely, by linearity we have

e−tLf = f × pt, pt(z) := (8π)−d

∞∑
k=0

e−(2k+d)tφk(z).
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The generating function identity (12) can be called into play to obtain an explicit form
for the twisted heat propagator:

pt(z) = (8π)−de−dt

∞∑
k=0

(e−2t)kLd−1
k

( |z|2
2

)
e−

|z|2
4

= (8π)−de−dt(1− e−2t)−d exp
(
− 1 + e−2t

1− e−2t

|z|2

4

)
= (16π sinh t)−d exp

(
− 1

4
coth(t)|z|2

)
.

In order to prove bounds for e−tLf = f × pt on modulation spaces, in light of Remark
2.7 we first perform a time-frequency analysis of the twisted propagator.

Lemma 4.1. For 1 ≤ p, q ≤ ∞ and t > 0 we have

(22) ∥pt∥W p,q ≤ Ce−td(1 + coth t)d/p(1 + tanh t)d/q,

for a suitable constant C > 0 that depends only on d, p, q.

Proof. Set g(z) = e−|z|2 , z ∈ R2d, and for λ > 0 consider gλ(z) := g(
√
λz) = e−λ|z|2 . It is

then clear that
pt(z) = (16π sinh t)−dg coth t

4
(z).

As a result, the problem boils down to obtaining bounds for the amalgam norms of dilated
Gaussian functions. Straightforward computations yield

|Vggλ(z, ζ)| = (1 + λ)−de−
λ

1+λ
|z|2e−

4
1+λ

|ζ|2 , (z, ζ) ∈ R4d,

and taking mixed Lebesgue norms gives

∥gλ∥W p,q = Cd,p,qλ
−d/q(1 + λ)d(1/q+1/p−1),

where Cd,p,q = 4−d/pπd(1/p+1/q)p−d/pq−d/q. We finally obtain the claim with elementary
bounds after setting λ = (coth t)/4. □

Boundedness of e−tL on modulation and spaces holds as detailed below. In the state-
ment, we agree that Xp,q denotes either Mp,q or W p,q.

Theorem 4.2. Consider 1 ≤ p1, p2, q1, q2 ≤ ∞. The special Hermite heat semigroup e−tL,
t > 0, is a continuous map Xp1,q1(R2d) → Xp2,q2(R2d) if and only if q2 ≥ q1. In such case,
the following bound holds:

∥e−tLf∥Xp2,q2 ≤ C(t)∥f∥Xp1,q1 ,

where

C(t) :=

{
Ce−td (t ≥ 1)

Ct−d/p̃ (0 < t ≤ 1),

1

p̃
:= max

{ 1

p2
− 1

p1
, 0
}
,

and C > 0 is a constant that does not depend on t or f .

Proof. Given p1, q1, p2, q2 with q1 ≤ q2, let p0, q0 ∈ [1,∞] be indices such that

1

p0
=

1

p̃
= max

{ 1

p2
− 1

p1
, 0
}
, q2 ≥ q0,

1

q0
≥ 1 +

1

q2
− 1

q1
.

Therefore, in light of Proposition 2.5 and Remark 2.7, we have

∥e−tLf∥Xp2,q2 = ∥f × pt∥Xp2,q2 ≤ C∥f∥Xp1,q1∥pt∥W p0,q0 ,



PHASE SPACE ANALYSIS OF THE TWISTED LAPLACIAN 25

the condition q1 ≤ q2 being also necessary in view of Proposition 2.6. We thus resort to
(22) with p = p0 and q = q0, and elementary bounds imply that ∥pt∥W p0,q0 ≲ e−td if t ≥ 1,
while ∥pt∥W p0,q0 ≲ t−d/p0 if 0 < t ≤ 1. □

Remark 4.3. In passing, we highlight some aspects of the microlocal analysis of the
heat flow e−tL. To this aim, we recall the notion of Gabor wave front set introduced by
Hörmander in [36], then recently rediscovered and further developed in [48] — see also
[47] for a plain introduction with some historical notes. Roughly speaking, the Gabor
wave front set WF (u) ⊆ R2n \ {0} detects the directions in phase space along which a
temperate distribution u ∈ S ′(Rn) lacks of Schwartz regularity, as measured by the decay
of the Gabor transform over a cone. To be precise, we have that z0 /∈ WF (u) if there
exists an open conic subset Γz0 ⊆ R2n \ {0} such that z0 ∈ Γz0 and, for some (in fact any)
g ∈ S(Rn) \ {0},

sup
z∈Γz0

|Vgu(z)| < ∞, ∀N ∈ N.

