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Onboard Deep Lossless and Near-lossless Predictive
Coding of Hyperspectral Images with Line-based

Attention
Diego Valsesia, Member, IEEE, Tiziano Bianchi, Member, IEEE and Enrico Magli, Fellow, IEEE

Abstract—Deep learning methods have traditionally been dif-
ficult to apply to compression of hyperspectral images onboard
of spacecrafts, due to the large computational complexity needed
to achieve adequate representational power, as well as the lack of
suitable datasets for training and testing. In this paper, we depart
from the traditional autoencoder approach and we design a pre-
dictive neural network, called LineRWKV, that works recursively
line-by-line to limit memory consumption. In order to achieve
that, we adopt a novel hybrid attentive-recursive operation that
combines the representational advantages of Transformers with
the linear complexity and recursive implementation of recurrent
neural networks. The compression algorithm performs prediction
of each pixel using LineRWKV, followed by entropy coding of the
residual. Experiments on multiple datasets show that LineRWKV
is highly memory-efficient, significantly outperforms state-of-the-
art deep learning methods and is the first deep learning approach
to outperform CCSDS-123.0-B-2 at lossless and near-lossless
compression. Promising throughput results are also evaluated
on a 7W embedded system.

Index Terms—Hyperspectral image compression, deep learn-
ing, self-attention, RWKV, predictive coding

I. INTRODUCTION

HYPERSPECTRAL images acquired by spacecrafts are
an essential tool for Earth observation, playing pivotal

roles in environmental monitoring, urban planning, tackling
climate change and much more [1]–[6]. The spatial and
spectral resolution of instruments keeps growing to satisfy the
demands of final users. However, this poses significant chal-
lenges for the transmission and management of huge amounts
of spatial and spectral information, making compression a
topic of paramount importance. Even modest gains in rate-
distortion performance may result in significant bandwidth
reduction. This is critical for many tasks where downlink band-
width is a limiting factor in the timeliness of the delivery of
the products or their resolution [7]. The challenge of onboard
compression of hyperspectral images is far from trivial, as
it requires methods that are efficient in processing massive
amounts of data with the limited computational resources that
are available on a satellite, and, at the same time, are able to
capture complex spatial-spectral redundancy patterns.
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PONENTE 2, INVESTIMENTO 1.3 – D.D. 1555 11/10/2022, PE00000013).
This manuscript reflects only the authors’ views and opinions, neither the
European Union nor the European Commission can be considered responsible
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Deep learning has shown great promise for the task of
RGB image and video compression [8]–[13]. However, the
literature on deep learning for hyperspectral image compres-
sion, particularly for usage onboard of spacecrafts, is still
in its infancy, due to the complexity of this data type. In
fact, effective compression of hyperspectral images requires
to capture both spatial and spectral correlation patterns. When
a neural network is to be designed for this task, it requires
processing of the entire 3D data cube to extract spatio-spectral
features that are relevant for the compression task. But in doing
so, complexity can grow very rapidly both in the amount of
operations to be performed by neural layers, and, even more
so, in memory requirements. This is clearly at odds with the
limited computational resources available onboard.

The literature on deep hyperspectral image compression is
currently focused on designs based on autoencoders, following
seminal works for RGB images [8]. In this kind of approach,
the neural network generally consists of an encoder which
maps the image into a compact latent space and a decoder
which reconstructs the image. Several designs are possible
depending on the focus on spatial or spectral features, com-
plexity tradeoffs, etc. For instance, some works [14], [15] limit
complexity by just focusing on spectral redundancy, while
others seek complex spatio-spectral representations [16]–[20]
with various operations and training objectives to enhance the
quality of the features. Several of these works do not attempt
to carefully control complexity for onboard usage. The work
by Verdú et al. [21] started posing the question of a model
with a complexity that would be suitable for onboard usage
and presented a design accordingly.

Common to the entire existing literature on deep hyperspec-
tral image compression is the low-bitrate setting in which all
these autoencoder methods are tested. Results are typically
presented at rates lower than 1 bit per pixel per channel
(bpppc), corresponding to very high compression ratios, and
quality levels that would generally be unacceptable for real
remote sensing missions. This is the regime where such
methods are most competitive, due to an intrinsic limitation of
the autoencoder design. Indeed, reconstructing an image from
a latent space with very high fidelity requires neural networks
with large representational power, both in the encoder and
decoder parts. Due to this, existing designs do not scale well
to a high-rate, high-quality regime, presenting a plateau in
rate-distortion performance as rate is increased, or exploding
complexity. In fact, as we show in this paper, the state-of-
art in deep learning compression of hyperspectral images is
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significantly outperformed by classic approaches, such as the
low-complexity CCSDS-123.0-B-2 standard [22] for onboard
lossless and near-lossless compression, when targeting the
high-quality regime. The lack of lossless compression methods
is another limitation of current literature that we address in this
work. Hence, it is clear that in order to address the weaknesses
of the existing literature in the high-quality regime, both
in terms of rate-distortion performance and low-complexity
designs, we need to depart from the autoencoder approach.

In this paper, we present a novel neural network design,
called LineRWKV, capable of lossless and lossy compression.
The design departs from existing works in several ways.
First, it follows a predictive coding approach, where the
neural network predicts a pixel value from a causal con-
text and only the prediction residual is entropy-coded. This
is to address the aforementioned limitation of autoencoders
where reconstruction from the bottleneck is hard to scale
with limited complexity, since a predictor can be simpler to
design. This also allows to readily target lossless compres-
sion, which is currently neglected by the literature, as well
as lossy compression with a bounded error (so-called near-
lossless). Moreover, the proposed architecture has a radical
novel design to constrain complexity, particularly regarding
memory usage. We propose a neural network architecture that
can work recursively in the along-track direction. This limits
memory usage, as it is only tied to one image line with all
its spectral channels, while exploiting a memory of past lines
and enabling continuous pushbroom operation. Critically, we
use a novel hybrid attentive-recursive operation [23] which
avoids pitfalls of older recurrent neural networks (RNNs),
enabling parallelized training, and having the representational
power of Transformers [24], with the advantage of linear
complexity instead of quadratic. While [23] has been proposed
for natural language processing tasks, we are the first to adapt
this architecture to image processing. We conduct extensive
experiments on three datasets to show that, for the first time
for a deep-learning method, we can significantly outperform
CCSDS-123.0-B-2 in rate-distortion performance. We also
conduct tests on a 7W embedded system to validate promising
throughput results, matching our low-complexity design goals.

