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Abstract 17 

This paper proposes a new precursor for monitoring coal-rock dynamic disasters based on a 18 

fiber bundle model (FBM), which has been validated in the study of material fracture and critical 19 

phenomena. First, the FBM was simulated using the Monte Carlo method to analyze the variations 20 

of force and energy. The derivative of energy was identified as a precursor characteristic for model 21 

failure. The Acoustic Emission (AE) features of coal-rock under uniaxial compression were also 22 

mailto:gang.jing.chn@gmail.com
mailto:Giuseppe.lacidogna@polito.it
mailto:zhaoyx@cumtb.edu.cn
mailto:pedro.marinmontanari@polito.it
mailto:boris.rojotanzi@ufrgs.br
mailto:ignacio.iturrioz@ufrgs.br


2 

 

analyzed, and a constitutive model for coal-rock damage evolution under uniaxial compression was 23 

established using AE ringing count. Furthermore, the derivative of energy was calculated using the 24 

constitutive model to verify the simulation results and propose a new precursor indicator for coal-25 

rock collapse. The research results provide useful guidance for preventing coal mine dynamic 26 

disasters. 27 

Practical Applications 28 

This study presents a novel methodology for the prediction of engineering geological hazards, 29 

focusing specifically on monitoring and preventing rockburst disasters in coal mines. The crucial 30 

precursor characteristics of coal and rock damage are unveiled by research findings, offering 31 

valuable insights for the accurate forecasting of potential disaster risks. This approach holds 32 

substantial promise not only within the coal mining sector but also across various engineering 33 

domains, including geotechnical engineering and other fields necessitating meticulous risk 34 

assessment. Implementation of this methodology empowers practitioners to refine disaster 35 

prediction, proactively ensuring the sustainability and safety of engineering ventures. It is 36 

recommended that project teams consider the integration of this innovative indicator alongside 37 

widely-adopted microseismic monitoring techniques, thus mitigating the limitations of existing 38 

geophysical monitoring methods. This innovative approach is poised to have a profound and 39 

transformative impact on the enhancement of geological hazard monitoring and engineering risk 40 

management, providing invaluable support for upcoming engineering projects. 41 

Auther keywords: Fiber bundle model; Damage variable; Precursor; Acoustic emission; Coal 42 

burst 43 

Introduction 44 
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In many regions of the world and especially in China coal is a primary energy source. However, 45 

as mining depths increase, coal and rock dynamic disasters such as coal burst and gas outburst have 46 

become more severe, posing a serious threat to the safety of underground personnel (Dou et al., 47 

2014; Fan et al., 2020; Zhou et al., 2022). The occurrence of coal burst is a complex process that is 48 

characterized by suddenness and uncertainty and is often difficult to predict accurately. Therefore, 49 

accurate prediction of coal burst is crucial for coal mine safety. 50 

Many studies have indicated that during the loading and damage of rock-like materials, a 51 

portion of the energy is released in the form of acoustic emission (AE), electromagnetic radiation, 52 

charge induction, and other forms (Aggelis, 2011; Baddari et al., 2011; Carpinteri et al., 2016; Ding 53 

et al., 2023; Li et al., 2016). Therefore, these non-destructive monitoring techniques are widely used 54 

in various fields, such as earthquake monitoring, structural damage monitoring, and coal and rock 55 

dynamic disaster monitoring (Behnia et al., 2014; Carpinteri et al., 2007; Donner et al., 2015; 56 

Lacidogna, et al., 2011; Lou et al., 2019). Specifically, the intermittent generation of AE time series 57 

reflects the increasing instability of the system, and the analysis of AE characteristic parameters can 58 

be used as a precursor to catastrophic events (Biswas et al., 2015; Iturrioz et al., 2013; Tanzi et al., 59 

2023). During coal mine monitoring, it has been discovered that traditional non-destructive testing 60 

techniques have certain limitations. This is the result of the combined action of dynamic and static 61 

loads in deep coal mine rockburst disasters. (Dou et al., 2018; He et al., 2019). Acoustic emission 62 

can effectively monitor ultrasonic elastic waves caused by mining and blasting disturbances, 63 

providing early warning for coal and rock dynamic disasters, such as coal burst. However, for coal 64 

and rock dynamic disasters that occur under high static loads, the signals are relatively stable and 65 

weak before the occurrence of collapse, making it difficult to detect obvious precursor signals in 66 



