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ABSTRACT

In recent years, the demand for compact deep neural networks
(DNNs) has increased consistently, driven by the necessity
to deploy them in environments with limited resources such
as mobile or embedded devices. Our work aims to tackle
this challenge by proposing a combination of two techniques:
sparsification and ternarization of network parameters. We
extend the plain binarization by introducing a sparsification
interval centered around 0. The network parameters falling in
this interval are set to 0 and effectively removed from the net-
work topology. Despite the increased complexity required by
the ternarization scheme compared to a binary quantizer, we
obtain remarkable sparsity rates that yield parameter distri-
butions with significantly compressible sources with entropy
lower than 1 bits/symbol.

Index Terms— Quantized Neural Networks, Ternary
Neural Networks, Network Sparsification

1. INTRODUCTION

Since their introduction, the demand for more memory-
efficient neural networks has increased considerably [1–3].
For this reason, researchers have focused on developing
techniques to reduce memory consumption and the size of
the newer architectures. Among these methods is quantiza-
tion [4], a technique used to reduce the precision of numerical
values of the parameters within the network. By converting
these values from high precision (e.g., 32-bit floating point)
to lower precision (e.g., 8-bit integers), quantization enables
significant reductions in model size, memory footprint, and
computational complexity. This optimization is particularly
valuable for deploying neural network models on devices
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with limited resources, such as mobile phones, embedded
systems, and IoT devices, where memory is limited.

In this paper, we introduce a flexible ternary quantization
technique and employ it to induce sparsity in the architec-
ture of deep neural networks. Specifically, in our ternary
model, parameters are quantized to {−1, 0,+1}. We quan-
tize to 0 the parameters with magnitude smaller than a given
threshold ∆ > 0 and we effectively remove them for the
network topology. This approach aims to sparsify and quan-
tize network architectures right from the initial stages of the
learning process, employing quantization-aware training. To
boost sparsification reaching high sparsity rates, we introduce
a growth regime for ∆ based on a specific function of choice.
Our ternarization scheme differs from a static binary quanti-
zation framework that quantizes to {−1,+1}, see e.g. [1, 2],
as it allows for parameters that have been previously removed
from the topology to be introduced back into the network’s
structure if this would ensure a smaller loss during training.
In other words, the parameters’ update drives the choice of
which parameter should be set to zero (i.e. which node has to
be pruned) to maximize accuracy and sparsity.

Our contributions can be summarized as follows: (i) we
tackle the challenge of reducing network resource consump-
tion by proposing a ternary approach that combines the spar-
sification and quantization of DNNs; (ii) we promote network
sparsification by introducing growth regimes for the ∆ thresh-
old hyper-parameter, increasing the number of model param-
eters set to 0 allowing for remarkably high sparsity rates; (iii)
our ternary DNN architectures achieve improved classifica-
tion accuracy compared to their binary counterparts, while
also achieving higher compression rates.

2. BACKGROUND

In this section, we list relevant works in the field of quantized
neural networks and ternarization.

2.1. Quantization

The most common quantization approach is performed as in
the following:

Q(r) = Int(r/S)− Z, (1)
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where r is the parameter that needs to be quantized, S is the
scaling factor, Z is an integer representing the origin point,
and Int(·) is the rounding function. The scaling factor is a
parameter that defines the step between quantized levels, and
it is computed as S = β−α

2b−1
, where [α, β] represents the clip-

ping range, and b is the quantization bit-width. The choice of
the clipping range choice (or calibration) leads to symmetric
quantization when |α| = |β|, and to asymmetric quantization
if |α| ≠ |β|.