In summary, the main contributions presented in this paper
are:

• the first scheme for deep hyperspectral image compres-
sion departing from autoencoders by adopting predictive
coding;

• a novel low-complexity architecture that constrains mem-
ory and computational requirements by working line-by-
line with a novel hybrid-recurrent scheme;

• the first deep hyperspectral image compression for loss-
less compression;

• the first deep learning method to outperform CCSDS-
123.0-B-2 in the high-rate, high-quality regime.

A preliminary version of this work [25] introduced the gen-
eral idea, while this paper significantly expands the method-
ology and experimental results. The manuscript is organized
as follows. Sec. II introduces some background material on
methods for compression of remote sensing hyperspectral

images, both traditional and based on deep learning, as well
as background on deep sequence processing which is useful
to understand the proposed method. Sec. III presents the
technical description of the proposed method. Sec. IV reports
compression results on multiple datasets. Finally, Sec. V draws
some conclusions and discusses the main limitations of the
method for future improvement.

II. BACKGROUND

A. Compression onboard of spacecrafts

Onboard hyperspectral image compression faces a challeng-
ing balance between rate-distortion performance and compu-
tational complexity. Over the years, CCSDS standards have
gained popularity due to their low computational demands,
enabling high throughput on dedicated FPGAs [26], and good
rate-distortion performance. In particular, CCSDS 122.0-B-2
[27] together with CCSDS 122.1-B-1 [28] employ a transform
coding approach to lossless and lossy compression, where
a 2D discrete wavelet transform is coupled with a spectral
transform. The more recent CCSDS 123.0-B-2 [22] follows in-
stead a predictive coding approach to lossless and near-lossless
(i.e., lossy with bounded error) compression with a spatial-
spectral predictor based on an adaptive filter. CCSDS 123.0-B-
2 is regarded as the state-of-the-art for onboard hyperspectral
image compression and, to the best of our knowledge, remains
unchallenged by current deep-learning methods. Finally, it
worth mentioning that Regression Wavelet Analysis (RWA)
[29], [30] combines a spectral transform with 2D JPEG2000
to achieve compression performance competitive with CCSDS
123.0-B-2.

B. Image compression with deep learning

Most of the works in the literature of image compression
with deep learning stem from the computer vision community,
focusing on 8-bit RGB or grayscale images [8]–[13].

Few works [14]–[21], [31] have addressed the topic of
hyperspectral images, especially while keeping complexity
in mind for possible onboard usage. The general approach
mainly follows the early work of Ballé et al. [8], in the
design of autoencoder neural networks where an encoder
subnetwork creates a latent representation of the input image
in a low-dimensional space which is then quantized and
entropy-coded. Sometimes encoder features are also used to
derive a hyperprior on the distribution of the low-dimensional
latent representation. A decoder subnetwork maps the latent
representation back to the image space. These networks are
trained end-to-end with rate-distortion objectives, balancing,
according to the desired tradeoff, the reconstruction error and
the entropy of the latent representation. Recent advancements
for RGB images focused on improving encoder architectures
and context models for the entropy coder [12]. Regarding
hyperspectral images, the main challenge lies in the ex-
tremely high memory requirements to capture 3D spatial-
spectral features for a compressed latent representation. The
works by Kuester et al. [14] and La Grassa et al. [15]
focus on designing a spectral autoencoder. This limits the
computational complexity and captures a significant amount
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of correlation, as it is known that hyperspectral images are
more spectrally than spatially correlated, but does not exploit
spatial redundancy whcih might be significant. Most other
works fully exploit spatio-spectral features, e.g., via the simple
convolutional autoencoders designed in [16] and [31]. Guo
et al. [18] propose a variational autoencoder with an edge
extractor to provide guidance to better represent edges. In
subsequent work, Guo et al. [19] use cross-channel contrastive
learning to enhance spectral features, but not do not attempt
to optimize complexity or memory usage. In a recent work
targeting onboard compression, Verdú et al. [21] adopt a
channel clusterization strategy as well as novel normalization
strategies needed for images with high dynamic range. While
all these methods based on autoencoders work well at low
rates, typically being tested below 1 bpppc, they are difficult to
scale to high-rate, high-quality regimes without compromising
efficiency. In fact, the autoencoding approach tends to struggle
when very low distortion is desired, if the network capacity in
terms of number of features, latent space size and total number
of parameters is not adequately scaled.

Finally, it is worth mentioning that some autoregressive
approaches [32], [33] have been studied on RGB images. They
generally rely on modeling the image as a sequence of all
pixels, and use a causal context for prediction within the mech-
anism of either causal convolution, RNNs or Transformers.
As detailed in the next section, until recently, each of these
approaches had a critical limitation, consisting in either limited
representational power, or inefficient training and encoding, or
high complexity. We also remark that the proposed method is
not purely autoregressive on all image pixels, since the across-
track dimension can be effectively processed in parallel, as
detailed in Sec. III-G.

C. Deep sequence processing

Since the proposed method is based on a causal prediction
approach, it is worth reviewing the main ways in which
deep neural networks are used to process sequences and their
respective tradeoffs. For simplicity we are going to discuss
processing of a 1D sequence.

First, a simple design would be causal convolution, such as
that of PixelCNN [34], where the convolution kernel is masked
so that the receptive field only expands in the past samples.
While this approach enjoys fairly efficient implementations,
it has limited representational power as it is not an input-
dependent operation (like Attention is), and the size of the
receptive field, i.e., how far past samples affect the current
prediction, might be limited.

