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Abstract—The search for dark matter is now looking at axion-
like particles (ALPs) as a very promising candidate to understand
our universe. Within the framework of haloscope detectors for
ALPs, we explore the performances of NbTi thin-film coatings on
Cu resonating cavities to investigate the presence of axions in the
range of 35–45-µeV mass. In this work, two different compositions
of NbTi thin films are studied, and their performances in high
magnetic field are presented. The chemical treatments and dc
magnetron sputtering details of the preparation of three 9-GHz
resonant cavities and a 7-GHz resonant cavity are shown along
with the cavities’ quality factor measurements at different applied
magnetic fields.
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I. INTRODUCTION

A. Superconducting Haloscopes

AN OUTSTANDING result of modern cosmology is that a
significant fraction of the universe is made of dark matter.

However, the nature of such a component is still unknown, be-
sides its gravitational interaction with ordinary baryonic matter.
In the frame of quantum chromodynamics (QCD) of particle
physics, the Peccei–Quinn mechanism offers a dynamic solution
to the charge conjugation and parity transformation problem [1].
This solution involves the creation of a new particle called axion.
There are also other types of axions called axion-like particles
(ALPs), which are not necessarily related to QCD but are instead
favored by other theories, namely, string theory.

Many projects explored the possibility to study the interaction
of the cosmological axion with a strong magnetic field [2].
In fact, this interaction can cause the conversion of the ALP
into a photon of frequency determined by its mass. There-
fore, a possible detector for the axion in the range of masses
35–45 µeV could be a microwave resonant cavity cooled down
at ultracryogenic temperature, to avoid the noise due to thermal
photons, placed inside a strong magnetic field. This setup will
be called haloscope hereafter. Since the mass of ALPs is un-
known, many cavities have been fabricated to explore different
frequencies within the range of interest. From previous studies,
it is known that a high quality factor on the order of magnitude
106–107 is desirable [3]; therefore, the best choice is to look at
superconducting materials that are notoriously used in particle
accelerator resonant cavities with Q0 on the order of 1010 even.
The main difference with accelerating cavities is that haloscopes
must operate and immerse in extremely high magnetic fields on
the order of several tesla, so superconducting materials with high
Hc2 are required. In this work, hybrid superconducting–normal
conducting haloscopes will be studied. In this configuration, the
superconducting material is deposited as a thin film on the copper
substrate using the dc magnetron sputtering (DCMS) technique.
The cone-shaped ends of each cavity are not coated because
these parts of the cavities are where most of the dissipation takes
place since the magnetic field is not parallel to the cavity surface.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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It was calculated that a superconductive film would dissipate
more energy than the normal conductive copper surface due to
flux vortex movement [4]. This represents one of the advantages
of the use of thin-film-coated copper cavities compared with
bulk superconducting cavities, where hybrid structures are not
possible or at least more complex to fabricate.

B. NbTi in High-Magnetic-Field High-Frequency Regime

As previously mentioned, most of the energy dissipation in
the superconducting part of the haloscopes is due to fluxon
movement. Fluxons are quantized units of magnetic field flux
that penetrate the type II superconducting material. The behavior
of these fluxons in high-frequency fields can be described as a
harmonic oscillator centered around the pinning center in the
Gittleman–Rosenblum model using the following equation [5]:

mẍ+ ηẋ+ kx = Jrf Φ0 (1)

where x is the fluxon displacement, m is its mass, η is the fluxon
flow viscosity, kx is the pinning force, Jrf is the RF current
in the superconductor, and Φ0 is the flux quantization unit in
superconductors. From these parameters, it is possible to define
the depinning frequency νp = k/2πη. The depinning frequency
marks the border between two different regimes of operation:
working with the radiation of frequency lower than νp, the
fluxons wiggling around their pinning centers can be considered
elastic and nondissipative. Working above νp means entering a
resistive regime in which the fluxons do dissipate energy with
their movement.

There are little data in the literature on η-values, particularly
for coatings, so the choice of material was made by looking at
superconductors used for magnet production. Among the most
promising superconducting materials used for high-magnetic-
field applications (Nb3Sn, REBCO, etc.), NbTi was chosen,
since it is one of the easiest to deposit as a thin film.

From previous studies [6], it is known that in NbTi alloys,
the major contributor to the pinning of fluxons comes from α-Ti
precipitates. It is, therefore, easy to figure out that the pinning
force depends on the concentration of Ti, as well as on the
magnetic field strength and working temperature. In Figs. 1 and
2, it can be seen that a maximum exists in the pinning force that
depends on the titanium concentration and varies as the applied
magnetic field increases and the working temperature decreases.

