
31 January 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Modeling Battery Swapping Stations for Sustainable Urban Mobility / Renga, Daniela; Meo, Michela. - In: SUSTAINABLE
ENERGY, GRIDS AND NETWORKS. - ISSN 2352-4677. - 41:(2025), pp. 1-11. [10.1016/j.segan.2024.101592]

Original

Modeling Battery Swapping Stations for Sustainable Urban Mobility

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.segan.2024.101592

Terms of use:

Publisher copyright

© 2025. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.segan.2024.101592

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2995351 since: 2024-12-19T11:34:12Z

Elsevier



Modeling Battery Swapping Stations for Sustainable
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Abstract

With the road transportation alone being responsible of almost half the total oil
demand over all sectors, electric vehicles (EVs) represent a promising solution to
address sustainability concerns raised by urban mobility. However, a sustainable
and pollution-free EV charging process cannot be enabled without an extensive
penetration of Renewable Energy (RE) sources and a pervasive deployment of
smart charging scheduling approaches. In a similar scenario, renewable powered
Battery Swapping Stations (BSSs) can play a key role to enable sustainable and
feasible electric mobility (e-mobility). Considering an on-grid BSS, additionally
powered by photovoltaic panels, we analyze the proper dimensioning of its ca-
pacity in terms of number of sockets and the proper sizing of the RE supply to
satisfy the battery swapping demand, trading off cost, Quality of Service (QoS)
and feasibility constraints. We propose an analytical model to represent the BSS
operation and limit the complexity of system investigation, exploring its potential-
ity to dimension the BSS system based on the actual battery swapping demand.
Our findings highlight how integrating a local RE supply allows to considerably
decrease cost by almost 40%. Furthermore, in the planning and deployment of
BSS systems, the model results effective in finding good tradeoffs among QoS
requirements, capital expenditures, and operational cost.
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1. Introduction

Nowadays the transportation sector heavily relies on oil as the main energy
source, granting more than 90% of the total energy demand. Moreover, unlike
other sectors, the road transportation has kept increasing its oil demand over years,
with almost a three fold increase in less than five decades [1]. Indeed, with almost
2000 Mtoe per year, the road transportation alone accounts for almost almost 50%
of the total oil consumption over all sectors, hence raising remarkable sustainabil-
ity concerns [1].

In addition, air pollution represents a further alarming issue related to tradi-
tional transportation, hence boosting the adoption of electric vehicles (EVs) par-
ticularly in urban scenarios. Nevertheless, the potential benefit of e-mobility in
terms of pollution reduction is not straightforward. Indeed, it requires, on the one
hand, an extensive integration of Renewable Energy Sources (RES) in the supply
systems to charge the EV batteries, and, on the other hand, the proper implemen-
tation of smart scheduling strategies to efficiently manage the EV battery recharge
process.

The transition from traditional Battery Charging Stations towards the Battery
Swap (BS) technology has the potential to enable an easier deployment of sus-
tainable and smart charging solutions. A BS based charging station entails EVs
equipped with batteries that can be easily and rapidly replaced with a fully charged
battery once they are discharged. Hence, the operation of Battery Swapping Sta-
tions (BSSs) results comparable to a fuel filling station, since the battery charg-
ing service is decoupled from the EV mobility service, and can be offered and
managed by independent companies owning the BSSs. Several advantages derive
from the BS technology based approach with respect to the standard e-mobility,
starting from the limitation of the range anxiety (fear that an EV has insufficient
range to reach the destination), representing a major obstacles to the large-scale
penetration of EVs [2, 3, 4]. Indeed, the time required to swap an EV battery is
comparable to the time to refuel an Internal Combustion Engine (ICE) vehicle.
Furthermore, novel business models can be conveniently introduced. According
to a Battery-as-a-Service paradigm, the EVs may be owned by private users or
by a car sharing company, whereas a separate provider owning the battery pool
is responsible of managing the charge, distribution and maintenance of the bat-
teries. The cost for purchasing an EV is hence reduced, saving the EV owners
the cost faced for battery replacement at the end of its lifetime. In addition, the
implementation of dynamic charging scheduling algorithms is facilitated, since
no strict constraints are posed on the recharging process, that can hence be modu-
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lated based on the varying RES availability. Finally, the interaction with the Smart
Grid (SG) can be enhanced entailing mutual benefits for the SG operator and the
battery provider, since the EV battery charging can be properly scheduled when
electricity prices are lower, or when RE is available, or it can be more effectively
postponed and resumed to avoid to overload the electric grid and meet various SG
requirements.

Following our previous study presented in [5], in this paper we focus on urban
e-mobility based on battery swap technology, considering a renewable powered
BSS. We extend the analysis about properly dimensioning the BSS capacity and
the RE supply to trade off cost and Quality of Service (QoS). In addition, we
propose a novel analytical model to limit the complexity of studying the BSS op-
eration, that can be exploited as a dimensioning tool for the BSS infrastructure.
This model is proved to be effective in balancing QoS requirements, capital ex-
penditures and operational cost in the planning and deployment of BSS systems.
Differently from the work presented in [6], in our study the proposed queuing
model is employed with the twofold objective of (i) properly dimensioning the
BSS based on EV battery charging demand, QoS requirements, and possible cost
and feasibility constraints, and (ii) performing a financial analysis that also in-
cludes capital expenditures for the BSS installation, besides the operational cost.
Combining the contribution of renewable energy to power BSSs with a proper
system dimensioning to trade off cost and QoS requirements, our study results
effective in promoting the achievement of sustainability goals for a green and fea-
sible deployment of urban mobility.