An alternative approach would be the use of RNNs, such as
the LSTM [35], to have ideally infinite memory. This approach
is limited by the inefficiency of training which requires serial
computations over the entire sequence length, so that it does
not scale to the large datasets required to train even moderately
complex models.

Transformers [24] are currently the state of the art for
sequence processing thanks to the high representational power
of the input-dependent attention operation, which is capable
of creating operations that are adaptive to the sequence under
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Iq = round(I/Q)
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Quantized
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residuals
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Fig. 1: Overview of compression scheme for near-lossless
compression. A raw image is prequantized by means of a
uniform scalar quantizer, then fed to a causal prediction model
implemented by the LineRWKV neural network, producing
prediction residuals that are entropy-coded.

processing. Unlike RNNs, Transformers can also be paral-
lelized during training. However, they suffer from quadratic
complexity in the sequence length and require to keep the
entire sequence and its features in memory, resulting in high
memory and computational cost. This renders them infeasible
to process an image in an autoregressive pixelwise fashion.

Very recently, the natural language processing literature has
focused its attention towards sequence processing with hybrid
designs between RNNs and Transformers which simultane-
ously have linear complexity, admit parallel training and can
be written in a recursive manner for low-memory inference
[23], [36]. RWKV [23] is a recent model with such properties,
which is at the basis of the proposed work, as detailed in Sec.
III.

III. PROPOSED METHOD

A. Overview

In this section, we present the full design of the proposed
hyperspectral compression method, shown in Fig. 1. This is a
predictive coding method, where a pixel is predicted from a
causal spatial and spectral context, and only the prediction
error is encoded. The method comprises a prequantizer to
introduce losses, followed by a deep-learning based predic-
tor, called LineRWKV, and an entropy encoder to code the
prediction residuals.

Regarding the prequantizer module, lossy compression, in
the context of predictive coding algorithms, can be achieved in
two ways: in-loop quantization of prediction errors or image
prequantization. In-loop quantization predicts a pixel value,
computes a prediction residual and quantizes it. However, in
order to complete prediction for the next pixel values, it is
necessary to reconstruct the pixel value from the quantized
residual. This is to ensure that the decoder can perform the
same prediction operation. However, it introduces serial data
dependencies. On the other hand, prequantization consists in
quantizing the input image and then using lossless prediction.
This avoids data dependencies at the compressor since there is
no discrepancy between the original pixel value and the value
to be used for prediction, so it leads to higher compression
throughput. While in-loop quantization is theoretically supe-
rior, this leads to inefficient implementations and, at the high
rates desirable for usage in real missions, which are the focus
of this paper, the rate-distortion penalty of prequantization
with respect to in-loop quantization is minimal, as shown in
[37]. Therefore, this work adopts a prequantization block using
a uniform scalar quantizer with odd-integer step size Q to
obtain the prequantized image Iq = round(I/Q).
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architecture. z−1 denotes unit delay in the sequence dimension (lines or bands). LN denotes LayerNorm and LIN denotes
linear projection of features.

The entropy encoder module can use any method with
suitable complexity. In this work, we use the sample-adaptive
Golomb encoder defined by the CCSDS-123.0-B-2 standard
[22] as entropy coder for the positive-mapped prediction
residuals to ensure fair comparisons with the CCSDS predictor.

LineRWKV is a neural network implementing a predictor,
i.e., it estimates the value of a pixel based on a context
(network receptive field) of past spatial and spectral pixels.
For clarity of explanation, we will describe its behavior in
inference mode for the compression stage. Discrepancies with
respect to the training process are discussed in Sec. III-G.
A high-level overview of LineRWKV is presented in Fig. 2
and Alg. 1 recaps the operations performed by the modules
presented in the next sections. We denote sampling of the
along-track direction of the satellite with the term “lines”
and variable y = 0, 1, 2, . . . ; the across-track direction is
denoted as columns and variable x = 0, 1, 2, . . . , Nx − 1;
the spectral direction is denoted as z = 0, 1, 2, . . . , Nz − 1.
LineRWKV does not pose any restrictions on the extent
of the three dimensions, which may be different between

Algorithm 1 LineRWKV predictor

Require: Prequantized image Iq = round(I/Q)
Require: Init u−1,x,z = 0 ∀x, z
Require: Init states a−1,x,z,b−1,x,z = 0 ∀x, z

Compress first line (Sec. III-F) to get E0,x,z ∀x, z
for y = 1, . . . do

uy−1,x,z ← Encoder(Iqy−1,:,z) ∀x, z
ûy,x,z, (a,b)y−1,x,z ← LinePredictor(uy−1,x,z,

uy−2,x,z,ay−2,x,z,by−2,x,z) ∀x, z
Ey,x,0 = Decoder0(ûy,x,0)− Iqy,x,0 ∀x

∆y,x,z−1 = uy,x,z−1 − ûy,x,z−1 ∀x, z ≥ 1
∆̂y,x,z = SpectralPredictor({∆y,x,ζ}ζ<z) ∀x, z ≥ 1
Îqy,x,z = Decoder(∆̂y,x,z + ûy,x,z) ∀x, z ≥ 1

Ey,x,z = Îqy,x,z − Iqy,x,z ∀x, z ≥ 1
end for

training and testing. In particular, the maximum number of
columns and bands is dictated by available memory, while
the number of lines can be infinite, supporting continuous
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pushbroom acquisition. The prediction for pixel Iqy=Y,x=X,z=Z

depends on all pixels with y ≤ Y , z < Z, ∀x. We note
that the context used by LineRWKV for prediction is slightly
different from conventional non-neural designs. Specifically,
the predictor employs all lines above the current pixel, and
all previous bands for the current pixel, but it does not use
information from the previous pixels on the same line or future
bands in past lines. This is due to the LineRWKV design,
which employs separate blocks in the spectral, along-track and
across-track dimensions. This choice is slightly suboptimal; it
is similar in principle to the “narrow” mode of the CCSDS-
123.0-B-2 predictor, which incurs a small loss of compression
efficiency [37], but it is necessary in order to avoid a much
more complex structure of the neural predictor. The predicted
value is rounded and subtracted from the original pixel value
to compute the prediction error. Finally, the prediction error
is losslessly encoded with any entropy encoder. At any time
during inference, the last two lines of the image with all their
spectral channels (i.e., a tensor of size 2 × Nx × Nz) are
supposed to be under processing to predict the next line, which
is also available for the computation of the residual.

