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ABSTRACT

The increasing demand for deep neural networks (DNNs)
in resource-constrained systems propels the interest in heav-
ily quantized architectures such as networks with binarized
weights. However, despite huge progress in the field, the
gap with full-precision performance is far from closed. To-
day’s most effective methods for quantization are rooted in
proximal gradient descent theory. In this work, we propose
ConQ, a novel concave regularization approach to train effec-
tive DNNs with binarized weights. Motivated by theoretical
investigation, we argue that the proposed concave regular-
izer, which allows the removal of the singularity point at
0, presents a more effective shape than previously consid-
ered models in terms of accuracy and convergence rate. We
present a theoretical convergence analysis of ConQ, with spe-
cific insights on both convex and non-convex settings. An
extensive experimental evaluation shows that ConQ outper-
forms the accuracy of competing regularization methods for
networks with binarized weights.

Index Terms— Concave Regularization, Quantized Neu-
ral Networks, Proximal Operators

1. INTRODUCTION

Deep neural networks (DNNs) have shown remarkable per-
formance in diverse machine learning tasks in the computer
vision field. Typically, high-performance DNNs have a huge
amount of parameters, leading to significant memory usage
and computational cost. However, these networks often need
to be used in environments with limited memory and compu-
tational resources such as mobile devices or embedded sys-
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tems. In such cases, it is desirable to compress the network
into a smaller and faster version while maintaining compara-
ble inference accuracy. In recent years, several methods em-
ployed quantization of the network parameters from floating-
point 32-bit representation to half-precision (16 bits), UINT8
(8 bits), down to binary networks where parameters can only
assume two values.

In binarized neural networks, parameters are quantized
via a function Q to +1/ − 1 levels leading to a significant
reduction of memory usage and computational complexity
compared to full-precision (FP). The most straightforward
solution for Q is the sign function, as introduced in Bina-
ryConnect [1] which proposed a workaround for comput-
ing gradients in the back-propagation phase while training,
despite the non-differentiability of the sign function. The
so-called Straight-Through Estimator (STE) method approx-
imates the derivative of the sign function with the identity,
allowing the gradients to pass through unchanged. In such a
way, the derivatives of FP parameters are used for updating
the quantized parameters. STE greatly improves the perfor-
mance compared to simple post-training quantization of a
pre-trained network. However, the gap with FP is far from
being closed. One of the possible reasons might be found in
the intrinsic sub-optimality of STE, as already observed in
[2]. Only a few methods proposing variations to STE have
been published [3, 4].

As mentioned, a class of regularization methods to train
models with binarized parameters has recently been intro-
duced [2, 3, 4]. Specifically, one can induce effective quanti-
zation during the training by adding a suitable regularization
term to the loss function. This is achieved by designing suit-
able proximal gradient algorithms (PGAs) for composite, reg-
ularized problems. In the pivotal paper [2], authors introduce
a W-shaped regularizer and develop its corresponding PGA.
Further theoretical analysis and modified proximal methods
were proposed in [5, 6, 7]. Our paper introduces a novel con-
cave regularization method for binary quantization denoted
as ConQ which improves upon the state of the art thanks to
its concave shape which allows the removal of the singular-
ity point at 0. Our contributions are summarized as follows:
(i) we introduce a new regularizer with a specific non-convex
shape to train models with parameters binarized with −1/+1
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Fig. 1. The shape of the proposed regularizer r.

binarization levels; (ii) we design a PGA and analyze its con-
vergence; our regularizer yields competitive results relative to
state-of-the-art methods in terms of accuracy and convergence
rate in the convex setting; (iii) we demonstrate the effective-
ness of ConQ validating it on the image classification task
with different deep network structures, showing that ConQ
outperforms regularization competitors on the considered sce-
narios.