This study extends our previous paper [5], in which we began to study via
simulation the potential of a BSS equipped with a set of photovoltaic panels, in-
vestigating the issue of properly dimensioning its capacity in terms of number of
sockets and the sizing of the RE supply to satisfy the battery swapping demand,
trading off cost, Quality of Service and feasibility constraints. Furthermore, the
potential benefits of smart scheduling strategies for battery recharging were an-
alyzed in [5]. With respect to our previous work, the main novel contributions
presented in the current manuscript consist in the following:

• with respect to our previous study conducted via simulation, we now in-
troduce an M/G/C/C queuing model to represent the BSS operation, exten-
sively validating its capability to accurately reproduce the system behavior
and the operational cost under realistic traffic demand;

• we explore the potentiality of the proposed stochastic model as a practi-
cal planning tool that can be flexibly adopted by the battery swap service
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provider to dimension the BSS system, meeting cost and QoS constraints,
without the need for performing time-consuming simulations;

• we thoroughly expand the analysis of the performance of Battery Swap
technology in terms of cost and Quality of Service. In particular, with re-
spect to [5], the dimensioning of the BSS in terms of number of sockets is
more extensively investigated and discussed, to satisfy the battery swapping
demand trading off cost and missed service probability;

• differently from our previous work, that only considered operational cost
due to the energy bought from the electric grid, both capital and operational
expenditures are now included in the cost evaluation, considering the capital
expenditures for the BSS infrastructure and for the chargers installed at the
BSS; furthermore, besides the cost for the energy bought from the grid,
operational expenditures now include also the management cost due to the
replacement of the EV batteries at the end of their lifetime.

The paper is organized as follows. After discussing related work in Sec. 2, we
present the considered scenario and formulate the problem in Sec. 3. The model
is proposed in Sec. 4 and validated in Sec. 5. Preliminary system dimensioning
including renewable energy supply is discussed in Sec. 6. In Sec. 7, the model
is applied to BSS system design and a comprehensive cost analysis is presented.
Finally, Sec. 8 concludes the paper.

2. Related work

A raising interest is currently emerging in the literature around the potential-
ity of BSSs, as shown by several studies that investigate urban mobility scenarios
based on electric vehicles and battery swapping technology. An overview of the
possible architectures and designs of BSSs is provided in [4], along with an anal-
ysis of the standardization deployment and technical challenges of BSS systems.
The survey in [7] details the state-of-the-art BSS literature and related business
models, also reviewing hybrid scenarios that jointly combine BSSs and traditional
charging stations. Focusing on the issue of planning BSS systems, authors in [8]
propose a site selection framework for the BSS based on a Multi-criteria deci-
sion making method. In [9] a novel robust decision-making tool is presented to
tackle the location selection problem for BSSs considering sustainability criteria.
The work in [10] proposes a model to optimize both the BSS allocation and the
number of batteries provided to users of electric scooters based on the battery
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swapping demand. Other studies focus on the management and operation of BSS
systems [11]. In [12] an algorithm is proposed to perform dynamic routing of a
fleet of EVs belonging to a taxi service, to effectively serve customers, trading off
delay constraints, the need for taxi detouring, and system cost. The work in [13]
analyzes an hybrid scenario where a dynamic programming model incorporating
a Markov decision process is applied to optimally distribute electric taxi batter-
ies between a BSS and a traditional battery charging station, based on demand,
electricity cost, and Quality of Service requirements. Various papers investigate
optimal battery charging schedule approaches aiming at optimally satisfying the
EV battery charging demand and minimizing the operational cost. Authors in [14]
proposes a mathematical model to schedule the battery charging process. This ap-
proach optimizes an objective function that considers: (i) the number of batteries
taken from the BSS to satisfy the demand for EV battery replacement, (ii) the
potential damage due to high-rate charging, and (iii) the varying electricity cost.
The work presented in [15] focuses on deploying a mathematical model to opti-
mally operate a BSS considering the random demands of fully charged batteries,
and exploiting demand shifting and energy sellback to reduce the BSS opera-
tional cost. In [16] and [17] optimal battery charging algorithms are proposed
to identify the optimal battery charging schedule, with the purpose of maximiz-
ing the net profit of BSS and grant Quality of Service (QoS) requirements, based
on a constraint Markov decision process. The study in [18] addresses the opti-
mization scheduling problem in a Battery swapping-charging system exploiting
Multi-Agent Deep Reinforcement Learning, whereas a Multi-Agent Deep Neural
Network is deployed in [19] to reduce operational costs through optimal battery
charging scheduling. The work in [20], based on a Monte Carlo simulation ap-
proach, shows that optimal schedule for the charging process contributes to sat-
isfy more EV swapping and charging requests maximizing the service capacity.
In [6] a queuing model is deployed to analyze the profit that can be achieved
by a multi-service EV charging station through scheduling approaches, possibly
powered by renewable energy. Our previous work [5] investigates different smart
charging scheduling strategies to dynamically postpone the charging process of a
variable fraction of batteries connected to a renewable powered BSS, with the aim
of conveniently reducing the operational cost and enhancing the renewable energy
utilization, still granting an acceptable Quality of Service. Regarding renewable
powered BSSs, the study in [21] proposes a novel strategy to identify the optimal
location of both traditional and swapping charging stations, in a scenario in which
photovoltaic and wind energy sources are included as power supply. Authors in
[22] introduce a multi-objective method for optimal operation of a centralized bat-
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tery swap charging system where solar energy is integrated. In [23], a charging
strategy is designed with the purpose of improving self-utilization of renewable
energy. Forecasting models based on statistics and machine learning techniques
can be integrated in the scheduling approaches to address the uncertainties related
not only to traffic load and swapping demand, but also to renewable energy gen-
eration and weather conditions [24, 25].
Some studies investigate the impact of charging scheduling schemes on the sys-