The LineRWKV predictor has a modular architecture design
composed of the following blocks: i) an encoder to map each
pixel in a line and given band into a feature space by exploiting
across-track spatial correlation; ii) a line predictor that predicts
the features of the co-located (same x, z) pixel in the next line;
iii) a spectral predictor that predicts the features of the co-
located (same x, y) pixel in the next band; iv) a decoder that
estimates a pixel value based on its features. The following
sections explain each of the blocks in detail. In the following,
we suppose that we are predicting the values for line y from
current line y − 1 and past line y − 2, as depicted in Fig. 2.

B. Encoder

The goal of the encoder is to capture the correlation that
exists across image columns and encode it into a feature space
for further processing. The encoder function is thus a 1D
operation that is shared for all bands and for all lines. A simple
design for the encoder is a sequence of blocks composed
of 1D convolution, layer normalization [38], and non-linear
activation. This design should be modulated according to the
expected complexity of the across-track correlation patterns,
possibly considering larger receptive fields and attention oper-
ations, if complexity allows. For our experiments, we choose
the simple convolutional blocks and we denote the number of
such blocks with Nenc. The encoding of the input line will
result in a feature vector u for each spatial-spectral pixel (i.e.,
a tensor of size 1×Nx ×Nz × F ).

C. Line Predictor

The line predictor is the core operation of LineRWKV,
which enables the recursion over the image lines, constraining
memory usage and enabling continuous operation. The line
predictor should exploit the features of a number of past
lines in order to predict the next line. As discussed in Sec.
II-C, it is desirable to have an attention-based operation such
as the scaled dot-product attention of the Transformer to

process the sequence of lines, both to parallelize training
and to exploit the power of attention to adapt to self-similar
patterns. However, Transformers require keeping several lines
and their features in memory, which is prohibitive, and have
quadratic computational cost in the number of lines, which
is also prohibitive. On the other hand, training a traditional
RNN on large-scales would be extremely slow and would not
scale well. Our line predictor is therefore based on the RWKV
neural network [23] for sequence processing, and its recurrent
implementation is used for inference.

More in detail, each of the NxNz pixels in the current line,
represented as a feature vector by the across-track encoder,
is processed in parallel by the line predictor. The RWKV-
based line predictor is composed of the repetition of two
fundamental blocks: line mixing and channel mixing, both
depicted in Fig. 3. Overall, Nlp line and channel mixing blocks
are used in our architecture. For brevity of notation, we denote
the feature vector of a pixel input to the line mixing operation
as uy−1 ∈ RF and its corresponding output as oy−1 ∈ RF ,
omitting subscripts x, z. In particular, line mixing performs
the following operations:

ry−1 = Wr(µruy−1 + (1− µr)uy−2) (1)
ky−1 = Wk(µkuy−1 + (1− µk)uy−2) (2)
vy−1 = Wv(µvuy−1 + (1− µv)uy−2) (3)

ay−1 = e−α ⊙ ay−2 + eky−1 ⊙ vy−1 (4)

by−1 = e−α ⊙ by−2 + eky−1 (5)

py−1 =
ay−2 + eβ+ky−1 ⊙ vy−1

by−2 + eβ+ky−1
(6)

oy−1 = Wo(σ(ry−1)⊙ py−1) (7)

where W∗, α, β are trainable parameters, µ∗ some hyperpa-
rameters and σ the sigmoid function. The symbol ⊙ denotes
elementwise product and exponentiation to a vector is intended
elementwise. The states in the recursion are initialized as
a = b = 0.

With some abuse of notation, also denoting with uy−1 ∈ RF

the input to the channel mixing module and its corresponding
output as oy−1 ∈ RF , the module performs the following
operations:

ry−1 = W′
r(µ

′
ruy−1 + (1− µ′

r)uy−2) (8)
ky−1 = W′

k(µ
′
kuy−1 + (1− µ′

k)uy−2) (9)

oy−1 = σ(ry−1)⊙
�
W′

vmax(ky−1, 0)
2
�

(10)

where W′
∗, are trainable parameters, µ′

∗ some hyperparame-
ters, and σ the sigmoid function.

It can be noticed that the recursion requires a limited
amount of memory to be implemented. In particular, besides
the features of the current line, the only feature vectors that
need to be stored are the states ay−2 and by−2 and features
of the previous line uy−2. This needs to be done for each
layer of line and channel mixing that is used. However, this
operation allows to keep a memory of past lines and use the
attention mechanism for the prediction of the next line and is
significantly advantageous in terms of memory consumption
compared to keeping the features of a large number of lines.
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We refer the reader to [23] for details about a numerically-
stable implementation.

The output oy−1 of the last channel mixing module in the
Line Predictor is summed with the input of the module in a
residual fashion, as depicted in Fig. 3, to generate ûy ∈ RF ,
i.e., a feature-space prediction of the co-located pixel in line
y, as shown in Alg. 1.

D. Spectral Predictor

The output ûy of the line predictor is a feature vector for
each spatial-spectral pixel that can be thought to be a predic-
tion of the features of line y. While this captures the spatial
correlation in the across- and along-track directions, the model
has not yet exploited correlation in the spectral dimension. We
propose to first compute a feature-domain spatial prediction
residual and then model its spectral correlation. In particular,
the pixels in line y are encoded with the encoder in Sec. III-B
and the difference between them and the output of the line
predictor applied to line y− 1 forms the spectral sequence of
feature-domain spatial residuals:

∆y,x,z = uy,x,z − ûy,x,z, (11)

which in the following denote in short as ∆z , omitting
subscripts x, y. Notice that ∆y,x,z requires pixel Iqy,x,z for
its computation. Therefore, this needs to have been already
decoded and its availability is ensured by treating the first
band as a special case, discussed in Sec. III-F.