4 

 

advance. 67 

The statistical analysis of fracture and damage in heterogeneous materials has drawn wide 68 

attention from statistical physicists, and has also led to the study of phase transitions and critical 69 

phenomena in statistical physics related to the fracture behavior of materials (Alava et al., 2006; 70 

Pradhan et al., 2008). Recently, there have been some reports discussing the critical phenomena of 71 

material collapse (Batool et al., 2022; Dȩbski et al., 2021; Diksha & Biswas, 2022; Pradhan et al., 72 

2019). Pradhan et al.(2019) used a fiber bundle model to analyze the relationship between force, 73 

elastic energy, and displacement during the tensile failure process of materials. According to this 74 

theory, the slope of elastic energy and displacement reaches its maximum value before the 75 

catastrophic failure of the material, which can be used as a precursor point for material catastrophic 76 

failure. Dȩbski et al. (2021) used the discrete element method to simulate the failure process of the 77 

fiber bundle model and confirmed the relationship between energy release and the maximum value 78 

of the derivative of elastic energy. Diksha & Biswas (2022) applied the fiber bundle model to 79 

analyze disordered solids and conducted a systematic analysis of avalanche size and energy release 80 

time series generated by the fiber bundle model using supervised machine learning. Roy (2023) 81 

numerically studied the failure process of disordered systems under external forces using the fiber 82 

bundle model. Diksha et al. (2023) simulated the process of fiber bundle fracture and believed that 83 

a measure of how unequal avalanche sizes are is potentially a crucial indicator of imminent failure. 84 

The obtained results can predict failure time. These research results not only expand the application 85 

of the fiber bundle model, but also provide new ideas for predicting and controlling coal rock 86 

dynamic disasters. 87 

Despite extensive scholarly research, there is limited exploration regarding the application of 88 
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the fiber bundle model to coal and rock materials, particularly concerning the existence of a 89 

maximum energy derivative phenomenon preceding catastrophic failure. Further experimental 90 

verification is needed. Previous studies have primarily utilized the Weibull distribution in the fiber 91 

bundle model, focusing predominantly on the shape parameter k, while the significance of the scale 92 

parameter λ has been overlooked. This paper addresses this research gap through a comprehensive 93 

investigation involving theoretical analysis, simulation, and experimental validation. In this work, 94 

the Monte Carlo method was employed to establish a fiber bundle model where elastic elements 95 

share the load, simulating the process of material fracture. Laboratory uniaxial compression tests on 96 

coal are performed, and a constitutive model of coal rock damage is developed based on AE ringing 97 

count. Validation of simulated results is conducted against experimental data. 98 

Fiber Bundle Model 99 

Establishment of Fiber Bundle Model 100 

The fiber bundle model (FBM) (Peirce FT, 1926) is a simulation tool with a simple principle 101 

and the ability to reflect profound evolution processes, as shown in Fig. 1. The fibers are parallel to 102 

each other and fixed between parallel loading plates. A load parallel to the fibers can be applied to 103 

both ends of the fiber bundle by the loading plates until the stress threshold of the fiber bundle and, 104 

therefore, the rupture is reached. When a certain stress threshold is exceeded, some fibers will 105 

collapse, and the load they originally carried will be shared by the remaining unbroken fibers. 106 

[Fig. 1 about here] 107 

Assuming that the model consists of N parallel fiber bundles jointly bearing an external force F 108 

applied to the system, the relationship between the stress σ and the strain ε of each fiber is given 109 

by： 110 
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𝜎 = 𝜇𝜀,                                  (1) 111 

Where μ is the elastic constant. If a portion of fibers breaks, the load is distributed evenly among 112 

the remaining fibers. This type of loading model is called the equal-load-sharing (ELS) scheme 113 

(Daniels, 1945). Since ELS has a mathematical analytical form, it is helpful to study material failure 114 

problems in conjunction with the model. Therefore, the subsequent model only considers the 115 

distribution form of ELS. The strength of fibers is usually determined by the threshold x they can 116 

withstand. It is assumed that the strength of fibers follows a Weibull distribution, where the 117 

cumulative distribution function P(x) is given by (Zheng et al., 2019)： 118 

𝑃(𝑥) = 1 − exp(−(
𝑥

𝜆
)
𝑘
),                             (2) 119 

its corresponding probability density function is: 120 

𝑝(𝑥) =
𝑘

𝜆
(
𝑥

𝜆
)𝑘−1 exp(−(

𝑥

𝜆
)
𝑘
),                             (3) 121 

Where k is shape parameter and λ is scale parameter. The parameter k determines the shape of the 122 