tem performance and on the required BSS dimensioning. Authors in [17] propose
an optimal charging operation policy based on a constrained Markov decision pro-
cess, to minimize the charging cost. The impact of the number of chargers on the
system performance in terms of cost is investigated, nevertheless only the opera-
tional cost due to the energy bill is considered and the analysis is conducted via
simulation. In [6] an M/M/C/C model is adopted to analyze the system perfor-
mance of EV charging stations, including BSSs, under a scheduling algorithm
that aims at optimizing the profits at the presence of random variables, such as
electricity price, solar power, and battery state of charge. However, the study does
not specifically focus on the problem of dimensioning the charging station, and
operational cost due to battery replacement at the end of their lifetime as well as
capital expenditures are not considered.
Despite the extensive research efforts in the literature to investigate the optimal
operation of BSSs, trading off cost and QoS, only few studies are available specif-
ically focusing on the dimensioning of BSSs and taking into account cost and
QoS requirements, tasks that require a careful investigation of the EV based trans-
portation demand [32]. To better highlight the research gaps and the contributions
of our paper, Table 1 reports and compares the most recent studies available in
the literature that specifically address the issue of dimensioning BSSs, possibly
powered by RE. Most studies consider the case of BSSs to serve electric buses
[27, 28, 31, 20], few works consider BSSs for long-haul trucks [26] or scooters
[29], whereas our study differs for focusing on the case of small EVs that are typi-
cally adopted for car sharing or good delivery services. Some papers consider the
integration of RE to power EVs. In particular, few studies investigate scenarios
in which the RE is derived from microgrids [27] or nanogrids [31, 30]. In similar
scenarios, microgrids and nanogrids provide supply to the Battery Energy Storage
System (BESS), from which the battery units, once recharged, can be delivered
to the BSS to serve EVs. Only few studies specifically address the case of a BSS
equipped with a dedicated local RE supply [28, 29], like in our paper. Although
these two studies investigate the dimensioning of the local RE supply, none of
them analyzes the dimensioning of the BSS, whereas our work represents the only
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Table 1: Studies in the literature focusing on the dimensioning of BSSs.
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study jointly considering the problem of sizing both the BSS and the local RE sup-
ply. Furthermore, whereas CAPEX are evaluated in most studies, only few papers
consider the OPEX for the energy purchased from the electric grid [26, 27, 29, 20].
Our paper jointly assesses CAPEX and OPEX, balancing them with QoS require-
ments in terms of capability of meeting the EV swap demand. We remark that
our study also provides an evaluation of the average OPEX per single EV swap
service. Furthermore, in the OPEX analysis, only our study takes into account,
besides the cost due to the electricity bill, the cost for battery replacement in the
case of a renewable powered BSS. To this aim, we integrate the evaluation of bat-
tery lifetime considering the degradation due to the charging/discharging cycles
that the storage units undergo during operation. Authors in [31] focus on the case
of a nanogrid integrated BESS, also powered by RE. Although their dimensioning
analysis includes the OPEX for battery replacement, this cost is estimated as a
fixed fraction of the CAPEX for the battery units. In addition, the operational cost
due to the energy bought from the grid is not considered. Management cost due
to battery replacement is considered in [31], but the investigated scenario does not
feature any RE supply. Finally, whereas most available studies focusing on the
dimensioning of BSSs rely on Mixed-Integer optimization approaches, we pro-
pose a Markovian model to represent the BSS operation, offering a flexible tool to
extensively investigate the trade off between the BSS dimensioning, cost, and the
QoS, under realistic EV swapping demand and variable distributions of the battery
charging levels upon EV arrivals at the BSSs. Our work yields useful insights on
the sensitivity of the proposed model to variations of the traffic profiles that may
occur in a real setup, hence, on the possible impact on the system dimensioning.
To the best of our knowledge, currently no study offers a thorough analysis of
the BSS dimensioning problem based on a stochastic queueing model, yielding a
practical and easy-to-use analytical tool that can be exploited in the planning and
deployment of renewable powered BSS systems, capable to address the issue of
identifying the optimal number of required BSS sockets to satisfy the EV demand,
trading off QoS requirements, capital investment and operational cost.

3. Sustainable urban mobility scenario

The considered scenario consists of a fleet of EVs owned by a private company
either offering goods delivery service or car sharing service over a city and its
suburban area, as in [5]. As depicted in Fig. 1, EVs are equipped with battery
units that, once discharged, can be rapidly replaced at a Battery Swapping Station
(BSS) by a fully recharged battery. Once the discharged battery is plugged to a
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Figure 1: Renewable powered Battery Swapping Station [5].

BSS socket, its charging process can start. A 20 kWh capacity is assumed for
each EV battery, compatible with the battery size of a small electric city car. Due
to the nonlinear charging power of a lithium-ion battery unit, an exact estimation
of its final charging time does not result easy [3]. However, a constant current
can be used to recharge a battery until 80% of its full capacity has been achieved,
whereas a significantly lower charging power is observed under higher State of
Charge [33]. For an optimal recharging process, the maximum nominal charging
rate is typically limited to 0.5 ·𝐶𝐵 per hour, where 𝐶𝐵 is the nominal battery
capacity [34]. In this work, we hence assume a constant charging rate of 10 kW,
resulting in a full recharge of a drained battery taking two hours.

In an actual scenario, the company providing the Battery Swap service and the
one offering the transportation service might coincide. The BS service is provided
to EVs by means of a number of BSSs placed distributed in the considered urban
area. Our study is performed focusing on a sample BSS, whose number of sock-
ets is denoted by 𝑁𝑆. The energy required to recharge the battery units plugged
at the BSS can be either drawn from the electric grid or derived from the RE that
is locally produced by a set of photovoltaic (PV) panels (see Fig. 1). Considering
one of the most efficient PV technology available on the market, we assume 19%
charge efficiency. The PV module area occupancy required per kWp of capacity
is is about 5 m2 [35, 36]. We adopt real RE generation profiles derived for the
typical meteorological year in a Northern Italy city, based on the tool PVWatts
[35]. For the BSS operational cost analysis, we adopt real electricity prices from
the Day-Ahead Market, a dataset made publicly available by Gestore dei Mercati
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Figure 2: Daily profile of EV arrival rates [5].