A causal model over the ∆z sequence is needed to obtain
features describing the pixel to be predicted. For this spectral
prediction model, we propose to also use RWKV blocks.
However, for a lossless (or prequantized) compressor, the
parallel implementation typically reserved for training is used
rather than the recurrent implementation described in Sec.
III-C in order to ensure high throughput. This consists in a
sequence of Nsp band mixing and channel mixing blocks,
with the same architecture previously depicted in Fig. 3. The
parallel implementation keeps the features for all the bands in
memory and computes1:

rz−1 = Wr(µr∆z−1 + (1− µr)∆z−2) (12)
kz−1 = Wk(µk∆z−1 + (1− µk)∆z−2) (13)
vz−1 = Wv(µv∆z−1 + (1− µv)∆z−2) (14)

pz−1 =

Pz−2
i=1 e−(z−1−i)α+ki ⊙ vi + eβ+kz−1 ⊙ vz−1Pz−2

i=1 e−(z−1−i)α+ki + eβ+kz−1

(15)
oz−1 = Wo(σ(rz−1)⊙ pz−1) (16)

for the band mixing block, and:

rz−1 = W′
r(µ

′
ruz−1 + (1− µ′

r)uz−2) (17)
kz−1 = W′

k(µ
′
kuz−1 + (1− µ′

k)uz−2) (18)

oz−1 = σ(rz−1)⊙
�
W′

vmax(kz−1, 0)
2
�

(19)

for the channel mixing block. The output oz−1 of the last
channel mixing module in the Spectral Predictor is summed

1With some abuse of notation we reuse symbols from the line predictor,
but they represent different activations and weights.

with the input of the module in a residual fashion, as depicted
in Fig. 3, to generate a feature vector ∆̂z for each pixel
which should ideally represent the spatial-spectral residual
in a feature domain. Also notice that spectral prediction is
performed on the difference sequence ∆z rather than on
the outputs of the line predictors as this allows to use the
information of the pixel in the same line to be encoded but
from previous bands, which is typically the highest source of
correlation.

E. Decoder

A decoder neural network produces a prediction of the
raw pixel value from the feature-domain representation of the
spatial prediction ûy,x,z and spatial-spectral error ∆̂y,x,z , as
shown in Alg. 1. This is obtained by feeding their sum to
a sequence of Ndec blocks composed of 1 × 1 convolution,
LayerNorm and non-linear activation.

The predicted pixel value is then denormalized, rounded
to the nearest integer and the difference with respect to
the original pixel value forms the prediction error, which
is entropy-coded with a suitable technique. Notice that this
approach differs somewhat from works addressing lossless
compression of natural images with deep learning [13]. In
those works, it is more typical to let the neural network
produce the prediction as a probability distribution over the set
of possible symbols (typically 256 for 8-bit images). However,
the large number of symbols (e.g., 216) of satellite images
poses efficiency challenges in terms of computation and mem-
ory requirements and incurs in the “softmax bottleneck” issue
due to the number of classes exceeding the number of features
[39]. The proposed floating-point regression with rounding
solves these issues but incurs in subtle numerical conditions
that must be managed to ensure decodability. Whenever there
is a mismatch in the hardware-software stack between the
compressor and the decompressor, the prediction will only be
accurate down to numerical precision, i.e., about 7 significant
digits on the normalized value, for computations in FP32. This
means that a numerical perturbation might cause the predicted
value to cross the rounding threshold, causing a decoding error.
In order to avoid this, whenever the prediction is closer to
the rounding threshold than 10−3 (in unnormalized integer
digital numbers), we signal the side of the threshold as extra
information. This choice has been experimentally verified to
ensure correct decoding on the entire HySpecNet-11k test
set. The side information is entropy-coded and in our tests
incurred a small penalty of 0.02 bpppc, already included in
all experimental results.

F. Special cases

In order to ensure causality of the model, the first line for
all bands and the entire first band need to be compressed with
a separate method. For the first line, we use a simple DPCM
encoder where the prediction error is computed as:

E0,x,z =





Iq0,0,0, for x = 0, z = 0

Iq0,x,z − Iq0,x−1,0, for x > 0, z = 0

Iq0,x,z − Iq0,x,z−1 for x ≥ 0, z > 0.
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TABLE I: LineRWKV architecture configurations.

Model Size Params Nenc Nlp Nsp Ndec F FLOPS/sample
XS 30k 1 2 2 1 32 120k
S 135k 2 2 2 2 64 508k
M 286k 4 4 4 4 64 1M
L 900k 4 6 6 4 96 3.2M

For the first band, we employ spatial prediction only, by
feeding the output of the line predictor to a dedicated decoder
neural network with architecture comparable to that described
in Sec. III-E; the prediction error is then entropy coded.

G. Training vs. Inference

The description in the previous section follows the inference
behavior. A few important differences are present for training
in order to ensure scalability when using large datasets.
First, the recurrent implementation of the line predictor is
replaced with the parallel implementation already described in
Sec. III-D. This improves efficiency as it enables processing
several lines at the same time, and, in fact, it is one of the
main advantages over traditional recurrent neural networks.
Moreover, we remark an interesting property of the overall
design, which is useful for efficient training: all operations
performed after the line encoder are columnwise independent.
In fact, the predictors work on lines and bands but do not mix
columns, and the use of 1 × 1 convolution in the decoder
also keeps this property. This is useful to reduce memory
consumption during training by subsampling random subsets
of columns after encoding, if desired.

LineRWKV is trained by minimizing the ℓ1 loss between the
predicted and true pixel values. Notice that this means that we
only optimize for lossless compression, while never account-
ing for quantization during training. Nevertheless, lossy rate
distortion tests still show excellent performance, as reported
in Sec. IV.

IV. EXPERIMENTAL RESULTS

In this section, we analyze the performance of LineRWKV
in terms of compression efficiency with respect to state-of-the-
art approaches to hyperspectral image compression. Moreover,
we show how LineRWKV behaves when a different satellite
is targeted compared to its original training. Finally, we report
throughput and memory usage on a 7W low-power device as
a proof of concept for potential onboard implementation on
embedded devices. Code and pretrained models are available
at https://github.com/diegovalsesia/linerwkv.