Weibull distribution. For a specific material, it can describe the brittle or plastic characteristics. The 123 

parameter λ determines the location and scale of the Weibull distribution, which can affect the 124 

strength and failure properties. Different materials have different physical properties and lifetime 125 

behaviors, which can lead to different shape parameters and scale parameters. 126 

At a certain moment, n fibers are assumed to be broken. The damage variable d is defined as: 127 

𝑑 =
𝑛

𝑁
,                                     (4) 128 

As N approaches infinity, the Δ at each step becomes very small, so the loading process can be 129 

considered quasi-static. On the other hand, for larger N values, the damage factor d can be treated 130 

as continuous, so it can be approximated by P(x). 131 

Considering the strain ε of each fiber bundle as representative of the strain in the process of 132 
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coal compression, the constitutive relationship between the stress and strain of coal rock, 133 

considering the damage variable, can be expressed as: 134 

𝜎(𝜀) = 𝐸𝜀(1 − 𝑃(𝜀)),                                (5) 135 

Where σ is the stress and E is the elastic modulus. 136 

Strain is considered as the control parameter, and construct the energy Ee as: 137 

𝐸𝑒(𝜀) =
𝐸

2
𝜀2(1 − 𝑃(𝜀)).                               (6) 138 

Warning Sign of Collapse 139 

From the above formula, the maximum values of functions (5) and (6) regarding stress and 140 

strain energy are sought. By setting the derivative of stress and energy, the following is obtained: 141 

𝑑𝜎(𝜀)

𝑑𝜀
= 𝐸(1 − 𝜀𝑐𝑝(𝜀𝑐) − 𝑃(𝜀𝑐)) = 0,                        (7) 142 

𝑑𝐸𝑒(𝜀)

𝑑𝜀
=

𝐸

2
[2𝜀𝑚(1 − 𝑃(𝜀𝑚) − 𝜀𝑚

2𝑝(𝜀𝑚)] = 0,                      (8) 143 

From which the following values are obtained: 144 

𝜀𝑐 = 𝜆𝑘−
1

𝑘,                                   (9) 145 

𝜀𝑚 = 𝜆 (
2

𝑘
)

1

𝑘
= 𝜀𝑐2

1

𝑘 > 𝜀𝑐 ,                         (10) 146 

In this context, εc is defined as the strain when the stress reaches its maximum value, also 147 

known as critical strain. On the other hand, εm represents the strain when the energy reaches its 148 

maximum value.  149 

From the above analysis, it can be concluded that energy has a maximum value, but it always 150 

appears after the critical strain εc. when plotting dEe/dε, which is the derivative curve of energy with 151 

respect to strain, it is always possible to observe a maximum value. By calculating the second 152 

derivative of energy with respect to the strain and setting the derivative function equal to zero, the 153 

following is obtained: 154 
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𝑑2𝐸(𝜀)

𝑑𝜀2
=

𝐸

2
[2 (1 − 𝑃(𝜀𝑝)) − 4𝜀𝑝𝑝(𝜀𝑝) − 𝜀𝑝

2𝑝′(𝜀𝑝)] = 0,              (11) 155 

By substituting Eq. (2) and (3) into Eq. (11), the following is obtained: 156 

𝐸

2
exp(−(

𝜀𝑝

𝜆
)
𝑘
)(𝑘2 ((

𝜀𝑝

𝜆
)
𝑘
− 1)(

𝜀𝑝

𝜆
)
𝑘
− 3𝑘 (

𝜀𝑝

𝜆
)
𝑘
+ 2) = 0,              (12) 157 

From which the following value is obtained: 158 

𝜀𝑝 = 𝜆2−
1
𝑘√

𝑘2 − √𝑘2 + 6𝑘 + 1𝑘 + 3𝑘

𝑘2

𝑘

, 159 

= 𝜀𝑐𝑘
−
1

𝑘2−
1

𝑘√𝑘2 − √𝑘2 + 6𝑘 + 1𝑘 + 3𝑘
𝑘

< 𝜀𝑐 .               (13) 160 

In Eq. (13) the term 𝑘−
1

𝑘 is less than or equal to 1, and the term 2−
1

𝑘 is less than 1. Meanwhile, It 161 

is observe that √𝑘2 − √𝑘2 + 6𝑘 + 1𝑘 + 3𝑘
𝑘

 is always less than 1, irrespective of the value of k. 162 

Therefore, it follows that εp is always smaller than εc. Here, εp is defined as the corresponding strain 163 

when the dEe/dε reaches its maximum value. The above analysis shows that the strain εp is always 164 

found before εc. As far as coal rock is concerned, when the sample reaches the εc in the compression 165 

failure process, most of the samples will be destroyed in a short period of time, showing strong 166 

brittle characteristics. Therefore, the strain εp can be used as a precursor of coal rock collapse. 167 