The first NbTi on Cu haloscope produced was a 9-GHz cavity
coated by DCMS in 2019 [4], [8]. The goal of the present study
is to improve the performance of this previous haloscope testing
different NbTi compositions. We have also studied the effect
of introducing a Nb barrier layer between the copper substrate
and the NbTi layer to prevent diffusion at the interfaces. This
barrier layer is commonly used in NbTi superconducting magnet
production [9]. The vertical lines show the composition of the
two NbTi alloys that will be presented in this study.

II. EXPERIMENTAL PROCEDURE

In this work, three copper 9-GHz microwave cavities (two
half-cells each), one copper 7-GHz microwave cavity (two half-
cells), one dielectric resonator (DR) sample, and two coplanar

Fig. 1. Pinning force in function of the Ti content in the NbTi alloy at different
applied magnetic fields at 4.2 K. The red and light blue vertical lines show
the composition of the two NbTi alloys that will be presented in this study
Nb0.38Ti0.62 and Nb0.31Ti0.69, respectively. Data adapted from [7].

Fig. 2. Pinning force in function of the Ti content in the NbTi alloy at different
applied magnetic fields at 1.8 K. The vertical lines show the composition of
the two NbTi alloys that will be presented in this study Nb0.38Ti0.62 and
Nb0.31Ti0.69, respectively. Data adapted from [7].

TABLE I
SUMMARY OF PRESENTED SAMPLES

waveguide resonator (CPWR) samples were fabricated, coated
with a superconducting NbTi thin film of two different compo-
sitions, and characterized. A summary of the samples prepared
is presented in Table I.
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Fig. 3. 9-GHz cavity half-cell (a) before and (b) after polishing.

A. Cu Substrate Preparation

Copper semicell cavities were mechanically fabricated by
CNC milling at INFN mechanical workshop starting from cop-
per ingots. After mechanical fabrication, each semicell cavity
was polished prior to the deposition process [see Fig. 3(a)]. The
protocol used derived from ALPI linac quarter wave [10] and
consisted in the following steps:

1) ultrasonic degreasing in GP17.40 soap at 40 °C for ap-
proximately 1 h;

2) ultrasonic cleaning in deionized water;
3) electropolishing in H3PO4 (85%): butanol (99,9%) at 3:2

volume ratio at room temperature with applied voltage
2–3 V for different times depending on the cavity shape
and dimensions;

4) ultrasonic cleaning in deionized water, ethanol rinsing,
and drying with nitrogen.

The two CPWRs were produced on commercial 10 × 10 mm
quartz samples, polished by applying steps 1 and 2 of the copper
cavity polishing protocol, while the DR sample was produced
on commercial the 25 × 25 mm quartz substrate polished in the
same way as the CPWR samples.

B. Coating Processes

The coatings were performed via DCMS by means of a 4-in
NbTi planar target. The target–substrate distance was 9 cm.
The sample holder was heated with IR lamps. The sputtering
parameters used were: 24-h baking of the system at 600 °C,
process temperature of 550 °C, process gas (Ar) pressure of
6 × 10−3 mbar, and 30-min sputtering time. The resulting
NbTi layer showed a thickness of ∼2.5 µm (see Fig. 4). Two
NbTi sputtering targets were chosen in this study: a 1-mm-
thick Nb0.38Ti0.62 sheet (low Ti content) and a 5-mm-thick
Nb0.31Ti0.69 commercial target (high Ti content).

The DR resonator sample and one copper 9-GHz resonator
were coated using the low-Ti-content target. For these depo-
sitions, the process temperature was set to 500 °C instead of
550 °C.

Two copper 9-GHz cavities, one copper 7-GHz cavity, and
two CPWRs were coated using the high-Ti-content target. On
the CPWR sample, a waveguide resonator was subsequently
patterned, as described in [11].

For the copper cavities, the two cone-shaped ends of each
half-cell were masked during the sputtering process using two
copper cones previously polished in SUBU-5 solution [12] and
sputtered with Nb to prevent adhesion to the cells during the fol-
lowing sputtering process. The low-Ti-content 9-GHz cavity and

Fig. 4. (a) 7-GHz and (b) 9-GHz cavities half-cells after NbTi deposition via
DCMS.

the high-Ti-content 7-GHz cavity were coated on a virgin pol-
ished copper substrate; meanwhile, for the two high-Ti-content
9-GHz cavities, two substrates, previously coated with NbTi
and characterized, were used. The old coatings were removed
chemically using a HF:HBF4 solution [13]. The substrates were
then polished using the four-point protocol described earlier.

C. Nb Barrier Layer

One of the two high-Ti-content 9-GHz cavities was coated
inserting a 1-µm Nb barrier layer between the Cu substrate and
the NbTi coating. The Nb barrier layer was coated ex situ using
the following parameters: 36-h baking of the system at 550 °C,
process temperature of 500 °C, process gas (Ar) pressure of
6 × 10−3 mbar, and 25-min sputtering time.