2. BACKGROUND

As mentioned, the binarization of deep models was intro-
duced in [1]. Several works have been proposed to tackle
the performance drop when compared to their FP coun-
terpart [8, 9], and to provide theoretical insights into the
guarantees under which one can efficiently train binarized
models [10, 11, 12]. On the other hand, only a handful of
quantization algorithms based on regularization or proximal
methods were introduced as alternatives to STE. [13] intro-
duced BinaryRelax, representing a form of lazy proximal
gradient descent, while [14, 15] proposed a proximal New-
ton method employing an approximate diagonal Hessian.
[16] formulated the training of quantized networks as a con-
strained optimization challenge, suggesting solutions using
augmented Lagrangian methods. The ProxQuant method
[2] introduced a W-shaped regularizer and analyzed its corre-
sponding PGA, which showed improvements over the state of
the art as reported in their experimental assessment. Further,
ProxSGD [5] and ProxGen [6] analyzed the general problem
of stochastic proximal gradient descent with convex and non-
convex regularization. In numerical experiments, ProxSGD
and ProxGen were shown to improve over BinaryConnect
[1], while, in some instances, ProxGen also exhibits greater
accuracy than ProxQuant. Finally, in [7], BinaryConnect was
reinterpreted as a dual-averaging lazy proximal gradient algo-
rithm, giving rise to original theoretical considerations on its
convergence. Here, the authors propose ProxConnect, a fam-
ily of lazy proximal gradient algorithms whose performance
is close to ProxQuant in several experiments on different
binarized models. In [17], ProxConnect was revisited with
different forward-backward quantizers.

3. PROPOSED APPROACH

In this section, we introduce our method by stating the prac-
tical and theoretical motivations that originate it. As dis-

cussed, ProxQuant [2] represents the state of the art for bi-
narized models with regularization and proximal approach.
Its key idea is the use of a W-shaped regularization defined
by

∑d
i=1 min{|1 − xi|, |1 + xi|} = ∥x − sign(x)∥1 (where

sign(x) = 1 for x ≥ 0 and −1 otherwise). With minima at
−1 and +1, the function is designed to encourage the network
parameters to take values around −1 and +1 after the typical
initialization with values close to zero. This regularizer has
three non-differentiable points in {−1, 0, 1}. We argue that
a strictly concave shape in [−1, 1] as depicted in Fig. 1 leads
to a more accurate quantization. On the one hand, a smooth
maximum at 0 does not force excessive penalization of a value
close to zero, which instead may occur with an angular point
as in [2]. In other words, by increasing the concavity, we can
build a region of points with a small gradient around zero to
avoid hard decisions. On the other hand, a large concavity is
expected to enhance the overall convergence rate, as it moves
the parameters closer to −1 and +1 where the slope of the
regularizer is larger than 1. We remark that we keep a linear
regularizer outside [−1, 1], as values that are large in mag-
nitude are less critical to quantize. Also, we point out that,
by iterating the shape in [−1, 1], the proposed approach could
be potentially extended to quantization problems at bit depths
greater than one.

The simplest way to realize a concave regularization is to
consider a quadratic function 1 − x2 in the [−1,+1] interval
(Fig. 1). Although higher-order polynomials may be consid-
ered for more efficient quantization, the quadratic case has
been shown to provide clear benefits compared to the linear
case while at the same time allowing the theoretical analysis
to be affordable. These benefits also apply against a logarith-
mic shape which exhibits a non-differentiable point at zero. In
the following, we specialize in quadratic regularization and il-
lustrate the convergence rate benefits compared to ProxQuant.

3.1. ConQ method

Our technique is based on concave quadratic regularization
associated with PGA. Given a loss function L : Rd 7→ R, we
solve

minF (x) = L(x) + λR(x) (1)

R(x) =

d∑
i=1

r(xi) (2)

where r : R 7→ R is defined as

r(x) = max
{
1− x2, |x| − 1

}
(3)

and λ > 0 is the hyper-parameter that weights the regulariza-
tion effect. The shape of the r regularizer is shown in Fig. 1.
Since r is not differentiable in the quantization values, we
cannot directly use gradient-based algorithms for the prob-
lem as in Eq. (1). However, we can resort to the proximal
gradient algorithm which is at the core of the ConQ method.



The proximal operator of a function G : Rd 7→ R is defined
as:

proxG(z) = argmin
x∈Rd

{
1

2
∥x− z∥22 +G(x)

}
. (4)

Let us assume that L is differentiable. The PGA for F
consists of iterating a gradient step on L and a proximal oper-
ation:

xt+1 = proxλτR(xt − τ∇L(xt)) (5)

where τ > 0 is the learning rate. The effective application
of PGA depends on the possibility of computing proxλτR
straightforwardly. Generally, this may be challenging for non-
convex, non-smooth functions such as the one we employ.
Regularizers that support binary quantization over {−1, 1}
are necessarily non-convex, because they naturally have strict
global minima in {−1, 1}, and non-smooth because angular
points in {−1, 1} are fundamental to induce concentration of
parameter values in {−1, 1}. However, the problem defined
in Eq. (4) is strongly convex for the proposed R and enjoys
a simple unique solution. Since R is separable, the compu-
tation of the proximal operator is reduced to the following
one-dimensional problem:

proxλτr(z) = argmin
x∈R

{
1

2
(x− z)2 + λτr(x)

}
(6)

If λτ ∈
(
0, 1

2

)
, the problem as in Eq. (6) is strongly convex

and the solution is:

proxλτr(z) =


z

1−2λτ if |z| < 1− 2λτ

sign(z) if |z| ∈ [1− 2λτ, 1 + λτ ]
z − sign(z)λτ if |z| > 1 + λτ.