Compared with previous studies (Dȩbski et al., 2021; Pradhan et al., 2019), this paper considers the 168 

shape parameter k and scale parameter λ of Weibull distribution at the same time, so that the coal-169 

rock loading process can be simulated with greater accuracy. 170 

Monte Carlo method 171 

In this section, the fracture process of the FBM is simulated to verify the conclusions obtained 172 

above. To simulate the process of fiber bundle fracture, Monte Carlo method (James, 1980; Kroese 173 

et al., 2014) is applied. Monte Carlo simulations use random samples to estimate the probability 174 

distribution and expected values of a system or process. They are useful when dealing with complex 175 

systems or those with inherent randomness or uncertainty. Since the fracture of fiber bundles can be 176 



9 

 

modeled using the Weibull distribution, Monte Carlo simulations can be utilized to reproduce the 177 

Weibull distribution of fiber bundles and model the process of fiber fracture. Since the Monte Carlo 178 

method mainly uses random numbers to solve the calculation problems of the FBM, the simulation 179 

process of the FBM can be represented by mathematical variables. The simulation steps can be 180 

described in mathematical language as follows: 181 

(1) Generate a random matrix A of size m×n from a Weibull distribution. 182 

(2) Initialize a non-zero matrix B of size m×n to store load increments, with all values set to an 183 

equal constant. 184 

(3) Determine a loading rate v. 185 

(4) Compute the number of non-zero elements a in array B, locate the positions of these 186 

elements within B, increase their values by c=v/a, and update the resulting array as B. 187 

(5) Compare the elements of arrays A and B. If an element in array B is greater than the 188 

corresponding element in array A, set both elements in arrays A and B to 0 at same position, resulting 189 

in new arrays A and B. Otherwise, arrays A and B remain unchanged. 190 

(6) Repeat steps 4 and 5 until all elements in array A are 0. End the simulation. 191 

In the simulation process described above, the number of elements in matrix A represents the 192 

number of fibers in the bundle, and each element is assigned a Weibull distribution to represent the 193 

strength of the fiber. The values in matrix B simulate the changing load values. By comparing the 194 

values in matrix B with the corresponding positions in matrix A, when there exists an element in B 195 

that is greater than that in A, the element in A at the corresponding position is assigned to zero, 196 

indicating that a fiber has broken. Steps 4 and 5 are repeated, simulating the entire process of fiber 197 

bundle fracture. The simulation ends when all elements in matrix A become zero, indicating that all 198 
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fibers have fractured. 199 

Simulation Results 200 

Setting m=500, n=100, and the fiber quantity N=5×104. Having a sufficient number of fibers 201 

can avoid abnormal simulation results. The loading rate is set to V=500, which depends on the 202 

number of fibers and the simulation effect. Too high rate can cause the fiber bundle to be completely 203 

destroyed in a few cycles, while too low rate means that the fibers will break one by one, which is 204 

not consistent with the actual situation. In the Monte Carlo method described above, the first step is 205 

to determine the free matrix A that follows the Weibull distribution. From Equation (2) and Eq. (3), 206 

it can be seen that the parameters that affect the Weibull distribution function are the scale parameter 207 

λ and the shape parameter k. The maximum likelihood estimation method is used to estimate the 208 

parameters of the Weibull distribution, with detailed solution process available in (Cohen, 1965). 209 

Let us assume that x1, x2, ..., xn are the strengths of the samples measured, and based on the Weibull 210 

probability density function given in Eq. (3), the likelihood function can be expressed as 211 

(Murshudov et al., 1997): 212 

𝐿(𝑥𝑖 , 𝜆, 𝑘) = ∏
𝑘

𝜆
(
𝑥𝑖

𝜆
)𝑘−1𝑒𝑥𝑝(− (

𝑥𝑖

𝜆
)
𝑘
)𝑛

𝑖=1 .                    (14) 213 

Based on the actual sample test results, the uniaxial compressive strength of 8 coal samples 214 

were calculated in this paper. The values of the uniaxial compressive strengths are respectively 12.15, 215 