D. Characterizations

1) Planar Resonators: Tc of the planar resonators was mea-
sured by the inductive method on the quartz coated samples.
For the DR sample characterization, the sample was placed on
one of the bases of a dielectric-loaded cylindrical resonator and
covered with a thin metal mask with a circular hole of diameter
17 mm. It is possible to extract the contribution of the sample to
the Q0 of the resonator and to the resonance frequency, as shown
in [14], in function of the applied magnetic field. Similarly, it is
possible to extract the properties of interest of the material itself
[11] for the CPWR samples, by measuring the quality factor of
the 2-D resonators previously patterned on the superconducting
films [11].

2) Haloscopes: The haloscopes’ Q0 was measured cooling
the devices inside a liquid helium bath cryostat and connecting
them to a VNA. By analyzing the transmission and reflection
scattering parameters of the haloscopes, Q0 was extracted using
a modified Lorentzian fit, as explained in [8]. The RF power sent
via the VNA was kept below 1 mW.
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Fig. 5. Depinning frequency as a function of dc magnetic field. CPWR samples
are the Nb0.31Ti0.69 samples, on which the resonator was patterned, while the
DR sample is the Nb0.38Ti0.62 sample characterized at Roma Tre University.

Fig. 6. Normalized flux flow resistivity as a function of dc magnetic field. As
for Fig. 6, CPWR samples are the high-Ti-content samples with the resonator
patterned on top, while the DR sample is the low-Ti-content sample characterized
at Roma Tre University.

III. RESULTS

A. Material Characterization

The high-Ti-content quartz CPWR samples were character-
ized at the Politecnico di Torino, Turin, Italy, while the low-
Ti-content sample was characterized at Roma Tre University,
Rome, Italy, as previously described. Depinning frequency and
flux flow resistivity of the superconducting material were ex-
tracted from quality factor measurements and plotted in function
of the applied magnetic field (see Figs. 5 and 6). The lower
maximum magnetic field in the DR measurement is due to the
reduced capabilities of the normal conducting electromagnet
used.

Fig. 7. Quality factor of the 7-GHz haloscope in function of the applied
magnetic field at different temperatures. The measurements were carried out
at INFN Salerno apart from the single-point 15-mK measurement done at the
University of Paris–Saclay with the use of a dilution refrigerator.

Fig. 8. Quality factor of the high-Ti-content 7-GHz cavity with no applied
magnetic field in function of the temperature.

B. Cavity Characterization

Results of the 7-GHz cavity quality factor as a function of
temperature and applied magnetic field are reported in Figs. 7
and 8.

Results of the first 9-GHz cavity quality factor as a function
of the applied magnetic field are reported in Fig. 9.

In Fig. 9, high-Ti-content 9-GHz and high-Ti-content + Nb
barrier layer 9-GHz cavities are also shown compared with the
low-Ti-content 9-GHz cavity.

The characterization of 9-GHz cavities was carried out at
INFN Frascati National Laboratories using a different magnet
with lower capabilities with respect to the measurements done
at INFN Salerno.
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Fig. 9. Q0 versus B for all the measured haloscopes at a temperature of 4.2 K.
Data for the 9-GHz bare copper cavity from [8].

IV. DISCUSSION

The planar samples with low Ti (Nb0.38Ti0.62) content and
high Ti (Nb0.31Ti0.69) content show very similar behavior as
for the normalized flux flow resistivity (see Fig. 6), while the
high-Ti-content samples show a smaller normal state resistivity
(22 versus 54 µΩ·cm) [11], which, together with the slightly
higher depinning frequency (see Fig. 5), should lead to a better
performance at the frequencies of interest (9 and 7 GHz).

As for the impact of the geometry on the quality factor of the
haloscopes, it was estimated through Ansys software simula-
tions of the 9-GHz haloscope that the maximum Q0 achievable
using the hybrid configuration should be 1.3 × 106 with no
applied magnetic field. This value was calculated assuming no
losses on the superconducting cylinder surface and considering
Gcones = 6270.11 Ω and Rs

Cu = 4.9 mΩ [4]. We expect a quite
sharp step between the superconducting film and the not-coated
copper ends that should not introduce significant losses, since
the major source of dissipation should be fluxons’ movement. It
was not possible to characterize this interface due to the complex
geometry of the samples.

Looking at the results for the 7-GHz cavity (see Fig. 7), we
can notice that with rising temperature, a drop in the Q-factor
is measured due to the progressive deprecation of the supercon-
ductive properties of NbTi approaching its Tc as expected. It is
also important to notice that the drop of the performances of
the device going to fields of ∼10 T (see Fig. 7) is due to NbTi
reaching its Hc2.