We summarize the training algorithm in Alg. 1, where ∇̃
refers to an SGD optimizer.

Algorithm 1 ConQ: proximal gradient method with concave
regularization for binary quantization
Require: Initialization x0, learning rate τ , regularization

weight λ, pre-trained FP model M
while Not converged do

Forward pass on M (normal SGD)
Backward pass on M (normal SGD): computation of

zt = xt − τ∇̃L(xt)
Update the parameters with the proximal gradient step:

xt+1 = proxλτR(zt)
end while
Quantize the parameters of the regularized model with the
sign function

4. CONVERGENCE ANALYSIS

We now analyze the convergence of ConQ in a non-stochastic
setting and further discuss the differences with ProxQuant.

4.1. Convergence in the Non-convex Setting

We start by analyzing the convergence of ConQ for non-
convex F = L + λR. Since R is non-convex, L may be
either non-convex or convex. We first consider the general
non-convex case, while in Sec. 4.3 we specialize to strongly
convex L. To prove the convergence of ConQ, we leverage
results from composite, non-convex, non-smooth optimiza-
tion theory in [18, 19]. These works study the convergence of
a family of descent algorithms, including PGA, by leveraging
the Kurdyka-Łojasiewicz (KŁ) property defined in [18, 19].
Let ∂F (x) be the limiting subdifferential of F at x. A mini-
mizer x⋆ of F necessarily satisfies 0 ∈ ∂F (x⋆). Conversely,
any point x that satisfies 0 ∈ ∂F (x) is said to be a critical
point. The definition of KŁ property as in [19] requires
that a reparametrization of the values of F exists, such that
singular regions, i.e., regions where the distance between 0
and ∂F is arbitrarily small, can be turned into regions where
the distance between 0 and ∂F is large (we refer to [20] for
further details). We now state the convergence theorem that
leverages the KŁ property, and then illustrate the family of
functions enjoying it, with specific application to our binary
quantization problem.

Theorem 4.1. Let F = L + R : Rd 7→ R ∪ {+∞}
be a proper, lower semi-continuous, bounded from below,
Kurdyka-Łojasiewicz function. Moreover, let L : Rd 7→ R
be differentiable and β-smooth, and R be continuous. Then,
any bounded sequence (xt)t∈N generated by the proximal
gradient algorithm as in Eq. (5) converges to a critical point
of F . Moreover, as

∑
k ∥xt+1 − xt∥2 < +∞, then (xt)t∈N is

convergent.

Proof. This result is a direct consequence of Theorem 5.1 in
[19] applied to non-convex, non-smooth, forward-backward
splitting algorithms. In particular, the proximal gradient algo-
rithm fits into the structure of Algorithm 3 defined in Section
5.1 of [19].

A large class of non-smooth functions enjoys the KŁ property
required by Theorem 4.1. As shown by [21], semi-algebraic
and subanalytic functions can be considered KŁ functions.
Indeed, the considered R is semi-algebraic because it is the
union of polynomials. Since the composition of analytic func-
tions is analytic, L would be analytic if we e.g. used the ana-
lytic SoftPlus activation function. In this case, F amounts to
the sum of an analytic and a semi-algebraic function, hence
is sub-analytic. In conclusion, F is KŁ under reasonable
assumptions. Concerning the convergence rate of the algo-
rithm, [18, 22] state that, if the KŁ property is verified with
some specific reparametrization functions, then convergence
can be sublinear, linear, or composed of a finite number of
steps. In our setting, since R is sharp at its minimum, the
reparametrization function mainly depends on the loss func-
tion L. Theorem 4.1, which also holds for ProxQuant as its
W-shaped regularizer is semi-algebraic, is a stronger result
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Fig. 2. Example: L = 1
2 (x − α)2, α = 0.4, λ ∈ {0.3, 0.6, 1.5}. We depict F = L + λR (top) and the quantization output

(bottom) for the proposed ConQ and ProxQuant.

than Theorem 5.1 in [2] which instead only considers con-
vergence in an ergodic sense and assumes that a differen-
tiable function approximates R. Specifically, smoothing R
might compromise the quantization-promoting effect, mark-
ing a gap between theory and practice.