A. Experimental setting

Our main experimental results are based on training and
testing LineRWKV on the recently introduced HySpecNet-
11k dataset [40]. This is the largest curated dataset of hy-
perspectral images currently available, composed of 11,483
non-overlapping patches of size 128× 128× 224 acquired by
the EnMAP satellite with a ground sampling distance of 30m.
The authors provide standard train-test splits for benchmarking
compression algorithms. In particular, we use the “hard” split

where patches in the test set belong to entirely separate tiles
with respect to the training patches. Preprocessing discards
some bands, resulting in a total of 202, and clips values
between 0 and 10000. We also test the method on two
additional datasets: a collection of images from the PRISMA
satellite we assembled and the dataset released for the DFC
2018 challenge [41]. For the former dataset, we collected 110
images of size 1000× 1000× 239 from the PRISMA satellite
[42], partitioned into 100 for training and 10 for testing. These
images have been collected from all over the world to have a
highly varied set of scenes, and the test locations are strictly
disjoint from the train locations. For the experiments, we used
the 66 VNIR bands. For the latter dataset, an aerial scene
of Houston of size 4172 × 1202 × 50 has been partitioned
into 128 × 128 × 50 sub-images. HyspecNet-11k data are
preprocessed with clipping to 10000 maximum intensity, thus
having a dynamic range of roughly 14 bits, while the PRISMA
and DFC2018 images are over 16 bits.

We consider several baseline methods for hyperspectral
image compression, focusing on low-complexity methods. In
particular, we choose the state-of-the-art CCSDS standard
for onboard lossless and near-lossless hyperspectral predictive
compression, i.e., CCSDS-123.0-B-2 [22], and RWA [29] for
an alternative state-of-the-art approach to lossless compression
based on transforms. As for state-of-the-art deep learning
approaches, we evaluate the 1D-CAE [14], SSCNet [15]
methods as well as the recent method by Verdú et al. [21];
we remark that these methods only perform lossy compres-
sion. All methods have been retrained, using the reference
implementation by the HySpecNet-11k authors for the former
two and the authors’ code for the latter. The 1D-CAE [14]
is a convolutional autoencoder which limits computational
complexity by working only in the spectral dimension, as
it is known that most of the redundancy lies in inter-band
correlation. SSCNet [15] also follows a spectral autoencoding
approach. The work by Verdú et al. [21] manages spatial-
spectral autoencoding at low complexity by introducing a new
design for a variational autoencoder with a hyperprior network,
operating on groups of bands and with ad-hoc normalization
schemes.

We use the sample-adaptive Golomb encoder defined by
the CCSDS-123.0-B-2 standard [22] as entropy coder for the
positive-mapped prediction residuals, both for our method
and the CCSDS method to ensure a fair comparison; it is
obvious that the performance could be improved employing
an arithmetic coder, especially at rates below 2 bpppc, and as
a matter of fact, the Golomb coder is not capable of producing
rates below 1 bpppc. The other methods use the same entropy
encoder as proposed in their respective works. The CCSDS
predictor is used in its full mode with wide neighbor-oriented
local sums, and 3 prediction bands, a configuration which
typically provides the best tradeoff of compression ratio and
complexity.

Several configurations for LineRWKV have been tested in
order to validate its scaling potential as function of number
of encoder, decoder, predictors layers and number of features.
Table I reports the details for four configurations of choice,
ranging from extra small (XS) to large (L). Training LineR-
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TABLE II: Lossless rate (bpppc) on HySpecNet-11k hard test
set.

Model size LineRWKV CCSDS [22] RWA [29] Diff. CCSDS Diff. RWA
XS 5.647 5.801 5.772 -0.154 -0.125
S 5.521 5.801 5.772 -0.280 -0.251
M 5.510 5.801 5.772 -0.291 -0.262
L 5.370 5.801 5.772 -0.431 -0.402

TABLE III: Transfer Learning - Lossless rate.

Dataset Model size LineRWKV LineRWKV CCSDS [22] RWA [29](zero-shot) (finetune)

PRISMA

XS 8.431 8.214 8.135 8.105
S 8.312 8.076 8.135 8.105
M 8.188 7.974 8.135 8.105
L 8.093 7.919 8.135 8.105

DFC2018

XS 7.484 7.315 7.364 7.403
S 7.378 7.216 7.364 7.403
M 7.353 7.175 7.364 7.403
L 7.334 7.107 7.364 7.403

WKV has been done over four Nvidia A100 40GB GPUs.
In order to limit training memory requirements and speed up
convergence, a random subset of 16 contiguous bands has been
used in the initial training phases, followed by finetuning with
all the available bands and a smaller batch size. For the M
configuration, the initial batch size was 8 without any column
sampling; in the finetuning phase will all bands, the batch
size is 4 with a subsampling of 16 columns. Learning rate
was linearly decreased from 10−4 to 10−6 over 4000 epochs.
We remark that memory requirements during training are large
due to the desire to process as much of the hyperspectral cube
as possible concurrently with a large enough batch size. This is
not reflected in the inference phase, which is memory-efficient
as shown in Sec. IV-C.

B. Results on HySpecNet-11k and transfer learning to other
sensors

Our main experiment assesses the rate-distortion perfor-
mance of all methods when tested on the hard test split of
HySpecNet-11k, as well as on the PRISMA and DFC2018
datasets.

We first start with lossless compression. Table II reports
a comparison between the rates obtained by LineRWKV,
CCSDS-123.0-B-2 [22] and RWA [29] on HySpecNet-11k.
RWA is sometimes slightly better than CCSDS 123.0-B-2 at
lossless compression, but both are significantly outperformed
by the proposed LineRWKV.