12.35, 9.7, 8.67, 7.5, 6.25, 10.25, and 11.27 MPa. The calculated values of the scale parameter and 216 

shape parameter are k=5.75 and λ=10.58, respectively. In particular, when the shape parameter is 1 217 

and 2, the Weibull distribution corresponds to the exponential distribution and Rayleigh distribution, 218 

respectively, whose simulation under these two conditions has been discussed by the authors. 219 

Based on the analysis in Section 2.1, The force F, energy Ee, and energy derivative dEe/dε of 220 
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the FBM during the simulated fracture process can be easily obtained, along with their relationship 221 

curve, as shown in Fig. 2. 222 

[Fig. 2 about here] 223 

In Fig. 2, the horizontal axis represents the number of cycles in the simulation process, 224 

indicating the number of iterations. The vertical axis shows the normalized dimensionless energy 225 

and force values. It can be seen from Fig. 2 that the model can be considered stable before the force 226 

reaches its maximum value, and it becomes unstable after the force reaches its maximum value, 227 

which is consistent with the actual situation. The strain εm in the figure represents the strain at the 228 

maximum energy, which appears in the unstable phase, while the strain εp represents the strain at 229 

the maximum derivative of energy, which appears before the critical strain εc. The simulation results 230 

are consistent with the theoretical analysis. As the model enters the unstable phase after the force 231 

reaches its maximum value, the fibers subsequently accelerate fracture, so it is believed that the εp 232 

can be used as a precursor to model failure, and also as a precursor indicator for coal collapse. 233 

Test Equipment and Test Procedure 234 

Sample preparation 235 

A study was conducted on four coal samples from Xinjiang province, China. To ensure 236 

consistency, all samples were prepared in accordance with the suggested shape and size by the 237 

International Society for Rock Mechanics (ISRM), which have a cylindrical with a diameter of 50 238 

mm and a height of 100 mm. Both ends of the sample had a flatness error of less than 0.02 mm. 239 

Table 1 presents the basic parameters of the coal samples tested. 240 

[Table 1 about here] 241 

Test equipment 242 
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In this study, the experimental system consisted of a loading system, an acoustic emission (AE) 243 

system, as shown in Fig. 3. An MTS C45.104 testing machine was used in the loading system, with 244 

a maximum load capacity of 300 kN. The AE instrument utilized a PCI-Express8 multi-channel AE 245 

system manufactured by American Physical Acoustics Company, along with nano 30 miniature 246 

sensors. The sensor has a frequency range of 125~750 kHz, and it is equipped with a 2/4/6 voltage 247 

preamplifier that allows for a selectable range of 20, 40, and 60 dB. The AE threshold was set to 40 248 

dB to minimize the impact of ambient noise, and the sampling rate was set to 1 MHz. Prior to the 249 

start of the experiment, tight contact between the specimen and the upper and lower loading heads 250 

of the testing machine was ensured. Additionally, a pre-load of 50 N was applied to the specimen to 251 

mitigate potential errors caused by its unevenness. All samples underwent uniaxial compression 252 

tests at a displacement-controlled rate of 1 mm/min. The stress-strain curves are presented in Fig. 4. 253 

[Fig. 3 about here] 254 

Experimental Results 255 

Strength and deformation characteristics 256 

After conducting uniaxial compression tests, the strength and elastic modulus of coal 257 

specimens can be calculated, as shown in Table 1. Figure 4 presents the stress-strain curve of coal 258 

specimens under uniaxial compression conditions. It can be observed that the stress curves of 259 

samples C-1 and C-2 drop sharply after reaching compressive strength, indicating an instantaneous 260 

failure characteristic. In the laboratory, it has been observed that when a sample experiences 261 

macroscopic failure, coal fragments can be ejected from the face, and even a phenomenon called 262 

"coal burst" can occur, where the coal specimen completely explodes. In contrast, the curves of C-263 

3 and C-4 did not show a sharp drop after reaching the compressive strength of the coal specimen. 264 
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Instead, the stress decreased to a certain value, then increased, and then decreased again until failure 265 

occurred, exhibiting a gradual failure characteristic. This is because after the coal sample reaches 266 

its peak strength, localized damage occurs, the stress adjusts, and a relatively stable structure is 267 

formed, and the remaining part still has a certain load-bearing capacity. 268 

According to the coal specimen crack propagation process, the stress-strain curve can be 269 

divided into four stages: (1) compaction stage: at the beginning of loading, the stress is small, and 270 

the coal specimen has a faster axial strain rate due to the presence of many primary cracks. (2) 271 