Keeping the device at 4.2 K (liquid helium bath temperature)
and progressively applying an external magnetic field parallel
to the cylindrical surface of the cavity, it is possible to notice a
reduction in the Q-factor most likely due to fluxon penetration
and movement. The first fastest drop can be seen between 0 and
1 T, when the magnetic flux starts to penetrate in the material
and forms the fluxons. Afterward, a small slope can be observed
up to a field of 6 T that is still well below the theoretical Hc2 of
NbTi. Q0 of 2× 106 can be observed at no applied magnetic field
and 4.2-K temperature, which is in accordance with simulations
previously done for the 9-GHz hybrid geometry haloscope.

Fig. 10. Rs versus B for all the measured haloscopes at 4 K. The data for
the 7-GHz haloscope are truncated in order to see clearly the comparison with
9-GHz haloscopes.

It is important to remember that these devices will have to
work at millikelvin range temperatures because of the thermal
noise reduction needed for axion detection. The reference value
for the performance of this haloscope is the only available point
at 15 mK and 2 T that gave Q0 � 9 × 105. From the plot in
Fig. 8, it is also possible to extract a rough estimate of the critical
temperature of the high-Ti-content NbTi, yielding Tc � 8.3 K. Tc

limits the operating temperature, but since these haloscopes will
be used at the millikelvin regime, it is not a limiting factor for
the application. The seemingly linear dependence of the quality
factor with temperature observed was also found for a different
cavity and setup in [8]. Comparing the performances of low- and
high-Ti-content 9-GHz cavities (see Fig. 9), although preserving
a very similar shape to the low-Ti cavity’s curve, the high-Ti
coating is significantly less performing, in contrast with material
characterization results done on planar resonators. Moreover,
the introduction of a Nb barrier layer does not improve the
results. This negligible effect of the Nb barrier layer shows that
the thickness of the film is sufficiently bigger than the London
penetration depth [11] on the whole cavity surface, making
possible diffusion effects nonrelevant.

Looking at the comparison of the three cavities produced
with the high-Ti-content NbTi coating (see Fig. 9), a significant
increase in the quality factor can be seen at 7 GHz.

The surface resistance of each cavity was extracted calculating
the G factor from simulations done in Ansys software (see
Fig. 10). The two surface resistances of the 9-GHz low-Ti-
content cavity and 7-GHz cavity align perfectly, while the other
two haloscopes show a higher Rs and more pronounced slope.
This may suggest that in addition to a frequency dependence,
there might be a stronger contribution due to the substrate itself.
In fact, the cavities that show higher Q0 are the ones coated on
pristine copper, while the two high-Ti-content 9-GHz cavities
were deposited on a reused Cu substrate.

Moreover, the less-performing cavities showed defects on the
copper surface not present in the other cavities, in particular on
the cone-shaped edges, the area with the biggest contribution
to the cavity losses with applied magnetic field (see Fig. 11).
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Fig. 11. Details of the high-Ti coating 9-GHz haloscope. (a) Presence of
large grain boundaries. (b) Slight coating of the cone-shaped ends. (c) and (d)
Scratches on the copper surface of the cones.

For example, partial coating of the copper cone-shaped ends
was observed [see Fig. 11(b)]. This could introduce a fluxon
movement dissipation contribution, explaining the rapid depre-
cation of the quality factor in function of the applied magnetic
field. From the very long experience with cavities for particle
accelerators, it is well known that surface imperfections are
critical for the cavities’ performances [15] and could, therefore,
contribute to justify the low performances of the high-Ti-content
9-GHz cavities. A very big difference from elliptical cavity
production procedure is the use of masks in contact with the
cavity during the film deposition that could introduce scratches
or imperfections, since after the deposition, it is not possible to
further polish the samples. Further studies are needed to confirm
the contribution of surface defects in the case of this hybrid
cavity geometry.

V. CONCLUSION AND FUTURE DEVELOPMENTS

The possibility of producing high-performance haloscopes
with hybrid geometry at 7 and 9 GHz with two different con-
centrations of NbTi coated via PVD was demonstrated. There is
no clear evidence that either of the two NbTi compositions tested
performs better than the other in high magnetic field. However,
the surface quality of the copper substrate appears to strongly
influence the quality factor, particularly at high magnetic fields.
Therefore, surface treatments turn out to be critical as they al-
ready have demonstrated to be, for superconducting accelerator
cavity technology. Further studies on the surface treatment and
deposition procedure of NbTi on Cu will be carried out.

The contribution of the working frequency on the surface re-
sistance requires further investigation. In this regard, a 3.9-GHz
cavity has already been fabricated in collaboration with Fermi-
lab, Batavia, IL, USA. A future improvement of the haloscopes’
performances will also be the replacement of NbTi with Nb3Sn
thin films in order to push the quality factor to even higher values
at higher magnetic fields. Studies on Nb3Sn DCMS deposition
are currently ongoing, looking at the best deposition parameters
[16], [17].
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