We are also interested in studying how well a LineRWKV
model trained on a dataset from a specific satellite behaves
when it is applied to a different satellite. This is important
since it is likely that a large-scale dataset of images repre-
sentative of a new satellite is not available before launch.
However, it is also conceivable that a certain number of images
can be losslessly transmitted with a suboptimal compressor
in the pre-operational phase in order to finetune and update
the compressor model itself. For this experiment, we use the
PRISMA and DFC2018 datasets. Table III reports the lossless
rate compared to CCSDS-123.0-B-2 and RWA on the PRISMA
and DFC2018 datasets in two settings of interest: zero-shot

TABLE IV: BD-Rate of LineRWKV with respect to CCSDS-
123.0-B-2 for lossy compression.

Model size HyspecNet-11k PRISMA DFC2018
XS -5.27% -0.89% -4.53%
S -9.05% -4.36% -7.13%
M -9.94% -5.11% -7.84%
L -12.67% -6.37% -8.45%

transfer, i.e., the model trained on HySpecNet-11k is used as
is on DFC2018 and PRISMA, and after finetuning. It can be
noticed that the domain gap between EnMAP and the PRISMA
and DFC2018 sensors affects compression performance in
the zero-shot case which is now either slightly outperformed
by or close to the CCSDS algorithm. However, finetuning
with a modest number of images allows to recover superior
performance.

For lossy compression, we are mostly interested in the high-
quality and high-rate regimes (typically ≥ 2 bpppc) as these
are the most relevant for space missions. We consider the
following metrics for quality evaluation: PSNR, MS-SSIM
[43], spectral angle SAM score [44], and maximum absolute
distortion (MAD). Figs. 4, 5 and 6 show the average values
of the evaluation metrics obtained over the entire test set
as a function of the rate for all the methods under study,
on the HySpecNet-11k, PRISMA and DFC2018 datasets,
respectively. For PRISMA and DFC2018, we are reporting
the results after finetuning. It can be noticed that existing
deep learning approaches are significantly outperformed by the
CCSDS standard at high rates. This is due to the current focus
of the literature on hyperspectral image compression towards
very low rates, which finds its motivation in complex chal-
lenges towards scaling autoencoder neural network designs
to also work well at high rates while maintaining acceptable
complexity. As a sanity check, we remark that the reported
PSNR values on the hard split are consistent with published
results on the easy split by the HySpecNet-11k authors.

The results on the MAD metric also raise an interesting
point of discussion, since the state-of-the-art deep learning ap-
proaches are two orders of magnitude worse than LineRWKV
and CCSDS-123.0-B-2. This is expected since the traditional
autoencoder design does not constrain the maximum error
in any way, possibly resulting in localized very high errors.
On the other hand, predictive compressors naturally limit
maximum distortion to half of the quantization step size, both
for the prequantized approach followed by LineRWKV and
the in-loop quantization of CCSDS-123.0-B-2. Fig. 7 shows
a visualization of the maximum absolute error and reports
histograms of the full absolute error distribution, at a rate point
close to 4bpppc for all methods. LineRWKV and CCSDS-
123.0-B-2 set the quantization step size to Q = 21, so the
maximum error in constrained to a value of 10, and we can
see it shows a roughly uniform distribution. On the other
hand, the deep autoencoding approaches exhibit an exponential
error distribution with tails with significantly larger errors.
A guarantee on the maximum error is critical to ensure
image reliability in real missions, thus showing an important
advantage of the proposed LineRWKV method.
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Fig. 4: Rate-distortion performance comparison on HySpecNet-11k hard test set. SSCNet MS-SSIM is outside the figure scale
at 0.914 at 2bpppc and 0.891 at 4bpppc.

Regarding the overall comparison with CCSDS-123.0-B-
2, we can notice that it is closer in performance than deep
learning approaches, but LineRWKV always outperforms it,
even in the XS configuration. This is also shown in Table IV
which reports the Bjontegaard Delta metric (BD-Rate) with
respect to PSNR. We remark that since both LineRWKV and
CCSDS-123.0-B-2 are predictive schemes working at high
rates, their quality metrics are essentially the same, differing
only in rate.

Fig. 8 shows a qualitative comparison of the positive-
mapped prediction residuals of LineRWKV-XS and CCSDS-
123.0-B-2 for a band in a test image. It can be noticed
that some complex correlation patterns are discovered by the
neural network and removed, leading to smaller residuals. On
the other hand, Fig. 9 reports the median positive-mapped
prediction residual as a function of band index for the entire
HySpecNet-11k hard test set. We can see that LineRWKV-XS

provides smaller residuals across basically all the 202 bands,
with the largest gains observed for bands 130 to 202.

We also report an example of performance of a downstream
application, where compressed images are used to address land
cover classification. The Pavia dataset is used for this task
with models trained on HyspecNet-11k. Table V reports the
accuracy as a function of rate, when images compressed by
LineRWKV and 1D-CAE are used for training and testing
a simple model based on support vector machines (SVMs).
Although this particular application is fairly robust to compres-
sion, we can see that LineRWKV provides a smaller degrada-
tion of accuracy as bitrate decreases. In general, performance
of downstream applications might be more or less sensitive
to loss of information due to compression, and should be
carefully assessed on a task-by-task basis.

It is also worth noticing that there is a clear performance
scaling, with increasing rate-distortion gains both in lossless
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Fig. 5: Rate-distortion performance comparison on PRISMA test set. SSCNet MS-SSIM is outside the figure scale at 0.988 at
4bpppc and 0.989 at 8bpppc.

TABLE V: Land cover classification from compressed images.
SVM Accuracy on Pavia dataset.

Model Rate
Orig. 8 bpppc 4 bpppc 2 bpppc

LineRWKV-XS 91.15% 91.15% 91.14% 90.94%
1D-CAE 91.15% 88.92% 87.85% 85.33%

and lossy compression, in the LineRWKV model, as model
complexity is increased from the XS to L configuration. For
example, on HySpecNet-11k, the XS configuration reports an
already substantial 0.154 bpppc gain over lossless CCSDS-
123.0-B-2, while the L configuration achieves a massive 0.431
bpppc gain. Although the L configuration is too complex
for practical onboard usage, it serves as a validation that
LineRWKV has potential scaling and is not significantly
bottlenecked in its design.