Energetici (GME), the Italian company responsible for the electricity market man-
agement [37]. The arrivals of EVs at the BSS to swap their discharged battery are
modeled by an inhomogeneous Poisson process, characterized by a mean arrival
rate, 𝜆, that varies depending on the hour of the day, following the daily traffic pat-
tern depicted in Fig. 2 [5]. Real traffic profiles representing the daily variations of
EV arrivals at traditional charging stations may not be suitable to properly repre-
sent the actual behavior of EV arrivals in a BSS system [38]. Indeed, the dynamics
of the EV usage and of the battery charging process at the BSS may differ from
those observed in a scenario with traditional EVs and charging stations, possibly
leading to very different EV arrival patterns. However, real data about patterns of
EV arrivals at a BSS in a urban scenario that result publicly available are difficult
to be found in the literature. Hence, the considered EV arrival profile is derived
taking inspiration from typical models adopted in the literature to represent arrival
rates of EVs at traditional charging stations [39] , accounting for a possibly dif-
ferent behavior in a BSS scenario, still obtaining a plausible pattern that exhibits
traffic peaks at the beginning of the working day, during lunchtime, and in the
evening, corresponding to the usual traffic variations observed during the day [5].

We denote 𝐿 ·𝐶𝐵 the charge level of the battery as the EV arrives at the BSS,
with 𝐿 corresponding to the fraction of the overall nominal storage capacity, i.e.,
𝐶𝐵. 𝐿 is assumed to be uniformly distributed according to U[𝐿𝑚𝑖𝑛,𝐿𝑚𝑎𝑥] , with
𝐿𝑚𝑖𝑛 ≥ 0.2. This latter assumption entails a battery Maximum Depth of Discharge
(DoD) of 0.8, allowing to reduce degradation phenomena and improve the battery
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lifetime. In addition, a relatively low value of 𝐿 avoids the risk of fully running
out of batter, so that an EV is granted the possibility to reach another BSS in
case no storage units are currently ready for the battery swap at the considered
BSS. Indeed, a fully recharged battery is used to replace the discharged storage
unit of an EV upon its arrival at the BSS, and the EV battery takes its place at
the corresponding BSS, hence beginning its recharge process. In case no fully
recharged battery is available at the considered BSS, the EV cannot be served and
another close by BSS must hence be reached.

4. BSS as an M/G/C/C system

We now introduce a queuing model to represent the BSS operation. A simpli-
fied analytical tool based on the model can be devised to dimension the BSS sys-
tem, based on the actual traffic profiles, and respecting cost and QoS constraints.

The BSS can be modeled as an M/G/C/C queuing system, in which the EVs ar-
rive according to a Poisson process, and the servers are represented by the 𝐶 = 𝑁𝑆

sockets to which the batteries can be connected to be recharged. Since we assume
a uniformly distributed battery charge level of the EVs upon arrival and a constant
battery charging rate, which we denote 𝜇, equal to 𝐶𝐵/2 [W], the charging time
results uniformly distributed according to U[2𝐿𝑚𝑖𝑛,2𝐿𝑚𝑎𝑥] [h], with average value
2𝐿 [h]. No buffer is envisioned in this queuing system, indeed if an EV does
not find a charged battery ready for replacement, the EV cannot be served and an
alternative BSS must be found. As the BSS is modeled as an M/G/C/C system,
the missed service probability, that we denote by 𝑃𝑙 , can be derived according to
the Erlang B formula [40], that allows to compute the proportion of arriving cus-
tomers (i.e., EVs) that find all the 𝐶 servers busy (i.e., all the 𝐶 = 𝑁𝑆 sockets with
a plugged battery still under charge) and cannot hence be served:

𝑃𝑙 =

𝜌𝑁𝑆

𝑁𝑆!∑𝑁𝑆

𝑖=0
𝜌𝑖

𝑖!

(1)

where 𝜌 corresponds to the mean load and it is derived as 𝜌 = 𝜆
𝜇

.

4.1. Key Performance Indicators
The Key Performance Indicators (KPIs) that are defined to evaluate the system

performance are derived with the model in the following way. First, we identify
a number of periods during the day in which the system operating conditions can
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be considered stable. Then, for each period, the model is solved at the steady state
and key performance indicators are derived. Finally, the performance indicators
are averaged over the considered periods. These are the KPIs considered in what
follows.

a. Average Service Loss probability - �̂�𝑙 : it is the average daily probability
that an EV arrives at the BSS and cannot be served, since no battery is
immediately ready to be swapped with the EV battery.
Via simulation, �̂�𝑙 is computed as follows:

�̂�𝑙 =
1
𝐷

𝐷∑︁
𝑖=1

𝑉𝑎
𝑖
−𝑉 𝑠

𝑖

𝑉𝑎
𝑖

𝑖 = 1,2, ...𝐷 (2)

where 𝑉𝑎
𝑖

is the number of EVs arrived at the BSS during day 𝑖 , 𝑉 𝑠
𝑖

is the
number of EVs served by the BSS on day 𝑖, and 𝐷 is the number of days in
the observation period.
�̂�𝑙 can be derived from the application of the queuing model presented in
Section 4 as follows:

�̂�𝑙 =
1
𝑇

𝑇∑︁
𝑖=1

𝑃𝑙𝑖 𝑖 = 1,2, ...𝑇 (3)

where 𝑇 is the number of time slots during a day, and 𝑃𝑙𝑖 is the missed
service probability derived from (1) considering the average arrival rate 𝜆

during time slot 𝑖.

b. Average Energy Demand from the Grid - 𝐸𝐺 : it is the average daily BSS
energy demand drawn from the electric grid.

𝐸𝐺 =
1
𝐷

𝐷∑︁
𝑖=1

𝐸𝐺
𝑖 𝑖 = 1,2, ...𝐷 (4)

where 𝐸𝐺
𝑖

is the energy drawn from the grid on day 𝑖 to recharge the batteries
of EVs that are served during day 𝑖.

c. Average Total Cost - 𝐶𝑇 : it is the average daily cost to operate the BSS.