2.2. Straight-Through Estimator

The backpropagation algorithm employed to train deep mod-
els and specifically to compute gradients encounters chal-
lenges with non-differentiable functions. To address this
problem, [5] proposed a solution that goes by the name of
straight through estimator (STE). STE consists of replac-
ing the gradients of non-differentiable functions with the
gradient of the identity function during the backward pass,
allowing the flow of information through non-differentiable
elements. This strategy enables the incorporation into the
backpropagation process of operations whose derivatives are
not well-defined, such as ternarization. In this work, we use a
version of the STE that accounts for the saturation effect [2],
as outlined in Eq. 2:

gr = gq × 1|r|≤1, (2)

where gr is the gradient of the loss with respect to r, gq is
an estimator of the gradient ∂L

∂q , q and r are related through a
non-smooth q = Ternarize(r)× 1|r|≤1 performs clipping to
treat saturation. In the backward pass, the non-differentiable
operation is bypassed by replacing it effectively with an iden-
tity function.

2.3. Binarization and Ternarization

The pioneering BinaryConnect proposed in [1] brought net-
work compression to its limit by introducing a novel archi-
tecture that used 1-bit parameters, giving rise to binarization
techniques. Since then, numerous studies have explored low-
bit width quantization, including 1-bit binary and 2-bit ternary
parameters. In [6], the authors introduced Ternary Weights
Networks (TWNs) exploiting the ternarization of DNNs. In
TWNs, every parameter is quantized to +1, 0, or −1, there-
fore occupying 2 bits on average. Weights are quantized via a
thresholding function based on a positive threshold parameter
computed by minimizing the Euclidean distance between the
quantized parameter and the full-precision (FP) one.

In [7], a Trained Ternary Quantization (TTQ) was pro-
posed, based on the definition of weights {−W

(l)
n , 0,W

(l)
p }

instead of {−1, 0,+1}, with the superscript l standing for
the layer number, i.e. these quantization values are layer-
dependent. ∆l is computed by employing a global parameter

t, according to Eq. 3.

∆(l) = t×max
(
|W (l)|

)
. (3)

The work [8] proposes a ternary approach called EC2T that
aims to sparsify and quantize the architecture based on two
stages: compound model scaling, where a super-network is
built starting from a pre-trained model whose dimensions are
scaled to obtain an over-parametrized architecture, and quan-
tization, where ternary (centroid) values are assigned relying
on the novel cost function:

C(l)
c = d

(
W(l), w(l)

c

)
− λ(l) log2

(
P (l)
c

)
, (4)

where C
(l)
c represents the cost associated with assigning

quantized values to the full-precision weights W(l) given
the centroids w

(l)
c for the layer l. The cost function (4) is

particularly effective because it introduces an entropy term to
promote the sparsity of the architecture. In [9], the authors
proposed a new framework, called FATNN, where the ternary
representation is fully leveraged via a series of bitwise op-
erations aimed at achieving optimized ternary inner product.
Specifically, FATNN successfully reduces the computational
complexity of TNNs by 2×. Li et al. [10] reimagined the role
of thresholding operations in their proposed ternary quanti-
zation method called TRQ. In TRQ, ternary weights are gen-
erated as a combination of binarized stem and residual com-
ponents, achieved by recursively quantizing full-precision
parameters. More recent works have focused on ternary neu-
ral networks. Concerning hardware, a Ternary-CIM (T-CIM)
processor with 16T1C ternary bitcel is proposed in [11],
solving previous CIM processor issues such as low energy ef-
ficiency, throughput and poor linearity of analog-computing.
T-CIM tackles these problems by using decision thresholding
and by removing analog-to-digital conversion. Moreover,
ternary models gained particular attention in [12] which
shows that ternary quantization can be effectively applied to
transformers and LLMs to achieve remarkable performance
while being significantly more resource-efficient compared to
their full-precision versions.

3. PROPOSED METHOD

This section introduces the proposed method and the ratio-
nale behind the proposed ternarization scheme. Firstly, we de-
scribe the standard ternarization employed in our work. Sec-
ondly, we discuss the optimization of the network parameters.
Finally, we introduce growth regimes for ∆ to enhance spar-
sification, along with a qualitative analysis of the upper bound
to the growth of ∆. Sparse architectures entail simpler com-
putational calculations as most operations in the training and
inference phase are multiplications that can be readily set to 0
when parameters are zeroed out, effectively not contributing
to the network’s output and consequently to the loss computa-
tion. Moreover, using ternarized parameters allows the model



to be compatible with dedicated deep-learning hardware for
even more efficient computations [6].