Linear elastic stage: after the compaction stage, the stress of the coal sample begins to steadily 272 

increase and secondary cracks appear, at which point the stress-strain curve is approximately a 273 

sloping straight line. (3) Crack propagation stage: the stress reaches its yield limit, cracks begin to 274 

accelerate and form multiple crack clusters. (4) Failure stage: the coal sample reaches its maximum 275 

load-bearing capacity, the cracks merge and penetrate, and instantaneous or gradual failure 276 

characteristics begin to appear 277 

[Fig. 4 about here] 278 

AE Behaviors 279 

The characteristics of AE signals are closely related to the deformation and failure process of 280 

coal specimens under uniaxial compression and can reflect the evolution of damage during loading. 281 

Figure 5 shows the relationship between stress-time and AE ring-down counts for specimens C-1, 282 

C-2, C-3, and C-4 during uniaxial compression. It can be observed that during the compaction stage, 283 

the AE ring-down counts are very low and can be ignored. This is because the initial cracks inside 284 

the coal specimens are closed and compacted. Only a small amount of low-energy AE signals are 285 

generated from some rough surfaces, mixed with some noise. As the coal specimens develop tiny 286 
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cracks during the mid-loading stage, the AE signals gradually increase. During the crack 287 

propagation stage and failure stage, the density of AE signals increases as the cracks accelerate and 288 

propagate, leading to a rapid increase in AE ringing counts.  289 

From Fig. 5, it can be observed that the AE ringing counts become extremely active when the 290 

stress reaches its peak value, and the maximum value of AE ringing counts is achieved at the stress 291 

peak. This is because the specimen immediately generates a significant stress drop when reaching 292 

the stress peak, indicating that macroscopic cracks have occurred and released significant energy. 293 

Additionally, the ringing counts increase significantly with every stress drop, as shown in Fig. 5(c) 294 

and Fig. 5(d). The above analysis demonstrates that there is a good correlation between AE ringing 295 

counts and coal damage under uniaxial compression. 296 

[Fig. 5 about here] 297 

Damage evolution model of coal based on AE characteristics. 298 

Heiple et al. (1981) conducted long-term research on material damage and fracture processes 299 

using AE technique and found that the AE ring-down counts are one of the features that can better 300 

describe the changes in material damage among multiple parameters of AE. This is because it is 301 

proportional to the strain energy released by particle dislocations and movement, fracture, and crack 302 

propagation in the material. Therefore, this paper uses the AE ringing count and the cumulative AE 303 

ringing count to establish a coal damage evolution model. The damage variable of the material was 304 

originally proposed by Kachanov (1958). According to the definition of the damage variable, 305 

assuming that the cumulative AE ringing count when all N fibers in the material are broken is C, the 306 

average AE ringing count C0 when each fiber is damaged is calculated as: 307 

𝐶0 =
𝐶

𝑁
,                                (15) 308 
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When n fibers are broken, the cumulative AE ringing count at this moment is Cn, which can be 309 

expressed as: 310 

𝐶𝑛 = 𝐶0𝑛 = 𝐶
𝑛

𝑁
,                            (16) 311 

Therefore, the damage variable based on ringing counts can be defined as: 312 

𝑑 =
𝐶𝑛

𝐶
,                              (17) 313 

There are many microcracks and voids randomly distributed inside the coal. According to the 314 

statistical damage theory, it is assumed that the failure probability of the coal microstructure follows 315 

the Weibull distribution. The microstructure size includes enough voids and cracks and can also be 316 

considered as small enough to adopt the concept of continuum mechanics (J. Zhou & Chen, 2013). 317 

The probability density function of the Weibull distribution is shown in Eq. (3). 318 

The damage variable d defined above has a value range of 0 to 1, which represents the 319 

cumulative degree of microscopic damage in the material. Here, 0 represents an undamaged material, 320 

while 1 represents a completely damaged material. However, after the test is stopped, the specimen 321 

still has a certain bearing capacity, but the calculated value of the d is 1, which does not match the 322 

actual situation. To eliminate this influence, a critical damage can be introduced to modify the 323 

damage variable d based on the effect of load on AE. When the test stops, the damage variable d is 324 

controlled by the critical damage, which is more in line with the actual situation. Therefore, the 325 

modified damage variable can be expressed as: 326 

𝑑 = 𝑑0
𝐶𝑛

𝐶
= 𝑑0 (1 − exp (−

𝜀

𝜆
)
𝑘
),                      (18) 327 

Where d0 is the critical damage, which is multiplied by the damage variable d to obtain a modified 328 

d that can reflect the residual strength of the coal, making the obtained model closer to the actual 329 

situation. The critical damage d0 reflects the damage condition of the specimen after loading. To 330 
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simplify calculations, d0 is taken as: 331 