𝐶𝑇 =
1
𝐷

𝐷∑︁
𝑖=1

𝐶𝑇
𝑖 𝑖 = 1,2, ...𝐷 (5)
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where 𝐶𝑇
𝑖

is the cost spent on day 𝑖 to operate the BSS.
When the queuing model is applied, the value of 𝐶𝑇 is estimated as follows:

𝐶𝑇 =

𝑇∑︁
𝑗=1

𝐶𝐻
𝑗 𝑗 = 1,2, ...𝑇 (6)

where 𝐶𝐻
𝑗

is the electricity cost time slot 𝑗 , that is derived as:

𝐶𝐻
𝑗 = 𝑝 𝑗 · 𝑑𝐸𝑉 ·𝜆 𝑗 (1−𝑃𝑙 𝑗 ) (7)

where 𝑝 𝑗 is the electricity price during time slot 𝑖, 𝑑𝐸𝑉 = �̄� ·𝐶𝐵 is the aver-
age energy demand to recharge an EV battery, 𝜆 𝑗 is the average arrival rate
at time slot 𝑗 , and 𝑃𝑙 𝑗 is the service loss probability during time slot 𝑗 .
A low value of 𝐶𝑇 does not necessarily reflect a desirable system perfor-
mance, since a high value of service loss probability may contribute to de-
crease the total cost at the price of Quality of Service impairment. We hence
define also the following KPI, i.e. the Average Cost per Service, whose
value is not influenced by the service loss probability.

d. Average Cost per Service - 𝐶𝑆: it is the average daily cost to serve an EV
and replace its battery with a recharged battery.

𝐶𝑆 =
𝐶𝑇𝐷

𝐷∑︁
𝑖=1

𝑉 𝑠
𝑖

𝑖 = 1,2, ...𝐷 (8)

e. Overall Yearly Cost - 𝐶𝑌 : it is the cost per year including both the capi-
tal expenditures for the BSS installation (CAPEX) and the operational cost
(OPEX) due to the energy bought from the power grid during the BSS oper-
ation and to the management cost for replacing the chargers and the batteries
at the end of their lifetime. Note that the cost for battery replacement is in-
cluded in the computation of 𝐶𝑌 , since the considered scenario is based on
the paradigm of Battery-as-a-Service. Indeed, the BSS system operator is
the owner of the batteries, and the management cost for the replacement of
a battery unit at the end of its lifetime is paid by the BSS operator.
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This cost is computed as follows:

𝐶𝑌 =
𝐶𝐹

𝑇𝐹
+
(
𝐶𝑆

𝑇 𝑆
+ 𝐶𝐵 ·𝐶𝐵

𝑇𝐵

)
·𝑁𝑆 +𝐶𝑇 ·365 (9)

where 𝐶𝐹 is the fixed cost for the BSS infrastructure installation, 𝐶𝑆 is the
cost for each of the integrated battery chargers, 𝐶𝐵 is the cost per 1 kWh of
battery capacity, whereas 𝑇𝐹 , 𝑇 𝑆 and 𝑇𝐵 correspond to the expected lifetime
of the BSS infrastructure, of each charger and of each battery, respectively.
Note that in our study we make the conservative assumption that 𝑇𝐹 = 𝑇 𝑆.

5. Queuing model validation

We now focus on the validation of the queuing model that is proposed in Sec-
tion 4 to represent the BSS operation. We first investigate the model potential to
accurately represent the system at the steady state. Second, we validate the model
against the simulation results under the actual traffic profile. Furthermore, we in-
vestigate the capability of the model to capture the hourly variations of the service
loss probability. Finally, we investigate the model capability to evaluate the BSS
operational cost.

5.1. Evaluation at the steady state
To evaluate the capability of the proposed model to correctly represent the

BSS operation at the steady state, the loss probability obtained from the queuing
model is compared against the results obtained under simulation.

Fig. 3 reports the values of 𝑃𝑙 derived from the model (red cross markers)
along with those obtained under simulation (blue dot markers), for increasing
number of sockets in the BSS, 𝑁𝑆. Each sub-figure corresponds to a different
value of the inter-arrival time. As it can be clearly evinced from the graphs shown
in the figure, the model is capable to very accurately represent the system behavior
under any value of inter-arrival time. Under a very low inter-arrival time, as low
as 1 min, 𝑃𝑙 tends to be quite high even under large sized BSS, with the service
loss probability decreasing almost linearly with the value of 𝑁𝑆. As the inter-
arrival time increases, 𝑃𝑙 tends to decrease exponentially as the number of sockets
grows larger. As the inter-arrival time increases, the number of sockets required
to minimize the service loss probability becomes smaller. For example, under
𝜆−1 = 5 𝑚𝑖𝑛 more than 20 sockets are required to virtually avoid any service loss,

14



0 20
NS

0.6

0.8

1.0
P l

Sim
Model

(a) 𝜆−1 = 1 𝑚𝑖𝑛

0 20
NS

0.0

0.5P l

Sim
Model

(b) 𝜆−1 = 5 𝑚𝑖𝑛

0 20
NS

0.0

0.5P l

Sim
Model

(c) 𝜆−1 = 10 𝑚𝑖𝑛

0 20
NS

0.0

0.5P l

Sim
Model

(d) 𝜆−1 = 15 𝑚𝑖𝑛

0 20
NS

0.0

0.5
P l

Sim
Model

(e) 𝜆−1 = 20 𝑚𝑖𝑛

0 20
NS

0.0

0.5

P l

Sim
Model

(f) 𝜆−1 = 25 𝑚𝑖𝑛

Figure 3: Service loss probability, 𝑃𝑙 , versus number of sockets in the BSS, 𝑁𝑆 , under the model
and under simulation, for different values of average of interr-arrival time (𝜆−1).

whereas less than 10 sockets are sufficient to guarantee a loss free service under a
five-fold larger inter-arrival time.