3.1. Ternarization

We employ a quantization scheme based on the ternary val-
ues of {−1, 0,+1}. The parameter quantization is performed
with the thresholding operation as in Eq. 5:

θq =


+1 if θ > ∆

0 if |θ| ≤ ∆

−1 if θ < −∆,

(5)

where θ is the full-precision parameter and θq is its quan-
tized version, similar to how ternarization is performed in
TWN. Our method harnesses quantization-aware training
that requires a copy of the full-precision (FP) parameters
to compute the gradients for the quantized parameters, as
explained in Sec. 2. Following the common practice for
quantized frameworks [1, 2], we clip the FP parameters to
[−1,+1] before ternarizing to prevent them from drifting
away from the [−1,+1] interval.

3.2. ∆ Growth Regimes

Our preliminary experimental findings led us to consider in-
creasing ∆ as the training progresses to achieve greater spar-
sity rates than the ones obtained with fixed ∆ values. We in-
troduce ∆ growth regimes as in Eq. 6, representing the growth
of ∆ as a function of the training epoch:

∆new = ∆0 +∆0 ×M × f (Epoch) , (6)

where ∆new is the current-iteration threshold value, ∆0 is
the initial ∆ value, and M represents a constant multiplier
used to adjust the shape of the growth. f is a function of the
training epoch (Epoch), we evaluate various functions: linear
(f(x) = x), square (f(x) = x2), exponential (f(x) = ex)
and logarithmic (f(x) = log(x)). The reason behind the in-
troduction of threshold regimes is that, in the standard fixed-
∆ configuration, weights undergo random initialization and
their subsequent optimization updates quickly lead them to
spread beyond the ∆ threshold value. This implies that, dur-
ing the initial training iterations, a significant portion of the
parameters is already quantized to either −1 or +1, while
their full-precision counterparts fluctuate around these val-
ues, far outside the [−∆,∆] interval. Hence, introducing a ∆
threshold growth regime (6) allows the interval to cope with
the rapid evolution of the parameters’ values. This approach
ensures that the ternarization threshold adapts to the nature of
the parameter update, enabling efficient model sparsification
throughout the entirety of the training phase. Fig. 1 represents
the distributions of quantized parameters for fixed-∆ and in-
creasing ∆ frameworks, utilizing a threshold regime results
in parameter distributions that are more concentrated around
0, leading to greater sparsity rates.

(a) Fixed-∆

(b) Logarithmic growth

Fig. 1. A comparison between the distributions of fixed and
logarithmic ∆ ternarization regimes: (a) Parameter distribu-
tion for a fixed ∆ = 0.1 at epoch 100. (b) Parameter distri-
bution for logarithmic growth (∆0 = 0.1 and M = 1.9) at
epoch 100.

Finally, our ternarization scheme also considers the im-
position on ∆ of a ∆f maximum value that prevents the ∆
threshold from increasing beyond a critical value. Indeed, ∆
could reach an absolute value equal to 1, leading to overlap-
ping intervals in Eq.5. Ultimately, the employed regime equa-
tion is:

∆new = min (∆0 +∆0 ×M × f (Epoch) ,∆f ) . (7)

4. EXPERIMENTAL RESULTS

In the subsequent section, we first examine the experimental
setup and metrics utilized for result comparison. Afterwards,
experimental evidence is showcased, with focus on the effect
of the initial threshold values, and the analysis of the optimal
growth regime.