𝑑0 = 1 −
𝜎𝑝

𝜎𝑟
,                                (19) 332 

Where σp represents peak strength and σr represents residual strength. 333 

As described in Section 4.2, due to the presence of inherent cracks and a relatively high porosity 334 

in coal, there is a compression stage during the compression process, resulting in fewer AE signals. 335 

Additionally, compared with the crack propagation and failure stages, the AE signals during the 336 

elastic stage are also minimal. If only the AE signals are used to construct the damage evolution 337 

model, it will lead to significant discrepancies between the model and the actual curve for both the 338 

compression and linear elastic stages. To mitigate this effect, the concept of compaction coefficient 339 

K (the ratio of the stress-strain derivative to the elastic modulus E) is introduced in this study (Gu 340 

et al., 2019). Since the derivative curve of stress-strain relationship approximates a logarithmic 341 

function (Liu et al., 2016), K can be described as: 342 

𝐾 = {
log𝑛 (𝑎

𝜀

𝜀𝑠
+ 1) , 0 ≤ 𝜀 < 𝜀𝑠

1, 𝜀 ≥ 𝜀𝑠
,                      (20) 343 

here, n is a constant obtained through experiments, εs is the yield strain. The coal damage model 344 

established in this paper can be expressed as follows: 345 

𝜎 = 𝐾𝐸𝜀(1 − 𝑑).                           (21) 346 

Damage model validation 347 

To verify the accuracy and effectiveness of the proposed damage model, this paper applies the 348 

model to experimental data of actual coal and compares the results. The parameters of the 349 

compression coefficient K were obtained by fitting the stress-strain curve of uniaxial compression, 350 

as shown in Table 2. Similarly, based on the relationship between time and strain, as well as time 351 

and AE ringing counts, the relationship between strain and cumulative AE ringing counts can be 352 
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obtained and fitted using the Weibull distribution function. The fitting curve is shown in Fig. 6. 353 

From Fig. 6, it can be seen that the Weibull distribution function fits the cumulative ringing count 354 

very well, indicating that the curve follows the Weibull distribution. The damage variable 355 

parameters k and λ can be accurately obtained using the acoustic emission ringing count. The fitting 356 

parameters of each sample obtained by fitting using Eq. (18) are shown in Table 2, where R2 357 

represents the degree of curve fitting. 358 

[Fig. 6 about here] 359 

[Table 2 about here] 360 

The theoretically calculated stress-strain curve obtained from Eq. (21) is in good agreement 361 

with the actual stress-strain curve, as shown in Fig. 7. This indicates that the coal damage 362 

constitutive model established in this paper is relatively reasonable. From Fig. 7, it can also be 363 

observed that the stress-strain curve described by Eq. (21) is generally slightly higher than the 364 

experimental values. This is due to the fitting error of the compression coefficient K. Compared to 365 

rocks such as granite and marble, coal has a relatively higher porosity. During uniaxial compression, 366 

the linear elastic stage of the curve is not significant, and the curve is concave upwards. This leads 367 

to some errors in the calculation of the elastic modulus E and affects the fitting of the compression 368 

coefficient K. Therefore, the obtained theoretical compression coefficient is relatively larger, 369 

resulting in a slightly higher strength than the experimental values. 370 

In Fig. 7, the variation curve of the damage variable d with strain is also plotted. It can be 371 

observed that before the specimen enters the yield stage, the d is between 0 and 0.1. This indicates 372 

that only a small amount of AE signals are collected before the yield stage, and it also proves that 373 

the degree of damage to the specimen is small during this stage. 374 
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[Fig. 7 about here] 375 

Early warning indicator 376 

According to the established coal damage constitutive model, the energy can be calculated by 377 

the following equation: 378 

𝐸𝑒(𝜀) = 𝐾
𝐸

2
𝜀2(1 − 𝑃(𝜀)).                        (22) 379 

Based on the results of simulation analysis using the FBM presented in Section 2, it can be 380 

inferred that the maximum energy occurs after the critical strain εc, while the maximum energy 381 

derivative occurs before the εc. To further validate this conclusion through experiments, Figure 8 382 

shows the stress-strain, energy-strain, and energy derivative-strain curves based on the coal damage 383 

constitutive model. It is evident that the energy derivatives of all four specimens reached the 384 

maximum value before the maximum stress was reached. The stress-strain curve shows that coal, 385 

as a material with high plastic deformation capacity, exhibits significant deformation during uniaxial 386 

compression but quickly collapses after reaching the peak stress, as evidenced by the occurrence of 387 

obvious coal burst phenomena in specimens C-1 and C-2, indicating strong impact tendency. 388 