The model is further validated considering different values of the average bat-
tery charging level of EVs upon arrival. Fig. 4 compares the values of 𝑃𝑙 under the
model (red cross markers) and under simulation (blue dot markers) for increasing
values of 𝑁𝑆, considering different average values of 𝐿, hence different average
values of the EV battery charging level upon arrival. Note that the actual charging
level of the EV battery is derived as 𝐿 ·𝐶𝐵. We observe that even in this case the
model accurately represents the BSS operation under any tested value of the aver-
age battery charge level. Clearly, given a value of 𝑁𝑆, if EVs arrive at the BSS to
replace a battery whose charge level is on average at 30% of its full capacity, users
experience a higher service loss probability with respect to the case in which the
battery charge level upon arrival is half the overall capacity or more. According
to the presented results, under 𝑁𝑆 > 25 the system performance is similar in any
case, featuring a negligible 𝑃𝑙 regardless the considered value of 𝐿.

5.2. Applying the model under realistic traffic
We now apply the model to the actual trace of EV arrivals. To evaluate the

model sensitivity to variations of the traffic profiles, besides the baseline traffic
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Figure 4: Service loss probability, 𝑃𝑙 , versus number of sockets in the BSS, 𝑁𝑆 , under the model
and under simulation, for different values of average battery charging level of EVs upon arrival,
𝐿 ·𝐶𝐵.

trace we also consider traces derived from the original one introducing some ran-
dom noise. Fig. 5 depicts the service loss probability, 𝑃𝑙 , versus the number of
sockets in the BSS, 𝑁𝑆, obtained under the model and under simulation, consid-
ering both the original traffic (Fig. 5a) and a derived trace that is obtained intro-
ducing some noise, denoted 𝑁𝑟 , whose relative value with respect to the baseline
trace is distributed according to U[−0.15,+0.15] (Fig. 5b) and U[−0.3,+0.3] (Fig. 5c),
respectively. We observe that under lower size of the BSS the model tends to un-
derestimate the service loss probability. No significant difference can be noticed
in the model performance under modified traffic traces, even when the introduced
noise is larger (Fig. 5c). The gap between the model and the simulation that is
detected under small values of 𝑁𝑆 can be likely explained by the fact that the av-
erage EV arrival rate may change as frequently as every time slot, i.e. every hour.
Given the actual values of the arrival rate in the considered traffic trace (Fig. 2),
that result lower than 20 ℎ−1 even in peak periods, the time slot duration may not
be sufficient to reach the steady state when the BSS is underdimensioned, hence
resulting in fewer cases of missed service than expected. Nevertheless, overall the
model looks quite effective in capturing the BSS behavior in terms of service loss
probability under varying values of 𝑁𝑆.

5.3. Hourly variations of service loss probability
In order to further compare the model performance against simulation results,

we provide a more detailed view on the model capability to catch the variations
of 𝑃𝑙 over the daytime. To this aim, Fig. 6 shows the daily profiles of the aver-
age service loss probability under different values of 𝑁𝑆, with 1 hour time steps,
considering both the simulation (Fig. 6a) and the model (Fig. 6b). The absolute
error given by the difference between model based service loss probability and

16



0 20
NS

0.0

0.5P l
Sim
Model

(a) Baseline traffic trace

0 20
NS

0.0

0.5P l

Sim
Model

(b) 𝑓 (𝑁𝑟 ) = U[−0.15,+0.15]

0 20
NS

0.0

0.5P l

Sim
Model

(c) 𝑓 (𝑁𝑟 ) = U[−0.3,+0.3]

Figure 5: Service loss probability, 𝑃𝑙 , versus number of sockets in the BSS, 𝑁𝑆 , under the model
and under simulation, considering the baseline traffic trace (a) and traffic profiles that are derived
introducing some noise, 𝑁𝑟 , distributed according to U[−0.15,+0.15] (b) and U[−0.3,+0.3] (c).

simulation derived values is reported in Fig. 6c. When less than 20 sockets are
envisioned, we observe 𝑃𝑙 peaks during those time slots in which the EV arrival
rate is higher. Nine sockets are sufficient to guarantee an acceptable QoS at least
during off peak time slots. Nevertheless, 21 sockets are required to grant a ser-
vice loss probability lower than 0.05 during peak periods. Higher values of 𝑁𝑆

provides negligible service loss probability over the entire daytime. The plot in
Fig. 6c highlights how, under smaller size of the BSS, the largest gaps between
the model and the simulation based results are observed during the traffic peaks.
Indeed, in those time slots the BSS cannot fully satisfy the EV demand and some
losses are detected. However, since the arrival rate may change every hour, the
steady state may not be achieved over the course of a time slot, hence resulting in
a slight decrease of the model accuracy in capturing the system behavior and in
the estimation of the service loss probability under low values of 𝑁𝑆.
Note that the curve for 𝑁𝑆 = 21 corresponds to the best dimensioned BSS among
the tested sizes that guarantees an overall 𝑃𝑙 < 0.01, ensuring less than 0.05 ser-
vice loss probability during traffic peaks.

5.4. Model validation for cost analysis
A cost analysis based on the proposed model is now performed and compared

against the cost derived via simulation. The related results are depicted in Fig. 7.
The average daily cost obtained under the model (red crosses) are compared

against those derived from the simulation (blue dots) for several values of 𝑁𝑆, as
shown in Fig. 7a. The average daily cost tends to increase as the BSS size be-
comes larger, with a faster ascent for lower values of 𝑁𝑆. Indeed, when additional
sockets are included in an underdimensioned BSS, a relevant impact is detected
on decreasing the operational cost, due to the higher number of EVs that can be
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Figure 6: Average service loss probability, 𝑃𝑙 , during the daytime for different number of sockets
in the BSS, 𝑁𝑆 , and under simulation (a) and under the model (b), with corresponding absolute
error (c).
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(b) Model based cost profiles

Figure 7: Model based average daily cost compared against simulation cost (a) and model based
cost profile during the daytime (b) for different number of sockets in the BSS, 𝑁𝑆 .

served. The model correctly represents the operational cost when the number of
sockets is lower, whereas under high values of 𝑁𝑆, that achieve the highest QoS
levels, the cost is only slightly underestimated by the model.