4.2. Differences between ConQ and ProxQuant

Let L be µ-strongly convex, i.e., L(x)− 1
2µ∥x∥

2
2 is convex. In

this setting, the differences between ConQ and ProxQuant are
evident in terms of convergence rate and accuracy, as shown
in the one-dimensional toy example in Fig. 2. Here we depict
F = L + λR (top), where R indicates the employed regu-
larizer, and its quantization output (bottom) for the proposed
ConQ and ProxQuant. Specifically, let L = 1

2 (x−α)2, where
x ∈ R and α > 0. The chosen L is 1-strongly convex and the
minimizer x = α is quantized to +1. We apply ConQ and
ProxQuant to showcase their different behavior in converging
to the correct quantized solution for α = 0.4, τ = 10−2 and
three different values of λ as in λ ∈ {0.3, 0.6, 1.5}.

In the first case (λ = 0.3) ConQ exhibits a strongly con-
vex F (x) and converges to the right solution for any x0, with
a global linear convergence rate. In the same setting, F (x)
for ProxQuant has a unique minimum, but its convergence is
not overall linear and substantially slows down before over-
passing zero, which might be critical. Indeed, if we stop
the algorithm at iteration t = 200 and binarize the current

xt, only ConQ provides the correct quantized value. In the
second case (λ = 0.6), F (x) is non-convex for ConQ, but
with a unique minimizer. For any x0, ConQ converges to the
right solution in a finite number of steps as expected from
[22]. In contrast, F (x) for ProxQuant has a local minimum at
α − λ < 0, which yields an incorrect quantization. One can
easily prove that ProxQuant converges to it whenever x0 <
− τα

1−τ = −0.004. Finally, in the third case (λ = 1.5), F (x)
for ConQ or ProxQuant has two minima at the quantization
values. ConQ converges to the correct solution whenever x0

is at the right of the negative minimizer, namely x0 > α
1−2λ ,

while ProxQuant converges whenever x0 > − τα
1−τ . Hence,

ConQ has a larger region of attraction to the correct solution.
To sum up, ProxQuant exhibits drawbacks compared to our
ConQ. Firstly, even if F has a unique minimum, ProxQuant
has no global linear convergence rate guaranteed. Secondly,
when more minima occur, ProxQuant has a smaller region
of attraction towards the optimal quantization, affecting over-
all accuracy. Beyond W-shaped regularization, non-convexity
issues occur whenever a regularizer has a non-differentiable
point at 0. For example, this is the case of ℓq regularization
with q ∈ (0, 1), defined by r(x) = (|x− sign(x)|)q and used
in [6].



4.3. Convergence for Strongly Convex Loss

In this section, we analyze the convergence of ConQ for
strongly convex L. In particular, we provide conditions on
λ such that ConQ is Q-linearly convergent. As illustrated
in Sec. 4.2, the convex analysis cannot be performed for
ProxQuant and other similar regularizers as they are non-
differentiable at 0 [2, 6].

Theorem 4.2. Let us consider the minimization of F = L +
λR, where L is µ-strongly convex and β-smooth, and R is
defined by Eqs. (2)-(3). Let µ ≥ 2λ + ϵ for some ϵ > 0.
Then, it is possible to design a PGA that enjoys a Q-linear
convergence, i.e., it generates a sequence (xt)t∈N, such that:

∥xt+1 − x⋆∥2 ≤ c∥xt − x⋆∥2, (7)

where x⋆ is the global minimizer and c ∈ (0, 1). L is said to
be β-smooth if its gradient is β-Lipschitz.

5. EXPERIMENTAL EVALUATION

We evaluate the performance of our method on the image
classification task by testing different network structures on
the CIFAR-10 dataset.