The heat flow e−tL is a pseudo-differential operator with Weyl symbol (cf. [37, Theorem
4.2])

e−tL = Θw
t , Θt(z, ζ) := (8π2 cosh t)−de−(tanh t)|ζ−Jz/2|2 , (z, ζ) ∈ R4d.

The symbol Θt belongs to the Hörmander class S0(R4d). A property that distinguishes the
Gabor wave front set from other similar notions is precisely the microlocalization of this
“tough” symbol class, in the sense of the following inclusion:

WF (e−tLu) = WF (Θw
t u) ⊆ WF (u), u ∈ S ′(R2d), t > 0.

This result can be further refined if one takes into account the notion of singular space,
introduced in [34, 45] to investigate the hypoelliptic features of non-elliptic operators. The
singular space associated with e−tLw

(cf. (1) and (18)) can be readily determined:

SL := kerL = {(z, Jz/2) : z ∈ R2d}.
Then, [46, Theorem 6.2] shows that the phase space singularities that fall outside the
singular space are suppressed by the diffusion flow, as a consequence of the following
inclusion of Gabor wave front sets:

WF (e−tLu) ⊆ (WF (u) ∩ SL) \ {0}, u ∈ S ′(R2d), t > 0.

It is thus clear that the heat flow e−tL regularizes every initial datum whose Gabor wave
front set is disjoint from the singular space SL — this happens for instance if u = δ or
u = 1, since WF (δ) = {0} × (R2d \ {0}) and WF (1) = (R2d \ {0}) × {0}. It would
be interesting to determine a distribution v (if any) such that WF (v) = SL — see for
instance [49, Theorem 6.1] in this connection.

4.1. The fractional heat semigroup. Let us now discuss boundedness results for the
fractional heat multiplier e−tLν

with 0 < ν < 1 and t > 0. The functional calculus for L
leads us to consider

(23) e−tLν

f =
∞∑
k=0

e−t(d+2k)νQkf = f ×
(
(8π)−d

∞∑
k=0

e−t(d+2k)νφk

)
, f ∈ L2(R2d).

Except for the case ν = 1 already treated, it seems not possible to obtain an explicit,

closed form for the twisted kernel p
(ν)
t associated with e−tLν

— namely, the function such

that e−tLν
= f × p

(ν)
t .
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An alternative representation for the fractional heat semigroup can be obtained via
subordination. Let ηt ≥ 0 be the density function of the distribution of the ν-stable
subordinator at time t — see e.g., [7] for further details. Then, by construction, ηt(s) = 0
for s ≤ 0 and we have the identity

(24)

∫ +∞

0

e−us ηt(s) ds = e−tuν

, ∀u ≥ 0.

The fractional twisted Laplacian semigroup e−tLν
is thus subordinated to the twisted heat

semigroup via the following pointwise identity.

Proposition 4.4. For all 0 < ν < 1 and f ∈ S(R2d),

e−tLν

f(z) =

∫ +∞

0

(e−sLf(z)) ηt(s) ds, z ∈ R2d.

Proof. Let us expand f with respect to special Hermite functions, so that f =
∑

α,β cα,βΦα,β,

where cα,β = ⟨f,Φα,β⟩ and α, β ∈ Nd. Such an expansion converges uniformly and abso-
lutely to f in R2d, as a consequence of the fact that ∥Φα,β∥L∞ = |Φα,β(0)| ≤ 1 and, for all
n ∈ N,

|cα,β| = |⟨f,Φα,β⟩| =
|⟨Hnf,Φα,β⟩|

(d+ |α|+ |β|)n
≤ ∥Hnf∥L2

(d+ |α|+ |β|)n
,

where we used that H is a symmetric operator — it is then enough to choose n sufficiently
large to ensure convergence. The same argument yields the uniform convergence in R2d

of any L∞ multiplier expansion

m(L)f =
∑

α,β∈Nd

m(d+ 2|β|)cα,βΦα,β, f ∈ S(R2d).

On this basis, resorting to the subordination identity (24) we have, for all z ∈ R2d,∫ +∞

0

(e−sLf(z)) ηt(s) ds =

∫ +∞

0

( ∑
α,β∈Nd

e−s(d+2|β|)νcα,βΦα,β(z)
)
ηt(s) ds

=
∑

α,β∈Nd

cα,βΦα,β(z)
(∫ +∞

0

e−s(d+2|β|)νηt(s) ds
)

=
∑

α,β∈Nd

e−t(d+2|β|)νcα,βΦα,β(z)

= e−tLν

f(z). □

In the following statement, we agree that Xp,q denotes either Mp,q or W p,q.