For completeness, Fig. 7b details the daily profiles of the operational cost
under several values pf 𝑁𝑆. Clearly, higher hourly costs are observed during traffic
peak periods, when more EVs are served by the BSS.
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Figure 8: Average daily total cost versus loss probability, for different values of 𝑁𝑆 , indicated by
the labels.

6. Including renewable energy supply in the performance analysis

We now analyze how the BSS sizing, both in terms of charging capability,
i.e. number of sockets, and RE supply capacity. The system is simulated over
one year, assuming about 102 EV daily arrivals and a uniform distribution for 𝐿,
according to U[0.2,0.4] .

6.1. Dimensioning the BSS
Considering the case without any RE supply, Fig. 8 shows the mean daily cost,

𝐶𝑇 , versus the service loss probability, 𝑃𝑙 , for several values of 𝑁𝑆, the number
of BSS sockets. The labels in the plot indicate the corresponding value of 𝑁𝑆

for each point in the graph. As 𝑁𝑆 grows larger, the service loss probability is
reduced at the price of a higher total cost, since progressively more vehicles can
be successfully served. Nevertheless, this trend tends to become less evident for
very large BSS sizes. Whereas BSS size of 𝑁𝑆 = 15 results in a service loss prob-
ability of 0.05, expanding the BSS with only two sockets almost halves 𝑃𝑙 , with
an almost negligible price raise. Conversely, adding a socket to a BSS featuring
𝑁𝑆 = 22, does not remarkably decrease the value of 𝑃𝑙 , resulting lower than 0.01
under both BSS sizes. Conversely, a value of 𝐶𝑆 of about 0.9 C (results not re-
ported for the sake of brevity) is constantly observed under any BSS size, meaning
that the overall cost reduction yielded by a lower BSS size actually depends on a
limited capability to successfully serve EVs, reflected by a higher missed service
probability.

19



0
20
0
40
0
60
0
80
0
10
00
12
00
14
00

CP [kWp]

40.00

60.00

80.00

Da
ily

 C
os

t [
€] NS

15
16
17
18

19
20
21
22

23
24
25

Figure 9: Average total cost, 𝐶𝑇 , under different settings of PV panel capacity, 𝐶𝑃 , and number
of sockets, 𝑁𝑆 .

6.2. Proper sizing of RE supply to reduce cost
We now assume that the BSS can jointly be powered by the electric grid and

by the photovoltaic panel derived RE, focusing on the impact of the dimensioning
of RE supply on the operational cost.

The mean daily cost, 𝐶𝑇 , is reported in Fig. 9 for increasing capacity of the
RE supply, 𝐶𝑃. Each curve corresponds to a specific value of 𝑁𝑆. Equipping the
BSS with a PV panel capacity of 300 𝑘𝑊𝑝 determines a cost reduction of about
40%, whereas adding 50% of the PV capacity leads to an almost negligible cost
reduction of only few percentage points. Considering the limited gain yielded in
terms of cost saving, it may hence result not convenient to integrate additional
capacity to a 300 𝑘𝑊𝑝 RE generator. Moreover, a similar capacity represents a
proper balance cost and feasibility constraints in terms of area occupancy, since a
surface of about 5 𝑚2 per 𝑘𝑊𝑝 of capacity is required to install PV panel modules.
Finally, a slight decrease of 𝑁𝑆 can contribute to further reduce operational cost
in the RE powered BSS, although a remarkable downsizing of the BSS is not
desirable, due to the higher price paid in terms of missed service probability.

7. Application of the model in designing battery swapping station systems

We now describe how the proposed model can be effectively exploited to prop-
erly dimension the BSS size, considering the EV traffic rate, capital and opera-
tional cost, and Quality of Service requirements in terms of service loss probabil-
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Figure 10: Model based service loss probability, 𝑃𝑙 , versus average daily cost for different number
of sockets in the BSS (a) and for several values of average arrival rates, 𝜆 (b).

ity. Furthermore, we also present how the model can be exploited to properly de-
sign BSS systems based on a cost analysis that includes both CAPEX and OPEX
evaluation.

7.1. BSS dimensioning
Fig. 10 shows the values of the service loss probability, 𝑃𝑙 , obtained from the

model versus the average daily operational cost, considering several sizes of the
BSS, 𝑁𝑆, and different EV arrival rates, 𝜆. Each point in the subfigures represents
a different combination of values of 𝑁𝑆 and 𝜆. Although Figs. 10a-10b repre-
sent the same set of results, data are shown grouped by 𝑁𝑆 in Fig. 10a, whereas in
Fig. 10b each curve corresponds to a different value of 𝜆. Note that the operational
cost 𝐶𝑇 is derived according to (6), assuming an homogeneous Poisson process
for arrivals. We can observe from Fig. 10a that under small values of 𝑁𝑆, the
service loss probability 𝑃𝑙 tends to rapidly grow, without significantly raising the
cost. This is explained by the fact that the BSS cannot satisfy the battery swap-
ping demand, hence limiting operational cost at the price of a remarkable QoS
degradation. Under higher values of 𝑁𝑆, both 𝑃𝑙 and cost increase as 𝜆 grows,
showing a steeper ascent under low traffic demand. From the same results rep-
resented in Fig. 10b, it can be evinced that, for a given arrival rate, 𝑃𝑙 decreases
linearly with the raise of the number of installed sockets, hence determining a
consequent increase of the operational cost, due to the largest number of EVs that
can successfully be served by the BSS.

21



0.0 0.2 0.4 0.6 0.8 1.0
Pl

50000
100000
150000
200000
250000

Co
st
 [€

]
NS

2
4
6

8
10
12

14
16
18

20
22
24

26
28
30

32
34
36

38
40

(a) Entire set of results

  

(b) Subset of results

Figure 11: Average service loss probability, 𝑃𝑙 , during the daytime for different number of sock-
ets in the BSS, 𝑁𝑆 , versus average yearly cost (CAPEX and OPEX). Subfigure (b) represents a
subset of the results in subfigure (a), with labels representing the average inter-arrival time [m]
corresponding to each point.