5.1. Datasets, Models, and Setup

We report our classification performance on the CIFAR-10
dataset on which we employ standard normalization and aug-
mentation techniques. We test on progressively larger models
such as ResNets [23] with different depths and VGG-Small
[24]. The training pipeline is composed as follows. First, we
train a standard FP model for 200 epochs with no proximal
regularization. Secondly, we introduce the proposed proxi-
mal update and fine-tune for other 200 epochs. Finally, the
network is quantized and trained for further 100 epochs with
frozen gradients to stabilize the batch normalization layers,
following the procedure in [2]. We train with the Adam op-
timizer [25] with an initial learning rate set to 0.01, momen-
tum 0.9, and employ learning rate decay as in [1]. We set
λ = 10−4 for all experiments, where λ is the hyperparameter
that weights the regularization effect. Specifically, we em-
pirically found that, for the considered models and datasets,
λ = 10−4 leads to the best performance. We hypothesize the
chosen λ is the best for ensuring a smooth regularization that
does not introduce instability in the training, while steadily
pushing the parameters toward the −1/+ 1 quantization lev-
els. All models are implemented in PyTorch [26] and run on
NVIDIA GeForce GTX Titan X GPUs.

5.2. Results

Table 1 reports a detailed comparison against the proximal
methods ProxQuant [2] and ProxGen [6] obtained by exactly
replicating their experimental setup. Specifically, ProxGen is

Model Baseline ProxQuant ProxGen ConQ
ResNet20 91.94 90.65 90.50 91.41
ResNet32 92.75 91.47 91.78 92.19
ResNet44 93.04 92.05 92.32 92.53
ResNet56 93.46 92.30 92.48 92.65

Table 1. Performance comparison (% test accuracy) with
ProxQuant [2] and ProxGen [6] on the CIFAR-10 dataset. Re-
sults are averaged over 4 runs for ProxQuant and 10 runs for
ConQ.

Model Method W/A Acc. (%)

ResNet20

FP 32/32 91.94
DoReFa [27]

1/32

90.0
LQ-Nets [24] 90.1
IR-Net [28] 90.2
DSQ [29] 90.2

ProxGen [6] 90.5
ProxQuant [2] 90.65

ConQ (10 runs avg.) 91.4

VGG-Small

FP 32/32 94.1
BinaryConnect [1]

1/32

89.75
LAB [14] 89.5
BWN [30] 90.1

ProxQuant [2] 90.11
BayesBiNN [31] 90.68

MD-softmax-s [32] 91.3
MD-tanh-s [32] 91.4

PMF [33] 91.4
ConQ (10 runs avg.) 92.2

ResNet18

FP 32/32 94.8
BinaryConnect [1]

1/32

91.92
BayesBiNN [31] 92.28

ProxQuant [2] 92.32
MD-softmax [32] 91.28

MD-softmax-s [32] 93.1
ConQ (10 runs avg.) 93.1

Table 2. Performance comparison (% test accuracy) on the
CIFAR-10 dataset with competing techniques.

a family of methods including a revised ProxQuant that con-
siders preconditioners in the proximal operation. As reported
in [6], ProxGen improves ProxQuant for large networks, with
slight differences with different regularizer variants, obtained
by modifying the ℓ1-based W-shape to ℓq , q ∈ (0, 1)-based
shapes. Table 1 shows that proposed ConQ outperforms both
ProxQuant and ProxGen on ResNet20, ResNet32, ResNet44,
and ResNet56, demonstrating the superiority of the shape
of the proposed concave regularizer compared to the ℓ1,
W-shaped and ℓq shaped regularizers used in [2, 6]. Further-
more, we compare on CIFAR10 with other state-of-the-art
methods such as BinaryConnect [1], DoReFa [27], LQ-Nets
[24], IR-Net [28], DSQ [29], BayesBiNN [31], MD [32], and



PMF [33]. ConQ improves over competing methods with the
ResNet20 architecture and with bigger models such as VGG-
Small and ResNet18, which exhibit respectively 4.66M and
11M parameters. Specifically, Table 2 shows that ConQ is
competitive with other techniques outperforming the majority
of them, only tying with [32] on the ResNet18 architecture.
Note that the accuracy for our method has been obtained by
averaging the maximum test accuracy values over 10 different
runs to remove training variability.

6. CONCLUSIONS

In this work, we proposed a proximal gradient method to train
binary quantized neural networks called ConQ. Unlike other
state-of-the-art regularization methods for binary neural net-
works, our regularizer is smooth in 0. Removing the singu-
larity at 0 is the key to limiting the non-convexity of the prob-
lem thus improving the accuracy and the convergence speed.
In the case of a strongly convex loss function, we proved that
ConQ enjoys a linear convergence rate, differently from W-
shaped regularizers. Extensive numerical experiments show
that ConQ outperforms state-of-the-art regularization meth-
ods for binarized neural networks.
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