Theorem 4.5. Consider 0 < ν < 1 and 1 ≤ p1, p2, q1, q2 ≤ ∞. The operator e−tLν
defined

in (23) is a continuous map Xp1,q1(R2d) → Xp2,q2(R2d) if and only if q2 ≥ q1 and, in such
case, the following bound holds:

∥e−tLν

f∥Xp2,q2 ≤ Cν(t)∥f∥Xp1,q1 ,

where

Cν(t) :=

{
Ce−tdν (t ≥ 1)

Ct−
d
νp̃ (0 < t ≤ 1),

1

p̃
:= max

{( 1

p2
− 1

p1

)
, 0
}
,

and C > 0 is a constant that does not depend on t or f .
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Proof. First, let us discuss the necessity of the condition q2 ≥ q1. Recall that e−tLν
f =

f × p
(ν)
t . Even if an explicit formula for p

(ν)
t is not currently available, a rough bound

shows that p
(ν)
t ∈ M1(R2d). Indeed, by virtue of Proposition 2.8,

∥p(ν)t ∥M1 = ∥p(ν)t ∥W 1 ≤
∞∑
k=0

e−t(d+2k)ν∥φk∥W1 .

Let N be as in Proposition 2.8. Resorting to (17), we have

∥p(ν)t ∥M1 ≲
(N−1∑

k=0

e−t(d+2k)ν∥φk∥W 1 +
+∞∑
k=N

e−t(d+2k)νk2d2−1
)
.

Therefore,

+∞∑
k=N

e−t(d+2k)νk2d2−1 ≤
∫ +∞

0

e−t(d+2y)ν (d+ 2y)2d
2−1 dy

=
e−tdν

ν

∫ +∞

0

e−tu(dν + u)−1+2d2/ν du,

where the substitution (d + 2y)ν = dν + u was performed, and the integral is thus finite

for all t > 0. This shows that p
(ν)
t ∈ M1(R2d) and the necessity of the condition q2 ≥ q1

thus follows by Proposition 2.6.

Let us now separately discuss two cases.

Case t ≥ 1. In view of the assumptions and (23), using Proposition 2.5 with a suitable
choice of p0 and q0 (see Remark 2.7) we have

∥e−tLν∥Xp2,q2 ≲
∞∑
k=0

e−t(d+2k)ν∥f × φk∥Xp2,q2

≲ ∥f∥Xp1,q1

∞∑
k=0

e−t(d+2k)ν∥φk∥W p0,q0 .

We argue as above, namely for N as in Proposition 2.8, we have (recall that M1(R2d) =
W 1(R2d) ⊆ W p0,q0(R2d))

∥e−tLν∥Xp2,q2 ≲ ∥f∥Xp1,q1

(N−1∑
k=0

e−t(d+2k)ν∥φk∥W p,q +
+∞∑
k=N

e−t(d+2k)νk2d2−1
)
.

The first sum can be bounded by e−tdν up to a positive factor that does not depend on t.
Concerning the second one, arguing as above we obtain

+∞∑
k=N

e−t(d+2k)νkq ≤ e−tdν

ν

∫ +∞

0

e−tu(dν + u)−1+2d2/ν du ≤ Ce−tdν ,

where we set C = ν−1
∫ +∞
0

e−u(dν + u)−1+2d2/ν du — the integral appearing above is a
decreasing function of t, and νC coincides with its value at t = 1.
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Case 0 < t ≤ 1. The claim is a direct consequence of Theorem 4.2 and Proposition 4.4.
In particular, we have

∥e−tLν

f∥Xp2,q2 ≤
∫ +∞

0

∥e−sLf∥Xp2,q2ηt(s) ds

≲ ∥f∥Xp1,q1

(∫ 1

0

s−d/p̃ηt(s) ds+

∫ +∞

1

e−sdηt(s) ds
)
.

The second integral is clearly bounded by e−tdν in view of (24). Concerning the first one,
let us first recall the following identity for the Gamma function:

u−w =
1

Γ(w)

∫ +∞

0

e−yuyw−1 dy, u > 0, w ∈ R.

Then we infer ∫ 1

0

s−d/p̃ηt(s) ds =

∫ 1

0

( 1

Γ(d/p̃)

∫ +∞

0

e−ysyd/p̃−1 dy
)
ηt(s) ds.

After swapping the integration order and using the identity (24) we obtain∫ 1

0

s−d/p̃ηt(s) ds ≲
∫ +∞

0

e−tyνyd/p̃−1 dy.