Our findings show that the proposed model can be effectively exploited as a
practical tool to dimension a BSS system, based on the EV demand, the desired
QoS requirements, and the cost constraints. For example, let us consider a traffic
scenario characterized by an average EV arrival rate of 10 ℎ−1. Assuming a target
𝑃𝑙 lower than 0.05, 20 sockets are required at least to fully satisfy the defined
requirement, still limiting the cost raise. Similarly, we could decide to dimension
the system based on the target worst case 𝑃𝑙 , taking into account the average EV
arrival rate during the peak period and identifying the value of 𝑁𝑆 needed to keep
the service loss probability below the target threshold in that period of high EV
charging demand. For example, setting a constraint on the worst case 𝑃𝑙 < 0.1,
and assuming a peak arrival rate of 20 ℎ−1, 50% more sockets, i.e. 𝑁𝑆 = 30, are
needed to meet the desired service loss probability requirement.

The potential of a similar tool can be enhanced by integrating the evaluation of
the impact of capital expenditures due to the installation of the required sockets in
the BSS. The integration of this aspect to refine the proposed model is discussed
hereafter.

7.2. Cost analysis including CAPEX
We now present a cost analysis that is performed based on the model, consider-

ing both CAPEX and OPEX, in order to take into account possible cost constraints
on capital expenditure in planning and dimensioning a BSS system. CAPEX is
computed considering both the fixed cost associated to the installation of the BSS
baseline infrastructure and the cost for the BSS equipment, i.e. the chargers and
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the batteries. A fixed cost, denoted 𝐶𝐹 , of around 322800 C is estimated for in-
stalling a BSS, based on NIO statements [41]. The cost for each battery charger,
𝐶𝑆, is assumed to be 1200 USD (about 1100 C) [42], and the battery cost, 𝐶𝐵, is
assumed to be 300 USD/kWh (about 280 C). We assume a 15 year lifetime, i.e.
𝑇 𝑆, for each charger [43], and a battery lifetime, 𝑇𝐵, of 8 years [42].

Fig. 11a reports the average yearly cost (including CAPEX and OPEX) versus
the service loss probability, 𝑃𝑙 , for several values of 𝑁𝑆. Each point represents a
different value of the EV inter-arrival rate. Several values of 𝜆 from 2.5 h−1 to 60
h−1 are evaluated. This graph shows that, under very small sized BSS, 𝑃𝑙 results
quite high even under low EV arrival rates and, while the service loss probability
grows with the arrival rate, the cost is not affected, since the BSS capacity is
saturated even under low service demand. When the number of sockets grows
larger, under low service demand, 𝑃𝑙 remains constant as 𝜆 increases, whereas
the cost is raised. This means that the integration of further sockets in a well
dimensioned system will affect capital expenditure without providing advantages
in terms of QoS improvement. Conversely, when the arrival rate overpasses the
BSS size capability, we observe increasing service loss probability along with
a constant operational cost, since no additional EVs can be successfully served.
Furthermore, the maximum value of service loss probability, observed under the
highest arrival rate, tends to decrease linearly as 𝑁𝑆 becomes higher, at the price
of a cost increase.

Fig. 11b provides a detailed view of a subset of the results shown in Fig. 11a.
In the reported graph, for each point a label highlights the value of the corre-
sponding average inter-arrival time, 𝜆−1, expressed in minutes. Even in this case,
the model results effective as a tool to properly dimension the BSS, either based
on the average or peak BSS service demand, keeping into account not only QoS
requirements and operational cost, but also the budget required for the initial BSS
installation, that may significantly affect the decisions about the planning and
sizing of the system. Considering the same practical example proposed in Sec-
tion 7.1, a number of sockets equal to 30, although yielding a remarkable QoS
level during peak traffic periods, may lead to relatively high cost for installing the
BSS equipment. The BSS service operator may hence decide to pose additional
constraints to limit the CAPEX. Note that, according to our findings, OPEX may
account for 25% to 80% of the overall yearly cost, depending on the traffic de-
mand and the BSS size. Furthermore, by conveniently relaxing the constraint on
the maximum accepted service loss probability, a lower number of sockets can be
installed in the BSS, allowing to decrease the overall cost (including CAPEX and
OPEX) to satisfy the requirements set by the service operator.
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8. Conclusion

Our study analyzes the potential of BS technology to enable a more sustainable
urban mobility and to enhance the feasibility of e-mobility with respect to the
advantages granted by traditional ICE based mobility. Our findings highlight how
a proper sizing of the BSS capacity in terms of number of available sockets is
necessary to limit the missed service probability. Furthermore, the integration of
a RE supply of less than 20 𝑘𝑊𝑝 per socket allow to decrease cost by almost 40%,
making the BS technology more effective in providing a proper trade off between
cost, sustainability and feasibility constraints.

Our study proposes a queuing model that accurately represents the BSS oper-
ation, providing a practical analytical tool that can effectively be employed during
the planning and dimensioning of BSS systems in real scenarios, based on the
actual EV battery swapping demand. Notably, this model allows to effectively
trade off QoS requirements, capital expenditures for the installation of BSS in-
frastructure, management cost for battery and charger replacement at the end of
their lifetime, and operational cost due to the energy bought from the electric grid.

As future work we plan to investigate more complex BSS scenarios that in-
tegrate additional RE sources, like wind energy, and smart charging scheduling
strategies, to more effectively reduce the operational cost without impairing QoS.
Furthermore, similar smart scheduling strategies can be conveniently coupled with
properly designed energy management techniques, with the purpose of enhancing
the interaction of the BSS with the Smart Grid in a Demand Response framework.
Indeed, further cost reduction and additional revenues can be achieved by timely
reacting to the requests issued by the Smart Grid to its customers to dynamically
vary (increase or decrease) their energy demand. In this context, BSS operators
can exploit the EV batteries under charge at the BSS as storage unit from which
energy can even be drawn and injected to the electric grid when needed, and sell
back to the Smart Grid any extra amount of RE that is not immediately used.
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