4.1. Setting

The experiments were performed on image classification
tasks, employing a slightly modified ResNet-20 architec-
ture [13]. Specifically, we increased the network inflation
parameter to 5 instead of 1, leading to an increased number
of parameters (4338030 over 175406), we refer to this ar-
chitecture as ResNet-20*. We train and test the models for
a total of 500 epochs on the CIFAR-10 dataset [14], which
comprises 60000 32 × 32 colour images divided into 10
classes, and split into 50000 training images and 10000 test
images. The model processes images in batches of fixed size
of 256, with a learning rate (λ) that undergoes the sched-
uled decay: [5e−3, 1e−3, 5e−4, 1e−4, 1e−5] respectively
set at epoch [0, 101, 142, 184, 220]. The network parame-
ters are initialized by sampling from a normal distribution

θ ∼ N
(
0,
√

2
n

)
, where n is the number of parameters in

the convolutional kernel. All models are implemented in
PyTorch [15] and run on NVIDIA GeForce GTX Titan X
GPUs.

4.2. Metrics

We evaluate our proposed method using four key metrics:
Top-1 validation accuracy: which measures the percentage
of correctly predicted labels; Sparsity: indicating the percent-
age of zeroed-out parameters in the neural network; Entropy:
derived from the distribution of ternarized parameters and ex-
pressed in bits/symbol, measuring the average number of bits
needed to represent the information content of a random vari-
able; and Training speed: denoting the epoch at which peak
accuracy is achieved.

4.3. ∆0 Effect on Performance

First, we investigate the effects of ∆0 for both fixed-∆ and ∆
growth regime scenarios. As shown in Fig. 2, ∆0 values of
10−1, 10−2, and 10−3 enable the model to achieve accuracy
on the test set of over 90%, while values greater than 1e−1
excessively sparsify the network during the initial training
phase, thus disrupting the learning process. As discussed in
Section 3.2, keeping ∆ fixed during training leads to models
with lower sparsity rates. Indeed, the best results are obtained
with ∆0 = 0.1 whose sparsity rates hardly exceed 44%, as
reported in Table 1). In the following, we analyse how in-
creasing ∆ with different growth regimes is beneficial for the
accuracy and sparsity of the model.

Table 1. Accuracy and sparsity performance for ∆0 = 0.1.

Outcomes Mean SD
Accuracy 91.01 91.45 91.47 91.56 91.45 91.39 0.22
Sparsity 44.65 45.01 43.43 44.24 43.21 44.11 0.77

Fig. 2. Accuracy for different ∆0 values in the fixed-∆ sce-
nario. Initial ∆ values above 0.1 yield sub-optimal accuracy.

4.4. Evaluating Different ∆ Growth Regimes

In Section 3.2, we introduced the concept of employing
growth regimes for ∆ to maximize the sparsity of the model.
Generally speaking, a higher ∆ value entails greater rates
of zeroed-out parameters. However, if ∆ is too large, it can
lead to excessively high sparsity rates, resulting in highly
oscillating validation accuracy, and, in more extreme cases, a
significant accuracy drop. Hence, the choice of the function
f is of key importance.

Here, we report the accuracy and sparsity of the models
obtained with linear, quadratic, exponential, and logarithmic
∆ growth regimes. Results are shown in Fig. 3. Our ternary
architecture obtains great sparsity rates, averaging around
90%. We also achieve remarkable accuracy on the test set
compared to the binary architecture counterpart (i.e. when
parameters are straightforwardly binarized). One can notice
that exponential regimes tend to induce sparsification early
in the training, primarily due to the rapid increase in the ∆
threshold. This inevitably leads to a large portion of the pa-
rameters being quantized to 0, and consequently to models
whose learning abilities are limited by such distribution of
the ternary parameters.

With accuracy exceeding 92% and sparsity exceeding
85%, the logarithmic growth simulation produces the best
results among the considered growth regimes. We further
substantiate our experimental evaluation by testing multiple
∆f , M , and f combinations for a fixed ∆0 = 0.1. We report
the results by pairing test accuracy, sparsity, entropy, and
training speed in three plots.

Fig. 4(a) plots accuracy against sparsity rates, such that
the best-performing configurations sit in the top-right corner.
Once again, logarithmic growth regimes appear to be the most
suitable choice as they yield the highest accuracy on the test
set while losing only a few percentage points in terms of spar-
sity rate compared to others. Specifically, they reach accuracy



(a) Accuracy oscillations after training convergence.