The substitution v = tyν finally yields∫ +∞

0

e−tyνyd/p̃−1 dy ≲
1

ν
Γ
( d

αp̃

)
t−

d
νp̃ ,

therefore

□∥e−tLν

f∥Xp2,q2 ≲ e−tdν + t−
d
νp̃ ≤ t−

d
νp̃ , 0 < t ≤ 1.

Finally, let us examine the boundedness of the fractional heat semigroup on Lebesgue
spaces.

Corollary 4.6. For 0 < ν ≤ 1 and 1 ≤ p ≤ q ≤ ∞ we have

∥e−tLν

f∥Lq ≤ C(ν)
p,q (t)∥f∥Lp ,

where

C(ν)
p,q (t) :=

{
Ce−tdν (t ≥ 1)

Ct−µν (0 < t ≤ 1),
µν := max

{d

ν

( 1

min{q, q′}
− 1

max{p, p′}

)
, 0
}
,

for a constant C > 0 that does not depend on f or t.

Proof. The claim can be proved by combining Theorem 4.5 (for amalgam spaces, with
p2 = min{q, q′}, q2 = q, p1 = max{p, p′} and q1 = p) with the embeddings in (7):

∥e−tLν

f∥Lq ≲ ∥e−tLν

f∥W p2,q

≤ C(ν)
p,q (t)∥f∥W p1,p

≲ C(ν)
p,q (t)∥f∥Lp ,

where C
(ν)
p,q (t) is the constant given in the claim. □
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Remark 4.7. The previous bound recaptures and extends the one proved in [62, Theorem
7.4] in the case where ν = 1 and 1 ≤ p ≤ 2 ≤ q ≤ ∞. More generally, note that
the singularity at small time always occurs even if q = p unless p = 2 — in particular,
µν = d

ν
|1− 2

p
|. We also highlight that, in the case ν = 1, the singularity can be unveiled as

well via Young’s convolution inequality after computing the Lr norm of the heat propagator
pt, where r is such that 1/p+ 1/r = 1 + 1/q and q ≥ p.

4.2. More on negative powers of the twisted Laplacian. As far as negative powers
of L are concerned, a boundedness result supplemental to Theorem 3.7 can be derived
from Theorem 4.2. To this aim, inspired by [10, 53], we use again subordination and the
Gamma functional calculus to give a representation of L−ν in terms of the heat flow —
the proof goes as in that of Proposition 4.4.

Lemma 4.8. For all ν > 0 and f ∈ S(R2d), we have the pointwise identity

L−νf(z) =
1

Γ(ν)

∫ +∞

0

e−tLf(z) tν−1 dt, z ∈ R2d.

As a consequence of Theorem 4.2, it is now easy to show that L−ν is a continuous map
Mp1,q1(R2d) → Mp2,q2(R2d), 1 ≤ p1, p2, q1, q2 ≤ ∞, if q2 ≥ q1 and ν > d/p̃, since

∥L−νf∥Mp2,q2 ≲
∫ +∞

0

∥e−tLf∥Mp2,q2 tν−1 dt

≲ ∥f∥Mp1,q1

(∫ 1

0

tν−1−d/p̃ dt+

∫ +∞

1

e−tdtν−1 dt
)
.

Moreover, arguing as in the proof of Corollary 4.6, boundedness extends to Lebesgue
spaces: for 1 ≤ p ≤ q ≤ ∞, we have

∥L−νf∥Lq ≲ ∥f∥Lp , ν > dmax
{ 1

min{q, q′}
− 1

max{p, p′}
, 0
}
.

Remark 4.9. We emphasize that the same arguments used here, namely subordination
and integral representations, can be used to handle a number of operators associated with
L that are of common use in harmonic analysis, such as the Bessel potentials

(I + L)−νf(z) =
1

Γ(ν)

∫ +∞

0

tν−1e−te−tLf(z) dt, ν > 0,

or, in connection with the Schrödinger case, the Riesz-type means

Iu,vf(z) = uv−u

∫ v

0

(v − t)−u−1e−itLf(z) dt, u, v > 0.

We also expect that an improvement of the boundedness result already obtained for positive
fractional powers 0 < ν < 1 can be derived from the Gamma representation

Lνf(z) =
1

Γ(−ν)

∫ +∞

0

(e−tLf(z)− f(z))
1

tν+1
dt, z ∈ R2d,

although refined bounds for e−tL − I rather than just e−tL are required.
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[31] Gramchev, Todor; Pilipović, Stevan; Rodino, Luigi. Classes of degenerate elliptic operators in

Gelfand-Shilov spaces. In: New developments in pseudo-differential operators, 15–31, Oper. The-

ory Adv. Appl., 189, Birkhäuser, Basel, 2009.
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