As a term of comparison regarding complexity, the work

by Verdú et al. [21] reports a complexity of about 17k
FLOPs/sample compared to the 120k FLOPs/sample of
LineRWKV-XS. However, we also tested a variant of the
method where we increased the number of hidden and latent
features to approximately match 120k FLOPs/sample. This
is the point with rate equal to 3.130 bpppc reported in Fig.
4, which however does not seem to provide significant im-
provements, highlighting that the design has some bottleneck
preventing it from reaching low distortion values at higher
rates.

C. Performance on low-power hardware

In order to validate the low-complexity inference of Lin-
eRWKV, we test its performance on a low-power embedded
system, namely the Nvidia Jetson Orin Nano. The platform
has 8GB of shared CPU-GPU memory and a maximum
power of 7W. We test the XS configuration in single-precision
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Fig. 6: Rate-distortion performance comparison on DFC2018 test set. SSCNet MS-SSIM is outside the figure scale at 0.995
at 4bpppc and 0.994 at 8bpppc.

floating point (FP32). For the HySpecNet-11k images (128×
128 × 202), the peak memory usage due to LineRWKV is
673 MB, which is a quite modest value in the realm of
deep learning-based processing of hyperspectral images. The
measured latency is 6.472 seconds, resulting in a throughput
of 511,345 samples/sec. Fig. 10 shows how memory scales
as a function of number of lines, columns and bands. First,
we can notice that the recurrent property over the along-
track direction allows constant memory usage regardless of
the number of lines. For what concerns columns and bands,
we can see that scaling is fairly linear, in contrast with the
quadratic dependence in traditional Transformers, with a floor
for small image size. Throughput is roughly constant around
500k samples/s for all image sizes except for the very small
ones, which also confirms linear scaling of complexity.

It must be remarked that the current implementation is far
from optimized. Indeed, several optimizations are possible

that would substantially raise the throughput and might be
worth investigating in future works. Few examples include
model compilation for the target accelerator (e.g., via Ten-
sorRT), mixed-precision inference where parts of the model
run integer-quantized or in floating point half precision. Our
proposed design also does not exploit any spatial downsam-
pling: if the line and spectral predictors could be run on a
downsampled cube, throughput would be increased by a factor
close to the downsampling factor. However, this necessitates
careful decoder design not to reduce rate-distortion perfor-
mance.

D. Spectral Predictor Ablation

In this section, we evaluate the choice of RWKV blocks
as a spectral prediction mechanism against an alternative
approach, presented in [25]. The alternative approach adopts
causal convolution operations such that the receptive field
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123.0-B-2, 1D-CAE, SSCNet, Verdú et al.. Note that the white level is 50 for LineRWKV and CCSDS and 150 for 1D-CAE,
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Fig. 8: Left to right: band 187 of a test image (col-
ormap [0, 4000], positive-mapped prediction residuals (col-
ormap [0, 100]) for CCSDS-123.0-B-2 and LineRWKV-XS.

expands only towards past bands. In particular, blocks are
repeated to form the spectral predictor; each block is composed
of 1D causal convolution with kernel length of 3 bands,
Layer Normalization, GeLU non-linearity and an attention
operation. This operation computes an attention mask from the
output of the GeLU non-linearity with two size-1 convolutions
interleaved by GeLU and a final sigmoid activation. The
resulting mask is multiplied elementwise to the input of the
attention operation and the result summed to it. Comparisons
are made to have a similar number of trainable parameters
with respect to the design with RWKV blocks.

Table VI reports a comparison between the lossless rate
and throughput on the Nvidia Jetson Orin Nano of some con-
figurations of the proposed LineRWKV model with RWKV-
based spectral predictor, and those of the model with causal
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Fig. 9: Positive-mapped prediction residual for CCSDS-123.0-
B-2 and LineRWKV-XS. Median, over the entire HySpecNet-
11k hard test set, of spatial medians.

TABLE VI: Ablation of the design of spectral predictor.

Model size RWKV Causal conv.
Rate Throughput Rate Throughput

XS 5.647 511,345 5.764 595,962
M 5.510 173,078 5.593 334,476

convolution-based spectral predictor. We can see that the
causal convolution method is faster but not as effective in terms
of compression ratio.

V. CONCLUSIONS AND LIMITATIONS

We presented a novel design of a low-complexity neural
network for compression of hyperspectral images with the goal
of usage onboard of satellites. In particular, we showed that
the memory and complexity bottleneck of current autoencoder
designs can be overcome by adopting a predictive coding
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Fig. 10: Scaling of LineRWKV-XS memory usage on the Nvidia Jetson Orin Nano 8GB as a function of number of lines,
columns and bands.

approach with a neural network working line-by-line based
on a hybrid recurrent-attentive operations. This leads to a sub-
stantial improvement of rate-distortion performance, resulting
in the first deep-learning approach capable of outperforming
CCSDS-123.0-B-2, and having modest memory requirements.

While LineRWKV represent a substantial improvement in
the performance of low-complexity deep learning compressors,
some limitations need to be addressed in future work. In
particular, complexity needs to be further reduced to achieve
throughput comparable with current in-flight implementations.
We conjecture that a possible avenue could be reducing the
columns and bands into a more compact latent space to be used
for prediction, essentially creating a hybrid method between
autoencoding and prediction. The numerical stability of the
prediction, while managed with a small overhead in the current
scheme, also deserves further investigation. Moreover, optimal
training may require a substantial amount of GPU memory
for sensors with hundreds of bands. The solution to this does
not seem trivial, as we have shown that lighter methods for
spectral prediction, such as causal convolution, do not seem
as effective as RWKV. Finally, our scaling experiments show
that increasing the number of parameters of LineRWKV brings
improvements in rate-distortion performance for the same
architectural design. However, at the moment, it is unclear
is this is an intrinsic limitation of neural networks, requiring
larger scales to be more effective, or if the design could be
made more parameter efficient.
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