Therefore, the maximum energy derivative can be used as a precursor indicator of impact ground 389 

pressure. For coal specimens with gradual damage characteristic, such as C-3 and C-4, the maximum 390 

energy derivative can also be used as a precursor indicator of the sample entering the unstable stage. 391 

[Fig. 8 about here] 392 

Discussion and Conclusions 393 

Although a simple FBM was adopted, in all the analysis results, whether it was the simulation 394 

of the FBM or the laboratory experiment, the precursor point before catastrophic failure of the 395 

material was consistently observed, that is, the maximum value of energy derivative was observed 396 
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before the catastrophic collapse of the coal specimen. The coal damage constitutive model based on 397 

AE ringing count has also shown good agreement with the experimental curve. This seems to solve 398 

the problem of predicting coal specimen collapse well. However, some existing issues need to be 399 

further discussed to make the conclusions more reasonable. 400 

First of all, there is a simulation issue. MATLAB was utilized to simulate the random fracture 401 

of the FBM, but it is difficult to simulate the real situation of coal failure. This is because using the 402 

Monte Carlo method to abstract FBM as an iterative process of random arrays ignores the structure 403 

and size of the coal sample, as detailed in Section 2.3. The advantage of doing so is that the model 404 

is simple and can intuitively evolve the fracture process, but it is also difficult to simulate the 405 

complex failure process of coal. Precursor indicator obtained through energy changes allow us to 406 

consider collapse from the point of view of coal specimen stress state, but this result is not always 407 

correct. For instantaneously damaged coal specimens, such as C-1 and C-2, the stress-strain curve 408 

shows that the failure occurs in a short time after reaching the peak stress, and the strain at the 409 

maximum value of the energy derivative can be regarded as the precursor indicator of catastrophic 410 

failure. But for coal specimens with the gradual failure characteristic, such as C-3 and C-4, the strain 411 

at the maximum energy derivative can only be considered that the specimen is about to enter the 412 

unstable stage. This also indicates that if there is a maximum value in the energy derivative due to 413 

damage, it cannot be immediately judged as the final catastrophic failure. On the other hand, if a 414 

small damage leads to the conclusion of catastrophic failure, this judgment is completely wrong. 415 

In fact, this shows that the collapse of coal mass cannot be judged solely by the energy 416 

derivative. The development of AE technique can to some extent compensate for this deficiency. 417 

For example, the AE b-value (Carpinteri, et al., 2009). The magnitude of the b-value can indicate 418 
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changes in micro-cracks of different scales in coal rock masses, reflecting the degree of damage to 419 

the coal rock mass. Many studies have reported this conclusion (Fritschen, 2010; Mondal & Roy, 420 

2019; X. Zhou et al., 2023). Therefore, b-value and energy derivative can be used to judge whether 421 

coal rock mass will collapse, to better predict rock burst. 422 

The FBM proposed in this paper has certain limitations. The equal-load-sharing model is 423 

employed, which means that the force acting on the FBM is evenly distributed among the unbroken 424 

fibers. This is primarily because this type of model can be solved analytically. However, microcracks 425 

in coal samples also significantly influence the development of local cracks, making the equal-load-426 

sharing model inadequate. Therefore, further work is required to enhance the model and improve its 427 

ability to simulate real-world scenarios. Given the above comments, The research conclusions can 428 

be summarized as follows: 429 

1) The FBM established by Monte Carlo method can quantitatively describe the process of 430 

fiber fracture, and the evolution of the FBM can correspond well with the AE ringing count of coal 431 

under uniaxial compression. The simulation results that there is a maximum value of the energy 432 

derivative before the catastrophic failure of the model. 433 

2) A damage constitutive model of coal under uniaxial compression based on AE ringing count 434 

was established, laying a foundation for better understanding the evolution law of coal damage and 435 

revealing the intrinsic mechanism of coal damage. 436 

3) Through analyzing the results of uniaxial compression tests on coal specimens, it is found 437 

that the energy derivative has a maximum value before the catastrophic failure of coal specimens, 438 

which can serve as a precursor for the collapse of coal specimens under uniaxial compression and 439 

provide theoretical guidance for the prevention and control of coal mine dynamic disasters. 440 
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