(b) Sparsity rate as a function of the training epoch.

Fig. 3. The figures depict the accuracy and the sparsity for
several threshold regimes with ∆f = 0.9. Except for the
exponential growth regime, which gives rise to excessive os-
cillations, all experiments exhibit remarkable sparsity and ac-
curacy results.

levels of approximately 93.5% and have sparsity percentages
close to 90%. It is worth noticing that all ternarized models
we obtain outperform their binary counterparts (dotted line
in Fig. 4(a)) by a significant amount (up to 2% for the loga-
rithmic growth regime). The sparsity rates are correlated to
the value of the growth upper bound ∆f : the higher ∆f , the
higher they are. However, as previously observed, greater ∆f

values may lead to instability during training.

Fig. 4(b) reports accuracy against entropy for the obtained
models. Interestingly enough, one can observe that, as high
sparsity rates are caused by a high concentration of param-
eters around 0, our ternary models exhibit lower entropy
than a binarized one whose entropy instead averages around
1 bits/symbol. Specifically, the entropy values for the log-
arithmic configurations are approximately 0.6 bits/symbol.
Our findings suggest that the improvement in terms of classi-

(a) Accuracy vs. Sparsity.

(b) Accuracy vs. Entropy.

Fig. 4. Ternarized models performance for different f , M ,
and ∆f .

fication accuracy over binary models also comes with a great
compressibility of the ternarized model. Furthermore, we
analyze the relationship between accuracy and training speed
and report results in Fig. 5. We run three simulations for each
setup to consider training variability. Our findings show no
significant differences in training speed among the different
growth regimes we experimented with. The tested configu-
rations reach their highest accuracy values with comparable
training speeds, proving consistency in how early the best
accuracy is obtained across the different regimes.

Finally, Table 2 reports accuracy performance compared
with competing approaches and full-precision baselines. The
first section in Tab. 2 refers to results obtained with a ResNet-
20 architecture, while the second shows performance ob-
tained from a ResNet-20* model (i.e. inflation parameter
set to 5). Our approach produces the best results for top-1



Fig. 5. Accuracy analysis for different ternary configurations
as a function of the training speed. Each experiment is per-
formed three times.

Table 2. Comparison of ∆ growth regimes with FP base-
lines, binary counterparts, and selected ternary approaches.
The table consists of two sections: the first compares results
obtained with ResNet-20 models, while the second reports re-
sults obtained with ResNet-20*.

Acc. (%) Sparsity (%) Entropy (bits/sym) Acc. Diff. (%)
ResNet-20 (FP) 91.67 0.00 - -
TTQ 91.13 30-50 - -0.54
EC2T-1 (λ = 0) 91.16 45.17 - -0.51
EC2T-2 (λ > 0) 90.76 73.26 - -0.91
ResNet-20* (FP) 93.61 0.00 - -
ResNet-20* (Binary) 91.22 0.00 1.00 -2.39
Ours (lin. regime) 92.30 84.25 0.78 -1.31
Ours (log. regime) 93.27 89.75 0.57 -0.34

classification accuracy and sparsity for quantized models,
exhibiting the smallest deviation from baseline accuracy,
leading to models with significant performance and great
compressibility.

5. CONCLUSIONS

In this paper, we present a flexible framework for ternary
quantization that combines both sparsification and quantiza-
tion. Our method allows parameters previously removed from
the topology to be weighted back into the network’s struc-
ture, driven by the parameters’ update process based on STE.
The proposed approach also introduces ∆ threshold growth
regimes to improve the sparsity of ternarized models during
training while maintaining high accuracy on the image clas-
sification tasks. We show that this method yields neural net-
work frameworks with sparsification rates over 90% and im-
provements up to 2% in top-1 validation accuracy compared
with binary models. Our findings demonstrate that the no-

table sparsity rates lead to parameter distributions with lower
entropy levels than binary models, yielding more compress-
ible architectures with higher generalization capability.
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